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REDUCED MODELS FOR COMPUTATIONAL STRUCTURAL ACOUSTICS
IN THE MEDIUM-FREQUENCY RANGE

Christian Soize
Structural Dynamics and

Coupled Systems Department
ONERA

BP 72, 92322 Chatillon Cedex, France

ABSTRACT

This paper deals with a method in computational structural acoustics
adapted for constructing reduced models in the medium-frequency range
to a general three-dimensional dissipative structure consisting of an
anisotropic, inhomogeneous, viscoelastic bounded mediumcoupled with
an internal acoustic cavity. The reduced models are obtained using the
Ritz-Galerkin method for which the projection subspace corresponds to
the dominant eigensubspace of the energy operator of the structure in the
medium-frequency band of analysis. A basic example is presented to val-
idate the method, for which the structure and the internal acoustic cavity
have a medium-frequency behavior in the frequency band of analysis.

I. INTRODUCTION

In the area of computational structural acoustics, a methodhas been pro-
posed for constructing reduced models in the medium-frequency (MF)
range for general structural dynamics systems (structuresin a vacuum)
(Soize, 1998a) and external structural-acoustic systems (structure cou-
pled with an external acoustic fluid (gas or liquid)) (Soize,1998b). In
this method, the reduced model is constructed using the Ritz-Galerkin
projection of the variational formulation of the boundary value problem
on the dominant eigensubspace of the energy operator of the structure over
the medium-frequency band of analysis. In this paper, we apply and adapt
this method for constructing a reduced model in the medium-frequency
range to a general three-dimensional dissipative structure consisting of
an anisotropic, inhomogeneous, viscoelastic bounded medium coupled
with an internal acoustic cavity filled with a gas or a liquid.
In Section II, we present the boundary value problem to be solved in
the frequency domain. In Section III, we introduce a finite dimension
approximation based on the use of the finite element analysis. Section
IV concerns the construction of a vector basis for the reduced model
of the structure and the internal acoustic cavity in the MF range. As a
consequence, we deduce a structural vector basis adapted tothe MF range
when the structure is coupled with an internal acoustic cavity. Section

V is devoted to the construction of the reduced model while Section VI
deals with the construction of the dominant eigensubspaces. In Section
VII, we present the time-stationary random response using the reduced
model. Finally, in Section VIII, we present an example whichvalidates
the proposed method.

II. BOUNDARY VALUE PROBLEM

We consider linear vibrations (formulated in the frequencydomain!) of a
three-dimensional structural-acoustic system around a static equilibrium
configuration considered as a natural state at rest (see Fig.1).
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Fig. 1. Geometrical configuration of the structural-acoustic system

Let
1 be the three-dimensional bounded domain occupied by the struc-
ture and made of viscoelastic material. Let@
1 = �0 [ �1 [ �2 be
its boundary andn1 = (n1;1; n1;2; n1;3) be its outward unit normal.
Let u(x; !) = (u1(x; !); u2(x; !); u3(x; !)) be the displacement field in
each pointx = (x1; x2; x3) in Cartesian coordinates and at frequency!. On part�0 of the boundary, the structure is fixed(u = 0) whereas
on part�1 [ �2 it is free. The structure is coupled with an internal
dissipative acoustic fluid (gas or liquid) occupying the three-dimensional
bounded domain
2 whose boundary@
2 is the coupling interface�2.1



The outward unit normal to@
2 is denoted asn2 = (n2;1; n2;2; n2;3)
and we haven2 = �n1. We denote the pressure field in
2 asp(x; !).
We introduce a narrow MF bandB such thatB = [!B ��!=2 ; !B +�!=2 ] ; (1)
in which!B is the center frequency and�! is the bandwidth such that�!=!B � 1 and!B > �!=2. WithB we associate intervaleB = [�!B ��!=2 ;�!B +�!=2 ] : (2)
The structure is submitted to a square integrable surface force field
x 7! �(!) g(x; !) from �1 into C3, in which �(!) is a function fromR into C, such that�(!) = 0 if ! is not inB [ eB, continuous onB,
verifying j�(�!)j = j�(!)j and such thatj�(!)j 6= 0 for all ! in B.
For this structural-acoustic system, we use the model and the boundary
value problem developed for the MF range by Ohayon and Soize (1998).
Introducing components(g1; g2; g3) of g, the boundary value problem
for the structure is written as follows in terms ofu (the convention for
the Fourier transform beingv(!) = RR e�i!tv(t) dt),�!2�1 ui � �ij;j = 0 in 
1 ; (3)�ijn1;j = � gi on �1 ; (4)�ijn1;j = �pn1;j on �2 ; (5)ui = 0 on �0 ; (6)
in which i = 1; 2; 3, where the summation over indexj is used, and
where �1(x) > 0 is the mass density of the structure and�ij;j =P3j=1 @�ij=@xj . For a linear viscoelastic material, stress tensor�ij
is written as�ij = aijkh(x; !) "kh(u) + bijkh(x; !) "kh(i! u) ; (7)
in which the summation over indicesk andh is used and where"kh(u) =(@uk=@xh + @uh=@xk)=2 is the linearized strain tensor. Coefficientsaijkh(x; !) andbijkh(x; !) are real, depend onx and!, verify the usual
properties of symmetry and positiveness (Truesdell, 1984;Ciarlet, 1988;
Ohayon and Soize, 1998) and are such thataijkh(x;�!) = aijkh(x; !)
andbijkh(x;�!) = bijkh(x; !).
Concerning the internal dissipative acoustic fluid, the pressure in the fluid
is written (Ohayon and Soize, 1998) asp(x; !) = �i! �2  (x; !)� ��2(u) in 
2 [ �2 ; (8)
in which� is a positive constant such that� = �2 c22j
2j ; j
2j = Z
2 dx ; (9)
where�2 > 0 andc2 are the constant mass density and the constant speed
of sound of the acoustic fluid at equilibrium and where�2(u) is defined
by �2(u) = Z�2u(x; !)�n2(x) ds(x) : (10)
The new unknown field (x; !) is related to the velocity fieldv(x; !) of
the dissipative acoustic fluid by the equationv(x; !)=(1+i!�)r (x; !)
in which � is a constant coefficient (Ohayon and Soize, 1998) related to

the viscosity of the acoustic fluid (� may depend on frequency!). The
boundary value problem for the internal acoustic fluid is written as follows
in terms of field �!2 �2c22  (x; !)� i! � �2r2 (x; !)� �2r2 (x; !)= � i!�c22 �2(u) in 
2 ; (11)�2(1+i!�) @ @n2 = i! �2 u � n2 on �2 ; (12)Z
2  (x; !) dx = 0 : (13)
The boundary value problem of the structural-acoustic problem is defined
by Eqs. (3) to (13).

III. FINITE ELEMENT ANALYSIS

The finite dimension approximation is obtained by using the finite ele-
ment method (Zienkiewicz and Taylor, 1989; Dautray and Lions, 1992).
In order to simplify the development, we assume that the finite element
meshes are compatible on coupling interface�2. LetU = (U1; : : : ; Un1)
be the vector of the DOFs which are the values of fieldu(x; !)at the nodes
of the finite element mesh of domain
1 and let	 = (	1; : : : ;	n2) be
the vector of the DOFs which are the values of field (x; !) at the nodes
of the finite element mesh of domain
2. The finite dimension approx-
imation of the variational formulation of the boundary value problem
defined by Eqs. (3) to (13) is then written (Ohayon and Soize, 1998) as24 [A1(!)] + � [J ] i![C ]i! [C ]T �[A2(!)]35 24U(!)	(!)35 = 24�(!)F(!)0 35 ; (14)
with the constraint

LT 	 = 0 : (15)
Equation (15) corresponds to the finite element discretization of linear
constraint defined by Eq. (13), in whichL is a vector inRn2 . In Eq.
(14),�(!)F(!) is the vector inCn1 corresponding to the finite element
discretization of the linear formv 7! �(!) R�1 g(x; !) �v(x) ds(x) and[A1(!)] is an(n1�n1) symmetric complex matrix (invertible for all! inB [ eB) which is written as[A1(!)] = �!2 [M1] + i! [D1(!)] + [K1(!)] ; (16)
in which mass, damping and stiffness matrices[M1 ], [D1(!)]and[K1(!)]
of the structure are positive-definite symmetric(n1�n1) real matrices
corresponding to the finite element discretization of the mass structural
bilinear form(u; v) 7! R
1 �1(x)u�vdx, the damping structural bilinear
form (u;v) 7!R
1bijkh(x; !)"kh(u)"ij(v)dx and the stiffness structural
bilinear form(u; v) 7! R
1 aijkh(x; !) "kh(u) "ij(v) dx. Matrix [J ] is
an(n1�n1) symmetric real matrix which can be written as[J ] = P2PT2
in whichP2 is a vector inRn1 such thatPT2 corresponds to the finite
element discretization of the linear form�2(u) defined by Eq. (10). In
Eq. (14),[A2(!)] is an(n2�n2) symmetric complex matrix (invertible
for all real! in B [ eB) which is written as[A2(!)] = �!2 [M2] + i! [D2(!)] + [K2] ; (17)2



in which “mass” matrix[M2] of the fluid is a positive-definite symmetric(n2�n2) real matrix corresponding to the finite element discretization of
the bilinear form( ;�) 7! (�2=c22) R
2 (x; !)�(x) dx and where damp-
ing and “stiffness” matrices[D2(!)] and [K2] of the fluid are positive-
semidefinite symmetric(n2�n2) real matrices corresponding to the finite
element discretization of the bilinear forms( ;�) 7! �(!) k2( ;�) and( ;�) 7! k2( ;�) = �2 R
2r (x; !) � r�(x) dx. The dimension
of the null space of matrices[D2(!)] and [K2] is equal to 1 and the
solution of Eq. (14) is unique due to constraint Eq. (15). Finally,
in Eq. (14), [C ] is an (n1�n2) rectangular real matrix correspond-
ing to the finite element discretisation of the coupling bilinear form( ; v) 7! �2 R�2  (x; !) n2(x) �v(x) ds(x). Let P = (P1; : : : ; Pn2) be
the complex vector of the DOFs which are the values of pressure fieldp at the nodes of the finite element mesh of domain
2. Then the finite
element discretization of Eq. (8) is wriiten as

P = �i! �2	� � fPT2 UgW ; (18)
in whichW 2 Rn2 is the solution of the linear equation(c22=�2)[M2]W =
V in which V 2 Rn2 is the finite element discretization of linear form�p 7! R
2 �p(x) dx.

IV. CONSTRUCTION OF A VECTOR BASIS FOR THE
REDUCED MODEL

Two vector bases adapted to MF bandB can be constructed for the struc-
ture in vacuo and the internal acoustic cavity with rigid wall by applying
the method presented by Soize (1998a and 1998b) (for the details, we
refer the reader to these references). These two vector bases correspond
to the dominant eigensubspaces of the energy operators relative to bandB for the structure in vacuo and the internal acoustic fluid with rigid wall.
In the context of the finite element analysis introduced in Section III, the
procedure can be summarized as follows. Leta = 1 ora = 2 be the index
related to the structure or the internal acoustic fluid. LetNa � na be the
order of the reduced model related to the structure(a = 1) or the internal
acoustic fluid(a = 2). Let [Pa] be the(na�Na) real matrix whose
columns are theNa eigenvectorsfP1a; : : : ;PNaa g corresponding to theNa highest eigenvalues�1a � : : : � �Naa of the generalized symmetric
eigenvalue problem[Ha] [Pa] = [Ga] [Pa] [�a] ; (19)
such that [Pa]T [Ga] [Pa] = [Ia] ; (20)[Pa]T [Ha] [Pa] = [�a] ; (21)
in which [Ia] is the(Na�Na) identity matrix,[�a] is the(Na�Na) diag-
onal matrix of eigenvalues�1a; : : : ; �Naa , where[G1] is a positive-definite
symmetric(n1� n1) real matrix corresponding to the finite element
discretization of the bilinear form(u; v) 7! R
1 u �vdx and [G2] is a
positive-definite symmetric(n2�n2) real matrix corresponding to the
finite element discretization of the bilinear form( ;�) 7! R
2  ��dx,
and where[Ha] are positive-definite symmetric(na�na) real matrices
such that [Ha] = [Ga] [Ea] [Ga] : (22)
In Eq. (22), positive-definite symmetric(na�na) real matrix [Ea]
corresponds to the finite element discretization of the energy operator of

the structure(a = 1) or the internal acoustic fluid(a = 2), which is such
that [Ea] = ZB[ea(!)] d! ; (23)[ea(!)] = 1�!2 j�(!)j2<e f[Ta(!)]� [Ma] [Ta(!)]g ; (24)[Ta(!)] = [Aa(!)]�1 ; [Ta(!)]� = [Ta(!)]T = [Ta(!)] ; (25)
in which [Aa(!)] is defined by Eq. (16) fora = 1 and Eq. (17)
for a = 2. It should be noted that, fora = 2, equation[T2(!)] =[A2(!)]�1 means that matrix[T2(!)] has to be constructed solving the
linear matrix equation[A2(!)] [T2(!)] = [I2] with the n2 constraint
equationsLT [T2(!)] = 0T in which0 is the zero vector inCn2 .
V. CONSTRUCTION OF THE REDUCED MODEL ADAPTED TO

MF BAND B
The reduced model adapted to MF bandB is obtained (Soize, 1998a and
1998b) by introducing the new variableq1(!) = (q1;1(!); : : : ; q1;N1(!))
for the structure and the new variableq2(!) = (q2;1(!); : : : ; q2;N2(!))
for the internal acoustic fluid, such that

U(!) = [P1]q1(!) ; 	(!) = [P2]q2(!) : (26)
From Eqs. (14) and (26), we deduce that for all! inB [ eB, vectorq1(!)
in CN1 and vectorq2(!) in CN2 are the unique solution of the linear
equation24 [A1(!)] + � [J ] i![ C ]i! [ C ]T �[A2(!)]35 24q1(!)

q2(!)35 = 24�(!)F(!)0 35 ; (27)
in whichF(!) 2 CN1 is written asF(!) = [P1]T F(!) ; (28)
and where[A1(!)] = [P1]T [A1(!)] [P1] ; [A2(!)] = [P2]T [A2(!)] [P2] ; (29)[J ] = [P1]T [J ] [P1] = ([P1]T P2) ([P1]T P2)T ; (30)[ C ] = [P1]T [C ] [P2] : (31)
From Eqs. (18) and (26), and eliminatingq2(!) from the second line of
Eq. (27), we deduce that

P(!) = [P(!)]T q1(!) ; (32)
in which [P(!)] is the(N1�n2) complex matrix defined by[P(!)] = !2 �2 [ C ] [A2(!)]�1 [P2]T � � [P1]T P2 WT : (33)
Equations (26) to (33) constitute the reduced model adaptedto MF bandB.3



VI. CONSTRUCTION OF DOMINANT EIGENSUBSPACES

Concerning the construction of the dominant eigensubspaceof the energy
operator relative to MF bandB for the structure on the one hand, and
for the internal acoustic fluid on the other hand, we can use the indirect
procedure in the frequency domain or the procedure based on the use of
the MF solving method in the time domain presented by Soize (1998a and
1998b). A detailed analysis of these procedures cannot be reproduced
here. Nevertheless, in order to facilitate the understanding of Sections
VII and VIII, we summarize below the main results of the MF solving
method in the time domain that we have to use for the applications. Fora = 1 anda = 2, the problem defined by Eqs. (19) to (21) is solved
by calculating theNa lowest eigenvalues of the following generalized
symmetric eigenvalue problem[Ga] [Sa] = [Ha] [Sa] [�a] ; (34)[Sa]T [Ha] [Sa] = [Ia] ; (35)[Sa]T [Ga] [Sa] = [�a] ; (36)
for which the subspace iteration algorithm (Soize, 1998a; Bathe and
Wilson, 1976; Chatelin, 1993; Golub and Van Loan, 1989) is used. The
dimensionma of the subspace used for iterations is such thatNa < ma �na with ma = f2Na ;Na+8g. Consequently,[Sa] is an(na�ma) real
matrix and[�a] is a diagonal(ma�ma) real matrix. We have[e�a] = [�a]�1 ; (37)[ ePa] = [Sa] [�a]�1=2 ; (38)
where [ ePa] is the (na�ma) real matrix whose firstNa columns are
eigenvectorsP1a; : : : ;PNaa defining matrix[Pa]. For each iteration of the
subspace iteration algorithm, we only need to calculate an(na�ma)
real matrix[Wa] = [Ea] [Xa], in which [Xa] is a given(na�ma) real
matrix. Let �0(t) be the complex-valued function defined onR by�0(t) = e�i!Bt �(t) in which�(t) = (1=2�) RB ei!t b�(!) d! withb�(!) = 1� !2 j�(!)j21B(!) : (39)
Therefore,�0 is an LF signal whose band is[��!=2 ;�!=2 ]. Then it
is proved (Soize, 1998a) that[Wa] can be calculated by[Wa] = 2�<e f[Za(0)]g ; (40)
in which [Za(t)] is the solution of the following LF equations in the time
domain associated with the MF equations,[Ma] [ �Ya(t)]+[ eDa] [ _Ya(t)] + [ eKa] [Ya(t)]= �0(t) [Xa] ; t 2]�1 ;+1[ ; (41)[Ma] [ �Za(t)]+[ eDa] [ _Za(t)] + [ eKa] [Za(t)]= [Ma] [Ya(�t)] ; t 2]�1 ; 0 [ ; (42)
in which symmetric(na�na) complex matrices[ eDa]and[ eKa]are written,
for a = 1 anda = 2, as[ eDa] = [Da(!B)] + 2 i !B [Ma] ; (43)

[ eKa] = �!2B [Ma] + i !B [Da(!B)] + [Ka(!B)] : (44)
It should be noted that fora = 2, [K2(!B)] = [K2]. In addition, fora = 2, Eqs. (41) and (42) must be solved with the constraint (see Eq.
(15))

LT [Y2(t)] = [ 0 ] ; LT [Z2(t)] = [ 0 ] : (45)
The LF Eqs. (41) and (42) are solved using an unconditionallystable
implicit step-by-step integration method. Concerning Eq.(41), time
interval ] � 1 ;1[ is replaced by the finite interval] tI ; tF ] with the
initial conditions[Ya(tI)] = [ _Ya(tI)] = [ 0 ]. Concerning Eq. (42), time
interval ] � 1 ; 0] is replaced by the finite interval] � tF ; 0] with the
initial conditions[Za(�tF )] = [ _Za(�tF )] = [ 0 ].
VII. TIME-STATIONARY RANDOM RESPONSE USING THE

REDUCED MODEL

Let us consider the case for which the structural-acoustic system is sub-
mitted to a time-stationary second-order centered random wall pres-
sure fieldfp(x; t); x 2 �1; t 2 Rg with values inR. We are inter-
ested in the stationary response of the structural-acoustic system. The
cross-correlation function of random fieldp is denoted asRp(x; y; �) =Efp(x; t + �) p(y; t)g in which E is the mathematical expectation and
is such that (see for instance Kree and Soize, 1986; Ohayon and Soize,
1998; Lin, 1967)Rp(x; y; �) = ZR ei!� Sp(x; y; !) d! ; (46)
in whichSp(x; y; !) is the cross-spectral density function which is written
as Sp(x; y; !) = j�(!)j2 sp(x; y; !) : (47)
Let F(t) = (F1(t); : : : ;Fn1(t)) be the stochastic process indexed byR
with values inRn1 , corresponding to the finite element discretization of
the linear formv 7! � R�1 p(x; t) n1(x) �v(x) ds(x). Consequently, we
have F�(t) = �Z�1 p(x; t) n1(x)�b�(x) ds(x) ; (48)
wherefb1; : : : ;bn1g is the finite element basis associated with the finite
element mesh of domain
1. Therefore the(n1� n1) matrix-valued
spectral density function[SF(!)] of stationary stochastic processF is
such that[SF(!)]��0 = Z�1 Z�1 j�(!)j2sp(x; y; !) fn1(x)�b�(x)g� fn1(y)�b�0(y)g ds(x) ds(y) : (49)
From Eqs. (26) and (32), we deduce that the matrix-valued spectral
density functions[SU(!)] and [SP(!)] of Rn1 -valued andRn2 -valued
mean-square stationary stochastic processesfU(t); t 2 Rg andfP(t); t 2Rg can be written as[SU(!)] = [P1] [Sq1(!)] [P1]T ; (50)[SP(!)] = [P(!)]T [Sq1(!)] [P(!)] ; (51)
in which [Sq1(!)] is the matrix-valued spectral density function ofRN1 -
valued mean-square stationary stochastic processfq1(t); t 2 Rg. From
Eqs. (27) and (28), and using linear filtering of stationary stochastic
processes (see for instance Lin, 1967; Soize, 1994), we deduce that
matrix-valued spectral density function[Sq1(!)] is written as[Sq1(!)] = [T (!)] [P1]T [SF(!)] [P1] [T (!)] ; (52)
in which (N1�N1) symmetric complex matrix[T (!)] is written as[T (!)] = �[A1(!)] + � [J ]� !2 [ C ] [A2(!)]�1 [ C ]T ��1 : (53)4



VIII. EXAMPLE AND VALIDATION

The example concerns the time-stationary random response in narrow
MF bandB of an inhomogeneous structure having an MF behavior in
MF bandB, coupled with an internal acoustic cavity filled with a gas and
having an MF behavior in MF bandB. The structural-acoustic system
is referenced to an(x1; x2; x3) coordinate system. The structure is a
rectangular thin plate in bending mode, located in planeOx1x2, to which
are attached two point masses, three springs and five dashpots. Domain
1 = �1 of the plate (middle surface) is rectangular and the plate issimply
supported, homogeneous and isotropic, with constant thickness, widthL1 = 0:5 m, lengthL2 = 1:0 m, surface-mass density�1 = 40 kg/m2,
total mass�1 = �1L1L2 = 20 kg and constant damping rate�1 = 0:002.
We assume that the usual thin plate theory can be used (Leissa, 1993). The
thickness, Young’s modulus and Poisson’s ratio of the plateare such that
the lowest eigenfrequency of the associated conservative plate (without
point masses and springs) is 5 Hz. To this plate are attached (1) two point
masses having a mass of 3 kg and 4 kg located at points(0:2; 0:4; 0) and(0:35; 0:75; 0) respectively, (2) three springs having the same stiffness
coefficientk = "k �1 !2ref with !ref = 2��550 rad/s,"k = 0:1, located
at points(0:221; 0:278; 0), (0:332; 0:537; 0) and (0:443; 0:826; 0), and
(3) five dashpots having the same damping coefficientd = 2"d �1 �1 !ref

with "d = 0:1, located at points(0:154; 0:165; 0), (0:145; 0:334; 0),(0:465; 0:373; 0), (0:247; 0:462; 0) and(0:268; 0:681; 0). This structure
(the plate with point masses, springs and dashpots) is coupled with an
acoustic cavity constituted of a rectangular room
2 bounded by five
rigid walls lying along the planesx1 = 0, x1 = L1, x2 = 0, x2 = L2,x3 = L3 with L3 = 9:000 m. The sixth wall lying in planex3 = 0
is not rigid and is constituted of the plate. This bounded room is filled
with a gas having a constant mass density�2 = 1 kg/m3, speed of soundc2 = 330 m/s and dissipative coefficient� = �2=!ref with �2 = 0:002.
The total mass of the gas is�2 = �2L1L1L3 = 4:5 kg. We consider
the MF response of this structural-acoustic system in narrow MF bandB = 2�� [500 ; 550] rad/s, i.e. on the[500 ; 550] Hz frequency band.
The excitation is time-stationary random wall pressure field fp(x; t); x 2�1; t 2 Rg introduced in Section VII, for which the cross-spectral density
function defined by Eq. (47) is such that for all! in B, j�(!)j = 1 andsp(x; y; !) = (L1L2)�1�0(x1 � y1) �0(x2 � y2) where�0 is the Dirac
delta function onR at point0. For the validation, we are interested in
calculating the power spectral density functionSstruc(!) relative to the
structure and defined bySstruc(!) = 1j�(!)j2 j
1j Z
1 Su3(x; x; !) dx ; (54)
in whichSu3(x; y; !) is the cross-spectral density function of real-valued
stochastic fieldfu3(x; t); x 2 
1; t 2 Rg (transverse displacement field
of the plate) and the power spectral density functionSacous(!) relative to
the acoustic cavity and defined bySacous(!) = 1�22 c42 1j�(!)j2 j
2j Z
2 [Sp(x; x; !)] dx ; (55)
in whichSp(x; y; !) is the cross-spectral density function of real-valued
stochastic fieldfp(x; t); x 2 
2; t 2 Rg (pressure field in the cavity).
Due to the simple geometry of the structural-acoustic system, the finite
element basis for each domain can be substituted by the Ritz-Galerkin
basis constituted of the normal modes of the plate without point masses
and springs (Leissa, 1993) and the acoustic modes of the acoustic cavity
with rigid walls (Pierce, 1989). The dynamical characteristics of this

structural-acoustic system are the following. Concerningthe structure in
vacuo (plate with point masses and springs), the lowest eigenfrequency
of the structure in vacuo is 7.74 Hz. There are 255 structuralmodes
in frequency band[0 ; 700] Hz, 179 structural modes in frequency band[0 ; 500] Hz and 20 structural modes in narrow MF band[500 ; 550] Hz.
Then the rank of the first structural mode belonging to frequency band[500 ; 550] Hz is 180 and consequently, the structure has an MF behavior
in frequency bandB. Concerning the acoustic cavity, the lowest acoustic
eigenfrequency of the acoustic cavity with rigid walls is 18.33 Hz. There
are 289 acoustic modes in frequency band[0 ; 700] Hz, 128 acoustic
modes in frequency band[0 ; 500] Hz and 34 acoustic modes in narrow
MF band[500 ; 550] Hz. Then the rank of the first acoustic mode in MF
band[500 ; 550] Hz is 129 and consequently, the acoustic cavity has an
MF behavior in MF bandB.

VIII.1 Constructing the Reference Solution

The reference solution is constructed on the[5 ; 700] Hz broad frequency
band with a sampling frequency step�� = 0:165 Hz. The power spectral
density functionsSref

struc(!) andSref
acous(!) corresponding to the reference

solution and defined by Eqs. (54) and (55) are directly calculated in the
frequency domain using the formulation given in Section III(without
using the reduced model). Figures 2 and 3 show the mappings� 7!10� log10(Sref

struc(2��)) and � 7! 10� log10(Sref
acous(2��)) respectively

over the[5 ; 700] Hz broad frequency band.
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Fig. 2. Graph of function� 7! 10�log10(Sref
struc(2��)) corresponding to the reference

solution for the MF structure coupled with the MF internal acoustic fluid
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Fig. 3. Graph of function� 7! 10� log10(Sref
acous(2��)) corresponding to the

reference solution for the MF internal acoustic fluid coupled with the MF structure5



The reference solution on narrow MF bandB = [500 ; 550] Hz is ex-
tracted from the above results.

VIII.2 Constructing the Dominant Eigensubspaces

For the structure, the dominant eigensubspace of the energyoperator
relative to bandB for the structure in vacuo (related to matrix[E1]
defined by Eqs. (23) to (25)) is constructed using the method presented
in Section VI withN1 = 50. Figure 4 shows the graph of the functionj 7! 10�log10(�j1) for j 2 f1; 2; : : : ; 50g in which�11; : : : ; �501 are the
highest eigenvalues of the generalized symmetric eigenvalue problem
defined by Eq. (19) fora = 1. There is a strong decrease in the
eigenvalues which means there exists the possibility of constructing an
efficient reduced model for the structure. Figure 4 shows that the orderN1 of the reduced model is about25 for bandB.
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Fig. 4. Graph of functionj 7! 10�log10(�j1) showing the distribution of eigenvalues�j1 of the energy operator of the MF structure in vacuo

For the internal acoustic fluid, the dominant eigensubspaceof the energy
operator relative to bandB for the internal acoustic cavity with rigid walls
(related to matrix[E2] defined by Eqs. (23) to (25)) is constructed using
the method presented in Section VI withN2 = 50. Figure 5 shows the
graph of the functionj 7! 10�log10(�j2) for j 2 f1; 2; : : : ; 50g in which�12; : : : ; �502 are the highest eigenvalues of the generalized symmetric
eigenvalue problem defined by Eq. (19) fora = 2. Figure 5 shows that
the orderN2 of the reduced model is about40 for bandB.
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Fig. 5. Graph of functionj 7! 10�log10(�j2) showing the distribution of eigenvalues�j2 of the energy operator of the MF internal acoustic cavity with rigid walls

VIII.3 Reduced Model Adapted to the Narrow MF Band

In this section, we present a comparison of the reference solution con-
structed in Section VIII.1 with the solution obtained by thereduced
model constructed using the results of Sections V and VII. For the re-
duced model, the parameters areN1 = 30 andN2 = 45. Figure 6
is related to the structure and shows the comparison betweenfunction� 7! 10� log10(Sref

struc(2��)) (solid line corresponding to the reference
solution) and function� 7! 10� log10(Sstruc(2��)) (dashed line corre-
sponding to the reduced model) on narrow MF band[500 ; 550] Hz.
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Fig. 6. Reduced model of the dynamical response of the MF structure coupled with the MF
internal acoustic fluid: comparison between function� 7! 10�log10(Sref

struc(2��))
(reference solution (solid line)) and function� 7! 10�log10(Sstruc(2��)) (reduced
model forN1 = 30 andN2 = 45 (dashed line))

Figure 7 is related to the internal acoustic fluid and shows the comparison
between function� 7! 10�log10(Sref

acous(2��)) (solid line corresponding
to the reference solution) and function� 7! 10� log10(Sacous(2��))
(dashed line corresponding to the reduced model) on narrow MF band[500 ; 550] Hz.
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Fig. 7. Reduced model of the dynamical response of the MF internal acoustic fluid coupled
with the MF structure: comparison between function� 7! 10�log10(Sref

acous(2��))
(reference solution (solid line)) and function� 7! 10�log10(Sacous(2��)) (reduced
model forN1 = 30 andN2 = 45 (dashed line))

Figures 6 and 7 show that the comparison is good for both the structure
and the internal acoustic fluid.6



IX. CONCLUSIONS

An approach is presented for constructing a reduced model inthe MF
range in the area of computational structural acoustics fora general three-
dimensional anisotropic, inhomogeneous, viscoelastic bounded structure
with an arbitrary geometry coupled with an internal acoustic fluid (gas or
liquid). For a given MF band, the energy operator of the structure in vacuo
and the energy operator of the internal acoustic cavity withrigid walls
are positive-definite symmetric operators which have a countable set of
decreasing positive eigenvalues. The eigenfunctions corresponding to the
highest eigenvalues (dominant eigensubspace) of each energy operator
constitute an appropriate functional basis of the corresponding admissible
function space for the structure and for the internal acoustic fluid. For
a structure having an MF behavior coupled with an internal acoustic
fluid having an MF behavior in the MF band considered, these two
functional bases allow a reduced model of the structural-acoustic system
to be constructed using the Ritz-Galerkin method. The finiteelement
method is uded to discretize the continuous case. For construction of the
dominant eigensubspace of each energy operator, an efficient procedure
based on the use of the subspace iteration method is proposed. It does
not require explicit calculation of the energy operator. Wethen obtain an
efficient method for constructing a reduced model in the MF range. In
addition, concerning the structure, the results presentedcan be extended
straightforwardly to a structure made of beams, plates and shells.
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