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Abstract
Heating, Ventilation, and Air Conditioning (HVAC) systems
account for a significant portion of energy consumption
within buildings. In order to balance the effect of thermal
comfort vis-a-vis energy savings, HVAC control strategies
have been proposed. However, the strategies are static and
do not take into account dynamic changes of consumers,
hence creating sub-optimal outcomes. This paper proposes
DEMSA, a Digital Twin (DT)-enabled middleware for the
self-adaptation of smart buildings. The DEMSA middleware
interconnects and coordinates intelligent data exchange be-
tween the building edge server, digital twin and Artificial
Intelligence (AI) planning nodes in order to invoke appro-
priate strategies. Moreover, DEMSA is paired with a self-
adaptive mechanism that can detect the anomaly of gener-
ated planning and adaptively modify it. This process ensures
balancing building energy consumption and thermal com-
fort requirements, without human intervention. The DEMSA
middleware is described over a real smart space scenario.
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1 Introduction
One of the highest energy consumers in commercial build-
ings, with an average consumption of around 40% is the
HVAC (heating, ventilation and air conditioning) system.
The IEA (International Energy Agency) states that by the
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year 2050 only space cooling will account for 37% of total
energy consumption worldwide [24]. Existing approaches
have mostly focused on holistic comfort provision but, in
most situations, people share the spaces where they live,
work, or study. Given the diversity of people and their pref-
erences, it is challenging to provide them with comfort in
a shared space. Multiple challenges arise to determine the
appropriate thermal comfort level of a group including how
to benefit individuals, while maintaining some notion of fair-
ness within the group. This might result in additional energy
consumption costs since the HVAC settings would need to
be highly dynamically adapted to offer a warmer or colder
temperature depending on who is in the zone at the moment.

While dynamically adapting energy systems (HVAC, Light-
ing, etc.) seems a promising solution, spaces can be highly
diverse and the trajectories of occupants can be different
from space to space. In order to capture the uncertainty and
side-effects of configuration changes within HVAC systems,
Digital Twins (DT) of smart spaces have been proposed [20].
Challenges in employing DT for HVAC control include the
accurate real-time representation of the building state, up-
date of sensor information onto the DT and usage of the
twin for “what if” simulations. This paper introduces the
design of a DT-enabled middleware for the dynamic adap-
tation of Edge infrastructures in smart spaces (HVAC, IoT
devices, etc.) regarding their inhabitants’ comfort profiles,
climate zones, energy systems and diversity of spaces. The
main contributions of this paper are:

1. A Thermal Comfort Provision system responsible for
regulating temperature using diverse strategies.

2. A DT system for enabling “what if analysis” via a co-
simulation module.

3. Temporal scheduling of Edge infrastructures for bal-
ancing thermal comfort and energy consumption.

4. A middleware architecture for self-adaptive Edge in-
frastructures using people and spaces’ feedback.

The rest of the paper is structured as follows. Section 2
overviews the state of the art. Section 3 presents an overview
of the DEMSA middleware. Sections 4, 5, 6 present the core
DEMSA entities while Section 7 demonstrates their integra-
tion using the DEMSA middleware. Section 8 provides an
overview of the current prototype implementation. Finally,
Section 9 concludes the paper.
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2 Related Works
The provision of appropriate thermal comfort, which ex-
presses satisfaction with the thermal environment, for the
occupants of a building has been a well studied and popular
problem in the literature. Multiple approaches have been
presented to deal with the problem in a holistic way or by
focusing on specific challenges in such a context [18]. How-
ever, the literature focuses on situations where the goal is to
provide specific people with their desired thermal comfort.
In the real world, workers share their work spaces with oth-
ers. This creates an intrinsic challenge in thermal comfort
provision since people in the same climate zone might have
different comfort preferences. Most of the existing works
focus on providing thermal comfort while ignoring energy
efficiency and diverse climate zones.

Furthermore, thermal comfort preferences/sensations have
been identified as a factor of several drivers [13] including:
physiological (such as age, sex, body composition and fitness,
metabolic rate); psychological (including effects of personal
control, thermo-specific self-efficacy, personality, and antic-
ipated cost of cooling); and contextual factors of the built
environment. Different studies have shown that, for exam-
ple, the elderly are more susceptible to cold [15], and people
from tropical regions have a lower tolerance to the cold en-
vironment [8]. At the same time, workforce diversity has
been identified as a key to improving productivity [25]. Even
this lack of diversity has been noted in a recent systematic
review of personal thermal comfort models [10].
For systems characterized by uncertainties and unpre-

dictable information, traditional predictive control approaches
often struggle to deliver satisfactory performance [12]. To ad-
dress these shortcomings, the concept of Digital Twins (DT)
has emerged as a transformative approach for enhancing effi-
ciency and performance in the domain of smart buildings [6].
Authors in [17, 19] have explored DT models for buildings,
including Building Information Modeling (BIM), Wireless
Sensor Networks (WSN), Data Analytics, andMachine Learn-
ing approaches. Furthermore, several studies [11, 22] have
proposed middleware solutions to enhance the accuracy, res-
olution, and complexity of DT.
The integration of DT with HVAC systems has been a

focal point of recent research, aiming to enable real-time
monitoring, predictive maintenance, and energy optimiza-
tion. For instance, Agouzoul et al. [4] propose a methodol-
ogy enabling continuous improvement of neural network
models and energy performance of the building through DT
models. Mohseni et al. [20] developed a real-time DT-based
controller to measure temperature and humidity in HVAC
systems. Similarly, Hosamo et al. [9] proposed a novel DT
framework of HVAC systems (HVACDT) based on BIM with
real-time sensor data, utilizing machine learning approaches
to balance predicted percentage of dissatisfaction (PPD) on
thermal comfort and energy consumption.

This paper proposes a DT-enabled middleware for self-
adaptive decision making regardless of the deployed energy
systems, profiles of space inhabitants and dynamic spaces.

3 Overview
Motivation Scenario. The Drahi-X Novation Center of the
Institut Polytechnique de Paris (IP Paris), is a tertiary build-
ing with around 5000𝑚2 of surface, 12 electric zones and two
floors. It is equipped with IoT devices such as temperature
sensors, motion detectors, smart plugs, HVAC systems, as
well as small tablet devices installed in the corridors of the
building. These tablets are used by building inhabitants to
provide their feedback related to the current environment
and their preferences (thermal comfort feedback). A Smart
Building Management System (BMS) has been installed in
order to control the devices and the overall HVAC system.
Inhabitants of the Drahi-X building always have certain

schedules of classes and meetings related to university activ-
ities. This leads to a huge potential for enhancing occupant
well-being and energy efficiency by controlling the build-
ing elements such as the HVAC and lighting systems based
on such schedules. For instance, the schedules and motion
detectors can be integrated together to model current and
future numbers or activities of people in each room. Then,
the feedback of people can be used to regulate the HVAC
system with proper settings before people enter rooms. Com-
plex strategies involving thermal comfort, fairness among
inhabitants and real-time energy adaptation are not possible
with current BMS.
Challenges. Based on the recent energy crisis and the above
use case scenario, it is essential to investigate systematic
solutions for balancing energy consumption and thermal
comfort of their building inhabitants. However, this comes
with a number of challenges as follows:

• Dynamicity: Balancing energy consumption and ther-
mal comfort requires predicting the future states of
building inhabitants in order to proactively regulate
temperature. Such prediction can be performed us-
ing simulations. However, smart buildings evolve over
time demonstrating an unpredictable environment.

• DTPrecision: Digital Twin can be utilized for forecast-
ing, monitoring, and analyzing building performance
by integrating with simulations. This leads to a chal-
lenge to ensure the accuracy and real-time nature of
the DT for creating simulations.

• Integration Complexity: Seamlessly integrating IoT
devices and smart energy systems with simulations is
a complex task. Moreover, simulators usually focus on
one aspect of the building (e.g., HVAC) and thus, there
is a need to synchronize multiple simulations.

• Adaptive Regulation Strategies: Finding a proper
strategy to achieve the right balance between con-
serving energy and maintaining thermal comfort can
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Figure 1. DEMSA Overview.

be challenging (especially in a dynamic space where
building inhabitants can be variable over time).

Based on the above challenges, it is essential to introduce
self-adaptive building management systems that proactively
optimize the Edge infrastructure of smart buildings (HVAC,
IoT, Lighting). First, a DT-enabled approach for co-simulation
of different systems/aspects (HVAC, People feedback) must
be introduced for “what-if-analysis”. Second, strategies to
optimally balance energy consumption and thermal comfort
must be leveraged. Finally, self-adaptive techniques must
be integrated to monitor, analyze, and respond to dynamic
conditions and occupant needs without human intervention.
DEMSA Middleware. This paper presents DEMSA, a com-
prehensive system leveraging IoT-Edge infrastructures, DTs
approaches via co-simulations, and automated planning tech-
niques for self-adaptive smart buildings. DEMSA consists of
the following components:

Edge Infrastructure: refers to the real physical environment
and associated systems of the building (HVAC, IoT, etc.). It
collects IoT data for monitoring the actual building environ-
ment, feeding the DT component, and controlling the smart
energy applications to ensure inhabitants’ thermal comfort
and energy consumption.

DEMSA Digital Twin (DT): is the digital replica of the phys-
ical building’s architecture, equipment, inhabitants, and real-
time weather conditions. Also, it employs multiple simula-
tion models to enhance predictions and decision-making.

AI Planner: takes the role of the strategist, tasked with op-
timizing building operations based on predefined objectives
set by administrators. It solves complex planning problems
to generate plans about controlling the building for different
aims based on predicted future events. The semantic repre-
sentation of the digital twins is used within the AI planner
to generate accurate strategies.

DEMSAMiddleware: acts as the intermediate entity respon-
sible for data integration and coordination of interactions.
The main responsibility is to synchronize co-simulations for
evaluating the balance of energy consumption and thermal
comfort. Furthermore, it ensures self-adaptation based on
the situation of buildings by interacting with the AI Planner.

Figure 1 depicts how the above components interact with
each other. The Edge Infrastructure connects with the DT
providing actual building data. In addition, the DT performs

Figure 2. Edge infrastructure of Smart Spaces.

“what if analysis” procedures via co-simulations. The AI Plan-
ner also acquires the building data to build a domain model.
Finally, the DEMSA Middleware acts as a guard that triggers
the AI Planner to regenerate a new plan if the DT predicts a
different situation in the building or detects violations of met-
rics. The generated plans trigger a new temporal schedule
that can be applied at the Edge infrastructure. DEMSA uses
the following metrics for evaluation: (i) Energy Consumption
(EC) is the amount of energy consumed by the smart build-
ing; (ii) Thermal Comfort (TC) indicates how many people
feel comfortable based on their feedback; and (iii) Equality
(EQ) refers to the equality level by monitoring if the system
treats individuals fairly.

4 Smart Buildings’ Edge Infrastructure
A smart building usually employs an Edge infrastructure for
collecting, processing and exchanging data from various en-
ergy systems (HVAC, lighting systems) as well as IoT devices
(sensors) and feedback from building inhabitants.

As depicted in Figure 2, we define an Edge infrastruc-
ture with five elements – Physical Building, Data Exchange
System, Comfort Provision System, Metrics Engine, and Ar-
tificial Controls. The Edge infrastructure is based on the
Publish/Subscribe (pub/sub) system which is a fundamental
messaging pattern used in distributed systems to enable com-
munication between devices and services[16]. The devices
regularly publish real-time IoT data streams to the Message
Broker of the Data Exchange System. The Device Manager
models and provides essential information about the devices
such as their location and data types. The Edge infrastruc-
ture also includes a management system that provides APIs
for occupants to send feedback (thermal preferences).
A Comfort Provision System leverages sensors and con-

trol mechanisms to generate specific building control ac-
tions, called strategies, aimed to improve the performance
of buildings. The Comfort Provision Systems executes dif-
ferent strategies over time based on the schedule provided
by the AI Planner (§6). We leverage the following strategies:
(1) Majority: is considered as a robust rule [3]. It always sat-
isfies the majority’s feedback and maximizes the comfort
level of the overall workforce regardless of energy consump-
tion. (2) Drift: presented in [21], assumes inhabitants voting
their sensations. If people feel quite comfortable, it applies
a small drift towards the uncomfortable environment. This
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Figure 3. DEMSA DT core entities.

strategy aims to preserve energy by ensuring the environ-
ment is always between very comfortable and uncomfortable.
(3) Fairness: by Shin et al. [7] to maintain fairness among the
inhabitants. It fairly meets inhabitants’ requirements based
on the accumulated discomfort level. This strategy fairly
satisfies the inhabitants but it may consume more energy.

Satisfying inhabitants’ thermal comfort always contradicts
with reducing energy consumption. Thus, there is literally
no energy-efficient thermal comfort strategy. Thus, applying
the right strategy at the right moment becomes crucial. AI
Planning is leveraged to construct a schedule for executing
these strategies, guided by scenario prediction. However, the
accuracy of the prediction decays over time, whichmakes the
selected strategy less suitable. To accommodate the imprecise
predictions, we designed a Metrics Engine to collect informa-
tion based on the requirements of building administrators.
Thus, building administrators may define their requirements
using the Edge infrastructure that exposes a set of APIs for
data exchange with building devices and other components.

– subscribe(topic): enables subscribing to topics for
receiving notifications (IoT data, feedback, etc.) that
are published to “topics” in the message broker.

– update(sched): used to update the schedule in the
Comfort Provision System.

5 Digital Twin for IoT-enhanced Spaces
As shown in Figure 3, our DT defines a Simulation Modeler
for creating simulation models based on the representation
of the building. Simulations of inhabitants, events, energy
systems (HVAC, etc.), and IoT devices can be achieved. The
simulation results can be used for predicting evaluation met-
rics (EC, TC, EQ). To create the DT and enable simulations,
the representation of a building includes the architectural
floorplan of the building, with its spatial layout, room con-
figurations, and structural knowledge. It also incorporates
comprehensive insights into the equipment deployed within
the building. To facilitate interoperability between different
entities, we use the NGSI-LD standard to digitize the physical
building and standardize the communications. NGSI-LD pro-
vides a standardized framework for modeling and managing
information about the building’s assets, simulation models,
their relationship, and their properties [14].
Moreover, the representation has information about in-

habitants, ensuring an understanding of their locations and
activities, which is vital for optimizing occupant comfort, or

decision-making. Moreover, for the need to optimize inhabi-
tants’ thermal comfort, including real-time weather condi-
tions and forecasts helps comfort provision strategies adjust
the HVAC systems. Our DT also defines a Metrics Engine
which can help model those metrics that may require simu-
lations. For example, in the building, not everyone has the
time and willingness to provide their feedback. If they don’t,
we can use historical data to predict their feelings, which is
a primary consideration of the Metrics. Below is the list of
APIs that the DT offers for integration with DEMSA:

– get_dt_info(data_type): used to retrieve data re-
lated to building representations (floors, IoT devices,
etc) in JSON format.

– update_dt(data_type, value): used to update the
values of the building representations using NGSI-LD
operation.

– get_model(sim_model): returns the simulationmodel
for a specific system (HVAC) or building property (Tra-
jectories of inhabitants).

6 Self-adaptive Edge using AI Planning
The primary role of the AI Planner [23] in our system is to
optimize the schedule of running comfort provision strate-
gies of the smart building by aligning it with predefined
objectives. Building administrators can define various goals,
such as reducing energy consumption and enhancing occu-
pants’ thermal comfort. The AI Planner takes these goals
into consideration when making decisions. The AI planning
problem is usually represented by an initial state, a desired
goal state, and a function to be optimized. AI planning al-
gorithms systematically explore possible combinations of
actions to discover (near)-optimal sequences that transform
the initial state into the goal state while adhering to prede-
fined constraints and optimizing the desired outcome.

To model the planning problem, we use Planning Domain
Definition Language (PDDL) [2], which is a formal knowl-
edge representation language designed to express planning
models. It consists of two descriptions (i) the domain descrip-
tion that decouples the parameters of actions from specific
objects, initial conditions and goals (ii) the problem descrip-
tion that instantiates a grounded problem with objects, ini-
tialization, goals and metrics. The same domain description
may be paired with multiple problem instances, with varying
grounded objects, initial conditions and goals.
The integration of AI planning into the smart building

ecosystem brings numerous benefits. AI planning proves
especially effective in the context of large-scale scheduling
systems, such as smart buildings with numerous and inter-
connected rooms and devices. However, to fully utilize the
potential of AI planning in optimizing smart buildings, the
incorporation of simulations becomes necessary. Simulations
allow the AI Planner to simulate the outcome of conducting
a series of selections, providing a more accurate insight into
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Figure 4. AI Planner entities.
the sequences. This capability provides AI planners with ver-
tical information, enabling them to transition from a static,
predefined approach to a dynamic one. As a result, the plan-
ner gains a deeper understanding of how various strategies
affect the smart building’s performance, ultimately facili-
tating more informed and adaptive decision-making. Two
examples of plans that may be generated include:

– Temporally ordered schedule that determines optimal
strategy for a given monitored time period with time
instances 𝑡𝑖 and duration 𝑑𝑖 :
t1: fairness strategy room1 [d1]

t2: drift strategy room1 [d2]

t3: fairness strategy room1 [d3]

t4: majority strategy room1 [d4]

– In addition, using the goal metric property of PDDL,
weighted goals may be set to plans that optimize a
combination of features related to energy efficiency.

The DT semantic representation is used to create the do-
main model of the AI planner. Moreover, the metrics pro-
vided by the DT for different strategies may be used to im-
prove the planning performance via feedback. As shown in
Figure 4, the Model Adapter is in charge of connecting the
AI Planner and simulations. During the generation, the AI
Planning models should be updated with simulation results.
For example, results on temperatures and energy consump-
tion caused by running strategies help the AI Planner to
do further planning (re-initializing planning problem) and
compute the costs. The Model Adapter receives the update
command and asks the middleware to execute simulations,
then update the models based on the result. Additionally, as
discussed in §4, the schedules are not always reliable due
to the incorrectness of predictions. The self-testing Engine
reevaluates the precision of predictions and performance of
the building regularly and regenerates schedules if necessary.
The AI Planner provides the following API:

– schedule(build_info, metrics): Creates a planned
schedule for running strategies based on current build-
ing information and goal metrics.

7 DEMSA for Self-adaptive Smart Buildings
This section presents DEMSA that is responsible for data
integration, co-simulation and adaptive operation of Edge
infrastructures. As shown in Figure 5, DEMSA comprises two
key components, the Co-sim Middleware and Co-sim Driver.
The Co-sim Driver is designed for driving the co-simulations.
As the AI Planner requires values for metrics (EC, TC, EQ)
for generating temporal schedules, this entity connects the

Figure 5. DEMSA Architecture.
Model Adapter and Co-sim Middleware entities by receiving
a list of strategies required to be executed over time.

The Co-sim Middleware bridges different simulation mod-
els coming from the DT through a synchronization mech-
anism which is in charge of time-step coordination, and
simulation control. Such synchronization enables to advance
the simulation at the same speed, guaranteeing that inter-
actions occur at the correct moments. Within the Co-sim
Middleware, the Co-sim Builder is responsible for identifying
and obtaining the corresponding simulation models from the
DT component. Such simulation models are integrated in
the Co-sim Executor for running the co-simulation process.
Occasionally, simulators may not provide the direct infor-
mation needed, necessitating the use of a Result Collector to
pull and refine the data for the AI Planner.
As shown in Figure 5, to demonstrate the adaptability of

DEMSA, consider the following scenario:
① Building administrators cam update the smart space

objectives – e.g., via config_plan (pattern) to set
up “Low energy level, High comfort level” pattern.

② DEMSA sends a command to the AI Planner using
schedule(build_info, metrics) as soon as a new
temporal plan is required.

③ The situation of a space changes over time. To address
this problem, the AI Planner received updates from the
DT to re-plan temporal schedules. Here the AI Planner
calls run_sim(sim_config) to get updates on current
or future space situations.

④ The DT regularly updates its simulation models with
information from the building representations. Then
the DT uses the get_model(sim_model) API call to
receive needed simulation models for co-simulations.

⑤ Over time, the AI Planner may generate temporal
schedules with a sequence of strategy selections and
send it DEMSA using update_sched(sched).

⑥ Such schedules will setup and run the Edge Infrastruc-
ture using the update(sched) API call.

8 Implementation Overview
This section provides the current status of the DEMSA pro-
totype implementation. As a real Edge infrastructure, we
use the Drahi-X Novation Center of IP Paris. Access to real
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Figure 6. Drahi-X 3D Representation.

BMS, HVAC and Lighting systems has been provided. To
create a DT of Drahi-X, we have constructed a 3D model
of the building in NGSI-LD format using [14] (see Figure 6).
The DT uses this representation to simulate HVAC and the
building’s inhabitant behavior.

For simulating HVAC, EnergyPlus [1] has been usedwhich
is an open-source tool that simulates the energy consump-
tion caused at each room. We also used SmartSPEC [5], a
smart space simulator that generates trajectories of inhabi-
tants based on their preferences and activity schedules. To
enhance its functionality, we integrated a feedback mecha-
nism within SmartSPEC that generates inhabitants’ feedback
based on the simulated indoor temperature from EnergyPlus.
To synchronize these simulation tools, we developed the ini-
tial entities of the Co-Sim Middleware (see Figure 5). In par-
ticular, the EnergyPlus simulation model acquires inhabitant
information from SmartSPEC for controlling and sending
indoor temperatures for feedback generation.

Currently, we are developing the AI Planning component
for generating optimal schedules over time to enable an
adaptive Edge infrastructure of Drahi-X.

9 Conclusion
Strategies to control HVAC systems in buildings are ill-equipped
to meet the dynamic changes in consumer topologies and
requirements. In this paper, we present DEMSA, a novel
approach of DT-enabled middleware for self-adaptation in
smart spaces to address the balance between providing ther-
mal comfort and energy consumption. The DEMSA mid-
dleware orchestrates Edge infrastructures, DT systems and
AI planners to optimally balance comfort and energy sav-
ing. The self-adaptation of DEMSA is proposed over a real
building scenario with autonomous operation. The dynamic
adaptation will prove useful in multiple smart-building de-
ployments to optimally configure HVAC systems.
Future directions include implementing the middleware

over a building HVAC system to demonstrate intelligent
adaptation of strategies.
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