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ABSTRACT
This paper presents a possible alternative procedure to the

Karhunen-Loève approach to construct reduced order models

which capture accurately the dynamics of nonlinear discrete

mechanical systems under random excitation. This procedure

combines the Smooth Decomposition method and the Petrov-

Galerkin approximation. The smooth decomposition method

is a multivariate-data analysis method characterizing coherent

structures (the smooth modes) as the eigenvectors of the general-

ized eigenproblem defined from the covariance matrix of the dis-

placement field and the covariance matrix of the velocity field.

The Petrov-Galerkin approximation is used to project the dy-

namics in a subspace generated by a set of the smooth modes.

The Petrov-Galerkin approximation preserves the second order

structure of the equations of motion. The procedure is con-

sidered for a mechanical system including a strongly nonlinear

end-attachment. The efficiency of the approach is analyzed com-

paring the power spectral density functions of the reduced-order

model and of the original system.

INTRODUCTION
The Karhunen-Loève Decomposition (KLD) also named

Proper Orthogonal Decomposition (POD) or Principal Compo-

nent Analysis (PCA) has been extensively used as a tool for an-

alyzing random fields. The KLD method as a multivariate data

analysis reveals some coherent structures which have been ad-

∗Address all correspondence to this author.

vantageously used in different domains as the stochastic-finite-

elements method [1], the simulation of random fields [2], the

modal analysis of linear and nonlinear systems [3–5, 7, 8], the

construction of reduced-order models [9–12]. In structural vibra-

tion, the KLD has been principally applied to the displacement

field but it can be applied to either the displacement, the veloc-

ity or the acceleration field and also to the displacement-velocity

field [13].

Another multivariate data analysis method called Smooth

Orthogonal Decomposition (SOD) has been proposed in [14].

The SOD is defined from a maximization problem associated to

a scalar time series of measurements subject to a minimization

constraint acting on the associated time derivative of the time se-

ries. The SOD can be used to extract normal modes and natural

frequencies of multi-degree-of-freedom vibration systems. Free

and forced sinusoidal responses have been considered in [14] and

randomly excited systems have been analyzed in [15]. The SOD

has been formulated to analyze time continuous stationary [16]

and non stationary [17] vector-valued random processes. The

general random field case has been considered in [18]. In these

three papers, the decomposition was called Smooth Decomposi-

tion (SD) since it does not have the properties of a Karhunen-

Loève decomposition. The SD is obtained solving a generalized

eigenproblem defined from the covariance matrix of the random

field and the covariance matrix of its associated time derivative.

The problem of constructing reduced-order models for linear

and nonlinear discrete mechanical systems based on SD which

preserve the second order structure has been considered in [19]
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where a Petrov-Galerkin approximation has been used to project

the n-dimensional dynamics into a m-dimensional subspace. The

first results show that the efficiency of the SD approach is compa-

rable to the efficiency of the classical modal reduction techniques

based on the Normal Modes (NM) or on the Karhunen-Loève

modes.

In this paper the SD approach of model reduction is applied

to a chain of M strongly coupled linear oscillators with a strongly

nonlinear end-attachment. The nonlinear end-attachment (also

named Nonlinear Energy Sink (NES)) can passively absorb and

locally dissipate energy from the linear chain. The energy in-

teractions occur due to internal resonances making possible ir-

reversible nonlinear energy transfers from the primary system

to the NES component (also named Targeted Energy Transfer

(TET) concept). The purely nonlinearity of the NES enables it to

resonate with any modes of the primary structure. A description

of the TET can be found in [20]. The TET concept was prin-

cipally analyzed in the literature in a deterministic framework.

We propose here to analyze the TET when the excitation is a

white-noise random process. This kind of excitation differs sig-

nificantly from the deterministic case but in terms of frequency

contents, a white-noise excitation is similar to an impulsive exci-

tation in the deterministic case. It permits to analyze the system

without privileging a frequency band.

TOOLS AND METHODS
In this section, the definition and some properties of the SD

are briefly recalled. The principle of Petrov-Galerkin approach

is also reported. For all these points, more details can be found

in [14, 16, 21].

Smooth Decomposition
Let {U(t), t ∈R} be a Rn-valued zero mean second-order sta-

tionary random process indexed by R. We assume that {U(t), t ∈

R} has a time-derivative process {U̇(t), t ∈ R} which is also a

second-order stationary process. The covariance matrices of

{U(t), t ∈ R} and {U̇(t), t ∈ R} are denoted RU = E(U(t)T U(t))

and RU̇ = E(U̇(t)T U̇(t)) respectively.

The SD of {U(t), t ∈ R} is defined by

U(t) =

n∑

k=1

aS
k (t)ΦS

k (1)

where the scalar time processes aS
k

(t) named Smooth Compo-

nents (SCs) are given by

aS
k (t) =

Φ
S T

k
RUU(t)

Φ
S T

k
RUΦ

S
k

=
Φ

S T

k
RU̇U(t)

Φ
S T

k
RU̇Φ

S
k

(2)

and the constant vectors ΦS
k

named Smooth Modes (SMs) are

characterized from the optimization problem

max
Φ∈Rn

JS D(Φ) with JS D(Φ) =
E(< U(t),Φ) >2)

E(< U̇(t),Φ >2)
=
Φ

T RUΦ

Φ
T RU̇Φ

and solve the eigenproblem

RUΦ
S
k = µ

S
k RU̇Φ

S
k . (3)

Assuming that RU and RU̇ are positive definite, the SMs con-

stitute a RU-orthogonal and RU̇-orthogonal basis of Rn and all

the eigenvalues µS
k

named Smooth Values (SVs) are greater than

zero.

A physical interpretation of the SD can be obtained for lin-

ear vibration systems. Let RU and RU̇ be the covariance matrices

of the steady state solution of a discrete linear mechanical sys-

tem under zero-mean white-noise excitation. If the damping is

proportional and if the modal-excitation terms are uncorrelated

then the following relations hold:

- the SMs are related to the normal modes by

Φ
S =ΦL−T

(4)

where ΦS = [ΦS
1
Φ

S
2
· · ·ΦS

n ] and ΦL = [ΦL
1Φ

L
2 · · ·Φ

L
n ] where

theΦL
k

denote the normal modes of the associated undamped

linear system;

- the SVs are related to the natural resonance frequencies by

µ
S = (Ω2)−1 (5)

where µS = diag(µS
k

) and Ω2 = diag(ω2
k
) where the ωk de-

note the natural resonance frequencies of the associated un-

damped linear system.

The relations (4) and (5) can be used to perform modal analysis

from SD.

The last point to discuss is how to order the smooth modes.

Two ordering can be used, one considering the SVs ordered by

decreasing value (i.e. µS
1
≥ µS

2
≥ · · · ≥ µS

n ) named SV-ordering

and the other considering the energies of the SCs ordered by de-

creasing value (i.e. E(aS 2

1
(t))≥E(aS 2

2
(t))≥ · · · ≥E(aS 2

n (t))) named

energy-ordering. Due to Eq. (5), the SV-ordering is in line with

the classical ordering of the resonance frequencies (in increasing

order) whereas the energy-ordering is in line with ordering used

in the POD approach. The SV-ordering and the energy-ordering

will be compared in terms of model reduction.
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Model Reduction Method
The model-reduction method considered here is based on

Petrov-Galerkin approach [21]. This method has been retained in

this study because, firstly, it preserves the second-order structure

of the original system and, secondly, it is well adapted when the

decomposition basis are not orthogonal.

Consider the equations of motion of a general n-degree-of-

freedom dynamical system in the form

MÜ(t)+CU̇(t)+KU(t)+G(U(t), U̇(t)) = F(t) (6)

where M, C, and K are symmetric square matrices with dimen-

sions n×n, G is a non-linear n-vector function and {F(t), t ∈ R} is

a n-vector random process.

Petrov-Galerkin approach may be viewed as a projection of

the n-dimensional displacement field U(t) onto a m-dimensional

subspace Em with m < n along (or parallel) to the subspace Sn−m

where Rn = Em⊕Sn−m.

Let (E1, · · · ,Em) be a basis of Em, and (W1, · · · ,Wm) be a

basis of S⊥n−m such that WT E = I where E = [E1E2 · · ·En] and

W = [W1W2 · · ·Wn]. An approximation of U(t) is sought in the

subspace Em as

U(t) ≈ Um(t) = EQ(t). (7)

Substituting Eq. (7) into Eq. (6) and imposing that the residue

R(Um(t)) defined by

R(Um(t))=MEQ̈(t)+CEQ̇(t)+KEQ(t)+G(EQ(t),EQ̇(t))−F(t)

(8)

is orthogonal to S⊥n−m, the following reduced-order system is de-

duced

M̃Q̈(t)+ C̃Q̇(t)+ K̃Q(t)+ G̃(Q(t),Q̇(t)) =WT F(t) (9)

where M̃ =WT ME, C̃ =WT CE, K̃ =WT KE and G̃(Q,Q̇) =

WT G(EQ,EQ̇).

In this method, two important points are the selection of

the projection subspace (i.e. the projection basis (E1, · · · ,Em))

and the computation of the associated basis (W1, · · · ,Wm) (for

the subspace S⊥n−m). In the case of the SD method, there are

two ordering of interest and hence two different projection basis

(E1, · · · ,Em) giving two different reduced models. Independently

of the selected ordering and due to the orthogonality property of

the SMs, W has been chosen as W = RUE (or in a equivalent

way as W = RU̇E).

THE SYSTEM UNDER STUDY
Description of the System

The system is composed of a chain of M linear oscillators

with spring (kc) (named linear chain) strongly coupled with a

nonlinear end-attachment (named NES). Each mass of the linear

chain is also connected to the ground by a linear spring (kg) and

a linear dashpot (λg). The NES is constituted of a mass (ma), a

linear damper (λa) and a spring including a linear part (ka) and a

cubic part (Ca). ma is assumed to be small compared to the total

mass of the linear chain and the linear spring is assumed to be

small compared to cubic spring.

The equations of motion are given by

mav̈+λa(v̇− u̇1)+ ka(v−u1)+Ca(v−u1)3 = 0, (10)

ü1+λgu̇1+ kgu1−λa(v̇− u̇1)− ka(v−u1)

−Ca(v−u1)3+ kc(u1−u2) = 0, (11)

üm+λgu̇m+ kgum+ kc(2um−um−1−um+1) = 0, (12)

üM +λgu̇M + (kg+ kc)uM + kc(uM −uM−1) = f (t) (13)

with m = 1, · · · ,M− 1 and where v (respectively um) denotes the

displacement of the NES (respectively the mth mass of the lin-

ear chain) and f (t) denotes the external excitation applied to the

mass number M. It is assumed that the system possesses a weak

viscous damping (λg is small).

This system was considered in [22] under impulsive excita-

tion. We assume here that the excitation is of the form

f (t) = s0W(t) (14)

where {W(t), t ∈ R} is a Gaussian white-noise scalar process with

intensity one and s0 denotes the excitation level.

Introducing the variable

U(t) = [v(t)u1(t)u2(t) · · ·uM(t)]T ,

the equations of motion (10-13) can be easily re-written in the

matrix form (6).

Reduced Models
Three reduced models will be considered, two from the SD

methods and one from the KL method:

- E = ES MS V
= [ΦS

1
· · ·ΦS

m] where ΦS
k

denotes the smooth

modes obtained from the steady-state response and ordered

according to the SV-ordering (and W =WS Mµ = RUES Mµ );

- E = ES Menergy = [ΦS
1
· · ·ΦS

m] where ΦS
k

denotes the smooth

modes obtained from the steady-state response and ordered

according to the energy-ordering (and W = WS Menergy =

RUES Menergy );
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- E = EKLM = [Ψ1 · · ·Ψm] where Ψi denotes the KL modes

obtained from the steady-state response (and W =WKLM =

EKLM).

Moreover, we will also consider the reduced model given by

the classical modal truncation method. In this case, the approxi-

mation is defined from (7) and the reduced model (9) with

E = ENM = [Φ1 · · ·Φm] and W = ENM (15)

whereΦi denotes the normal modes of the underlying linear sys-

tem of (6). Note that this approach coincides with the Petrov-

Galerkin projection only when the normal modes are orthogonal

(M = I).

SOME RESULTS
The reduced-order models have to reproduce the steady-

state responses of the original system. The Power Spectral Den-

sity Matrix (PSDM) function of the steady-state response will

be considered to compare how close the reduced-order models is

from the original system.

Simulation Methodology
The steady-state responses of the full model (Eq. (10-13))

were obtained using Monte-Carlo method. The differential equa-

tions were solved numerically using the Newmark method with

null initial conditions and discretized white-noise trajectory ob-

tained using the method discussed in [23]. The differential equa-

tions were integrated with the sampling frequency fe over a long

time T . From the sampling trajectories, the covariance matrices

were obtained using the classical time-average estimates (which

are valid under the ergodic assumption) and the PSDM function

using Welch’s method (averaging modified periodogram) with a

Hamming window of 4096 points length and without overlap.

From the covariance matrices, SD approach was carry out solv-

ing the eigenproblems (3) giving access to the reduced models.

KLD approach was carry out using the same data. The PSDM

functions of the stationary responses of the associated reduced

model (Eq. (9)) were obtained using the same procedure. More-

over, the same excitation trajectories were also used.

In all the simulations, the following numerical values were

used: M = 9 (corresponding to n = 10 degrees of freedom) , λg =

0.001, kg = 1, kc = 1, ma = 0.05, λg = 0.001, ka = 0.0001, Ca = 1,

fe = 7 and T = 524286/ fe.

The excitation level s0 was used as the parameter

of analysis. The following values were considered: s0 ∈

{.005,0.006,0.007,0.008,0.009,0.010,0.011,0.012,0.013,0.014}.

Preliminary Analysis
Figure 1 shows the percentage of energy captured by the

KL modes (left) and by the SMs (right) versus the excitation

level s0 (the SV-ordering has been used to numbering the SMs).

These curves were obtained applying the KLD and the SD pro-

cedures to the steady-state responses of the full system (Eq. (10-

13)) varying the excitation leval s0. We have also reported in

Fig. 2, the resonance frequencies estimated from SD analysis

using Eq. (5) versus the excitation level s0 (here also the SV-

ordering has been used to numbering the SMs).
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FIGURE 1. PERCENTAGE OF ENERGY CAPTURED BY THE

KLMs (left) AND THE SMs (right) VERSUS EXCITATION LEVEL

s0.
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FIGURE 2. RESONANCE FREQUENCIES ESTIMATED FROM

SD ANALYSIS USING EQ. (5) VERSUS EXCITATION LEVEL s0.

From these results, we can make the following observations:

- the percentage of energy captured by the first KL mode

rapidly increases (see the curve with cross markers in

Fig. 1(left)) and this mode becomes dominant in the re-

sponse when the excitation level increases;

- in case of SD analysis, the energy is first concentrated

on the first SM (see the curve with cross markers in
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Fig. 1(right)), next on the second SM (see the curve with

star markers in Fig. 1(right)) and so on;

- as shown in Fig. 2, the resonance frequencies increase with

the excitation level. Resonance interactions (interpreted as

resonance captures) appear between the first and the second

resonances (see the curves with cross and star markers in

Fig. 2) when the energy captured by the second SM is max-

imum, between the second and the third resonances (see the

curves with star and circle markers in Fig. 2) when the en-

ergy captured by the first SM is maximum, and so on;

- in the two cases, more than 90% of energy, is captured by

the five KL modes and the five SMs.

Following this analysis, the reduced-order models have been

considered using the KL modes and the SMs obtained from the

steady state response associated to the excitation level s0 = 0.012.

Moreover we will focus on the reduced models draw up with

m = 5 modes. Figure 3 shows the first six KLMs (circle mark-

ers), SMs using SV-ordering (star markers), SMs using energy-

ordering (square markers), normal modes estimated using Eq.(4)

from the SMs using SV-ordering (cross markers) and energy-

ordering (diamond markers) for the reference level excitation

s0 = 0.012. The first six normal modes of the associated lin-

ear system (red curves) are also reported. As excepted (due to

the high excitation level), the modes shapes significantly differ

from the shapes of normal modes of the associated linear system.

Interesting also is that the SMs obtained using SV-ordering dif-

fer from the SMs obtained using energy-ordering but they arise

from the same set of vectors. For example, the first SM using

SV-ordering (see cross markers in Mode 1 Fig. 3) coincides with

the fourth SM using energy-ordering (see diamond markers in

Mode 4 Fig. 3).

Discussion
The objective of this section is now to compare the four

reduced models defined from E = ENM (denoted RM-NM) ,

E=EKLM (denoted RM-KLM), E=ES MS V
(denoted RM-SMS V )

and E = ES Menergy (denoted RM-SMenergy).

Note that following the last comment in the previous section,

the reduced models RM-SMS V and RM-SMenergy are equivalent.

The resonance frequencies of the underlying linear systems

associated to the four reduced models are reported Table 1 and

compared to the first five resonance frequencies of the underly-

ing linear system of the full system. As expected the resonance

frequencies of RM-NM and the full model coincide and also the

resonance frequencies of RM-SMS V and RM-SMenergy coincide.

Note also that except the first one, the resonance frequencies of

RM-SMS V and RM-NM coincide. Finally the resonance fre-

quencies of RM-KLM differ significantly from the others.

The Frobenius norm of the PSDM of the linear chain dis-

placements [u1(t)u2(t) · · ·uM(t)]T and the PSD function of the

NES displacement v(t) of the full system have been compared
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FIGURE 3. SHAPES OF THE MODES USED TO BULID THE RE-

DUCED MODELS.

TABLE 1. RESONANCE FREQUENCIES OF THE LINEAR SYS-

TEMS ASSOCIATED TO THE FULL MODEL AND TO THE RE-

DUCED ONES.

ω1 ω2 ω3 ω4 ω5

Full model 0.007 0.161 0.177 0.204 0.236

RM: NM 0.007 0.161 0.177 0.204 0.236

RM: KLM 0.023 0.236 0.268 0.297 0.322

RM: SMS V 0.091 0.161 0.177 0.204 0.236

RM: SMenergy 0.091 0.162 0.177 0.204 0.236

with those obtained with the four reduced-order models. Three

excitation levels have been considered: the level s0 = 0.012 used

to build the reduced models , a lower level s0 = 0.006 and a up-

per level s0 = 0.014. The results obtained with the model RM-

NM (respectively RM-KLM, RM-SMS V and RM-SMenergy) are

shown Fig. 4 (respectively Fig. 5, Fig. 6 and Fig. 7).

First of all, using response data associated to white-noise ex-

citation, it is not expected for the reduced models to reproduce

the distribution of energy per frequency band over all the fre-

quency band of the full system. Hence, we will restrict the dis-

cussion comparing the effective frequency bands of the reduced

models and also pointing out the ability for each reduced model

to reproduce correctly the responses corresponding the lower and

upper excitation levels in its effective band.

In terms of effective frequency bands, the three reduced
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models: RM-NM, RM-SMS V and RM-SMenergy are localized on

a frequency band including the four first resonance frequencies

associated to the linear chain. A difference appears between RM-

NM and RM-SMS V at low excitation level due to a spurious res-

onance frequency around f = 0.091 in agreement with resonance

frequencies of the linear system associated to the reduced model

(see Table 1). The reduced model RM-KLM gives satisfactory

results in a frequency band which include the four resonance fre-

quencies after the third one associated to the linear chain.

0 0.2 0.4 0.6 0.8
−7

−6

−5

−4

−3

−2

−1

0

f (Hz)

Lo
g1

0(
S

u(f
))

s
0
 = 0.006

full
RM: NM

0 0.2 0.4 0.6 0.8
−8

−7

−6

−5

−4

−3

−2

−1

f (Hz)

Lo
g1

0(
S

v(f
))

s
0
 = 0.006

full
RM: NM

0 0.2 0.4 0.6 0.8
−7

−6

−5

−4

−3

−2

−1

0

f (Hz)

Lo
g1

0(
S

u(f
))

s
0
 = 0.012

0 0.2 0.4 0.6 0.8
−8

−7

−6

−5

−4

−3

−2

−1

f (Hz)

Lo
g1

0(
S

v(f
))

s
0
 = 0.012

full
RM: NM

full
RM: NM

0 0.2 0.4 0.6 0.8
−7

−6

−5

−4

−3

−2

−1

0

f (Hz)

Lo
g1

0(
S

u(f
))

s
0
 = 0.014

full
RM: NM

0 0.2 0.4 0.6 0.8
−8

−7

−6

−5

−4

−3

−2

−1

f (Hz)

Lo
g1

0(
S

v(f
))

s
0
 = 0.014

full
RM: NM

FIGURE 4. COMPARISON BETWEEN THE FULL MODEL AND

THE RM-NM MODEL: FROBENIUS NORM OF THE PSDM OF

[u1(t)u2(t) · · ·uM(t)]T (left) AND PSD OF v(t) (right) FOR THREE EX-

CITATION LEVELS.

Concerning the ability of the reduced-order models to

approximate the PSDM of the response of the full sys-

tem, all the approaches give good results for the variable

[u1(t)u2(t) · · ·uM(t)]T independently to the excitation level. For

the nonlinear component v(t), some differences appear. At low

excitation level, and independently to the reduced model used,

the PSD function of v(t) is not correctly reproduced. The ampli-

tude is always under-estimated. At intermediate and high excita-

tion level, the results obtained with the model RM-KLM seems

to be best.

CONCLUSION
The ability of reduced-order models based on smooth modes

to approximate the PSDM of the response of a second-order dis-

crete mechanical systems was studied here. The Petrov-Galerkin

approach was used to draw up the reduced-order models since

the projection basis used are not orthogonal with respect to the

standard inner product. Comparisons were made between the
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reduced-order models obtained using the smooth modes, the

Karhunen-Love modes, and the normal modes of the underlying

linear system.
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