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Abstract—In today’s IoT environments, message brokers play
a pivotal role in facilitating data exchange between IoT devices
and applications. Existing message broker implementations offer
different configuration options for IoT systems designers for
performance tuning. However, designers still have to manually
configure the message broker to find the best parameters combi-
nation that satisfies the requirements of the deployed applications.
In addition, runtime changes might lead to performance degra-
dation and require reconfiguration. This paper presents a pub-
lish/subscribe message broker architecture for enabling adaptive
data exchange in IoT environments. Core software components
are proposed for (i) refining per-subscription data flows based on
the applications deployed in the environment, (ii) dynamically
assigning drop rates or priorities to data flows according to the re-
quirements of these applications, and (iii) enabling the adaptation
of data flows based on dynamic changes in the environment or
evolving applications’ requirements. The proposed architecture
is enriched with automated planning capabilities for providing
such adaptation of data flows. To demonstrate the applicability of
our architecture, we implement the PlanEMQX prototype. Our
experimental evaluation shows improvements of 20% of response
time for time-sensitive data flows.

Index Terms—IoT, Data Exchange, Adaptive Systems, Auto-
mated Planning, QoS.

I. INTRODUCTION

The proliferation of IoT devices has led to highly intercon-
nected and data-rich environments. Today’s smart spaces are
embedded with sensors and IoT devices to enable data-driven
decision-making and facilitate automation through dedicated
applications. For instance, buildings may be equipped with
sensors to monitor temperature, humidity, and air quality, en-
abling building managers to optimize energy consumption and
improve occupants’ comfort [1]. Such applications often define
Quality-of-Service (QoS) requirements [2]. For example, a
fire detection application may have strict latency bounds that
have to be respected. On the other hand, applications used for
monitoring purposes (e.g., thermal comfort applications) are
more latency and loss tolerant. In addition, space administra-
tors wish to leverage existing sensors and IoT devices to build
multi-purpose applications sharing the same data flows [3]–[6].
For example, an HVAC control application may receive the
same flow of data from temperature and occupancy sensors as
an evacuation planning application used for fire emergencies.

In IoT environments, communication between devices and
applications happens through a data exchange system that
typically relies on the publish/subscribe paradigm [2], [7].
For this purpose, message brokers are deployed for data
processing and dissemination from devices to applications.
At the middleware layer, the performance of an IoT system
heavily depends on how the message broker handles data
flows [2], [7]. Therefore, IoT systems designers often need
to tune the deployed message broker(s) to ensure that the
QoS requirements of applications are satisfied. This involves
adjusting various parameters to guarantee that the broker can
handle the data flows and deliver them timely, with the desired
reliability (e.g., by assigning priorities, buffer capacities).

Existing message brokers [8]–[11] offer a variety of fea-
tures for QoS tuning purposes, such as support for delivery
and order guarantees [12], and priority queues to prioritize
topics [10]. However, IoT systems designers usually have to
tune their systems manually. This necessitates trying different
combinations of parameters to find the optimal configura-
tion. Clearly, this long and tedious process becomes even
more challenging when we consider the changes that might
happen in dynamic IoT infrastructures: adding/removing IoT
devices/applications, subscriber churn, overloaded system, etc.
In addition, handling data flows belonging to the same topic
but shared by different applications is usually complex. Hence,
the architecture of traditional message brokers does not enable
autonomous and self-adaptive data exchange. We thus need to
design new architectures for brokers that (i) offer automated
configuration and tuning capabilities, (ii) handle and control
data flows at the subscription level, and (iii) automatically
detect and adapt to changes in the IoT infrastructure.

In this paper, we propose refining the architecture of tradi-
tional pub/sub message brokers to enable automatic configu-
ration and adaptation in IoT environments based on the QoS
requirements of subscribing applications. Namely, we present
the architecture of a message broker capable of automatically
controlling flows for efficient data exchange, and handling
dynamic situations. This is achieved via (i) an automated con-
figuration planner that generates configuration and adaptation
plans to be executed, and (ii) the implementation of runtime
components for supporting the management and control of per



subscription data flows through applying drop rates and priori-
ties to flows. Finally, we present a prototype implementation—
PlanEMQX—based on our proposed architecture, and provide
a performance analysis showing how PlanEMQX is able to
efficiently control flows depending on applications’ require-
ments. The main contributions of this paper are:

• A pub/sub-based software architecture for adaptive data
exchange in IoT environments.

• A refinement of topic-based pub/sub schemas by relying
on rule-based techniques and automated planning.

• A prototype implementation of the proposed architec-
ture using state-of-the-art technologies (https://github.
com/satrai-lab/planemqx).

Section II provides an overview of related work, and Sec-
tion III provides an overview of our proposed architecture.
We then go into its implementation details by presenting the
PlanEMQX prototype in Section IV. We provide a perfor-
mance evaluation of PlanEMQX in Section V, and finally
conclude the paper in Section VI.

II. RELATED WORK

Several approaches have recently proposed architectures
for enabling adaptive data exchange in IoT environments.
For example, the authors of [13] focus on adaptation control
patterns based on the MAPE-K loop, and the importance of
selecting the correct pattern for ensuring an optimal perfor-
mance of the system components in terms of energy consump-
tion and data transfer. In [14], an architecture is proposed
for deploying goal-driven self-adaptive systems through a
monitoring component for detecting changes and triggering
deployment planning when such changes occur. More recently,
the use of machine learning-based techniques is becoming
more prominent in self-adaptive systems. For instance, [15]
provides an approach for architecting self-adaptive IoT sys-
tems LSTM networks for performance prediction, and rein-
forcement learning for selecting the best architectural pattern
given the predictions of the forecasting engine. The authors
of [2] provide a methodology and framework for finding
an optimal configuration of a data exchange system in IoT
environments by relying on automated planning. However,
none of the proposed approaches provide effective solutions
or architectures for handling data flows in dynamic situations.

More generally, there exist work that deals with enhancing
QoS in pub/sub-based systems. For instance, in [16], the
authors modify the architecture of MQTT-based systems by
breaking the anonymity so that data consumers bypass the
broker and send control flow messages directly to data produc-
ers (pause, un-pause, faster, slower, etc.). In [17], the authors
conduct a sensitivity analysis to build a latency prediction
model on a per-topic basis, and determine the number of
brokers to deploy at the edge through an optimization problem
for minimizing the number of brokers while meeting each
topic’s QoS requirement. In [18], the authors aim to manage
QoS at the SDN controller. The proposed system is based
on the pub/sub paradigm. Instead of a message broker, the
authors consider a “Fog-like IoT gateway data aggregator”,

which implements the bandwidth allocation strategy for IoT
flows and other traffic in network links.

Finally, although existing message brokers (e.g., EMQX [8],
RabbitMQ [10], Mosquitto [9], HiveMQ [11]) offer different
features and options to allow system tuning, there is still a
need for manually testing different combinations of parameters
to find the most efficient one given a specific IoT setup. In
addition, existing brokers do not provide planning capabilities
for adaptive message flows, especially in dynamic situations
that involve changes in the IoT environment (e.g., adding
devices/applications, changes in resources). Our approach is
distinguished by providing an architecture for adaptive data
exchange, and supporting dynamic environments through au-
tomated re-configuration with AI planning.

III. ADAPTIVE MESSAGE BROKER OVERVIEW

To highlight the need for a message broker with adaptive
capabilities, we present the underlying motivation for design-
ing and implementing our solution (§III-A). Then, we provide
an overview of our proposed architecture for designing such
an adaptive message broker (§III-B).

A. Motivation

Today’s IoT environments deploy different groups of appli-
cations to provide services for occupants. We identify four
application categories that can be deployed in smart envi-
ronments: (i) real-time (RT), e.g. a fire detection application;
(ii) transactional (TS), e.g. a meeting-room reservation tool;
(iii) IoT analytics (AN), e.g. an occupancy-based application
using WiFi connectivity data; and (iv) streaming (ST), e.g.
a video surveillance application. These application categories
define different QoS requirements [2], [19]; for instance,
RT applications require strict latency bounds, while ST ap-
plications have high throughput demands. Existing message
brokers lack support for an automatic configuration based
on the QoS requirements defined by the applications and
the available resources (processing, networking, etc) of the
messaging system. This means that configuring the system
requires a trial-and-error process to find the best parameters
that satisfy the QoS requirements of deployed applications.
This becomes more difficult when we consider dynamic IoT
environments where the number of devices and applications
is changing (e.g., subscriber churn). In addition, message
brokers do not consider applications that may subscribe to the
same topic but have different QoS requirements. For instance,
if a fire detection application (of type RT) and a thermal
comfort application (of type AN) subscribe to the same topic
(e.g., “temperature”), no mechanisms exist for assigning
different priorities or drop rates to messages published to
“temperature”, according to the QoS requirements of the
receiving application. Therefore, there is a need for archi-
tectures of data exchange systems enabling (i) automated
approaches that provide adaptive plans for message brokers
based on the QoS requirements defined by the applications,
and (ii) mechanisms for controlling individual data flows based
on the QoS requirements of the receiving application.



B. Message Broker Architecture for Adaptive Data Exchange
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Fig. 1. Modular Message Broker Architecture for Adaptive Data Exchange

To enable data flow management in an adaptive manner,
it is essential to refine message broker architectures rely-
ing on the traditional publish/subscribe (pub/sub) interaction
paradigm [20]. Pub/sub is a distributed software system that is
commonly used for content broadcasting/feeds, where multiple
peers interact via an intermediate broker. Publishers produce
messages (or events) characterized by a specific filter to the
broker. Subscribers subscribe their interest for specific filters to
the broker, who maintains an up-to-date list of subscriptions.
The broker matches received messages with subscriptions and
delivers a copy of each message to each interested subscriber.
There are different types of subscription schemes: topic-based,
content-based and type-based [20]. For instance, in a topic-
based pub/sub, messages are characterized with a topic and
subscribers subscribe to specific topics for receiving messages.

This paper refines the architecture of topic-based pub/sub
by introducing automatic management of data flows for effi-
cient data exchange based on the deployed applications’ QoS
requirements. Figure 1 presents the high-level architecture
of an adaptive message broker that includes the components
that must be designed along with existing message brokers
implementations. In particular, we propose the design of an
Automated Configuration Planner that is responsible for
generating plans with details related to configuring the broker
to satisfy the QoS requirements of subscribing applications.
These plans are sent to the Adaptive Data Flow Broker
where they are executed. Note that, the proposed architecture
is generic and it can be adapted to any message broker
implementation (e.g., EMQx, RabbitMQ, ActiveMQ, etc.).An
overvew of the Automated Configuration Planner and the
Adaptive Data Flow Broker is provided next.

a) Automated Configuration Planner: We leverage Au-
tomated Planning (AI Planning) [21], [22] as a decision-
making tool for providing a message broker with automated
configuration and adaptation capabilities. In particular, we use
the Planning Domain Definition Language (PDDL) [23] to
create domain models that represent the possible configuration
parameters that can be used to tune the message broker
(e.g., drop rates and priorities for data flows). Moreover,
these domain models include the properties of the IoT system
components (e.g., devices and applications), as well as the
performance of the system under different situations (e.g.
response times, message losses). Such metrics can either be

derived from synthetic datasets or real traces (more details in
§IV-A and §V-B). The models are then used as input to an AI
planner that finds the optimal configuration for managing data
flows by the broker. In dynamic situations that involve changes
in the IoT infrastructure, the Automated Configuration Planner
is triggered for providing reconfiguration plans.

b) Adaptive Data Flow Broker: The adaptive data flow
broker is responsible for effectively handling IoT data flows
(including applications receiving identical data flows) to sat-
isfy the QoS requirements of applications based on the Au-
tomated Configuration Planner’s output. This is achieved via
four core software components. The Subscriptions Manager
handles the applications’ subscription requests. The Message
Flows Manager creates per subscription data flows using a
rule-based engine. Unlike traditional message brokers, our
proposed broker does not control flows per topic. Instead, it
defines per subscription flows, i.e., applications subscribing to
the same topic will receive two separate data flows that can be
managed and tuned differently, according to the QoS require-
ments of the subscribing application. We provide in §IV-B and
§IV-C more details about how this mechanism is implemented.
After successfully creating these data flows, our broker assigns
drop rates and priorities to flows according to rates provided
by the Automated Configuration Planner. Finally, the Priorities
Manager handles the data flows according to the assigned
priorities. This is done by creating priority queues that process
messages according to the priorities defined (§IV-E).

IV. ADAPTIVE MESSAGE BROKER IMPLEMENTATION

This section presents the prototype implementation of
the proposed message broker architecture for adaptive data
exchange. Our prototype, called PlanEMQX, leverages the
EMQX1 open-source message broker. EMQX is widely used in
IoT environments and provides appropriate scaling capabilities
for such use cases, high performance, and low processing
latency [24]. In addition, EMQX is equipped with a Rule
Engine for real-time data processing and analysis on messages.
As shown later, we use the Rule Engine for creating rules to
control data flows according to configurations received from
the Automated Configuration Planner.

PlanEMQX leverages different components to adapt mes-
sage flows. In particular, as opposed to traditional message
brokers, PlanEMQX manages flows per subscription, and
not per topic. This allows for more flexibility in controlling
flows belonging to the same topic that have to be delivered
to multiple applications (by applying different drop rates,
priorities, etc.). To enable automatic configuration and adapta-
tion in dynamic situations, PlanEMQX relies on AI planning
(§IV-A). We provide next a detailed description about the
implementation of each of the core components of PlanEMQX.

A. Automated Configuration Planner

To determine the best configuration that satisfies the QoS
requirements of applications, we leverage automated planning

1https://www.emqx.io/



techniques [21], [22]. AI Planning enables adaptive data flow
management by defining domain models that capture changes
that can happen in the IoT system (e.g., overloaded system,
emergency scenarios). Adaptation plans can then be generated
at runtime in response to dynamic situations. To express
planning models, we use PDDL [23], [25], an action-centered
language that provides a standard syntax to describe actions by
their parameters, preconditions, and effects. PDDL divides the
definition of a planning problem into two parts: the domain and
the problem. The domain file contains a description of the ac-
tions that can be taken by the planner; in our case, the actions
represent configurations of the IoT system. These actions may
include prioritizing different application categories or applying
drop rates to flows belonging to some categories. The problem
file includes a description of the initial state of the system, as
well as the desired goal state to be achieved—i.e., to satisfy
the QoS requirements of IoT applications. Algorithms and
techniques such as search-based or reasoning-based planning
are used to find an optimal plan given the domain and problem
descriptions. Examples of how these domain and problem files
are created can be found at [26].

At design time, the PDDL domain is instantiated from
provided templates using prior collected performance models.
Of particular interest are the values of latency increments
with configuration changes on drop rates or priorities. Before
deployment, the PDDL problem file is instantiated with the
subscribed applications. These domain and problem files are
used to generate a PDDL plan, that includes configuration
parameters to be set. At runtime, the plan steps are actuated via
the runtime components. The priorities manager and subscrip-
tions manager are invoked to control data flows. The required
output is monitored at runtime and may be used to trigger a re-
planning of the configurations. Re-planning would instantiate
a new PDDL problem file to provide a new plan.

B. Subscriptions Manager

To control individual subscription flows, we create one topic
per subscription. In particular, when multiple applications
subscribe to the same topic, the Subscriptions Manager creates
one topic per subscribing application. For instance, when app1
and app2 subscribe to “smoke”, the topics “smoke/app1”
and “smoke/app2” are created, and are associated with app1
and app2, respectively. However, to avoid undermining the
principles of the publish/subscribe paradigm, we implement
this mechanism by having the IoT devices (publishers) and
applications (subscribers) agnostic to the internal topics.

Figure 2 shows the mechanism used to manage subscrip-
tion requests. Applications subscribe to a topic by sending
a subscription request as they would normally subscribe
to a topic in a message broker (step 1 ). However, when
PlanEMQX receives the subscription request, it creates a
new topic containing the subscribing application’s ID. This is
achieved by using EMQX’s Authentication API, which allows
external systems to authenticate MQTT clients against custom
authentication back-ends through a RESTful API. When an
application sends a subscription request to PlanEMQX, the

:EMQX

SUBACK

:AuthenticationAPIapp1:Application

SUB("smoke")
subscribe("app1", "smoke")

subscribed("app1", "smoke/app1")

:subscriptionsDatabase

PUT("app1", "smoke", "smoke/app1")

1
2

3

4

5

Fig. 2. PlanEMQX Subscription Process

request is forwarded to EMQX’s Authentication API (step 2 ).
The request contains the application ID (“app1”) and the
topic the application wants to subscribe to (“smoke”). The
API denies the subscription request to the topic specified
(“smoke”); however, it generates another request to subscribe
the application to a new topic. The new topic is created by
concatenating the original topic name and the application’s ID,
separated by a “/”. Thus, app1 in Figure 2 would be sub-
scribed to topic “smoke/app1” instead of topic “smoke”.
The API then stores in an SQL database the application ID,
the original topic the application intended to subscribe to, and
the topic that PlanEMQX created (step 3 ); this information is
needed to handle unsubscription requests. Finally, the API then
sends the authorization to EMQX to subscribe the application
to the newly created topic (step 4 ), and EMQX sends back a
SUBACK MQTT message to the subscribing application, indi-
cating that the subscription has been successful (step 5 ). The
unsubscription process is similar to the subscription scenario:
PlanEMQX forwards the applications’s unsubscription request
to EMQX’s Authentication API. The API queries the SQL
database to find the topic that the application is subscribed
to, then forwards the application’s request to unsubscribe
with the correct topic to EMQX. PlanEMQX finally sends
an UNSUBACK MQTT message back to the application.

Notice that PlanEMQX’s mechanism for subscriptions en-
sures that applications remain agnostic to the internal topics
created. This is a key element of our architecture; subscribing
clients can use regular MQTT APIs without being aware of
the inner workings of PlanEMQX.

C. Message Flows Manager

Because publishers are not aware of the internal topics used
by PlanEMQX, we need a mechanism to associate messages
published from the original topic (e.g., “smoke”) to the newly
created topics (e.g., “smoke/app1” and “smoke/app2”).
To achieve this, we use rule-based techniques to rewrite
messages to the newly created topics. In particular, we leverage
EMQX’s rule engine to create topic rewrite rules, which allow
modifying the MQTT topic of a message once it is received
by EMQX. The topic rewrite feature is implemented as a rule
action in the EMQX rule engine.

When PlanEMQX receives a subscription request, the
Message Flows Manager is triggered to create a topic
rewrite rule for the topic that the application subscribes to.



This is achieved through an API call to EMQX, which consists
of a request to create a rule, along with information about the
type of action (“rewrite”), the topic to rewrite, and the topic(s)
that messages need to be rewritten to. Thus, when PlanEMQX
receives a message, the rule engine will be triggered to check
for existing rules related to the topic of the received publication
(Figure 3 step 1 ). To do this, the topic in the message will
be used to sequentially match the topic filter part of the rules
created (step 2 ). Finally, the message will be republished
to the newly created topics (step 3 ). Note how the first
level of the created topics is “unsorted”; this hierarchy is
needed to distinguish topics that need to be delivered to the
Priorities Manager from the topics that need to be delivered
to applications (more details in §IV-E).

D. Drop Rate Manager

By creating per-subscription data flows, PlanEMQX is able
to control the flows belonging to each application indepen-
dently. One of the mechanisms that PlanEMQX is equipped
with to improve the performance of the IoT system (i.e., satisfy
the QoS requirements of applications) is assigning drop rates
to data flows in network congestion scenarios. Such drop rates
are identified by the Automated Configuration Planner, and
applied to loss tolerant applications only, according to the QoS
requirements that they define. Applying drop rates alleviates
the load on the network infrastructure and improves the overall
throughput and latency for data flows, while keeping message
losses under the limit specified by applications.

PlanEMQX receives the drop rates that should be assigned
to each data flow (if any) from the Automated Configuration
Planner. Then, the Drop Rate Manager creates the necessary
rules for filtering messages and, in some cases, dropping a
percentage of messages from certain flows. An example of
such rules is shown in Listing 1. These rules are then executed
in the EMQX rule engine when messages are received.
1 SELECT qos, payload,
2 hexstr2bin(sha256(id)) < hexstr2bin(thresholdValue)
3 AS republish
4 FROM smoke/app1
5 WHERE republish = true
6 AND payload != ’unsubscribe’

Listing 1. Rule for dropping messages

To decide whether to drop a message or not, we compare
the SHA-256 hash of the ID of the received message with
a threshold value. The threshold is defined as the maximum
value that the SHA-256 can take (2256 − 1), multiplied by
the percentage of messages that are allowed to go through.
For example, if 5% of messages have to be dropped from
data flows belonging to the topic “smoke/app1”, the SHA-
256 of the ID of messages published to “smoke/app1” will
be compared to the threshold value 0.95 × (2256 − 1). All
messages that satisfy the condition sha256(id) < threshold
will be forwarded; other messages will be dropped.

E. Priorities Manager

Prioritisation per subscription flow is implemented by the
Priorities Manager, which enables setting up priorities iden-

tified by the Automated Configuration Planner. The man-
ager implements a set of priority queues where incoming
messages are queued according to the priority assigned to
them. As mentioned in §IV-C, all messages received from
publishers are rewritten to topics starting with “unsorted/”.
The manager receives all such messages through the topic
filter “unsorted/#” (Figure 3 step 4 ). When a message
is received, the manager identifies the application that the
message belongs to. Recall from §IV-B that all topics used
by PlanEMQX are tagged with the application’s ID. Then, the
manager queues the message in one of the queues according to
the priority assigned to the application (step 5 ). Meanwhile,
another process is responsible for polling the queues (in
the order of their priority) and republishing the messages to
EMQX; the republished messages are published without the
“unsorted/” tag. The messages will finally be forwarded
to the corresponding application.

:EMQX :RuleEngine

Republish "smoke" 

2

:PrioritiesAgent

queue("unsorted/smoke/app3", message, queue0)

queue("unsorted/smoke/app1", message, queue1)

5

app1:Application

("smoke/app3", message)

app3:Application:Publisher

publish("smoke", message)

publish("unsorted/smoke/app1,message)

subscribe("unsorted/#")

("unsorted/smoke/app1", message)

("unsorted/smoke/app3", message)

publish("smoke/app3", message)

publish("smoke/app1", message)

("smoke/app1", message)

checkRule("smoke")

publish("unsorted/smoke/app3, message)

1
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Fig. 3. PlanEMQX’s Message Flows and Priorities Handling Process

V. PLANEMQX EVALUATION

This section presents the evaluation of PlanEMQX. We start
by describing our prototype implementation of PlanEMQX
(§V-A), then we proceed to show how PDDL files are gener-
ated and used by the AI planner to automatically generate con-
figuration plans for PlanEMQX (§V-B). Finally, we provide
a performance evaluation of PlanEMQX by showcasing how
our architecture enables improving the performance of IoT
data flows (§V-C). The code used for setting up PlanEMQX
and running the following experiments is publicly available on
https://github.com/satrai-lab/planemqx.

A. The PlanEMQX Prototype

As described in §IV, PlanEMQX is implemented on top
of the EMQX message broker and is further enhanced with
the components presented in §III-B. We implement the Sub-
scriptions Manager, the Message Flows Manager, the Drop
Rate Manager, and the Priorities Manager as Java processes
that interact with EMQX through API calls. In addition, the
EMQX Rule Engine is used by the Subscriptions Manager
and the Message Flows Manager to automatically create rules
when applications suscribe to topics. To generate configuration
and adaptation plans, we use the Metric-FF [27] AI planner,



which is an extension of the fast-forward planning system
that supports reasoning with numerics. Metric-FF uses forward
chaining heuristic state space planning to find an optimal
solution given a set of actions and goal state to be reached.
As specified in [28], Metric-FF passes most benchmarks and
is able to solve problems at scale within a few seconds. When
the IoT system is first deployed, the Automated Configuration
Planner is triggered to generate a configuration plan for sat-
isfying the QoS requirements of applications (i.e., by creating
subscription flows, and setting appropriate priorities and drop
rates). When changes occur (captured through the Monitor),
re-planning is performed to adapt to the new settings.

Publishers and subscribers connect to PlanEMQX using the
MQTT Paho library [29]. To simulate the networking infras-
tructure between the different components of the IoT system,
we use Containernet2 [30], a fork of the Mininet network
emulator [31] that supports the use of Docker containers as
hosts. We consider that the bottleneck of the data exchange
system lies in the bandwidth of the network link between
PlanEMQX and the applications, i.e. the subscribers.

B. Performance Metrics Dataset Generation and Validation

To compose the PDDL domain and problem files used by
the Automated Configuration Planner, we need to get infor-
mation about (i) the entities present in the IoT environment
(devices and applications), and (ii) the performance of the IoT
system (e.g., response time, loss rates) in different situations
(e.g., overloaded system, changing number of subscriptions).
For this purpose, datasets can be created through the monitor-
ing component that collects performance metrics at runtime.
However, it is not evident to obtain such datasets prior to
deploying and running the system. Therefore, we use the
EDICT [32] simulator to generate datasets that are used by
the Automated Configuration Planner to compose the PDDL
domain and problem files and generate configuration plans.

To verify that the datasets obtained from EDICT accurately
model the performance of a pub/sub IoT system, we eval-
uate the generated datasets against running the PlanEMQX
prototype in the default settings (i.e., without assigning any
priorities or drop rates). Figure 4 shows the average response
time of data flows using (i) EDICT and (ii) the PlanEMQX
prototype under a varying bandwidth. The results show that
the metrics derived from EDICT match the results collected
from the prototype. Nevertheless, we observe that the results
of the prototype have a lower response time in general.
This is because we are using Containernet to emulate the
network infrastructure, and Containernet lacks the ability to
emulate proper queueing delay when transmitting packets.
More precisely, Containernet uses Linux TC to apply queue-
ing disciplines to network interfaces: bandwidth limitations,
packet loss, and network delay. In Linux TC, The bandwidth
limitation constrains the volume of traffic (i.e., number of
bytes) that can be sent per unit of time. However, it does
not emulate the actual packet transmission delay due to the

2https://containernet.github.io/

available bandwidth. Hence, Linux TC sends packets at the
same speed regardless of packet size (i.e., the transmission
delay is constant), which in turn affects the perceived queueing
delay. That is, if the available bandwidth is enough to empty
the queues, the queued packets do not experience the queueing
delay due to the transmission of previous packets.

Fig. 4. Average response times: Queueing simulations vs. PlanEMQX

C. Performance Evaluation of PlanEMQX

To evaluate the performance of PlanEMQX, we simulate a
smart environment with 30 IoT devices and 16 applications
that belong to 4 application categories. PlanEMQX accepts
publications to 30 topics, with a total number of 80 sub-
scriptions. The properties of the IoT environment tested are
presented in Table I. We consider that the available bandwidth
between PlanEMQX and applications is 10 Mbps. When the
system is set up, the Automated Configuration Planner is trig-
gered to generate a configuration plan. As shown in Listing 2,
the plan indicates that the highest priority should be given to
RT applications, then to ST application, then TS applications,
and finally to AN applications. In addition, the plan specifies
that 2% of messages belonging to ST flows and 5% of
messages belonging to AN flows should be dropped. We run
several experiments to test the mechanisms implemented by
PlanEMQX. For each experiment, publishers send messages
with a specific message size and publication rate (according
to the setup in Table I) for 5 minutes. We then collect metrics
related to the response time of data flows, and the number of
messages sent and received for each subscription.
1 : ff: found legal plan as follows
2 step 0: DROPPING_AN_5_ST_2 TOPIC_ALL APP_ALL
3 1: PRIORITIZE_RT_ST_TS_AN TOPIC_ALL APP_ALL

Listing 2. AI planner output

We start first by evaluating the effectiveness of the dropping
mechanism of PlanEMQX. Table II shows the number of
messages published by IoT devices to each application cat-
egory, the number of messages consumed by each application
category, and the percentage of dropped messages. The results
show that the Drop Rate Manager is able to correctly apply the
dropping rates according to the input of the configuration plan:



IoT system properties
Category #topics #subscriptions Load (Mbps) Available bandwidth (Mbps)

AN 15 21 1.90

10
RT 18 21 2.33
TS 11 18 2.05
VS 16 20 1.61

Total 30 80 7.9 10

TABLE I
EXPERIMENTAL SETUP

Category Published Consumed Dropped (%)
AN 32100 30512 4.94
RT 33300 33276 0.07
TS 28500 28469 0.10
ST 30000 29433 1.85

TABLE II
DROPPED MESSAGES PER APPLICATION CATEGORY

4.94% of messages are dropped for AN flows, and 1.85% of
messages are dropped for ST flows. The longer the IoT system
is running, the more the drop rate percentages will converge to
the values indicated by the Automated Configuration Planner.
For other application categories, the drop rate is negligible,
and the few messages dropped are due to packet losses at
the network layer. These messages can be correctly delivered
when re-transmission mechanisms are implemented.

Next, we compare the average response time per application
category when PlanEMQX is used as a message broker against
a default approach that deploys a message broker without
automated planning capabilities. This is done by averaging
the response time for individual messages belonging to each
category (about 30000 messages per category,as shown in
Table II). As Figure 5 shows, there is a significant im-
provement in the response time for RT and ST applications:
PlanEMQX can identify that such applications have stricter
latency bounds (based on their QoS requirements) through the
Automated Configuration Planner. These improvements come
at the expense of having higher response times for AN and
TS applications, but this is deemed acceptable because these
application categories are more delay tolerant.
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Fig. 5. Average response time per app. category: PlanEMQX vs. Default

We further analyse the response time results through box

plots that show how the response times distributions when us-
ing the default approach, and how these distributions changes
when PlanEMQX is used. Notice that not only the average
response times are improved for time-sensitive applications
(RT and ST), but also tail latency is lower for these application
categories. For instance, the maximum response time for RT
applications is decreased from 22.7ms to 18.5ms when using
PlanEMQX. This is also the case for ST applications, where
the maximum latency is reduced by 13%.
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Fig. 6. Response times box plot - Default vs PlanEMQX

Finally, to highlight how PlanEMQX deals with applications
that share the same data flows but have different QoS require-
ments, we plot in Figure 7 the average response time per topic
(for topics shared by multiple categories) under the default
approach and PlanEMQX. We observe that with PlanEMQX,
for the same topic, we have different response times, depend-
ing on the requirements of the subscribing application. For
instance, for “topic5”, the response time for RT is 14.67ms,
15.75ms for ST, 27.12ms for AN. This demonstrates the
effectiveness of assigning priorities per subscription. However,
this is not the case with the default approach, which does
not take into account the QoS requirements of applications.
Therefore, when multiple applications belonging to different
categories subscribe to the same topic, their response time is
going to be randomly distributed.

D. Threats to Validity

Our approach leverages AI planning to find the best config-
uration parameters for satisfying the QoS requirements of IoT
applications For this purpose, the actions to be taken by the
AI planner (assigning priorities, setting drop rates) and their
effects on the performance of the system should be defined at
design time, either by relying on historical data, or by using
synthetic data generated from simulators. Clearly, it is not fea-
sible to include all possible combinations of actions to be taken
by the AI planner because their effects might not be captured
in the datasets used. Hence, the output of the planner can only
be as good as the dataset used for generating the domain and
problem files. Furthermore, we use rule-based techniques for
managing data flows for different applications. This involves
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Fig. 7. Response time per topic - Default vs. PlanEMQX

creating and executing rules in the message broker used for
the implementation of our solution (e.g., EMQX). If future
updates of the message broker stop supporting rule engines,
our approach will need to be modified to handle subscription
and message flows in a different manner. Finally, since we
propose a middleware-based architecture for ensuring QoS
of applications, we do not consider network-related changes
that might affect the performance of the system. Thus, in the
experiments, we use a simulator for emulating the network
infrastructure and setting up network link characteristics (e.g.,
bandwidth). However, in real-world environments, network
conditions might not be as stable as they are in simulation
settings, and may depend on external factors. To address this,
existing network solutions may be implemented alongside our
solution to guarantee optimal data exchange between the IoT
system components.

VI. CONCLUSION

This paper introduces a publish/subscribe-based architecture
for adaptive data exchange in IoT environments. We refine
traditional pub/sub message broker architectures by including
an Automated Configuration Planner to generate configura-
tion plans that take into account the QoS requirements of
applications. The planner is also responsible for adaptation in
dynamic situations to ensure that applications’ requirements
are satisfied despite changing conditions. We also design and
implement runtime components alongside the message broker
for efficiently controlling data flows by assigning priorities and
drop rates identified by the automated planner. To evaluate
our approach, we implement the PlanEMQX prototype by
relying on our proposed architecture and using state-of-the-art
technologies. Our experimental results show that PlanEMQX
improves the end-to-end response time of time-sensitive ap-
plications, especially when applications sharing common data
flows are deployed. Our future work includes using the perfor-
mance metrics collected at runtime for performing a predictive
analysis of changes that might occur, and proactively adapt the
management of data flows to avoid degraded performance.
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