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REDUCED MODELS FOR COMPUTATIONAL STRUCTURAL ACOUSTICS
IN THE MEDIUM-FREQUENCY RANGE

Christian Soize

Structural Dynamics and
Coupled Systems Department

ONERA
BP 72, 92322 Chatillon Cedex, France

ABSTRACT

This paper deals with a method in computational structucalistics
adapted for constructing reduced models in the mediumsénecy range
to a general three-dimensional dissipative structure istng of an
anisotropic, inhomogeneous, viscoelastic bounded medaupled with
an internal acoustic cavity. The reduced models are oltaiseng the
Ritz-Galerkin method for which the projection subspaceeasponds to
the dominant eigensubspace of the energy operator of theiste in the
medium-frequency band of analysis. A basic example is pteddo val-
idate the method, for which the structure and the internalisiic cavity
have a medium-frequency behavior in the frequency bandaifsis.

I. INTRODUCTION

In the area of computational structural acoustics, a metlagdbeen pro-
posed for constructing reduced models in the medium-frecuéMF)

range for general structural dynamics systems (struciarasracuum)
(Soize, 1998a) and external structural-acoustic systetnscfure cou-
pled with an external acoustic fluid (gas or liquid)) (So0i2898b). In

this method, the reduced model is constructed using the@iterkin

projection of the variational formulation of the boundaalue problem
on the dominant eigensubspace of the energy operator dftiotse over
the medium-frequency band of analysis. In this paper, wh/amul adapt
this method for constructing a reduced model in the medixgqtfency
range to a general three-dimensional dissipative streatansisting of
an anisotropic, inhomogeneous, viscoelastic boundedumedoupled
with an internal acoustic cavity filled with a gas or a liquid.

In Section Il, we present the boundary value problem to beesbin

the frequency domain. In Section Ill, we introduce a finitméension

approximation based on the use of the finite element analy&éstion

IV concerns the construction of a vector basis for the reduvedel

of the structure and the internal acoustic cavity in the Mikgem As a
consequence, we deduce a structural vector basis adapibed\ié- range
when the structure is coupled with an internal acoustictgavdection

V is devoted to the construction of the reduced model whiletiSe VI
deals with the construction of the dominant eigensubspaceSection
VII, we present the time-stationary random response usiagaduced
model. Finally, in Section VIII, we present an example whietidates
the proposed method.

1. BOUNDARY VALUE PROBLEM

We consider linear vibrations (formulated in the frequediagnainw) of a
three-dimensional structural-acoustic system aroundti gtquilibrium
configuration considered as a natural state at rest (sed Jig.

Applied external
forces (deterministic
or random)

Q. = Structure
1
u(x,w)

Fig. 1. Geometrical configuration of the structural-acoustic system

LetQ; be the three-dimensional bounded domain occupied by the-str
ture and made of viscoelastic material. I, = I'o UT'; UT', be

its boundary anchy = (ny,1,n1,2,n1,3) be its outward unit normal.
Letu(x,w) = (u1(X,w), us(X,w), us(X,w)) be the displacement field in
each pointx = (z;,z2,x3) in Cartesian coordinates and at frequency
w. On partl’y of the boundary, the structure is fixéd = 0) whereas
on partl’; U Ty it is free. The structure is coupled with an internal
dissipative acoustic fluid (gas or liquid) occupying thestrdimensional
bounded domaif2, whose boundary(2, is the coupling interfac®',.



The outward unit normal téS), is denoted as, = (n2,1,n2,2,n2,3)
and we haven, = —n;. We denote the pressure fieldfiy asp(X,w).
We introduce a narrow MF ban8 such that
B=|wp—Aw/2,wp + Aw/2] , (1)

in which wp is the center frequency amlw is the bandwidth such that
Aw/wp < landwp > Aw/2. With B we associate interval

B=[-wp—Aw/2,—wp + Aw/2] (2)
The structure is submitted to a square integrable surfagee féield
X + n(w)g(Xx,w) from I'; into C3?, in which 5(w) is a function from
R into C, such thaty(w) = 0 if w is not in B UB, continuous onB,
verifying |n(—w)| = |7(w)| and such thatn(w)| # 0 for all w in B.
For this structural-acoustic system, we use the model amthdkindary
value problem developed for the MF range by Ohayon and Sb£28).
Introducing componentsgy, g2, g3) of g, the boundary value problem
for the structure is written as follows in terms wf(the convention for
the Fourier transform beingw) = [ e~*“"u(t) dt),

9 .
—Ww pluifaij,]‘:() in s

oijmig=mngi on Iy

oijni; =—pni; on Ty |

u; =0 on Ty |

(6)
in which i = 1,2,3, where the summation over indgxis used, and
where p;(x) > 0 is the mass density of the structure amg,; =
23:1 do;;/0x;. For a linear viscoelastic material, stress tensgr
is written as

(7)

in which the summation over indicésandh is used and whersg,; (u) =
(Ouy/0zxp, + dup/0zy)/2 is the linearized strain tensor. Coefficients
0ijkn (X, w) andb; ;s (X, w) are real, depend anandw, verify the usual
properties of symmetry and positiveness (Truesdell, 1884ret, 1988;
Ohayon and Soize, 1998) and are such that, (X, —w) = @jjxn (X, w)
and[bl-jkh(x, 7&)) = [bl-jkh(x,w).

Concerning the internal dissipative acoustic fluid, thepuoee in the fluid

is written (Ohayon and Soize, 1998) as

0ij = Gijkn (X w) ekn(U) + bijrn (X, w) egp(iwu)

in QU

(8

p(X,UJ) = —iw P2 ¢(Xaw) - “WZ(U)

in which x is a positive constant such that

,Mm:/dx,
Q2

2
o= P2Cy
19|

(9)

the viscosity of the acoustic fluid-(may depend on frequency). The
boundary value problem for the internal acoustic fluid igten as follows
in terms of fieldy

_"-)2[;)_; ¢(Xaw) - inp2V2¢(X,w) — P2 V2¢(X7L‘J)
2

=) in (11)
€
0
pg(l—l—iwr)—w:iwpgwng on I', , (12)

3n2

P(X,w)dx =10 (13)
Q2
The boundary value problem of the structural-acousticleralis defined
by Egs. (3) to (13).

Ill. FINITE ELEMENT ANALYSIS

The finite dimension approximation is obtained by using thédiele-
ment method (Zienkiewicz and Taylor, 1989; Dautray and kjdr$92).
In order to simplify the development, we assume that theefigiément
meshes are compatible on coupling interfBgeLetU = (Uy, ..., Uy,)
be the vector of the DOFs which are the values of fighd w) at the nodes
of the finite element mesh of domah and let® = (¥,,...,%,,) be
the vector of the DOFs which are the values of fi¢lc, w) at the nodes
of the finite element mesh of domai,. The finite dimension approx-
imation of the variational formulation of the boundary \@&lproblem
defined by Egs. (3) to (13) is then written (Ohayon and Soi288) as

[Ar(w)]+r[J]  w[C] U(w) r(w) F(w)}
= ) (14)
iw[C]" —[Aa(w)] | [¥(w) 0
with the constraint
LY@ =0 (15)

Equation (15) corresponds to the finite element discrétinadf linear
constraint defined by Eq. (13), in whidhis a vector inR™2. In Eq.
(14),n(w) F(w) is the vector inC™ corresponding to the finite element
discretization of the linear form — 7n(w) frl g(x,w)-v(x) ds(x) and
[A1(w)]is an(ny xny) symmetric complex matrix (invertible for all in
B UB) which is written as

[Aw)] =~ M) +iw[Di(w)] + [Ki@)] . (16)
inwhich mass, damping and stiffness matrides], [D; (w)] and[K; (w)]
of the structure are positive-definite symmetfig x n,) real matrices
corresponding to the finite element discretization of thesrstructural
bilinear form(u, v) — le p1(X) u-vdx, the damping structural bilinear
form (u,v) anl[bi]‘kh(x,w)gkh(u)fi]’ (v)dx and the stiffness structural

wherep, > 0 andc, are the constant mass density and the constant speegjjinear form(u, v) — Jo, @ijkn (% w) e (U) £3(v) dx. Matrix [ J] is

of sound of the acoustic fluid at equilibrium and whetgu) is defined
by

m(u):/ru(x,w)-m(x)ds(x) (10)

The new unknown field)(x, w) is related to the velocity field(x, w) of
the dissipative acoustic fluid by the equatidr, w) = (1+iwT) V) (X, w)

in which 7 is a constant coefficient (Ohayon and Soize, 1998) related to

2

an(n;xn; ) symmetric real matrix which can be written[as] = IT T17
in which I, is a vector inR™* such thatHZT corresponds to the finite
element discretization of the linear form (u) defined by Eqg. (10). In
Eq. (14),[As(w)] is an(ng x no) Symmetric complex matrix (invertible
for all realw in B U§) which is written as

[A2(w)] = ~w? [Mo] + iw [Da(w)] + [Ko] (17)



in which “mass” matriX ] of the fluid is a positive-definite symmetric
(n2xn9) real matrix corresponding to the finite element discreitireof
the bilinear form(4, ¢) = (pa/c3) fﬂzw(x, w)¢(x) dx and where damp-
ing and “stiffness” matricefD, (w)] and[K] of the fluid are positive-
semidefinite symmetrign, xn2 ) real matrices corresponding to the finite
element discretization of the bilinear forrg, ¢) — 7(w) k2(¢, ¢) and
(¥, 0) = ka2(¥,0) = p2 [, Vi(X,w) - Vo(x) dx. The dimension
of the null space of matriceldD.(w)] and [K>] is equal to 1 and the
solution of Eq. (14) is unigque due to constraint Eq. (15). aHin
in Eq. (14),[C] is an(ny x n2) rectangular real matrix correspond-
ing to the finite element discretisation of the coupling nekr form
(¥,V) = pa [r, D(X,w) Na(X)-V(X) ds(x). LetP = (Py,..., Py,) be
the complex vector of the DOFs which are the values of presfeid
p at the nodes of the finite element mesh of donfain Then the finite
element discretization of Eq. (8) is wriiten as
P=—iwpy ¥ — x{IIZ U}W , (18)
inwhichW € R™ isthe solution of the linear equati¢et / p ) [Ma] W =
V in whichV € R™ is the finite element discretization of linear form

op fnz Ip(X) dx.

IV. CONSTRUCTION OF A VECTOR BASIS FOR THE
REDUCED MODEL

Two vector bases adapted to MF baBaan be constructed for the struc-
ture in vacuo and the internal acoustic cavity with rigid Mgl applying
the method presented by Soize (1998a and 1998b) (for thdsjeta
refer the reader to these references). These two vectos basespond
to the dominant eigensubspaces of the energy operatotiveeia band
B for the structure in vacuo and the internal acoustic fluidhwigid wall.

In the context of the finite element analysis introduced ictiga Il1, the
procedure can be summarized as follows.d_et 1 ora = 2 be the index
related to the structure or the internal acoustic fluid. Ngt< n, be the
order of the reduced model related to the structure: 1) or the internal
acoustic fluid(a = 2). Let [P,] be the(n, x N,) real matrix whose
columns are theV, eigenvectors{P.,... PY«} corresponding to the
N, highest eigenvalues! > ... > AN of the generalized symmetric
eigenvalue problem

[Ho| [Po] = [Ga] [Pa] [Aa] (19)

such that
[Pa}T [Ga} [Pa} = [Ia} ) (20)
[P]” [Ha) [Pa] = [Ad] (21)

inwhich [I,] is the(N, x N, ) identity matrix,[A,] is the(N, x N, ) diag-
onal matrix of eigenvalues., ..., AN+, where[G,] is a positive-definite
symmetric (ny; x ny) real matrix corresponding to the finite element
discretization of the bilinear fornfu,v) — fm u-vdx and[G,] is a
positive-definite symmetri¢n, x no) real matrix corresponding to the
finite element discretization of the bilinear forfw, ¢) — [, ¢ ¢ dx,
and whergH,] are positive-definite symmetrig:, x n,) real matrices
such that

[Ha} = [Ga} [Ea} [Ga} (22)

In Eq. (22), positive-definite symmetrig, x n,) real matrix [E,]
corresponds to the finite element discretization of thegneperator of

the structurda = 1) or the internal acoustic fluith = 2), which is such
that

IEl] = /B ea(@)]dw | (23)

%UJZ [1(w)]* Re {[Ta(w)]" [Ma] [Ta(w)]}

fea(w)] = (24)

To@)] = [Aa@)] ! [L@) =L@ =Gw)] , (25

in which [4,(w)] is defined by Eq. (16) fon = 1 and Eq. (17)
for a = 2. It should be noted that, far = 2, equation[T»(w)] =
[A42(w)]~ means that matrikl» (w)] has to be constructed solving the
linear matrix equationAs(w)] [T2(w)] = [I2] with the n, constraint
equationd 7 [Ty (w)] = 07 in which0 is the zero vector i€£"2.

V. CONSTRUCTION OF THE REDUCED MODEL ADAPTED TO
MF BAND B

The reduced model adapted to MF baBdks obtained (Soize, 1998a and

1998b) by introducing the new variatdg(w) = (¢1,1(w),. .., q1,n5, (w))
for the structure and the new varialtle(w) = (g2,1(w), ..., q2,n, (w))
for the internal acoustic fluid, such that

Uw) =[Alai(w) i )= [P]g(w) (26)

From Egs. (14) and (26), we deduce that forsih B UB, vectorq (w)
in CN and vectorgs(w) in CN2 are the unique solution of the linear

equation
[Ar]+&[T]  w[C] [ql(w)] r(w)f(w)]
= , (27)
wlC]” —[As(w)] | [da(w) 0

in which F(w) € CM is written as
Fw)=[A]"Flw) , (28)
and where

1)) = [A]T [A1(@)] [P1], [A2(w)] = [P]" [A2(w)] [P2], (29)

[T =P [J][P] = ([A]" 1) (AT T)T, (30)

[C]=[P]T[C]IP] (31)

From Egs. (18) and (26), and eliminatigg(w) from the second line of
Eq. (27), we deduce that

Pw) = [P@)]" (@) , (32)
in which [P(w)] is the(N; x ny) complex matrix defined by
[P(w)] = w? p2 [C][Aa(w)] " [Po]" — £ [P]T TL WT (33)

Equations (26) to (33) constitute the reduced model adaptbtF band
B.



V1. CONSTRUCTION OF DOMINANT EIGENSUBSPACES

Concerning the construction of the dominant eigensubspiatbe energy
operator relative to MF band for the structure on the one hand, and
for the internal acoustic fluid on the other hand, we can usérttiirect
procedure in the frequency domain or the procedure basdaeamse of
the MF solving method in the time domain presented by Soi288a and
1998b). A detailed analysis of these procedures cannotgredeced
here. Nevertheless, in order to facilitate the understandf Sections
VIl and VIII, we summarize below the main results of the Mg
method in the time domain that we have to use for the apptieati For

a = 1 anda = 2, the problem defined by Egs. (19) to (21) is solved
by calculating theN, lowest eigenvalues of the following generalized
symmetric eigenvalue problem

[Ga] [Sa] = [Ha] [Sa] [Ta] (34)
[Sa}T [Ha} [Sa} = [Ia} ) (35)
[Sa}T [Ga} [Sa} = [Fa} ) (36)

for which the subspace iteration algorithm (Soize, 1998ath8 and
Wilson, 1976; Chatelin, 1993; Golub and Van Loan, 1989) edusThe
dimensionn, of the subspace used foriterations is suchMak m, <

ng With my, = {2N, , N, +8}. Consequently,S,] is an(n, x m,) real
matrix and[T',] is a diagonalm, x m,) real matrix. We have

A, =T, (37)

[Pa] = [Sa] [Ta]™/? (38)

where [P,] is the (nq x mq) real matrix whose firstV, columns are
eigenvector®., ..., PN« defining matrix| P,]. For each iteration of the
subspace iteration algorithm, we only need to calculatéran< m,)
real matrix[W,] = [E,] [X,], in which[X,] is a given(n, x m,) real
matrix. Let yo(t) be the complex-valued function defined &by
Xo(t) = e~@rt x(t) inwhich x(t) = (1/27) [ €™! X(w) dw with

Rw) = -0 ()" 15(w) (39)

Therefore,xo is an LF signal whose band js Aw/2, Aw/2]. Then it
is proved (Soize, 1998a) thg¥/,] can be calculated by
(Wa] =27 Re {[Z(0)]} (40)

in which[Z,(t)] is the solution of the following LF equations in the time
domain associated with the MF equations,

[Ma] [Ya (8)]+[Da] [Ya ()] + [Ka] [Ya(®)]
= t

=xo(t)[Xa] , t €] =00, +00[ (41)
[Ma] [Za(0)]+(Da] [Za(#)] + [Ka] [Za(8)]
= [Ma] [Ya(=t)] , t €] — 00,0 , (42)

inwhich symmetri¢n,xn, ) complex matricesD, | and|K,] are written,
fora =1anda = 2, as

[Da] = [Da(ws)] + 2iwp [M,] (43)

[Ka] = ~w} [Ma] + iwp [Da(wp)] + [Ka(ws)] (44)
It should be noted that far = 2, [K2(wp)] = [K2]. In addition, for
a = 2, Egs. (41) and (42) must be solved with the constraint (see Eq
(19))

LT Ya(t)] =[0] 5 LT [Z(t)] =[0] (45)

The LF Eqgs. (41) and (42) are solved using an unconditiorsttiyle
implicit step-by-step integration method. Concerning Edl1), time
interval | — oo, 00| is replaced by the finite intervalk; , ¢t with the
initial conditions[Y;(¢;)] = [Ya(tr)] = [0]. Concerning Eq. (42), time
interval] — oo, 0] is replaced by the finite interval— ¢z, 0] with the
initial conditions|[Z,(—tr)] = [Z4(—tr)] = [0].

VII. TIME-STATIONARY RANDOM RESPONSE USING THE
REDUCED MODEL

Let us consider the case for which the structural-acougtites is sub-
mitted to a time-stationary second-order centered randath pves-
sure field{p(x,t),x € I';,t € R} with values inR. We are inter-
ested in the stationary response of the structural-acosgstem. The
cross-correlation function of random figids denoted a,(x,y, ) =
E{p(x,t + 7) p(y,t)} in which E is the mathematical expectation and
is such that (see for instance Kree and Soize, 1986; OhaybiSaize,
1998; Lin, 1967)

Rp(xvva) = / 6iu)r Sp(xvva) dw )
R

inwhichS, (X, y,w) is the cross-spectral density function which is written
as

(46)

Sp(x.y,w) = [n(w)|* sp(x, ¥, w) (47)

LetF(t) = (Fy(t),...,Fn,(¢)) be the stochastic process indexedby
with values inR™, corresponding to the finite element discretization of
the linear formv — — [ p(x,t) ni(x)-v(x)ds(x). Consequently, we
have

Folt) == [ okt mODa(dst) . (48)

1

where{by, ..., by, } is the finite element basis associated with the finite
element mesh of domaift;. Therefore thgn, x ny) matrix-valued
spectral density functiofiSy(w)] of stationary stochastic processis
such that

[S¢(w)laar :/F A [1(w)[*sp(%, ¥, w) {n1(x)-ba(x)}

x {n1(y)-bar(y)} ds(x) ds(y) (49)
From Egs. (26) and (32), we deduce that the matrix-valuedtspe
density functionsSy(w)] and [Sp(w)] of R™*-valued andR™>-valued
mean-square stationary stochastic proceg§dés), t € R} and{P(t),t €
R} can be written as
[Su(w)] = [P] [Sa, ()] [P]" (50)
[Sp(w)] = [P(w)]" [Say ()] [PW)] (51)
in which [Sq, (w)] is the matrix-valued spectral density functionRof: -
valued mean-square stationary stochastic propgsg),t € R}. From
Egs. (27) and (28), and using linear filtering of stationaigckastic
processes (see for instance Lin, 1967; Soize, 1994), wecdethat
matrix-valued spectral density functidfiy, (w)] is written as

[Say ()] = [T (@)] [A]T [Se(@)] [P [T ()] (52)
in which (N x Ny) symmetric complex matriX/ (w)] is written as
[T@)] = (Mi@)] +£[T] -2 [C] [ W) [C]T) ™ . (53)




VIIl. EXAMPLE AND VALIDATION structural-acoustic system are the following. Concerifrggstructure in

NS . vacuo (plate with point masses and springs), the loweshé&igguency
The example concerns the time-stationary random responsariow of the structure in vacuo is 7.74 Hz. There are 255 struc les

MF band B of an inhomogeneous structure having an MF behavior in . :
MF bandB, coupled with an internal acoustic cavity filled with a gad an in frequency band0, 700] Hz, 179 structural modes in frequency band

having an MF behavior in MF ban®. The structural-acoustic system [|9r;e5r?2}hszraa;1nkd02f?hsérﬁrcstgrsatllr rz:)drglsr;?ogznsgrow:inbdtﬁg% 550&;&'
is referenced to afz,,xs,x3) coordinate system. The structure is a uctu ging ey

ectangulr i el bening mode, et e, oviien (L1175 160 06 conssduenty, e st s n i benaver
are attached two point masses, three springs and five dasffpomain ei enc}lrje ué/nc of ihe acousticgcavit WiltJh rigid Wa)lllis is3BHz TherLe1
Q, = I'; ofthe plate (middle surface) is rectangular and the platieiply 9 q y y 9 :

supported, homogeneous and isotropic, with constantbigk width are 289. acoustic modes in frequency bdfg700] HZ’ 128 a_lcoustlc
L; = 0.5 m, lengthLy = 1.0 m, surface-mass density = 40 kg/n?, modes in frequency band, 500] Hz and 34 acoustic modes in narrow

total massu; = py Ly Ly = 20 kg and constant damping rate = 0.002. MF band[500, 550] Hz. Then the rank of the first acoustic mode in MF

We assume that the usual thin plate theory can be used (L&BS8). The band[500 ,_55(_)] Hz is 129 and consequently, the acoustic cavity has an
thickness, Young’'s modulus and Poisson’s ratio of the @egesuch that MF behavior in MF band3.

the lowest eigenfrequency of the associated conservalite (without VII1.1 Constructing the Reference Solution

point masses and springs) is 5 Hz. To this plate are attadhédd point

masses having a mass of 3 kg and 4 kg located at p@irts0.4,0) and The reference solution is constructed on [the700] Hz broad frequency
(0.35,0.75,0) respectively, (2) three springs having the same stiffness Pand with a sampling frequency stép = 0.165 Hz. The power spectral
coefficientk = ey y11 w2 With wrer = 27 x 550 rad/s,e; = 0.1, located ~ density functionsSg|,(w) and S, dw) corresponding to the reference
at points(0.221,0.278,0), (0.332,0.537,0) and (0.443,0.826,0), and solution and defined by Egs. (54) and (55) are directly catedl in the

(3) five dashpots having the same damping coefficient2e 4 111 &1 wres frequency domain using the formulation given in Section(Without
with ¢4 = 0.1, located at pointg0.154,0.165,0), (0.145,0.334,0), using the reduced model). Figures 2 and 3 show the mappings
(0.465,0.373,0), (0.247,0.462, 0) and(0.268, 0.681,0). This structure 10 x10g1o(SELd(277)) and v — 10 x log,o(Sioud 277)) respectively
(the plate with point masses, springs and dashpots) is edupith an  over the[5,700] Hz broad frequency band.

acoustic cavity constituted of a rectangular ro@m bounded by five

rigid walls lying along the planes, = 0, 1 = Ly, 29 = 0, 29 = Lo,

x3 = Lz with Ly = 9.000 m. The sixth wall lying in planers = 0 %0
is not rigid and is constituted of the plate. This boundedras filled
with a gas having a constant mass dengity= 1 kg/m?, speed of sound

co = 330 m/s and dissipative coefficient= &;/wrer With & = 0.002. e

The total mass of the gas js = psL1Li L3 = 4.5 kg. We consider -105

the MF response of this structural-acoustic system in maiv$ band

B = 27 x [500,550] rad/s, i.e. on thg500,550] Hz frequency band. e

The excitation is time-stationary random wall pressurelfigl x, ¢), x € 115

I'y,t € R} introduced in Section VII, for which the cross-spectralsign

function defined by Eq. (47) is such that for alin B, |n(w)| = 1 and WWWW
SP(X,y,OJ) = (Lng)_150($1 - yl) 50($2 - yg) wheredy is the Dirac L . , , , , J
delta function orR at point0. For the validation, we are interested in ’ RS L
calculating the power spectral density functifg.{w) relative to the S00HzZ | 850Hz v (Hz)

structure and defined by Fig. 2. Graph offunctiow = 10xlog; o (S (271/)) correspondingto the reference

solution for the MF structure coupled with the MF internal acoustic fluid

1
(@) 1] Ja,

inwhich S, (X, y,w) is the cross-spectral density function of real-valued
stochastic fieldus(x,t),x € £;,t € R} (transverse displacement field
of the plate) and the power spectral density functiag,dw) relative to
the acoustic cavity and defined by

Sstruc(w) = Sus (Xa X, w) dx (54)

1 1 110

Sendl) = A ] Jo, SR 9 N
in which Sp,(x, y, w) is the cross-spectral density function of real-valued r
stochastic fieldp(x, t),x € Q2,t € R} (pressure field in the cavity). sy
Due to the simple geometry of the structural-acoustic systhe finite ‘ ‘ ‘ ‘ ‘ 1
element basis for each domain can be substituted by theGikzrkin ° [ A
basis constituted of the normal modes of the plate withoirtpoasses 500Hzl [ 550Hz v (H2)
and springs (Leissa, 1993) and the acoustic modes of the@coavity

Fig. 3. Graph of functiorv +— 10 X 1og1055’ef ud 271)) corresponding to the

with rigid walls (Pierce, 1989). The dynamical charactassof this reference solution for the MF internal acoustic fluid coupled with the MF stract



The reference solution on narrow MF baBd= [500,550] Hz is ex-
tracted from the above results.

VIII.2 Constructing the Dominant Eigensubspaces

For the structure, the dominant eigensubspace of the ermgresator
relative to bandB for the structure in vacuo (related to matfik,
defined by Egs. (23) to (25)) is constructed using the methesemted
in Section VI withN; = 50. Figure 4 shows the graph of the function
j = 10xlog,o(N) for j € {1,2,...,50} in which A}, ... A3 are the
highest eigenvalues of the generalized symmetric eigaevptoblem
defined by Eq. (19) fom = 1. There is a strong decrease in the
eigenvalues which means there exists the possibility oftroating an
efficient reduced model for the structure. Figure 4 showsttieorder
N, of the reduced model is abo2i for bandB.

_30F

-35

-45

-50

Fig. 4. Graph of functiory — 10 Xloglo(k{) showing the distribution of eigenvalues
/\]1 of the energy operator of the MF structure in vacuo

For the internal acoustic fluid, the dominant eigensubspétiee energy
operator relative to ban# for the internal acoustic cavity with rigid walls
(related to matri{E,] defined by Egs. (23) to (25)) is constructed using
the method presented in Section VI wity = 50. Figure 5 shows the
graph of the function — 10xlog,o(A}) for j € {1,2,...,50} in which
AL

eigenvalue problem defined by Eq. (19) foe 2. Figure 5 shows that
the orderN, of the reduced model is abodft for bandB.

Fig. 5. Graph of functiorj —+ 10 Xloglo(/\é) showing the distribution of eigenvalues
/\% of the energy operator of the MF internal acoustic cavity with rigid walls

., A3% are the highest eigenvalues of the generalized symmetric

VIII.3 Reduced Model Adapted to the Narrow MF Band

In this section, we present a comparison of the referenadisnlcon-
structed in Section VIII.1 with the solution obtained by treduced
model constructed using the results of Sections V and ViIt.tRe re-
duced model, the parameters ag = 30 and N, = 45. Figure 6
is related to the structure and shows the comparison betfugetion

v — 10xlogo (S (27v)) (solid line corresponding to the reference
solution) and functiorv — 10 x log;o(Sstuc(27v)) (dashed line corre-
sponding to the reduced model) on narrow MF bt , 550] Hz.
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Fig. 6. Reduced model of the dynamical response of the MF structure coupled with the MF
internal acoustic fluid: comparison between function— 10 x log, o (S=f,{(27v))
(reference solution (solid line)) and function— 10 x log; o (Sstruc(277) ) (reduced
model for Ny = 30 and Ny = 45 (dashed line))

Figure 7 is related to the internal acoustic fluid and showgtmparison
between function — 10xlog;o (S {27v)) (solid line corresponding
to the reference solution) and function — 10 x log;((Sacoud277))
(dashed line corresponding to the reduced model) on narréwb&hd
[500, 550] Hz.
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Fig. 7. Reduced model of the dynamical response of the MF internal acoustic fluid coupled
with the MF structure: comparison between function— 10 x log; (S5 (27v))
(reference solution (solid line)) and function— 10 x 1og o (Sacoud 277)) (reduced
model for Ny = 30 and Ny = 45 (dashed line))

Figures 6 and 7 show that the comparison is good for both thetate
and the internal acoustic fluid.



IX. CONCLUSIONS

An approach is presented for constructing a reduced modgleiMF
range in the area of computational structural acoustica §@neral three-
dimensional anisotropic, inhomogeneous, viscoelastimtied structure
with an arbitrary geometry coupled with an internal acausitiid (gas or
liquid). For agiven MF band, the energy operator of the $tmadin vacuo
and the energy operator of the internal acoustic cavity witd walls
are positive-definite symmetric operators which have a t@ile set of
decreasing positive eigenvalues. The eigenfunctionespanding to the
highest eigenvalues (dominant eigensubspace) of eachyeaperator
constitute an appropriate functional basis of the cornedjmy admissible
function space for the structure and for the internal a¢odistid. For
a structure having an MF behavior coupled with an internaluatic
fluid having an MF behavior in the MF band considered, these tw
functional bases allow a reduced model of the structuraisstic system
to be constructed using the Ritz-Galerkin method. The fieieanent
method is uded to discretize the continuous case. For cmtistn of the
dominant eigensubspace of each energy operator, an effic@redure
based on the use of the subspace iteration method is proptisgoes
not require explicit calculation of the energy operator. tt\é&n obtain an
efficient method for constructing a reduced model in the Migea In
addition, concerning the structure, the results preseraade extended
straightforwardly to a structure made of beams, plates haliss
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