N
N

N

HAL

open science

CCDUIT: a software overlay for cross-federation
collaboration between data spaces

Nikolaos Papadakis, Georgios Bouloukakis, Kostas Magoutis

» To cite this version:

Nikolaos Papadakis, Georgios Bouloukakis, Kostas Magoutis. CCDUIT: a software overlay for cross-
federation collaboration between data spaces. 21st IEEE International Conference on Software Archi-

tecture (ICSA), IEEE, Jun 2024, Charminar, Hyderabad, India. hal-04514045

HAL Id: hal-04514045
https://hal.science/hal-04514045
Submitted on 20 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04514045
https://hal.archives-ouvertes.fr

CCDUIT: A Software Overlay for Cross-Federation
Collaboration between Data Spaces

Nikolaos Papadakis’, Georgios Bouloukakis', Kostas Magoutis**,
{nikolaos.papadakis, georgios.bouloukakis } @telecom-sudparis.eu, magoutis@ics.forth.gr
fTélécom SudParis, Institut Polytechnique de Paris, France
*Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH), Greece
iCornputer Science Department, University of Crete, Greece

Abstract—In contemporary urban environments, the feder-
ation of IoT-empowered data spaces is gaining ground as a
concept, however a single unifying approach to federation is
still elusive. As a result, the exchange of data across het-
erogeneous federated data spaces often encounters challenges,
such as different data models and data exchange protocols, or
stringent policies prohibiting data sharing across federations.
This paper introduces CCDUIT, a software overlay architecture
designed to address these issues, facilitating seamless cross-
federation collaboration. As a comprehensive solution, CCDUIT
offers modularity, scalability, and interoperability, enabling ef-
ficient and sovereignty-preserving data exchange across diverse
federations. CCDUIT leverages rich property graph models for
context modeling of federations, which are exchanged across fed-
erations via publish/subscribe topic schemes, with data sharing,
and access control governed by policy mechanisms matching
the topics. Our experimental results demonstrate that CCDUIT
significantly reduces the complexity and effort involved in data
management and sharing across federations, with a quantifiable
decrease in operational overhead by approximately 40% to 60%.
This streamlines collaboration while ensuring compliance with
data sovereignty and sharing policies, providing a solution to a
longstanding challenge in federation-based data ecosystems.

Index Terms—Software Overlays, Interoperability, Smart Data
Spaces, Distributed & Federated Information Systems

I. INTRODUCTION

The evolving landscape of digital data ecosystems, along
with emerging public policies such as the European Strategy
for Data [17]], are driving the realization of federated data
spaces, networks of interconnected data repositories, often
empowered by IoT technologies, that facilitate interoperability
and collaboration across the boundaries of individual data
spaces. The goal is to create common data spaces where
seamless data exchange and integration are possible, enabling
participants to work together more effectively. The existing
body of work in federated data spaces is rich and varied,
tackling numerous aspects of interoperability and data shar-
ing (6], [7], [13]], [16]. While the concept of federations has
been instrumental in enabling interoperability among diverse
communities [S]], [14], [18], challenges are still posed by
the distinct technologies, data models, and policy constraints
inherent in these varied groups [19].

Bridging the heterogeneity of data formats across different
technologies is often possible through data converters and
semantic gateways [2], [L1], [22] within a federation. How-
ever, a notable gap in this domain is the lack of solutions

that enable different federated data spaces to collaborate
without necessarily assimilating into a single federation. In
other words, while current approaches focus on integrating
diverse systems within a single federated framework, they
do not extend to facilitating seamless collaboration across
heterogeneous federations while allowing them to maintain
their individual technological and policy characteristics. For
instance, current approaches for inter-federation collaboration
often entail converting different platforms into a common
format [10] [18]]. This approach, while effective to a degree,
overlooks the potential and efficiency of allowing federations
to interact in their native formats, keeping their existing
setups, and thus the unique operational characteristics of each
federation are not preserved. Another critical limitation that
is often overlooked is the absence of robust inter-federation
context-exchange mechanisms. Such mechanisms would en-
able federations to dynamically adapt to each other’s policies,
thereby preserving data sovereignty and policy compliance
in multi-federational environments, and engage in policy-
driven collaborations, which is essential for achieving true
interoperability in practice. What is currently lacking is a
system capable of creating and managing a federation of
federations, addressing interoperability and scalability through
the diverse technologies, data models, and policies prevalent
in existing federated systems.

In response to these challenges, we introduce CCDUIT, a
novel software overlay architecture designed to bridge the
gaps in current federation-level collaborations of data spaces.
CCpUIT offers a seamless integration platform for multiple
federations, enabling them to collaborate effectively while
preserving their individual sovereignty and operational char-
acteristics. The primary contributions of our work include:

1) Design of the CCDUIT software overlay architecture to
enable efficient cross-federation data exchange.

2) A publish/subscribe topic-based schema for context shar-
ing that enables scalable “federation of federations”.

3) Design of a component-based CCDUIT node architecture
that facilitates seamless data sharing across diverse data
spaces, while respecting individual data sovereignty and
the need to use diverse technologies.

4) Evaluation, which includes an analysis of the scalability
of CCDUIT and its comparison with scenarios devoid of

its application

The remainder of this paper is structured as follows: In
we outline the evolution and theoretical underpinnings
of federated data spaces. presents a review of existing
technologies for federation interoperability and identifies gaps
that CCDUIT aims to fill. The complexities and needs of
modern federations, illustrated through a practical scenario, are
discussed in §IV] The CCDUIT software overlay architecture is
presented in where we discuss its architectural design and
key features. A comparative evaluation of CCDUIT is covered
in Finally, concludes this article, reflecting on the
impact of CCDUIT, its future potential, and avenues for further
research in the field.

II. BACKGROUND

Federated architectures and platforms [20] enable intercon-
nectivity among heterogeneous systems and devices across
various domains of information, including administrative, ge-
ographic, and contextual data. Federations are characterized
by their unique topologies, data models, and data exchange
protocols, each essential for effective data management within
data ecosystems, particularly those driven by the Internet of
Things (IoT).

A. Federation Elements

Topology. A federation’s topology is defined by the arrange-
ment of its participant nodes, ranging from simple sensors to
complex processing units. Common configurations, such as
tree, star, line, and mesh, influence data flow and network
efficiency, where mesh topologies provide resilience at the cost
of increased complexity, and star topologies offer simplicity
with reliance on a central node [15]. Data Model. To tackle in-
teroperability challenges, diverse data models are harmonized
through standards like NGSI-LD, which leverages Linked Data
semantics for data spaces—environments facilitating trusted
data sharing [10], [1]. Specialized models like GTFST] and
Brick E] cater to specific domains such as public transportation
and smart buildings, augmenting NGSI-LD for comprehensive
data representation. Protocol. Protocols like MQTT and CoAP
underpin data exchange by setting efficient communication
rules for IoT devices, crucial for federation functionality [8]],
[21].

B. Federation Platforms

A variety of platforms and architectures have been de-
veloped to support federation in data spaces and beyond.
TrustyFeer [13] utilizes federated cloud environments to en-
hance the quantity of services exchanged between cloud
providers adhering to Service Level Agreements (SLAS).
MARGOT [16] places a strong emphasis on ensuring High
Auvailability Disaster Recovery (HADR) by making effective
use of caching capabilities within its federated node infras-
tructure. ComDeX [18] adopts a distributed context-aware

Uhttps://gtfs.org/
Zhttps://brickschema.org/

federation architecture, enabling effective widespread IoT ap-
plications through novel information dissemination techniques
for collaborative data exchange between smart communities.
Fogflow [6] presents a federated fog computing framework
tailored for the design and execution of IoT applications at
a metropolitan scale. CPaaS.io [7] established federation as a
goal aimed at the integration of diverse private IoT systems,
contributing to the evolution towards a worldwide IoT. The
ALMANAC Smart City Platform [5] employs a federated
deployment strategy in Turin to connect diverse ICT systems
among different entities like the waste management company
and the municipality, addressing both technological and gov-
ernance challenges associated with smart city initiatives.

This confluence of federated architectures, data models,
topologies, and protocols in IoT platforms exemplifies the
complexity of these systems and highlights their potential
to revolutionize the way we interact with and manage our
interconnected world.

III. RELATED WORK

The realm of federated data spaces ecosystems has seen
significant advancements, as presented in the background
section §II]to foster interoperability among diverse stakeholder
entities within these ecosystems. However, the challenges
posed by the heterogeneity of technologies, data models, and
policy constraints across different communities often extend
beyond what federated architectures alone can resolve. This
underscores the necessity for adoption of advanced tools, like
data converters and semantic gateways, which are often used
in combination with aforementioned federations [19].

Data converters play a pivotal role in mitigating the discrep-
ancies in data formats prevalent across various communities.
By transforming data from one format to another, these con-
verters facilitate a smoother data flow between entities operat-
ing on different technological platforms. A notable example is
FIWARE’s IoT Agents [22]], which enable the conversion of
IoT data into the NGSI-LD format. IoT Agent applications
and others that utilize similar approaches are data model-
specific, thus necessitating different IoT Agents for distinct
data structures. There are other, large-scale systems for this,
like Apache Nifi [11]] which offers a comprehensive suite of
processors for versatile data transformation needs. Efforts have
also been made to address specifically the challenges of han-
dling various data exchange protocols between heterogeneous
systems. Akasiadis et al. [2] address the challenges of handling
various communication protocols in IoT systems by supporting
multiple protocols, at once on the same platform, such as
REST/HTTP, MQTT and AMQP. The platform utilizes open-
source frameworks, via a microservices-based approach.

In addition to data converters, semantic gateways emerge
as crucial elements in achieving interoperability by seman-
tically aligning the data exchanged between heterogeneous
systems. This involves mapping different data models and
ontologies to a common understanding, thus preserving the
meaning and context of data across various IoT platforms. The
use of semantic gateways is particularly evident in solutions

that integrate disparate IoT systems while maintaining their
semantic integrity. For instance, the Semantic IoT Gateway
framework [[12]] offers a way to interlink different IoT systems
by translating and aligning their semantic representations. This
approach is vital in scenarios where maintaining the contextual
meaning of data is as important as the data itself, especially
in complex federated environments.

Beyond data transformation and technology alignment,
there have been concerted efforts to foster agreements and
smoother dynamic collaboration within federations. Initiatives
like SOFIE [14] demonstrate the potential of federating ex-
isting IoT platforms in an open and secure manner, utiliz-
ing Distributed Ledger Technologies (DLTs) as a consensus
mechanism. Additionally, the trust-based evolutionary game
model presented by Yahaoui et al. [9] offers an approach to
managing IoT federations by integrating trust scores based
on direct experiences and feedback, rewarding or penalizing
entities based on their behaviors.

Despite advancements in federated IoT ecosystems, a gap
persists: no standardized method integrates diverse federated
data spaces into a unified framework without altering native
technologies. The concept of a federation of federations to
handle the intricacies of varied technologies, data models, and
policies across IoT communities is still unexplored. CCDUIT
is a novel architecture designed to tackle these interoperability
and scalability challenges, offering a cohesive model for
managing and integrating disparate federations, thus revolu-
tionizing the collaborative dynamics of federated ecosystems.

IV. MOTIVATING SCENARIO

In this work we envision a network of smart data spaces,
each operating using a federated platform in its own domain,
yet potentially interdependent through future shared objec-
tives and data dependencies. These federations, each focus-
ing on environmental monitoring, healthcare, urban planning,
transportation, and energy, are distinguished by unique data
models, data exchange protocols, and governance policies.
They operate autonomously but could potentially be a part
of a larger ecosystem where the exchange and integration of
data are critical for informed decision-making and effective
management of urban environments.

As an example of such a larger ecosystem, consider a
fictional smart community called EcoVille which aims
to enhance urban living conditions. Suppose that EcoVille
aims to undertake a study to discover correlations between
various urban factors and the health of its citizens. This
necessitates the integration and analysis of data from the
environmental, healthcare, transportation, and energy sectors.
EcoVille wants to harness those diverse data for urban plan-
ning adaptations, targeted health interventions, and other pol-
icy changes. However, the process is not straightforward due
to systemic challenges in data acquisition and integration
across five federations, each with its own technological and
policy frameworks: Environmental Federation (A): Utilizes
environmental NGSI-LD modelf] and MQTT for sensor data

3https://github.com/smart-data-models/dataModel. Environment

exchange. Urban Development Federation (B): Employs
the Brick Schema and RESTful APIs for smart building data
integration, supported by analytics on platforms like SkyS-
par Healthcare Federation (C): Adopts HL7 FHIR and
DICOM for healthcare information, integrating IoT standards
for real-time patient data, with strict adherence to HIPAAE]
for privacy [3], [23]]. Transportation Federation @: Imple-
ments GTFS and AUTOSAR for public and vehicular transport
data, using MQTT and Websockets for data exchange [4].
Energy Federation (E): Tracks energy data through CIM
and IEC 61850 standardsﬂ employing AMQP and CoAP for
communication.

These federations, each operating with unique data types
and protocols, encounter significant interoperability chal-
lenges. Without a unified approach to address these issues,
the lack of data integration hinders the seamless exchange
of information across sources. This fragmentation leads to
inefficiencies, potential data loss, and missed opportunities
for synergy. Moreover, the diverse data sharing policies and
privacy regulations across federations add layers of complexity
to data governance. Non-compliance risks legal repercussions
and undermines user trust. As the federations scale, neglecting
interoperability can result in a cumbersome, error-prone sys-
tem that fails to leverage the collective potential of federated
data spaces, ultimately impeding the overarching goal of
collaborative advancement CCDUIT comes to address exactly
these challenges, through an architecture designed to facilitate
efficient, seamless cross-federation data exchange.

V. CCDUIT SOFTWARE OVERLAY

Here we describe in detail the architecture of CCDUIT.
First, we present an overview of CCDUIT as a high level
graph. Then, we introduce a mechanism for context-aware
data exchange between federations. Finally, we describe the
architecture of a CCDUIT node, along with a use case scenario.

A. Overview of CCDUIT

CCpUIT is a software overlay designed to seamlessly
bridge the communication gaps between diverse federations,
addressing interoperability and data sharing to facilitate collab-
oration and information exchange among smart communities.
CCpUIT’s architecture offers: (i) modularity by ensuring easy
adaptability and integration with various existing systems;
(ii) scalability by allowing to effortlessly manage the grow-
ing network of federations and their expanding data needs
and (iii) interoperability by enabling the system to navigate
through the diverse data models and data exchange protocols
employed by different federations.

At a high level, CCDUIT can be visualized as a graph,
G = (N,E), as exhibited by Fig. where each node
n € N, represents a distinct federated data space, termed a
CCDUIT node. These nodes embody individual federations,
encapsulating their unique characteristics and functionalities,

“https://skyfoundry.com/skyspark/
Shttps://www.cdc.gov/phlp/publications/topic/hipaa.html
Shttps://webstore.iec.ch/publication/65191

Federation n4

Legend

Data Exchange Path

Context Exchange Path

Fig. 1. High level graph representation of CCDUIT.

and facilitating the reception and dissemination of information,
forming the backbone of the CCDUIT system.
In this graph, two types of edges e € E exist:

1) Data Exchange (DE) Edges, E, representing the actual
data exchange interactions between federations. The la-
bels of these edges, l4(e), include specific details of the
data exchange, such as the nature of the data, format, and
the technical protocol used for the exchange.

2) Context Exchange (CE) Edges, E., symbolizing the ex-
change of contextual information, crucial for enabling and
guiding the data exchanges. The labels on these edges,
l.(e), represent the policies that direct these context
exchanges, encompassing aspects like data sharing rules
and compliance requirements. Qur system is designed
to infer context through indirect paths by leveraging
established policies and prior interactions, thus not all
data exchanges require direct context exchange edges

Each CCDUIT node interacts with others through these
edges, forming a network of contextual communication and
data exchange. This dual interaction mechanism, represented
by E; and E. edges, is fundamental to the operation of
CCDUIT, ensuring that data flows efficiently and also in com-
pliance with established policies and mutual understandings.

Policies play a crucial role in dictating what kind of contex-
tual data is permitted to forward or exchange, and where it can
be sent. For instance, a policy might specify that environmental
data can only be shared with federations or communities that
have agreed to certain environmental standards. This ensures
that sensitive data is only exchanged with entities that adhere
to the same level of commitment to environmental protection.

B. Inter-Nodal Data Exchange

We now discuss how communities in different federations
interact by exchanging contextual data. CCDUIT’s main goal
is to facilitate interactions between CCDUIT nodes, via inter-
nodal data exchange for data, policy, and contextual informa-
tion flow over a communication infrastructure that allows each
node in the network, representing a federation (e.g., a smart
community), to interact seamlessly with others.

In the CCDUIT architecture, policies are set by the feder-
ations and are enforced by the Synergy Engine (Fig. 2] more
details in §V-C)), which ensures that all data exchanges align
with the federation’s objectives and compliance requirements.

Initiate Collaboration
with Federation F2
7~ CCduit Node

Exchange

F1, = =| Policies and | =/ =| Engi
e | ContextData | !
§ / ~ Data / @ i Daia

Forward
Context Data If

Type : LOX Type : X.KM
Policy Allows

Format: Y i , . |Format:z

Federation F3 ::

Legend

Data Exchange Path

Data

:‘1 /
L | ee:Lox \ J

\ | Format: Y

Context Exchange Path

Fig. 2. Inter-Nodal Data Exchange within the CCDUIT Architecture.

This engine plays a crucial role in managing and synchronizing
policies and contextual information across different nodes.
It acts as a mediator, aligning the various data sharing and
policies with the overarching objectives of the federations
involved. The Synergy Engine also ensures that any updates in
the context are promptly reflected across all connected nodes,
maintaining a consistent and up-to-date network state. For
policies specifically, this process involves automated protocols
for minor adjustments, while significant changes could require
human intervention for thorough discussion and agreement.
To enable efficient data exchange conforming to the defined
policies (and thus context exchange), inter-nodal communica-
tion in CCDUIT is implemented via a topic-based publish/sub-
scribe (pub/sub) schema, described next.
CE Schema: The schema of context exchange (topics) is
structured as follows:
Federation/Federation_ID/Policy_ID/Data_type
with the following definitions for specific terms:

— Federation ID: uniquely represents each federation, en-
suring that data and policies are correctly attributed.

— Policy ID: policies governing data sharing and usage are
associated with specific identifiers, allowing for stream-
lined policy management and enforcement.

— Data Type: data being exchanged is categorized under
specific data types (the data types present in the knowl-
edge base to be elaborated later on), facilitating efficient
data processing and transformation.

CCDUIT’s schema enables federations to share and receive
relevant data and information with precision and ease.

Fig. [2| demonstrates typical inter-nodal data exchange, high-
lighting the role of the Synergy Engine and the data flow
enabled by the CE schema. Fig. [2| depicts a scenario in-
volving three federations: F1, F2, F3. F1 and F3 use data
model Y, while F2 operates with a different format, Z. When
a community in Federation F1 needs data of type X, the
process unfolds as follows: An administrator from F1 initiates
collaboration with Federation F2 by defining a data exchange
policy for F1’s context and agreeing to exchange policies and
context data with F2. This initiation involves the CCDUIT node
of F2 subscribing to the Federation/Federation_F1/

Legend Data Transformation
Module
Component Interaction Strategy CCduit
Intercommunication ICoordinator Module Interaction
Protocol Translator Engine
Module
o
<
. c
Entity Storage - g
CCduit S
" L} P
Function Knowledge @
Repository Base]

CCduit
Interaction
Engine

Policy
Management
Module

ontext
Synchronization
Module

CCduit
Synergy
Engine

Administration API

I External Communication
c

Fig. 3. The Structural Overview of a CCDUIT Node.

topic of F1’s CCDUIT node, and vice versa for FI to F2’s
topic. In instances where F2 requires only specific context
elements from F1, such as policies, it could tailor its sub-
scription to Federation/Federation_F1/+/Policy.
Through this subscription, the community in F1 gains access
to F2’s contextual information, including the availability of
the sought-after data type X and the data model used by
F2. F1 then develops a custom function to facilitate this data
exchange, which is also shared with F2 via the CE mechanism.
If federation F3 also seeks to engage in data exchange with
F2, it follows a similar collaboration pattern, subscribing to the
relevant topics from F2. Importantly, if the policy governing
F1’s shared context information permits, F2 can forward this
information to F3 through F3’s subscription to the context
topics. This action enables F3 to utilize the custom function
created by F1, streamlining its data exchange with F2.

This dynamic exemplifies the capability of CCDUIT to or-
chestrate complex inter-federation data and context exchanges,
via inter-nodal communication. We next delve into the internal
structure of a CCDUIT node.

C. Detailed Breakdown of CCDUIT Node Components

Fig. |3| depicts the CCDUIT node, a key building block of
the architecture that comprises the following components:
Interaction APIL. It is the primary interface for external
entities to engage with the CCDUIT node. It is designed to be
the central gateway for initiating and managing interactions
such as data requests and context entity manipulations. It
offers a front-end that caters to the diverse needs of various
federations. Key functionalities include: (i) Management of
Context Entities: users can define and add new or modify
context entities to expand the knowledge base and interaction
capabilities of the network; (ii)) Querying Context Entities:
enables users to retrieve specific information about context
entities, facilitating informed decision-making and efficient
data management; and (iii) Lifecycle of Interactions: initiating
new interactions like data exchanges, triggering processes and
collaborations within the network, providing real-time insights

into ongoing interactions, allowing users to track progress and
assess efficiency.

Interaction Engine. Comprising several modules, the Interac-
tion Engine facilitates data interoperability. The Data Trans-
formation Module adapts data models for seamless integration
across federations using custom functions. The Interaction
Strategy Coordinator Module identifies optimal data exchange
pathways, considering context, policies, and specifications.
The Protocol Translator Module aligns differing data exchange
protocols to ensure cross-federation compatibility.
Knowledge Base (KB). Functions as a repository housing
the following information crucial for facilitating interactions
among federations: (i) Federation Information: profiles of each
federation, including their structural characteristics and opera-
tional principles; (ii) Community Context: specific information
about individual communities within federations; (iii) Data
Models: specifications of the data models employed by the
various federations, ensuring data compatibility and effective
transformation; (iv) Custom Functions: a collection of spe-
cialized functions developed for unique data processing needs,
promoting efficiency and reuse across federations; (v) Policies:
comprehensive documentation of data sharing and usage poli-
cies, critical for maintaining legal and ethical compliance in
data exchanges; (vi) Interaction Context: records of ongoing
and past interactions, providing insights into the dynamics
of federation relationships and aiding in decision-making for
future exchanges. The KB utilizes a labeled property graph for-
mat to represent complex relationships within federations. For
example, a “Federation” node, with properties such as name
and topology, can be linked to a "Community” node via an
“IncludesCommunity” edge, depicting their association [24].
This format is chosen for its ability to accurately mirror
the complex interplay between federations and communities,
offering an intuitive grasp of system-wide dependencies and
connections. It supports efficient querying of intricate relation-
ships, essential for quick data retrieval, and scales effectively
with data growth, ensuring sustained performance.

Synergy Engine. It consists of the following modules: (i) Pol-
icy Management Module: tasked with enforcing data sharing
policies. It ensures that all data exchanges comply with the
established rules and regulations of the involved federations;
and (ii) Context Synchronization Module: maintains up-to-date
and consistent information across federations, this module syn-
chronizes the contextual information, reflecting any changes or
updates in real-time. It manages updates efficiently by tracking
changes through the structured components of the CE schema
— Federation ID, Policy ID, and Data Type. This approach
ensures that all federations operate with the latest policies and
other interchanged context data, maintaining the integrity and
relevance of data exchanges within CCDUIT.
Administration API. It is responsible for managing the
CCDUIT node. It serves as the backbone for administrators,
offering an array of tools essential for maintaining the efficacy
and integrity of the system. This API facilitates various ad-
ministrative tasks, ensuring that the system remains adaptable
and responsive to the evolving needs of each federation. Key

FedA. | API| [Interaction API | [IInteraction Engine | [Synergy Engine | [Knowledge Base ||

Create Policy N

Initiate Collaboration With Federation B

* Create Policy *
[m

Federation A .

Administrator

Create Policy

>0

~,
N’

Initiate ion With Federation B

e

Find CO, emmision Data Synchronize _ + _Synchronize

Query Context Data,

o= —>

Query Context Data
Return Context Data

>o

Return Context Data

EcoVilje User N B
Create and Store Convertor *
Functions Store Convertor

Return Context Data’ 0
Functions t st ’

>o

. ore Conves
Initiate Interaction Functions

Receive Related . .| (C)

Context Info .
Receive Converter Functions .
Store Interaction Contex .
Data Exchange Interaction N

[: : . N

Initiate Interaction =

EcoVille User

Fig. 4. Workflow of CCduit Node Operations within Federation A for Inter-
federation Data Exchange with Federation D.

functionalities of the Administration API include: Initiation
of Federation Collaborations, System Configuration, Policy
Management, Node Health Monitoring, User and Access Man-
agement and System Updates and Maintenance.

D. Example Use Case of CCDUIT Node’s components

We now explore the practical application of CCDUIT within
the context of our motivating scenario (EcoVille, one of
possibly many communities in Federation A) as described
in EcoVille aims to acquire CO2 emission data from
vehicles, which is vital for its goals. This data is available
in a community belonging to Federation D. We focus on the
interaction of Federation A’s CCDUIT node and its internal
components, as illustrated in Fig. f]

Fig. {] (A): Initiating Collaboration and Policy Exchange.
EcoVille’s first interaction with Federation D involves several
preliminary steps. Administration API Use: an administrator
from Federation A utilizes the Administration API of CCDUIT
to initiate collaboration with Federation D. This is done by first
defining a data exchange policy for EcoVille’s context, using
the Synergy Engine’s Policy Management module. Policy
and Context Data Exchange: following the policy setup, and
collaboration agreement, Federation A exchanges its policies
and context data with Federation D. This exchange leverages
the CE topics, as detailed in

Fig. {] (B): Context Synchronization and Data Discovery.
Once the initial exchange is complete, the process unfolds as
follows. Context Synchronization: the Synergy Engine’s Con-
text Synchronization module ensures that the context data from
both federations are aligned and up-to-date. KB Interaction:
EcoVille then searches for the required CO2 emission data
through the Interaction API, which accesses the KB’s Entity
Storage. This step allows EcoVille to understand where and
in what format the data is available in Federation D.

Fig. [(O): Handling Heterogeneity and Interaction Cre-
ation. Upon discovering that the data format and exchange
protocol of Federation D are incompatible with EcoVille’s
systems, the following steps are taken. Function Creation for
Conversion: EcoVille creates custom functions to address the
data format and protocol disparities. These functions are then
stored in the KB’s Function Repository via the Interaction APL
Data Interaction and Exchange Initiation: With the custom
functions in place, EcoVille initiates a new data interaction

process through the Interaction API, which triggers the Interac-
tion Engine. Then, the interaction Engine employs its various
modules to facilitate effective data exchange. Data Transfor-
mation module: converts the data into a compatible format,
from the AUTOSAR application compliant CO2 format to
the NGSI-LD format that EcoVille uses. Protocol Translator
module: translates the data exchange protocol as needed, here
MQTT to HTTP. Interaction Strategy Coordinator: determines
the most efficient pathways for data exchange. From the point
interaction is created and on, data exchange happens without
the need for any additional coordination.

Fig.[4] (D): Continuous Synchronization by Synergy Engine.
Throughout this interaction, the Synergy Engine carries out the
following tasks. Policy and Contextual Updates: it continu-
ously synchronizes policy and contextual updates between the
involved federations. Adaptation to Changes: any changes in
policies or data models in either federation are promptly inte-
grated into EcoVille’s data requests and integration strategies,
ensuring up-to-date data exchange.

This use case illustrates the comprehensive capabilities of
CCDUIT ’s components in facilitating intricate data exchange
processes between different federations while maintaining data
sovereignty, policy compliance and data integrity.

E. Extensibility and Customization Features

CCpUIT employs a modular design to facilitate the indepen-
dent development, maintenance, and upgrade of components,
streamlining complexity and easing the integration of new
technologies. It is designed to be adaptive to address the varied
technological and policy needs across federations, with custom
functions tailored to the specific requirements of diverse
federations.

Adaptability: The CCDUIT architecture empowers federa-
tions to craft custom functions, such as unique data transfor-
mation algorithms or policy enforcement mechanisms, which
can be selectively shared with partner federations. This shar-
ing is at the federation’s discretion, ensuring confidential
information remains protected. Shared functions enhance in-
teroperability, reducing redundant development efforts across
federations. Each federation can thus customize their CCDUIT
node to meet their unique needs while maintaining the broader
system’s integrity and functionality.

VI. CCDUIT COMPARATIVE EVALUATION

In the following comparative evaluation, we provide an in-
depth analysis of the advantages of CCDUIT when compared
to scenarios where such a system is absent.

Experimental Setup. Our evaluation includes a targeted case
study within a controlled environment across three federations,
focusing on the exchange of transportation data. Federations
@) and © use NGSI-LD models and HTTP protocols, whereas
® employs GTFS models via MQTT. The goal is to enable
federations @ and © to access GTFS data from (B).
Development Approach: We explore 3 different methods:

1. The “Clean-Slate (CS)” CCDUIT development process:
this method involves initially deploying CCDUIT within fed-
erations, a process that requires considerable setup effort,

TABLE I
COMPARATIVE ANALYSIS OF EFFORT IN LINES OF CODE (LOC)
Approach Value LoC
Clean-Slate CCDUIT 1518
Pre-Configured CCDUIT 738
Non-CCDUIT 1420

as outlined in the first step subsequently presented in our
methodology. Some effort, however, is partially offset when
Federation (&) shares its custom functions with Federation (C).
To simplify understanding the total effort of this process using
CCbpuIT, we present it through a series of clear steps.

Steps in the CCDUIT Process:

1) Model Creation and Storage: Federations (A) and
define and store NGSI-LD entities representing contextual
information in CCDUIT’s knowledge base.

2) Initiation of Collaboration and Policy Exchange: Federa-
tion (A) initiates a policy exchange with Federation (B),
exchanging vital context information.

3) Transportation Data Discovery: Federation (A) queries
CCDUIT to discover and request transportation data types
from Federation (B).

4) Custom Function Creation for Data Conversion: Federa-
tion (A) develops a custom function for data conversion
and uploads it to CCDUIT.

5) Initiation of Data Exchange: The data exchange is ini-
tiated between the communities of Federations (A) and
(B), utilizing stored custom functions and discovered API
endpoints.

6) Extension to Federation (C): Federation (C) repeats the
process with Federation (B), leveraging shared context
from Federation (A) to reduce effort.

2. Pre-Configured (PC) Development: This approach utilizes
pre-configured CCDUIT context data, eliminating initial setup
stages like model creation and storage for all federations,
termed as "PC CCDUIT ” setup.

3. Non-CCDUIT Development: We also evaluated a manual
strategy without CCDUIT, involving data sharing policy es-
tablishment and script development for data handling tasks.
No contextual data exchange occurs between Federations @
and ©), while also ensuring a fair comparison by using the
same codebase for both CCDUIT and non-CCDUIT scenarios.
Metrics: The primary measure is the effort, quantified by lines
of code (LoC), required for achieving federation collaboration
with and without using CCDUIT.

Results. The data presented in Table |If indicates a clear trend
in the effort required across different setup approaches. Clean-
Slate CCDUIT, while initially labor-intensive, establishes a
robust approach for data exchange. The high initial effort of
1518 LoC can be attributed to the comprehensive setup re-
quired, including model creation, policy exchange, and custom
function development. This foundational work, however, paves
the way for more efficient subsequent interactions.

In contrast, the Pre-Configured CCDUIT setup shows a
significant reduction in effort, requiring only 738 LoC. This
reduction is primarily due to the reuse of existing context
data and pre-developed custom functions, demonstrating the

benefits of shared resources and knowledge within the CC-
DUIT ecosystem. The Non-CCDUIT approach, with 1420 LoC,
underscores the inefficiencies of traditional methods. The lack
of a shared context and the need to independently develop
protocols and data models result in a nearly equivalent effort
to the Clean-Slate approach but without the long-term benefits
of an established CCDUIT infrastructure.

A. Scalability Evaluation

We expand our analysis by examining CCDUIT’s scalability
across a progressively increasing number of simulated feder-
ation networks. This broader analysis is crucial for assessing
the potential of CCDUIT in large-scale applications.
Experimental Setup. We conducted an experiment focusing
on simulations of an expanding array of federation networks
using CCDUIT.

Simulation Approach. We systematically varied three key
parameters to reflect realistic and challenging scenarios:
Data Type Diversity (DT%): This metric varies from 0% to
100%, assessing the range of data models and protocols across
federations. A 0% DT indicates uniform data models, reduc-
ing the need for conversion and lessening context exchange
benefits. Conversely, a 100% DT signifies complete diversity,
hindering the use of shared context due to a lack of common-
ality. A 50% DT, representing a balance between uniformity
and diversity, optimizes the utility of context exchange.
Context Exchange Percentage (CE%): CE% evaluates con-
text exchange frequency among federations. Extreme DT%
values (0% and 100%) minimize context exchange’s rele-
vance—unnecessary at 0% DT and ineffective at 100% DT
due to incompatible data models.

Pre-configured Nodes Percentage (PC%): PC% examines how
the initial setup of CCDUIT nodes affects integration effort. A
higher PC% lowers the initial effort, but the benefit diminishes
once a node completes its first data exchange, highlighting the
limited long-term significance of initial node conditions.

These parameters were selected to reflect the complexity
and adaptability of CCDUIT in diverse federation setups,
simulating networks from homogeneous (low DT%) to highly
diverse and interconnected (high DT% and CE%). The sim-
ulation employs a script to generate nodes and interactions,
creating varied network configurations.

Metrics: The scalability of CCDUIT is assessed using
the number of lines of code (LoC) needed for federation
interactions under different scenarios.

Results. Results, depicted in multi-panel plots in Fig. [5
show LoC efforts across network sizes, with annotations indi-
cating the number of interactions per node. Notably, context
exchange (CE) is most beneficial at 50% data type diversity
(DT), enhancing data exchange efficiency. At 0% and 100%
DT, CE’s effect on effort reduction is minimal.

Findings reveal CCDUIT’s scalability and suggest that ef-
fort depends on network initial conditions and interaction
complexity. Strategic configurations and managing of context
exchanges can optimize CCDUIT’s large-scale deployment.

6 DT%: 0,CE: 0%, PC: 0% 1e6 DT%: 0.CE: 50%, PC: 0% DT%: 0,CE: 100%, PC: 0%

DT%: 0.CE: 0%, PC: 100% DT%: 0,CE: 50%, PC: 100% DT%: 0,CE: 100%, PC: 100%

3
50
g2 g5
20
15
£10

0 9800,

EaT Efort (0]

e a7s| an s900)
0514 190 a5 780 1225 1770 2415 30 A0S S0l 051 L o0 205 3010 39404995 1o mo e 1560 2450 3540 830 6320 s 190 a3 780 1225 170 215 3160 05 W50 05T T T i ons 3010 3940 95 US| 051 T ese a0 4630 6320 8010
e el S S e e e e S e e e e ~ D A e
) © £ £ 100) @ @ 100) © E)) 100)) @ 100) © E) £ 100)) £ @ 100
Nodes - Federations Nodes - Federations Nodes - Federations Nodes - Federations Nodes - Federations Nodes - Federations
o e DT%: 50,.CE: 0%, PC: 0% 4528 DT%: 50.CE: 50%, PC: 0% o e DT%: 50,CE: 100%,PC: 0% 3528 DT%: 50.CE: 0%, PC: 100% o6 DT%: 50.CE: 50%, PC: 100% 35 28 DT%: 50,CE: 100%, PC: 100%
30 30 0
g 2s 8501 25 o 2s
ars|s il a3
s e |5 20 £ w9 A |5 20
940 515 - 15 304 515 i
o 5 3 010 K
w010
205 & 10 R 10 205 1@ 10 o T
oo 525 o 240 540 o 05 s10 1525 0s 50 340
s o5 %0 w ®0 @0 360 s zs 0 w o G0 3550
) @ @) 100)) @ @ 100 0 © E)) 100) @ @ £ 100)) @ @ 100
Nodes - Federations Nodes - Federations Nodes - Federations Nodes - Federations Nodes - Federations

166 DT%: 100,CE: 0%, PC: 0% 4950 DT%: 100,CE: 50%, PC: 0% 6175 166 DT%: 100,CE: 100%, PC: 0%

DT%: 100,CE: 0%, PC: 100% ©50 16 DT%: 100.CE: 50%,PC: 100% 6175 106 DT%: 100,CE: 100%, PC: 100% 9900

g 25

BhaT Efort LoC

Fig. 5. Scalability Analysis: Tracking Code Volume Growth in CCDUIT across Simulated Federated Data Spaces

Initial setup efforts, even in a Clean-Slate mode, are balanced
by the efficiency of subsequent exchanges.

This analysis underscores CCDUIT’s flexibility and the
importance of a deployment strategy tailored to the federation
network’s data model landscape. Effective context exchange
and the selective benefit of pre-configuration significantly
reduce integration efforts in dynamic, moderately diverse
environments.

VII. CONCLUSION AND FUTURE WORK

CCDUIT contributes an architecture for tackling the chal-
lenges of data exchange between federated IoT-enhanced data
spaces. State-of-the-art solutions focus on enabling data ex-
change within such data spaces using federated software archi-
tectures, while ignoring cross-federation data exchange. CC-
DUIT introduces a software overlay that handles diverse data
models, protocols, and data sharing policies, ensuring smooth
and effective cross-federation collaboration. Its architecture,
characterized by modularity, scalability, and interoperability, is
ideally suited for contemporary federations. CCDUIT’s use of
graph models for contextualizing data and specialized Context
Exchange (CE) publish/subscribe schema for data exchange is
particularly effective in managing data sovereignty and com-
plying with policies defined by federations. Empirical studies
validate CCDUIT’s ability to streamline data sharing processes,
enhancing collaboration while upholding data sovereignty.
However, comprehensive experimental studies, particularly on
latency and performance aspects, are still required.

Looking ahead, CCDUIT offers scope for further develop-
ment and refinement. Future initiatives could focus on incor-
porating enhancements such as advanced analytics, Al-driven
decision-making processes, and stronger security measures.
The potential of CCDUIT to adapt to new technologies and
evolving needs of federations highlights its versatility, making
it an invaluable asset for smart city ecosystems.

ACKNOWLEDGEMENTS

This work is partially supported by the Horizon Europe
project DI-Hydro under grant agreement number 101122311

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
(10]
(11]
[12]

[13]

[14]
[15]
[16]
[17]
(18]

[19]

[20]

[21]
[22]
(23]

[24]

REFERENCES

Data Space Business Alliance - DSBA. Technical convergence discus-
sion document version 2.0, 2023. Accessed on: November 2023.
Akasiadis et al. A multi-protocol iot platform based on open-source
frameworks. Sensors, 2019.

Bender et al. HL7 FHIR: An Agile and RESTful approach to healthcare
information exchange. In Proceedings of the 26th IEEE International
Symposium on Computer-Based Medical Systems, 2013.

Bo et al. Basic Concepts on AUTOSAR Development. In /ICICTA, 2010.
Carvajal et al. Towards a Federation of Smart City Services. 2015.
Cheng et al. FogFlow: Easy Programming of IoT Services Over Cloud
and Edges for Smart Cities. IEEE Internet of Things Journal, 2018.
Cirillo et al. A Standard-Based Open Source IoT Platform: FIWARE.
IEEE Internet of Things Magazine, 2019.

Fysarakis et al. Which IoT Protocol? Comparing Standardized Ap-
proaches over a Common M2M Application. In GLOBECOM, 2016.
Hamdi Yahyaoui et al. Trust-based management in IoT federations.
Future Generation Computer Systems, 2022.

Jeong et al. City Data Hub: Implementation of Standard-Based Smart
City Data Platform for Interoperability. Sensors.

Kim et al. A Study on Utilization of Spatial Information in Heteroge-
neous System Based on Apache NiFi. In ICTC, 2019.

Kotis et al. Semantic Interoperability on the Web of Things: The
Semantic Smart Gateway Framework. In CISIS, 2012.

Kurdi et al. TrustyFeer: A Subjective Logic Trust Model for Smart City
Peer-to-Peer Federated Clouds. Wireless Communications and Mobile
Computing, 2018.

Lagutin et al. Secure Open Federation of IoT Platforms Through
Interledger Technologies - The SOFIE Approach. In EuCNC, 2019.
Mamat et al. Network Topology Comparison for Internet Communica-
tion and IoT Connectivity. In ICOS, 2019.

Morelli et al. A Federated Platform to Support IoT Discovery in Smart
Cities and HADR Scenarios. 2020.

Otto et al. A Federated Infrastructure for European Data Spaces.
Commun. ACM, 2022.

Papadakis et al. ComDeX: A Context-Aware Federated Platform for
JToT-Enhanced Communities. DEBS. ACM, 2023.

Pradhan et al. Toward an Architecture and Data Model to Enable
Interoperability between Federated Mission Networks and IoT-Enabled
Smart City Environments. IEEE Communications Magazine, 2018.
Saad Liaquat Kiani et al. Federated broker system for pervasive context
provisioning. Journal of Systems and Software, 2013. SI : Software
Engineering in Brazil: Retrospective and Prospective Views.

Zach Shelby et al. The Constrained Application Protocol (CoAP). RFC
7252.

Zyrianoff et al. Interoperability in Open IoT Platforms: WoT-FIWARE
Comparison and Integration. In SMARTCOMP, 2021.

O.S. Pianykh. Digital imaging and communications in medicine (DI-
COM): A practical introduction and survival guide. 2008.

Marko A. Rodriguez and Peter Neubauer. The Graph Traversal Pattern.
CoRR, 2010.

	Introduction
	Background
	Federation Elements
	Federation Platforms

	Related Work
	Motivating Scenario
	CCduit Software Overlay
	Overview of CCduit
	Inter-Nodal Data Exchange
	Detailed Breakdown of CCduit Node Components
	Example Use Case of CCduit Node's components
	Extensibility and Customization Features

	CCduit Comparative Evaluation
	Scalability Evaluation

	Conclusion and Future Work
	References

