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Abstract
The lode angle dependency introduced by anisotropic damage evolution laws is analyzed in detail
for initially isotropic materials. Many rupture criteria are obtained, under the proportional loading
assumption, by the time integration of different anisotropic damage evolution laws Ḋ = · · · among
the three existing families : strain governed, stress governed and plastic strain governed. The cross-
analysis of path independent rupture criteria and of anisotropic damage evolution laws finally allows us
to improve the Lode angle dependency of (fully coupled) anisotropic damage models.
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Introduction
Since the pioneering work of Johnson et al (1956, 1962), Freudenthal and Geiringer (1958), Cockroft and
Latham (1968), Hayhurst (1972) and Leckie and Hayhurst (1974), the material sensitivity to the local stress
state has been studied in the literature for many different alloys. Nowadays it is widely accepted that damage
of metallic materials is governed by plasticity and enhanced by the stress state (Rice and Tracey, 1969,
Gurson, 1977, Lemaitre and Chaboche, 1985, 1991, Lemaitre et al, 2009). Depending on the nature of the
alloy and on the damaging process leading to rupture, particular stress states can be more detrimental than
others. Under brittle failure conditions, the maximum principal local stress has to be considered (Johnson
et al, 1956, Leckie and Hayhurst, 1974, Di Iorio et al, 2007, Lindner, 2016). Furthermore, some materials
exhibit a particular sensitivity to shear. Examples of multiaxiality effect can be found in the pioneering
works of Johnson et al (1960, 1962), of Leckie and Hayhurst (1974) as well as in recent ones (Nahshon and
Hutchinson, 2008, Xue, 2007, Lou and Huh, 2013, Papasidero et al, 2015, Defaisse et al, 2018).

Since complex stress states are encountered in structures, the key point for components design is to
formulate damage evolution laws and/or rupture criteria which properly describe the sensitivity to the stress
multiaxiality of the damaging process. A first way of modeling consists in enriching the yield/rupture
criteria and/or the isotropic damage laws with the stress tensor invariants. A second way is to formulate
anisotropic damage evolution laws (Chaboche, 1979).

The development in the 1970s of the isotropic failure criteria for tertiary creep was closely linked to the
development of damage models. Indeed, Hayhurst (1972) introduced his equivalent stress for multiaxial
creep, a linear combination of maximum principal stress σMax = σ1, of hydrostatic stress σH = trσ/3 and
of von Mises stress σeq = ( 3

2σ
′ : σ′)1/2 (with σ′ the deviatoric stress tensor), allowing for some modularity

in the description of the isochronous creep curves. Scalar equations for void nucleation and growth have
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later been proposed in (Dyson and McLean , 1977, Gurson, 1977, Chu and Needleman, 1980) leading to
the formulation of the GTN model (Tvergaard and Needleman, 1984) in which void growth is enhanced by
the stress triaxiality

TX =
1

3

trσ

σeq
=
σH
σeq

. (1)

The damage enhancement by stress triaxiality has then been accounted for in Lemaitre damage evolution
law via a triaxiality function Rν (Lemaitre, 1984, 1985, Lemaitre and Chaboche, 1985, 1991).

On the other hand, damage induced anisotropy was modeled in the works of Rabotnov (1969), Martin
and Leckie (1972) and Hayhurst and Leckie (1973), where a (scalar) damage variable D was associated
with the maximum principal stress only, namely σMax = σ1. An effective stress was defined as follows:
σ̃1 = σ1/(1−D), σ̃2 = σ2, σ̃3 = σ3, with σi the principal stresses. A more rigorous —fourth order
tensorial— damage framework was derived in (Chaboche, 1979, Leckie and Onat, 1981, Onat, 1984)
(see also the works of Ortiz (1985), Ju (1989) and even of Chaboche (1978) for an eight order damage
tensor). In a more practical manner, a second order tensor for damage has been considered by Murakami
and Ohno (1978), Cordebois and Sidoroff (1982), Ladevèze (1983), Murakami (1988). Other anisotropic
damage models can be found in literature for concrete (Bazant and Gambarova, 1984, Bazant and Prat,
1988a, Ramtani et al, 1992, Govindjee et al, 1995, Fichant et al, 1997, Kuhl and Ramm, 1998, Badel et al,
2007, Halm and Dragon, 1998, Meschke et al, 1998, Desmorat et al, 2007, Pröchtel and Häußler-Combe,
2008, Chambart et al, 2014) as well as for metals (Chaboche, 1984, Papa and Taliercio, 1996, Steinmann
and Carol, 1998, Lemaitre et al, 2000, Carol et al., 2001, Menzel and Steinmann, 2001, Menzel et al,
2002, Billardon and Pétry, 2005, Desmorat and Cantournet, 2008, Nguyen et al, 2011, Brünig et al , 2013,
Badreddine et al, 2015, Yue et al, 2015, Wulfinghoff et al, 2017).

Focusing on materials exhibiting a failure sensitivity to shear, studies have shown that for such materials
no standard ductile rupture modeling did work well on the entire range of stress triaxiality and that the third
stress invariant had to be considered (Xue, 2007, Nahshon and Hutchinson, 2008, Li et al, 2011, Malcher
et al, 2012, Papasidero et al, 2015, Defaisse et al, 2018). Isotropic damage/porosity growth formulations
enriched by the third stress invariant have then been proposed. For instance, extensions of weakly coupled
GTN model can be found in (Nahshon and Hutchinson, 2008, Gao et al, 2011, Danas and Ponte Castañeda,
2012), extensions of fully coupled isotropic Lemaitre’s type damage models in (Cao et al, 2014, Malcher and
Mamiya, 2014). Accordingly, new rupture criteria have then been formulated as post-processing/uncoupled
approaches.

We point out that it is often possible to derive an uncoupled rupture criterion from an existing fully
coupled damage model by assuming monotonic proportional loading and by neglecting the coupling of
elasto-plasticity with damage (Lemaitre (1984, 1992), see also the review by Bai and Wierzbicki (2015) and
the works of Mohr and Marcadet (2015) and of Defaisse et al (2018)). For instance, in the case of Nahshon
and Hutchinson (2008) extension of fully coupled GTN model, the void volume fraction φ follows the rate
equation

φ̇ = (1− φ) tr ε̇ + κφ
(
1− L2

)
ṗ, (2)

with ε the total strain tensor, p the isotropic accumulated plastic strain, ε̇p being plastic strain rate tensor,

p =

∫ √
2

3
ε̇p : ε̇p dt. (3)

In (2) κ is a material constant or a function and L = cos 3Θ ∈ [−1, 1] is dimensionless Lode (1926)
parameter, i.e. the normalized third invariant of deviatoric stress tensor, Θ ∈ [0, π3 ] being Lode angle
(precisely defined in Section ”Lode angle dependency of existing criteria”). Let us then follow Defaisse
et al (2018) and replace the volume conservation term (1− φ) tr ε̇ in (2) by a Rice and Tracey void growth
termA exp(aTX)ṗ (governed by the accumulated plastic strain p and enhanced by the stress triaxiality TX ),

φ̇ ≈ A exp(aTX)ṗ+ κφ
(
1− L2

)
ṗ, (4)

which is generalized into
φ̇ ≈ A exp(aTX)ṗ+ κφ (1− |L|m) ṗ, (5)
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with A, a and m assumed as material constants. Assuming furthermore κφ = Ab = const, the accumulated
plastic strain to rupture is then, by time integration in monotonic proportional loading up to a critical
porosity φc (Defaisse et al, 2018):

p =
φc

A [exp (aTX) + b (1− |L|m)]
. (6)

It depends both on the stress triaxiality and on the third invariant of the deviatoric stress tensor (through
Lode parameter L). The value m = 2 will next be referred to as Nahshon-Hutchinson limiting case, even
if a (slightly) different definition for Lode parameter is used (Section ”Lode angle dependency of existing
criteria”).

If the third invariant has to be introduced explicitely in isotropic damage laws (Cao et al, 2014, Malcher
and Mamiya, 2014), this may not be necessary for anisotropic damage. Indeed, Desmorat (2012, 2016),
qualitatively, and Badreddine et al (2015), quantitatively in a fully coupled approach, have shown that an
effect of the third invariant is automatically accounted for when anisotropic damage is used. The objective
of present work is to illustrate this property in a systematic manner and to qualify the kind of Lode angle
effect obtained in octahedral planes from different evolution laws for induced anisotropic damage. Most of
these tensorial evolution laws, for symmetric second order damage tensor D of components Dij , have the
generic form

Ḋ = A
〈
∆̇
〉

+

(
i.e. Ḋij = A

〈
∆̇
〉

+ ij

)
, (7)

possibly generalized as (Desmorat et al, 2010)

Ḋ = A

(
ζ
〈
∆̇
〉

+
+ (1− ζ)

∣∣∣∆̇
∣∣∣
) (

i.e. Ḋij = A

(
ζ
〈
∆̇
〉

+ ij
+ (1− ζ)

∣∣∣∆̇
∣∣∣
ij

))
, (8)

with ∆ the second order tensor governing the damage growth, ζ a material parameter, and A a material
constant (or a function of the stress triaxiality (Lemaitre, 1984), but not of the stress level nor of the Lode
angle itself in a first analysis). The simplest laws consider ∆ = ε, the total stain tensor, or ∆ = σ̃, the
effective stress tensor, or ∆ = εp, the plastic strain tensor. The notations

〈
∆̇
〉

+
and

∣∣∆̇
∣∣ stand respectively

for the positive part and the absolute value of symmetric second or tensor ∆̇ in terms of principal values
(Lemaitre and Desmorat, 2005). They ensure that Ḋ is positive semidefinite for any loading, proportional
or not.

In order to study theoretically the Lode angle effect, not on one but, in a systematic manner, on several
anisotropic damage evolution laws Ḋ = · · · , it is needed to make a few simplifying assumptions (so that a
derivation similar to the one for void growth law (2) can be performed). First of all, the analysis is restricted
next to initially isotropic materials and when plasticity is involved that it obeys the von Mises (1928)
criterion. The systematic study of the effect of the hydrostatic stress σH = trσ/3 on rupture is left to further
work and each criterion is plotted only in the octahedral plane at a constant and sufficiently high σH (or,
in several cases, at a constant triaxiality TX ). To obtain closed form expressions for the rupture conditions,
our analysis is restricted to the so-called monotonic proportional loading for which the principal stress
directions as well as the ratios of the principal stresses remain fixed, with no unloading (the normal to yield
surfaces remain then constant). The damage threshold, below which there is no damage (Lemaitre, 1984),
is neglected. Our analysis is also restricted to two strain governed damage laws (Section Strain induced
damage anisotropy), three stress governed damage laws (Section ”Stress induced damage anisotropy”) and
finally to two plastic strain governed anisotropic damage laws (Section ”Plastic strain induced damage
anisotropy”).

Note that, when plotted, the rupture criteria will be most often normalized with respect to rupture
condition at vanishing Lode angle (at Θ = 0, i.e. L = 1). This choice will allow us to better compare the
Lode angle dependency introduced by each criterion/damage law in octahedral plane.

Outline. The first section is dedicated to the description of the Lode angle dependency of existing rupture
criteria. This first section is mainly a literature survey, but in which one summarizes and compares both
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the mechanical engineering standard failure criteria and the civil engineering ones. The second, third and
fourth sections address then the Lode angle dependency inherent in the damage evolution laws, written in
a rate form Ḋ = . . . , of fully coupled anisotropic damage models. For the sake of relative simplicity, both
the proportional loading and the post-processing (uncoupled) assumptions are made, so that, originality
of the present work, the Lode angle dependency obtained for many different anisotropic damage laws is
plotted and analyzed. Load angle dependency enhancements of the anisotropic damage evolution laws are
furthermore proposed. Examples of such enhanced fully coupled damage models are given in Appendix B.

Lode angle dependency of existing criteria
Isotropic criterion functions f = f(σ), defining either plasticity or rupture surfaces, are function of the
three polynomial invariants

I1(σ) = trσ, I2(σ) =
1

2

(
(trσ)2 − tr(σ2)

)
, I3(σ) = detσ, (9)

of the stress tensor (the coefficients of characteristic polynomial of σ). As the incompressibility or the
deviation to incompressibility plays a major role in (visco-)plasticity of metals, soils and rocks, the splitting
between deviatoric and hydrostatic parts is often performed, defining the deviatoric stress tensor

s = σ′ = σ − 1

3
trσ 1, (10)

More generally (·)′ = (·)− 1
3 tr(·) 1 stands for the deviatoric part.

The engineering set of invariants

σH =
1

3
I1(σ) =

1

3
trσ, σeq =

√
−3I2(s) =

√
3

2
s : s, L =

27

2

I3(s)

(−3I2(s))3/2
, (11)

is considered instead of (9), with σH the hydrostatic (or mean) stress, σeq the von Mises equivalent stress
and L the Lode parameter (Lode, 1926). The contraction notation a : b stands for scalar product aijbij .
Any isotropic criterion f = f(σ) can then be expressed as a function of σH , σeq and L only.
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5 π

3

11π

6

0π

6

π

3

π

2

2 π

3

5 π

6 π

7 π

6

4 π

3

⇥

�1

�2 �3

ksk =

r
2

3
�eq

⇥

Figure 1. Lode angle Θ and azimutal Lode angle Θ in octahedral plane.

Lode parameter is a rational invariant of σ (in fact of s), it is such as L ∈ [−1, 1] so that two Lode angles
Θ and Θ are usually defined from following equality,

L =
27

2

det s

σ3
eq

= cos 3Θ = − sin 3Θ. (12)
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Θ (resp. Θ) is an invariant equivalent to L. The first one is the standard Lode angle

Θ =
1

3
arccosL ∈

[
0,
π

3

]
, (13)

the second one is the azimuthal angle,

Θ = Θ− π

6
= −1

3
arcsinL ∈

[π
6
,−π

6

]
. (14)

A nice feature is that Lode angle allows for an explicit determination of the principal stresses σi and to
prescribe their ranking (here σ1 ≥ σ2 ≥ σ3),

σi = σH +
2

3
σeq cos θi





θ1 = Θ,

θ2 = Θ− 2π
3 ,

θ3 = Θ + 2π
3 ,

(15)

the principal deviatoric stresses being then si = 2
3σeq cos θi. Let us point out that σ1 = maxi σi = σMax is

the maximum principal stress.
The two Lode angles are represented in the octahedral plane (Fig. 1), the plane normal to hydrostatic

axis σ1 = σ2 = σ3 in the principal stresses space (σ1, σ2, σ3). At vanishing hydrostatic stress σH =
1
3 (σ1 + σ2 + σ3) = 0 this plane is called the deviator plane or π-plane. The distance to the origin of the
plane is simply the quadratic norm of deviatoric stress tensor s, related to von mises equivalent stress as

‖s‖ =
√
sijsij =

√
2

3
σeq. (16)

A Lode angle Θ = 0 (L = 1, Θ = −π6 , tensile meridian) represents uniaxial tension combined with
hydrostatic stress, whereas Θ = π

6 (L = 0, Θ = 0, shear meridian) is associated with shear stress combined
with hydrostatic stress, while Θ = π

3 (L = −1, Θ = π
6 , compressive meridian) corresponds to equi-biaxial

tension combined with hydrostatic stress. The cases Θ = 0 or Θ = π
3 (L = ±1, Θ = ±π6 ) of two equal

principal stresses σ2 = σ3 or σ1 = σ2 correspond to axisymmetric stress states. Xue (2007), Coppola et
al (2009), Bai and Wierzbicki (2010), Danas and Ponte Castañeda (2012), Mohr and Marcadet (2015),
Papasidero et al (2015), Defaisse et al (2018) and others authors (see the review by Bai and Wierzbicki
(2015)), have shown the strong influence of Lode parameter/angle on the damage growth and on the ductile
rupture properties of metallic materials, for instance when shear states of stress are under consideration and
when a low ductility in shear is exhibited.

Note that there are similar but different definitions for so-called Lode parameter. In addition to L =
cos 3Θ defined Eq. (12), one has (Lode, 1926)

L = − 3s2

s1 − s3
∈ [−1, 1], (17)

and the following definition (Xue, 2007),

L = −6Θ

π
= 1− 6Θ

π
∈ [−1, 1]. (18)

Definitions (17) and (18) are not identical but they are very close (see Fig. 2).
We consider next isotropic criterion functions for rupture f = f(σ) rewritten f = f(σH , σeq,Θ) —some

derived from existing yield criteria or equivalent stresses— expressed as

f = σ̂ − k ≤ 0, (19)

with σ̂ = σ̂(σ) the criterion equivalent stress homogeneous in σ, more precisely it is such as σ̂(λσ) =
λσ̂(σ) for any positive scalar λ. The different criteria loci, all assumed at rupture in present work,
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0.2 0.4 0.6 0.8 1.0
Θ

-1.0

-0.5

0.5

1.0

Lode parameter
L(Θ)

cos(3Θ)

- 3 s2
s1-s3

1- 6Θ
π

Figure 2. Different definitions of a Lode parameter L(Θ) or L(Θ) belonging to interval [−1, 1].

correspond to f = 0. One does not exclude a possible dependency of k with respect to hydrostatic stress
σH = 1

3 trσ, such as in case of Drucker-Prager extension of von Mises criterion or as in case of Xue (2007)
nonlinear failure criteria.

We focus on the Lode dependency so that the different rupture loci are plotted in octahedral plane only,
mostly at constant (given) hydrostatic stress σH , sometimes at constant (given) stress triaxiality TX . No
details are given next concerning the nonlinear hydrostatic stress or triaxiality effects, for these refer to the
works of Rice and Tracey (1969), Ottosen (1977), Lemaitre and Chaboche (1985, 1991), Lemaitre (1992)
and more recently at low triaxiality of Bao and Wierzbicki (2004) or of the authors cited in the titles of
next Subsections. Note last that it is sufficient to plot any isotropic locus in the angle range [0, π3 ] when
vertical axis of octahedral plane of Fig. 1 corresponds to the maximum principal stress σ1, when axis at 2π

3
corresponds to median principal stress σ2 (σ1 ≥ σ2 ≥ σ3) and when axis at 4π

3 corresponds to minimum
principal stress σ3. For the sake of clarity, we will plot the following rupture loci in the whole range [0, 2π],
i.e. we will not make the ranking assumption σ1 ≥ σ2 ≥ σ3 when plotting.

Hershey-Hosford (1954-1972) criterion and its limiting cases
Hershey (1954) and Hosford (1972) have defined an equivalent stress σ̂ that generalizes both von Mises and
Tresca stresses, depending on the value of material parameter n,

σ̂ =

[
1

2

(
|σ1 − σ2|n + |σ2 − σ3|n + |σ3 − σ1|n

)]1/n

. (20)

Altogether with Eq. (15), rupture criterion f = σ̂ − k = 0 gives the von Mises stress at rupture at zero Lode
angle as σeq(Θ=0) = k so that for Lode angle Θ:

σeq
σeq(Θ=0)

=

(
21−n3n

H(Θ)

)1/n

, (21)

whereH(Θ) is Hershey-Hosford function, such asH(0) = 21−n3n,

H(Θ) =
∣∣ cos Θ− cos

(
Θ +

2π

3

)∣∣n +
∣∣ cos

(
Θ− 2π

3

)
− cos

(
Θ +

2π

3

)∣∣n +
∣∣ cos

(
Θ +

2π

3

)
− cos Θ

∣∣n.
(22)

For both cases n = 2 and n = 4 a von Mises behavior (Lode angle independent, black circle of Fig. 3) is
recovered with

σeq
σeq(Θ=0)

= 1. (23)
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For n = 6 and for n = 8, respectively,

σeq
σeq(Θ=0)

=

[
9

11− 2 cos2 3Θ

]1/6

and
σeq

σeq(Θ=0)
=

[
27

43− 16 cos2 3Θ

]1/8

, (24)

of corresponding loci plotted in red in Fig. 3.

3 π
2

5 π
3

11 π
6

0
π
6

π
3

π
2

2 π
3

5 π
6

π

7 π
6

4 π
3

n=1 and n=∞
n=2 and n=4
n=6
n=8

Figure 3. Normalized Hershey-Hosford locus σeq/σeq(Θ=0) in octahedral plane, for different values of exponent
n.

Hershey-Hosford criterion is symmetric tension w.r.t compression, with in particular σeq(Θ=π/3) =
σeq(Θ=0). When n = 1 or n→∞, Tresca criterion is recovered (dashed black polygon of Fig. 3). For
any value of n the locus lies between Tresca’s one and von Mises’ one. This means that for Θ = π/6 (as
in case of pure shear) one always has σeq(Θ=π/6) < σeq(Θ=0) at given hydrostatic stress. For n = 6 and for
n = 8, respectively,

σeq(Θ=π/6)

σeq(Θ=0)
= 0.967 and

σeq(Θ=π/6)

σeq(Θ=0)
= 0.943. (25)

Mohr-Coulomb criterion and its limiting cases
Introducing the angle of internal friction φ ≥ 0, a material parameter, the equivalent stress for Mohr-
Coulomb criterion is

σ̂ =
σ1 − σ3

2
+
σ1 + σ3

2
sinφ. (26)

For φ = 0 Mohr-Coulomb criterion recovers Tresca criterion of maximum shear stress f = 1
2 maxi,j |σi −

σj | − k ≤ 0 (dashed locus of Fig. 4), for φ = π
2 it recovers the maximum principal tensile stress criterion

f = σMax − k ≤ 0 (red locus of Fig. 4) as σMax = maxi σi = σ1.
At rupture, f = σ̂ − k = 0 altogether with the expression (15) for the principal stresses, σi = σH +

2
3σeq cos θi, writes

σeq
3

[(
cos Θ− cos

(
Θ +

2π

3

))
+

(
cos Θ + cos

(
Θ +

2π

3

))
sinφ

]
= k − σH sinφ, (27)

so that at given hysdrostatic stress:

σeq
σeq(Θ=0)

=
3 + sinφ

2
[
(1 + sinφ) cos Θ− (1− sinφ) cos

(
Θ + 2π

3

)] , (28)
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where the normalization by von Mises stress at zero Lode angle σeq(Θ=0) = 3(k − σH sinφ)/(3 + sinφ)
and at the given σH is made. The case φ = π

6 is plotted in black in octahedral plane (Fig. 4) showing that

σeq(Θ=π
3 ) ≥ σeq(Θ=π

6 ) ≥ σeq(Θ=0). (29)

For smaller values of φ, Mohr-Coulomb criterion can model materials such as at rupture the following
ranking holds (at a given σH still),

σeq(Θ=π
3 ) ≥ σeq(Θ=0) ≥ σeq(Θ=π

6 ), (30)

with σeq(Θ=π
3 ) = σeq(Θ=0) ≥ σeq(Θ=π

6 ) for Tresca limit φ = 0.

3 π
2

5 π
3

11 π
6

0
π
6

π
3

π
2

2 π
3

5 π
6

π

7 π
6

4 π
3

Mohr-Coulomb, ϕ=π /6
Maximal principal stress (ϕ=π /2)
Tresca (ϕ=0)

Figure 4. Normalized Mohr-Coulomb locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral plane, for
different values of friction angle φ.

Hershey-Hosford-Coulomb criterion
Mohr and Marcadet (2015) have extended Mohr-Coulomb criterion to ductile rupture (of two Dual-Phase
steels and a TRIP-assisted steel) by substituting the Tresca shear stress 1

2 (σ1 − σ2) in Eq. (26) by half
the Hosford equivalent stress (20). A further extension to severe loading paths changes can be found in
(Papasidero et al, 2015) with application to aluminum alloy 2024-T351. Recall that the applicability of
(modified) Mohr-Coulomb criteria to ductile rupture was shown by Bai and Wierzbicki (2010).

The Mohr and Marcadet (2015) criterion stress has for expression

σ̂ =
1

21+ 1
n

[(
|σ1 − σ2|n + |σ2 − σ3|n + |σ3 − σ1|n

)]1/n
+
σ1 + σ3

2
sinφ. (31)

The same calculations as those of subsection”Mohr-Coulomb criterion and its limiting cases” end up to the
following equation for the von Mises stress at rupture

σeq
σeq(Θ=0)

=
3 + sinφ

21− 1
n [H(Θ)]

1/n − 2 cos
(
Θ− 2π

3

)
sinφ

, (32)

which generalizes Eq. (28), at given hydrostatic stress still. Corresponding rupture loci are shown in Fig. 5
for n = 8 and in Fig. 6 for n = 20 for five different angles of internal friction φ. The modeling has some
flexibility, the dissymmetry tension-compression is modeled and rounded angles are obtained thanks to
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Figure 5. Normalized Hershey-Hosford-Coulomb locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral
plane, for exponent n = 8 and different values of φ.
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Figure 6. Normalized Hershey-Coulomb locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral plane, for
exponent n = 20 and different values of φ.

Hershey-Hosford exponent n. Convexity can be lost, depending of the material parameters, but recall that
it is not required for rupture surfaces.

For both initial Mohr-Coulomb criterion and recent Hosford-Coulomb criterion the shear-like behavior
(Θ = π

6 ) can be obtained as softer —i.e. with lower von Mises stress to rupture— than for the extremal
values Θ = 0 and Θ = π

3 of Lode angle, by taking small values of angle φ (see the examples n = 8, φ = π
48

of Fig. 5 and n = 8, φ = π
24 of Fig. 6). But in that case the dissymmetry tension-compression is reduced:

the rupture conditions for Θ = 0 and Θ = π
3 become close.
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Hayhurst (1972) criterion
The following creep equivalent stress,

σ̂ = ασMax + 3βσH + (1− α− β)σeq, (33)

has been introduced by Hayhurst in 1972 for multiaxial creep applications (more precisely for the
calculation of the isochronous creep rupture curves of metallic materials, see also (Leckie and Hayhurst,
1974, Lemaitre and Chaboche, 1985, 1991). The maximum principal stress is recovered when α = 1 and
Sdobyrev (1958) creep equivalent stress corresponds to α+ β = 1.
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Figure 7. Normalized Hayhurst locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral plane, for different
values of H = α/(1− β).

At rupture (f = 0), Hayhurst criterion gives for a given hydrostatic stress,

(1− α− β)σeq + αs1 = k − (α+ 3β)σH , (34)

with s1 = 2
3σeq cos Θ the maximum principal deviatoric stress. After normalization one gets the following

Lode angle dependency of von Mises stress at rupture,

σeq
σeq(Θ=0)

=
1

1−H +H cos Θ
, (35)

where we have set H = α/(1− β). The particular case H = 0 gives a Lode angle independent criterion
(Drucker-Prager (1952) criterion if β 6= 0, hydrostatic stress dependent). The von Mises stress rupture loci
in octahedral plane are plotted in Fig. 7 for positive values of dimensionless parameter H . Except for the
existence of a corner at Θ = π

3 (instead of a rounded angle) there are similarities in the octahedral plane with
the Mohr-Coulomb criteria for H ≥ 0.33 / φ ≥ π

12 . Recall that when H → 0 the limit case for Hayhurst
criterion is von Mises circle.

Willam and Warnke (1974) criterion
A well-known criterion for the plasticity of geomaterials is Willam-Warnke yield criterion,

f =
σeq
r(Θ)

+ σH tanϕ− k, (36)

built in order to ensure the convexity —without corners— of the 3D yield surface for a simple range of
a single material parameter (eccentricity factor e ∈ [ 1

2 , 1]). In the octahedral plane the yield locus has the
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polar equation of an ellipse between angles −π/3 and π/3 around each principal stress σi, setting (Willam
and Warnke, 1974):

r(θ) =
2(1− e2) cos Θ + (2e− 1)

√
4 (1− e2) cos2 Θ + 5e2 − 4e

e ((2e− 1)2 + 4 (1− e2) cos2 Θ)
. (37)

The values e = 1 and e = 1
2 correspond respectively to Drucker-Prager (1952) and to Sdobyrev (1958)

criteria. At given hydrostatic stress, the locus of von Mises stress normalized by σeq(Θ=0) = k − σH tanϕ
assumed positive simply is

σeq
σeq(Θ=0)

= r(θ). (38)

Except for the smoothness property (and therefore except around Θ = π
3 ), Willam-Warnke criterion with

e ∈ [ 1
2 , 1] behaves qualitatively similarly as Hayhust criterion (see the loci plotted in octahedral plane for

different values of parameter e, Fig. 8).
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Figure 8. Normalized Willam-Warnke locus σeq/σeq(Θ=0) at given hydrostatic stress σH in octahedral plane, for
different positive values of eccentricity parameter e.

Xue (2007) criterion of first kind
For the first Xue criterion, dedicated to ductile rupture, the locus representing the fracture strain p is made
of straight lines in the octahedral plane and, thus, forms the ”six point star” polygon of Fig. 9 (note that a
similar shape is obtained by Lou and Huh (2013)). The criterion is directly expressed as

p

p(Θ=0)
=

√
χ2 − χ+ 1

1 +
(√

3
γ − 2

)
min (χ, 1− χ)

, (39)

with γ a material parameter p(Θ=0) a nonlinear function of the hydrostatic stress. The criterion depends on

χ =
σ2 − σ3

σ1 − σ3
=

sin Θ

sin
(
Θ + π

3

) =
sin
(
Θ + π

6

)

cos Θ
, (40)

function equivalently of principal stresses σi, of Lode angle Θ or, as considered in the original work of Xue
(2007), of azimuthal Lode angle Θ = Θ− π

6 .
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Setting as new material parameter

φ = arctan
(√

3− 2γ
)
. (41)

Eq. (39) takes then the form
p

p(Θ=0)
=

cos
(
π
6 + φ

)

cos
( ∣∣Θ

∣∣+ φ
) . (42)

Xue criterion is symmetric with respect to Θ = π/6, the same fracture accumulated plastic strain or
equivalent stress are obtained at Θ = 0 and at Θ = π/3. It has a quite different shape than previous criteria
(the ”six point star” shape). The fracture loci obtained for values of γ lower than 1 are plotted in Fig. 9.
The value γ = 0.4, i.e. φ = 0.75 not far from π

4 was measured by Xue (2007) for aluminum alloy 2024-
T351. In order to illustrate the modeling modularity, values of γ larger than 1 corresponding to φ ≥ − π

12
are considered in Fig. 10, for which the larger accumulated plastic strain to rupture is obtained at Θ = π

6 .
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Figure 9. Normalized Xue (2007) locus of first kind p/p(Θ=0) = (σeq − σy)/(σeq(Θ=0) − σy) at given hydrostatic
stress in octahedral plane, case of linear hardening n = 1, for different negative values of parameter φ.

Xue (2007) criterion of second kind
The Xue criterion of second kind links the same stress states at Θ = 0, Θ = π

6 , Θ = π
6 than first kind

criterion, not by straight lines but by branches of a general Archimedean spiral (Fig. 11, it is also symmetric
with respect to shear meridian Θ = π

6 , Θ = 0). The corresponding accumulated plastic strain to rupture is
given by

p

p(Θ=0)
= γ + (1− γ)

∣∣∣∣
6Θ

π
− 1

∣∣∣∣
m

= γ + (1− γ)

∣∣∣∣
6Θ

π

∣∣∣∣
m

, (43)

with the accumulated plastic strain to rupture p(Θ=0) at zero Lode angle function of σH only (through γ).
If one assume furthermore the power law hardening,

σeq = σy +Kpn, (44)

with σy the yield stress and K and n as material constants. Then, at rupture still, Eq. (43) becomes

σeq − σy
σeq(Θ = 0)− σy

=

[
γ + (1− γ)

∣∣∣∣
6Θ

π
− 1

∣∣∣∣
m]n

, (45)

which gives the same plot than Fig. 11 for linear hardening (but in practice a weaker lode angle effect on
σeq due to the threshold σy). Nonlinear hardening (n < 1) increases the Lode angle effect in terms of stress.
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Figure 10. Normalized Xue (2007) locus of first kind p/p(Θ=0) = (σeq − σy)/(σeq(Θ=0) − σy) at given
hydrostatic stress in octahedral plane, case of linear hardening n = 1, for different negative values of parameter
φ.
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Figure 11. Normalized Xue (2007) locus of second kind p/p(Θ=0) = (σeq − σy)/(σeq(Θ=0) − σy) at given
hydrostatic stress in octahedral plane, case of linear hardening n = 1, for m = 1 and different values of γ.

Defaisse et al (2018) criterion and its Nahshon-Hutchinson (2008) limiting case

The Defaisse et al (2018) rupture criterion (Eq. (6)), developed for ML340 ultra-high strength highly alloyed
steel, is also written in terms of accumulated plastic strain to rupture p. It is here normalized by the value
p(Θ=0) = A−1φc exp (−a TX) at Lode angle Θ = 0:

p

p(Θ=0)
=

1

1 +B (1− |L|m)
, B = b exp (−a TX) , (46)
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with for Lode parameter either, as considered by Nahshon and Hutchinson (2008),

L = cos 3Θ =
27

2

det s

σ2
eq

, (47)

or, as in original work of Defaisse et al (2018),

L = L = − 3s2

s1 − s2
. (48)

The stress triaxiality TX = σH/σeq is assumed constant for plotting. The rupture criterion, plotted in Fig.
12, is symmetric with respect to shear meridian at Θ = π

6 , Θ = 0. At Θ = π
6 , p

p(Θ=π
6

)
= 1

1+B . A positive

value for B gives a lower ductility along shear meridian Θ = π
6 , a negative value of B (not plotted) gives a

larger ductility along shear meridian.
As stated in the Introduction, the limiting case m = 2, L = cos 3Θ, is consistent with the (fully coupled)

porosity growth law made Lode angle dependent by Nahshon and Hutchinson (2008).
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Figure 12. Normalized Defaisse et al (2018) locus p/p(Θ=0) = (σeq − σy)/(σeq(Θ=0) − σy) at given stress
triaxiality in octahedral plane, case L = cos 3Θ with linear hardening n = 1, for B = 0.5 and different values of
exponent m.

Furthermore, if one assumes power law hardening σeq = σy +Kpn, then, at rupture at given stress
triaxiality Tx still, rupture occurs at

σeq − σy
σeq(Θ = 0)− σy

=
1

[1 +B (1− |L|m)]
n . (49)

Remark that when m = 2 with L = cos 3Θ, right-hand side of (49) is strictly equal to Lode angle
dependency of Eq. (25) for Hershey-Hosford criterion with n = 1/6 (with thenB = 16

27 ≈ 0.59) or n = 1/8
(with then B = 2

9 ≈ 0.22). But the stress triaxiality effect is different (it is absent from Hershey-Hosford
criterion). Fig. 13 shows that ”six point star” shapes —similar to those due to Xue criteria— are obtained
in octohedral plane (but here at given stress triaxiality).

We mention that, again, nonlinear hardening (n < 1) increases the Lode angle effect in terms of stress.
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Figure 13. Normalized Defaisse et al (2018) locus p/p(Θ=0) = (σeq − σy)/(σeq(Θ=0) − σy) at given stress
triaxiality in octahedral plane, case L = L = −3s2/(s1 − s3) with linear hardening n = 1, for different values of
B and of exponent m.

Mazars (1984) criterion
We finish this Section by another criterion for geomaterials, mainly dedicated to concrete: Mazars (1984,
1986) criterion. It is expressed in terms of principal strains εi, by means of an equivalent strain

ε̂ =

√√√√
3∑

i=1

〈εi〉2, (50)

with positive part 〈εi〉 = max(0, εi). Mazars equivalent stress is therefore defined as

σ̂ = Eε̂ (51)

Isotropic elasticity is assumed, withE Young’s modulus, ν Poisson’s ratio, so that rupture at f = σ̂ − k = 0
writes √√√√

3∑

i=1

〈
(1− 2ν)σH + (1 + ν)si

〉2

= k, (52)

where the si = 2
3σeq cos θi are the principal deviatoric stresses (with θ1 = Θ, θ2 = Θ− 2π

3 , θ3 = Θ + 2π
3 ).

At given stress triaxiality TX = σH/σeq , normalizing this time by the value σeq(Θ=0,TX=1) =

k/
√

3(1− 2ν)2 + 2
3 (ν + 1)2 at Θ = 0 and TX = 1, one obtains

σeq
σeq(Θ=0,TX=1)

=

√
3(1− 2ν)2 + 2

3 (ν + 1)2

M(Θ)
, (53)

with Mazars function

M(Θ) =

3∑

i=1

〈
(1− 2ν)TX +

2

3
(1 + ν) cos θi

〉2

. (54)

The corresponding rupture loci are plotted in Fig. 14 for different values of the stress triaxiality. The shapes
of the loci vary from a triangular one similar —but rounded— to the maximum principal tensile stress one at
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TX = −1/3 to Mises/Drucker-Prager circle (no Lode angle dependency) at TX = 1, passing by a Willam-
Warnke shape of Fig. 8 at eccentricity e = 0.8− 0.9 for TX ∈ [0, 1

3 ] (range of in-plane shear/uniaxial
tension).
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Figure 14. Normalized Mazars locus σeq/σeq(Θ=0,TX=1) at given stress triaxiality TX in octahedral plane, for
different values of TX .

Lode angle dependency from damage evolution laws: the case of strain
induced damage anisotropy
We have seen the different shapes in octahedral plane of several rupture criteria. We now consider strain
governed damage evolution suitable for quasi-brittle materials such as concrete (Dougill, 1976, Bazant and
Kim, 1979, Mazars, 1984, 1986, Ramtani et al, 1992). The loading is assumed monotonic proportional.

Simple strain governed anisotropic damage law Ḋ = A 〈ε̇〉+
Let us first study the Lode angle dependency of the simple anisotropic (tensorial) damage evolution law

Ḋ = A 〈ε̇〉+
(

i.e. Ḋij = A 〈ε̇〉+ ij

)
, (55)

where 〈a〉+ denotes the positive part in terms of principal values of symmetric second order tensor a
(Ladevèze, 1983, 1995, Ladevèze and Lemaitre, 1984, Ortiz, 1985, Halm and Dragon, 1998). Eq. (55)
(Ḋij = A (〈ε̇〉+)ij in terms of components) leads to damage growth when at least one principal strain εi is
positive (usually when a threshold is overpassed, but recall that it is taken to zero in present work).

Rupture in monotonic proportional loading occurs at maxiDi = Dc, with Dc the critical damage, i.e.

Amax
i
εi =

A

E
[(1− 2ν)σH + (1 + ν)s1] = Dc, (56)

if post-processing assumption σ̃ = σ is made and where maximum principal deviatoric stress is s1 =
2
3σeq cos Θ.

At given hydrostatic stress, normalizing by σeq(Θ = 0) = 3(EDc/A− (1− 2ν)σH)/2(1 + ν), von
Mises stress to rupture σeq for this simple anisotropic damage law obeys then to

σeq
σeq(Θ = 0)

=
1

cos Θ
, (57)
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which has for rupture locus in octahedral plane the one of maximum principal stress (red triangle) of Fig. 4.
Remark that if the rupture locus in octahedral plane is plotted at given stress triaxiality, it is quite different

as Eq. (56) writes then

Dc =
A

E

[
(1− 2ν)TX + (1 + ν)

2

3
cos Θ

]
σeq, (58)

so that in that case one gets, at rupture still,

σeq
σeq(Θ = 0)

=
1

1−H +H cos Θ
with H =

2(1 + ν)

3 (1− 2ν)TX + 2(1 + ν)
, (59)

which is Eq. (35) obtained from Hayhurst criterion but here with H stress triaxiality dependent. The
corresponding rupture loci in octahedral plane for TX ≥ −2(1 + ν)/3 (1− 2ν) (i.e. TX ≥ −1.33 for
ν = 0.2, TX ≥ −2.17 for ν = 0.3) are the ones plotted in Fig. 7 for different positive values of H .

Anisotropic damage law Ḋ = λ̇〈ε〉α+
Let us also study the Lode angle dependency induced by the following anisotropic damage evolution law
for quasi-brittle materials,

Ḋ = A

〈
ε
〉α

+

ε̂α
˙̂ε

(
i.e. Ḋij = A

〈
ε
〉α

+ ij

ε̂α
˙̂ε

)
, (60)

introduced in (Desmorat, 2004, Desmorat et al, 2007). For damage exponent α = 1 it is a particular case
of the induced anisotropic damage law Ḋ = λ̇〈ε〉+ (or Ḋij = λ̇(〈ε〉+)ij in terms of components) derived
by normality with respect to Mazars criterion function F = ε̂− κ in (Ramtani et al, 1992). A and α are
the damage parameter and λ̇ = A ˙̂ε/ε̂α ≥ 0 is the damage multiplier. Only the two values α = 1 and α = 2
have been considered for the exponent so far.

In order to gain closed-form expressions we assume that the anisotropic damage direction
〈
ε
〉

+
/ε̂ remain

constant during monotonic proportional loading. At rupture by maximum principal damage equal to critical
damage (maxiDi = Dc, damage threshold still neglected), one gets

A (max εi)
α
ε̂1−α = Dc. (61)

Further post-processing assumption σ̃ = σ gives at given stress triaxiality TX = σH/σeq

σeq =
EDc

A
(

(1− 2ν)TX + 2
3 (1 + ν) cos Θ

)α
M(Θ)

1−α
2

, (62)

withM(Θ) Mazars function (54), and finally

σeq
σeq(Θ=0,TX=1)

=

(
5− 4ν

3(1− 2ν)TX + 2(1 + ν) cos Θ

)α(3(1− 2ν)2 + 2
3 (ν + 1)2

M(Θ)

) 1−α
2

, (63)

by normalization by von Mises stress σeq(Θ=0,TX=1) at vanishing Lode angle and at stress triaxiality
TX = 1. We have ν = 0.2 for concrete Poisson’s ratio. The corresponding rupture loci are plotted in Fig.
15 to 17 for the two values α = 1, 2 of damage exponent and for different stress triaxiality. The rupture
loci are found similar those those obtained with Hayhurst criterion (see Fig. 7). They are non convex when
the stress triaxiality becomes negative (Fig. 16 and 17), the standard choice α = 1 being probably better
for concrete-like materials. But note that for compressive/confined loadings, either a more sophisticated
anisotropic damage evolution law or/and a two yield/damage criterion modeling are usually needed (Papa
and Taliercio, 1996, Fichant et al, 1997, Meschke et al, 1998, Salari et al, 2004, Badel et al, 2007, Desmorat,
2016).

Prepared using sagej.cls



18 Preprint to Int. J. Damage Mechanics ()

3 π
2

5 π
3

11 π
6

0
π
6

π
3

π
2

2 π
3

5 π
6

π

7 π
6

4 π
3

α=1, Tx=0
α=1, Tx=1/3
α=1, Tx=1

Figure 15. Normalized locus σeq/σeq(Θ=0,TX=1) obtained from damage law (60) with α = 1, at given stress
triaxiality TX in octahedral plane, for different values of the stress triaxiality.
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Figure 16. Normalized locus σeq/σeq(Θ=0,TX=1) obtained from damage law (60) with α = 2, at given stress
triaxiality TX in octahedral plane, for different values of the stress triaxiality.

Lode angle dependency from damage evolution laws: the case of stress
induced damage anisotropy
Stress governed damage models are common, they were initially proposed for isotropic damage —of metals
(Kachanov, 1958, Rabotnov, 1969, Hayhurst, 1972), of concrete (Mazars et al, 1990), of glass or ceramics
(Denoual et al, 1997)— but also for anisotropic damage (Denoual and Hild, 2000). More precisely, due
to the phenomenon of stress softening at high damage level, the damage rate is assumed function of the
effective stress∗ σ̃ and of its rate ˙̃σ = d

dt σ̃. At low damage σ̃ ≈ σ. From the principle of strain equivalence

∗see (Murakami and Ohno, 1978, Chaboche, 1979, Cordebois and Sidoroff , 1982, Ladevèze and Lemaitre, 1984, Murakami, 1988,
Lemaitre, 1992, Lemaitre and Desmorat, 2005, Desmorat, 2016) for definitions.
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Figure 17. Normalized locus σeq/σeq(Θ=0,TX=1) obtained from damage law (60) at stress triaxiality TX = −1/3
in octahedral plane, for different values of damage exponent α.

(Lemaitre, 1971, Lemaitre and Dufailly, 1977) the effective stress does not soften when damage grows as
it is always related to the elastic strain tensor εe = ε− εp by undamaged Hooke’s tensor EEE (of Young’s
modulus E and Poisson’s ratio ν of the virgin material) as σ̃ = EEE : εe (see Appendix B for the full coupling
with anisotropic damage).

For the sake of simplicity, we will make again the post-processing assumption, leading to σ̃ = σ
(uncoupling with damage). As before we will neglect the damage threshold and consider that damage
occurs from the very beginning of the loading (assumed monotonic and proportional). Comments on the
nonlinearity of damage growth will be made in Section ”Nonlinearity of anisotropic damage”.

Simple stress governed anisotropic damage law Ḋ = A 〈 ˙̃σ〉+
The simplest (effective) stress governed anisotropic damage law is obtained from positive part —in terms
of principal values— of the rate of ∆ = σ̃ as Ḋ = A 〈 ˙̃σ〉+ (i.e. Ḋij = A (〈 ˙̃σ〉+)ij in terms of components)
or with the post-processing assumption

Ḋ = A 〈σ̇〉+
(
Ḋij = A 〈σ̇〉+ ij

)
. (64)

In proportional loading, this gives Ḋi = A 〈σ̇i〉 with 〈x〉 = max(0, x) standard positive part of a scalar.
Rupture at critical damage maxiDi = Dc occurs at σ1 = σMax = Dc/A, condition already obtained with
isotropic damage by Mazars et al (1990) and which corresponds exactly to the rupture criterion of maximum
principal tensile stress (red triangles in octahedral planes of Fig. 4, 7 and 8).

Parametrized stress governed anisotropic damage law
With s̃ = σ̃′ deviatoric effective stress tensor we now set:

∆ = α0 σ̃H 1 + α1 s̃ + α2
s̃2

σ̃eq
+ α3

s̃3

σ̃2
eq

, (65)

i.e. ∆ij = α0 σ̃H δij + α1 s̃ij + α2
(s̃2)ij
σ̃eq

+ α3
(s̃3)ij
σ̃2
eq

, as the variable homogeneous to a stress which
governs the damage growth and its anisotropy, the coefficients αi being considered as constants. Eq.
(65) is not the most general expression but it gives back strain governed law (55) (by α0 = (1− 2ν)/E,
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α1 = (1 + ν)/E, α2 = α3 = 0, with E and ν the elasticity parameters), and it allows to generalize the
anisotropic damage evolution law (64) as Ḋ = A

〈
∆̇
〉

+
, giving under the post-processing assumption

σ̃ = σ,

Ḋ = A

〈
d

dt

(
α0 σH 1 + α1 s + α2

s2

σeq
+ α3

s3

σ2
eq

)〉

+

, (66)

i.e. Ḋij = A
〈

d
dt

(
α0 σH 1 + α1 s + α2

s2

σeq
+ α3

s3

σ2
eq

)〉
+ ij

, with s = σ′ deviatoric stress tensor of

components σ′ij and A a damage parameter. Note that

s2

σ2
eq

=
s2′

σ2
eq

+
2

9
1. (67)

The spherical term (the term in second order identity tensor 1), the term in s and the term in s2 are present
in the evolution law by Brünig et al (2013) governing the tensorial damage strain tensor (not directly the
damage variable). The term in s3 is not, probably due to the fact that Cayley-Hamilton theorem allows
to rewrite s3 in terms of s and spherical terms. Applied to deviatoric stress tensor s this theorem gives
explicitly

s3

σ3
eq

=
1

3

s

σeq
+

2

27
cos 3Θ 1, (68)

by use of definitions (11) and (12) of von Mises stress σeq and of Lode angle Θ. Evolution law (66) rewrites
then

Ḋ = A

〈
d

dt

((
α0 σH +

2

27

(
3α2 + α3 cos 3Θ

)
σeq

)
1 + (α1 +

1

3
α3) s + α2

s2′

σeq

)〉

+

. (69)

An interesting feature —due to the consideration of the term in s3 in the tensorial damage law— is that
appears an isotropic dependency on Lode angle (in σeq cos 3Θ 1 = σeqL1).
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Figure 18. Normalized locus σeq/σeq(Θ=0) in octahedral plane obtained from from uncoupled damage law (66)
at given hydrostatic stress i, for α3 = 0.

Writing that the maximum principal damage in proportional loading reaches the critical value Dc gives
(no damage threshold):

2

27

(
3α2 + α3 cos 3Θ

)
σeq + (α1 +

1

3
α3) s1 + α2

s2
1

σeq
=
Dc

A
− α0 σH , (70)
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with s1 = 2
3σeq cos Θ the maximum principal deviatoric stress, so that at given hydrostatic stress,

σeq
σeq(Θ = 0)

=
3α1 + 3α2 + 4

3α3

2α2 + (3α1 + α3) cos Θ + α2 cos 2Θ + 1
3α3 cos 3Θ

. (71)

The corresponding rupture loci are plotted at given hydrostatic stress in Fig. 18 and 20 for a few sets
of parameters. For α3 = 0 (Fig. 18, no isotropic term in cos 3Θ), one do not see much difference between
α1 term only and α2 term only when α2 ≥ 0, except for the ripples for the modeling with α1 = 0 (non
convex) compared to the modeling with α2 = 0 (triangle of maximum principal tensile stress recovered).
When α2 ≤ −0.8, with α3 = 0 still, the von Mises at rupture at Θ = π

6 is found lower than both σeq(Θ=0)

and σeq(Θ=π
3 ). This is also the case for the sets of parameters of Fig. 19 at negative values of α3. But this

”ghost shape” in octahedral plane does not look like any of the literature criteria recalled in Section ”Lode
angle dependency of existing criteria”. The loci with α2 = 0 are non convex (Fig. 20), they show a larger
von Mises stress at rupture at Θ = π

3 (equibiaxial tension meridian) than at Θ = π
6 (shear meridian) than

Θ = 0 (tension meridian). For α2 = 0 and α3 negative such as |α3| << α1 ”ghost shapes” in octahedral
plane similar to those of Fig. 19 are obtained.
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Figure 19. Normalized locus σeq/σeq(Θ=0) in octahedral plane obtained from uncoupled damage law (66) at
given hydrostatic stress, for two values of α3 negative.

We mention that similar shapes of rupture loci in octahedral plane than those of Fig. 20 (i.e. non convex
with σeq(Θ=π

3 ) ≥ σeq(Θ=π
6 ) ≥ σeq(Θ=0)) are obtained if ∆ = α0 σ̃H 1 + α1 s̃ + α2 s̃2′/σ̃eq is set (with s̃2′

the deviatoric part of s̃2) leading, in the uncoupled/post-processing approach, to

Ḋ = A

〈
d

dt

(
α0 σH 1 + α1 s + α2

s2′

σeq

)〉

+

. (72)

Anisotropic damage laws leading to modular rupture criteria
The previous anisotropic damage laws do not represent a Lode angle effect similar to the ones obtained
from Xue (2007) or Defaisse et al (2018) criteria (plotted in Fig. 9, 10, 11 and 12).

Two modular anisotropic damage evolution laws are the following, with 〈·〉+ the positive part of a
symmetric second order tensor in terms of principal values still,

• Modular anisotropic damage law A:

Ḋ = A

〈
d

dt

{
s̃ +

[
2a

3
σ̃eq

(
1− ω

(
cos 3Θ̃

)m)
+ r σ̃H

]
1

}〉

+

, (73)
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Figure 20. Normalized locus σeq/σeq(Θ=0) in octahedral plane obtained from uncoupled damage law (66) at
given hydrostatic stress, for α2 = 0.

i.e. Ḋij = A
〈

d
dt

{
s̃ +

[
2a
3 σ̃eq

(
1− ω

(
cos 3Θ̃

)m)
+ r σ̃H

]
1
}〉

+ ij
;

• Modular anisotropic damage law B:

Ḋ = A

〈
d

dt

{
s̃ +

[
2a

3
σ̃eq

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

+ r σ̃H

]
1

}〉

+

, (74)

i.e. Ḋij = A
〈

d
dt

{
s̃ +

[
2a
3 σ̃eq

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

+ r σ̃H

]
1
}〉

+ ij
;

the second one having an absolute value around the isotropic contribution in cos 3Θ̃. For law A, m has to
be an integer. Both laws A and B are equivalent of course for an even damage exponent m. Scalars A, a,
ω and m are the damage parameters, possibly hydrostatic stress dependent, and r may be a function of the
hydrostatic stress. Both damage laws use the effective Lode angle

Θ̃ =
1

3
arccos

(
27

2

det s̃

σ̃3
eq

)
∈
[
0,
π

3

]
. (75)

The case a = 0, r = 1, recovers simple anisotropic damage law Ḋ = A 〈 ˙̃σ〉+. The case ω = 1 is a
(tensorial) generalization of Hayhurst rupture criterion. The case ω = 1, a, r >> 1, corresponds to a Lode
angle independent isotropic (spherical) damage law.

For rupture at maximum principal damage equal to critical damage Dc under the post-processing
assumption σ̃ = σ, Θ̃ = Θ, they give, at given hydrostatic stress,

σeq =
3
2A
−1Dc − r σH

cos Θ + a (1− ω (cos 3Θ)
m

)
(for modular damage law A), (76)

σeq =
3
2A
−1Dc − r σH

cos Θ + a (1− ω |cos 3Θ|m)
(for modular damage law B), (77)

or, in their normalized form, the two Lode angle dependent modular rupture criteria:

σeq
σeq(Θ = 0)

=
1

1− α+ β cos Θ + (α− β) (cos 3Θ)
m (for modular damage law A), (78)
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σeq
σeq(Θ = 0)

=
1

1− α+ β cos Θ + (α− β) |cos 3Θ|m (for modular damage law B), (79)

where
α =

1− aω
1 + a(1− ω)

, β =
1

1 + a(1− ω)
, (80)

with the particular cases:

• α = β = 1 gives back the Lode angle effect of maximum principal tensile stress (red triangle of Fig.
4),

• α = β = H gives back gives back the Lode angle effect (35) of Hayhurst (1972) criterion (plotted in
Fig. 7),

• β → 0, α < 0 and m = 2 gives back the Lode angle effect of Nahshon and Hutchinson (2008)
criterion (black locus of Fig. 12),

• β → 0, α < 0 for damage law B gives back the Lode angle effect (46) of Defaisse et al (2018)
criterion (red loci of Fig. 12)

The corresponding rupture loci in octahedral plane at given hydrostatic stress are given in Fig. 21 to 23
for several sets of parameters. Very different shapes can be obtained, showing the modularity of proposed
damage modeling. For instance, the modeling allows to recover shapes of rupture loci similar to the ones
proposed by Xue (2007).
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Figure 21. Normalized rupture locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral plane, obtained from
modular damage laws (73)-(74), for m = 2 and different α, β.

Depending on the values of α, β, the criterion of maximum principal stress may be overpassed at small
Lode angle Θ (see Fig. 21 and 22). Note then that it is possible to enforce that at Θ = π

6 the ratio
ρS = σeq(Θ=0)/σeq(Θ=π

6 ) is the same as for the maximum principal stress locus (= cos(π/6)), by setting

α = 1 +

√
3

2
(β − 1) . (81)

This feature is illustrated by the blue dashed locus of Fig. 22 and 21 with parameters α = −0.3 and β =

−0.5 for which 1 +
√

3
2 (−0.5− 1) = −0.299. More generally one can enforce any prescribed (measured)

values of the ratios
ρS =

σeq(Θ=0)

σeq(Θ=π
6 )

and ρC =
σeq(Θ=0)

σeq(Θ=π
3 )
, (82)

by taking for α and β the following values:
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Figure 22. Normalized rupture locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral plane, obtained from
modular damage law B (Eq. (74)), for m = 1 and different α, β.

• for modular damage law A, with m integer:

α =
2(−1)m (ρS − 1) +

√
3 (ρC − 1)− ρS + 1

1−
√

3 + (−1)m
(√

3− 2
) , β =

2
(

(−1)m (ρS − 1) + ρC − ρS
)

1−
√

3 + (−1)m
(√

3− 2
) ;

(83)
• for modular damage law B (and also for law A with m even):

α = 1− ρS +
√

3 (1− ρC) , β = 2 (1− ρC) . (84)
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Figure 23. Normalized rupture locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral plane, obtained from
modular damage law B (Eq. (74)), for m = 1 and β = 0.

Fig. 24 gives the rupture loci obtained from anisotropic damage law A (without absolute value around
cos 3Θ) for the same sets of parameters as those of Fig. 22 (case m = 1, odd then). Due to α = β, the
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results for the continuous curves are independent from m. The results for the dashed curves do not look
satisfactory so that we will always prefer to use the modular damage law B. This parametric study confirms
the interest of the term in |cos 3Θ|m introduced for ductile rupture by Defaisse et al (2018).
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Figure 24. Normalized rupture locus σeq/σeq(Θ=0) at given hydrostatic stress in octahedral plane, obtained from
damage law A (Eq. (73) without absolute value around cos 3Θ), for the sets of parameters of Fig. 22.

Lode angle dependency from damage evolution laws: the case of plastic strain
induced damage anisotropy
Most damage models for ductile rupture of metals consider damage growth governed by plasticity, through
the accumulated plastic strain p, and enhanced by the stress triaxiality (Gurson, 1977, Tvergaard and
Needleman, 1984, Lemaitre and Chaboche, 1985, 1991, Rousselier, 1987, Lemaitre, 1992, Besson, 2009b).
An extension of Lemaitre’s damage law to induced anisotropic damage has been proposed by Lemaitre et al
(2000) as

Ḋ =

(
Ỹ

S

)s
|ε̇p|

(
i.e. Ḋij =

(
Ỹ

S

)s
|ε̇p|ij

)
, (85)

with D the symmetric second order damage tensor , |ε̇p| the absolute value of plastic strain rate tensor in

terms of principal values (so that in terms of components Ḋij =
(
Ỹ
S

)s
|ε̇p|ij), and:

Ỹ =
σ̃2
eqR̃ν

2E
, R̃ν =

2

3
(1 + ν) + 3(1− 2ν)

(
σ̃H
σ̃eq

)2

. (86)

S and s are the damage parameters and σ̃H/σ̃eq = tr σ̃/3(σ̃)eq = T̃X is the effective stress triaxiality.
The cross identification of the parameters for law (85) from those for isotropic Lemaitre’s damage law is
performed in (Desmorat and Otin, 2008). A second extension, taking into account the micro-cracks close
effect is detailed in (Lemaitre and Desmorat, 2005).

When the hardening is saturated, then σ̃eq ≈ σu = const (the ultimate stress) so that damage law (85)
writes Ḋ = A |ε̇p| with

A =

(
σ2
uR̃ν
2E

)s
. (87)

Scalar A is function of T̃X only (through R̃ν) and not of Lode angle.
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Anisotropic damage law Ḋ = A
(
ζ |ε̇p|+ (1− ζ) 〈ε̇p〉+

)

We then set ∆ = εp as the variable governing damage growth and anisotropy and we introduce the material
parameter ζ ∈ [0, 1] allowing to generalize previous anisotropic damage law as (Desmorat et al, 2010)

Ḋ = A
(
ζ |ε̇p|+ (1− ζ) 〈ε̇p〉+

) (
i.e. Ḋij = A

(
ζ |ε̇p|+ (1− ζ) 〈ε̇p〉+ ij

))
, (88)

with absolute value |ε̇p| and positive part 〈ε̇p〉+ defined in terms of the principal values of plastic strain rate
tensor ε̇p. Von Mises (incompressible) plasticity is considered with

ε̇p = ṗn, n =
3

2

s̃

σ̃eq
, p =

∫ √
2

3
ε̇p : ε̇p dt, (89)

with Lode angle in terms of plastic strain rate equal to Lode angle in terms of effective stress Θ̃,

Θ̃ =
1

3
arccos

(
27

2

det s̃

σ̃3
eq

)
=

1

3
arccos

(
4 det ε̇p

ṗ3

)
∈
[
0,
π

3

]
. (90)

With further post-processing assumption σ̃ = σ, s̃ = s, Θ̃ becomes equal to Lode angle Θ in terms of
stress. We get then

Ḋ =
3A

2

(
ζ

∣∣∣∣
s

σeq

∣∣∣∣+ (1− ζ)

〈
s

σeq

〉

+

)
ṗ. (91)

At constant A in proportional loading (due to constant stress triaxiality), maxiDi = Dc gives

Dc = Amax
i

(ζ |cos θi|+ (1− ζ) 〈cos θi〉) p, (92)

i.e.

Dc = Amax

(
cos Θ,−ζ cos

(
Θ− 2π

3

))
p, (93)

due to cos θ1 = cos Θ ∈ [ 1
2 , 1], cos θ2 = cos

(
Θ− 2π

3

)
∈ [− 1

2 ,
1
2 ], cos θ3 = cos

(
Θ + 2π

3

)
∈ [−1,− 1

2 ].
Normalizing by p(Θ=0) the plastic strain at rupture at zero Lode angle:

p

p(Θ=0)
=

max
(

1, ζ2

)

max
(
cos Θ,−ζ cos

(
Θ− 2π

3

)) . (94)

The corresponding rupture loci are plotted in Fig. 25, in octahedral plastic strain plane this times (with Θ
also the Lode angle of εp in proportional loading). Parameter ζ gives a modularity sufficient for most
metallic materials, more precisely for those with at higher ductility in shear (at Θ = π

6 ). Engineering
applications are described in (Lemaitre and Desmorat, 2005, Lemaitre et al, 2009). Note that 3D iso-damage
surfaces with shapes in octahedral planes similar to those of Fig. 25 have by obtained by Badreddine et al
(2015) from a fully coupled anisotropic damage model (without/with micro-cracks closure effect, in finite
strains framework).

The modeling (88) does not apply by itself to recent alloys with low —below tension and equi-biaxial
tension– ductility in shear such as those recently studied in (Bao and Wierzbicki, 2004, Xue, 2007, Bai and
Wierzbicki, 2010, Mohr and Marcadet, 2015, Papasidero et al, 2015, Defaisse et al, 2018).

Parametrized plastic strain governed anisotropic damage law
The idea is then to complete previous plastic strain governed damage law by the isotropic term giving
the modularity of evolution law (74). Having in mind that linear hardening writes σ̇eq = ṗ/K (with K
the plastic modulus) and that isotropic elasticity law with incompressible plasticity linearly relates the
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Figure 25. Normalized rupture locus p/p(Θ=0) in octahedral plane, obtained from anisotropic damage law (88)
for different values of parameter ζ.

hydrostatic stress σH to the volumetric strain tr ε as σH = E
3(1−2ν) tr ε, we take ζ = 0 and write

Ḋ =
〈
Aε̇p +B

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

ṗ1 + C tr ε̇1
〉

+
, (95)

i.e. in terms of components

Ḋij =
〈
Aε̇p +B

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

ṗ1 + C tr ε̇1
〉

+ ij
, (96)

with A, B, ω, m as material parameters, and where C may be a function of tr ε and/or simply function of
the sign of tr ε̇ in order to makeC tr ε̇ always positive or zero. The positive part in Eq. (95) ensures that Ḋ is
always positive semi-definite. The isotropic (spherical) term İ1, with İ = B

(
1− ω| cos 3Θ̃|m

)
ṗ+ C tr ε̇,

is chosen symmetric with respect to shear meridian Θ = π
6 . The non symmetry will be gained from

anisotropic term Aε̇p.
When ω = 0, the isotropic contribution İ is proportional to the porosity growth rate φ̇ with nucleation

term of Chu and Needleman (1980), Lode angle independent and proportional to ṗ. When ω = 1, m = 2,
and whenB and C are made function of the void volume fraction asB = aκφ, C = a(1− φ), the isotropic
contribution İ is proportional to the porosity growth rate φ̇ considered by Nahshon and Hutchinson (2008)
(Eq. (2)). In both cases, the anisotropic damage law (95) takes the form

Ḋ =
〈
A ε̇p + a φ̇1

〉
+
. (97)

In proportional loading, the maximum principal damage rate is the rate of the maximum principal
damage. When positive, Eq. (95) gives

max Ḋi = Amax ε̇pi +B
(

1− ω
∣∣∣cos 3Θ̃

∣∣∣
m)

ṗ + C tr ε̇, (98)

where C = C(tr ε = 3(1−2ν)
E σH , sign(tr ε̇)) and A, B, ω and m are assumed constant.

The same calculations than above (post-processing in monotonic proportional loading), with sign(tr ε̇) =
const, −1 or 1, with the principal plastic strains equal to εpi = p ni = p cos θi and then maxi ε

p
i = p cos Θ
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(due to Θ̃ = Θ , T̃X = TX ), give at rupture

p =
Dc − 3(1−2ν)

E

∫
C dσH

B +A cos Θ−Bω |cos 3Θ|m , (99)

and then, at given hydrostatic stress, the normalized plastic strain to rupture as

p

p(Θ=0)
=

1

1− α+ β cos Θ + (α− β) |cos 3Θ|m , (100)

with
α =

A−Bω
A+B(1− ω)

, β =
A

A+B(1− ω)
. (101)

All the rupture loci shapes in octahedral planes at given σH of Fig. 21 to 23 can then be obtained —
with exactly the same values of α, β— but for the ratios of plastic strains to rupture p/p(Θ=0) instead of
σeq/σeq(Θ=0). They are then not replotted here.

Exactly as for the stress governed anisotropic damage law B of subsection ”Anisotropic damage laws
leading to modular rupture criteria”, it is possible to enforce any prescribed values of both ratios ρS =
σeq(Θ=0)/σeq(Θ=π

6 ) and ρC = σeq(Θ=0)/σeq(Θ=π
3 ) at given σH by setting α = 1− ρS +

√
3 (1− ρC) and

β = 2 (1− ρC) (Eq. (84)).
Note finally that for saturating hardening, Eq. (114) still applies if one replaces A by Lemaitre’s initial

value A = (σ2
uRν/2E)s (Eq. (86)-(87) with T̃X = TX ), stress triaxiality dependent.

Nonlinearity of anisotropic damage
In order to draw general conclusions, we finally focus our study on damage evolution laws for ductile
materials.

Many nonlinear isotropic damage laws independent from the third (effective) stress invariant —including
Rabotnov-Kachanov one, see Appendix A — have the generic form

Ḋ = gD(D)gσ̃(σ̃eq)gTX (TX)gp(p) ṗ, (102)

of damage governed by plasticity and enhanced by mechanical variables, multiplicatively though the
functions gD, gσ̃ , gTX and gp (functions of the damage variable D, of σ̃eq = σeq/(1−D) the effective
von Mises stress, of TX = σH/σeq = σ̃H/σ̃eq = T̃X the stress triaxiality, of p the accumulated plastic
strain). Remark that the nonlinearity with respect to the damage itself can be avoided in damage law (but it
cannot in the full coupling with elasto-visco-plasticity) if the following change of damage variable is made,

d =

∫ D

0

dD

gD(D)
, ḋ = gσ̃(σ̃eq)gTX (TX)gp(p) ṗ. (103)

Taking gD(D) = (1−D)−k (as in Kachanov-Rabotnov pioneering damage law (117) and in extended
Lemaitre law (119), see Appendix A), with k 6= −1:

d =
1

k + 1

(
1− (1−D)

k+1
)
, (104)

When k = −1:
d = − ln(1−D). (105)

For anisotropic damage, the nonlinearity of the evolution laws are mainly of three kinds:

1. Nonlinearity w.r.t tensorial damage variable D (of components Dij), the rate Ḋ in the anisotropic
damage law being replaced by second order symmetric tensor

ḋ = GGG(D, Ḋ)
(

i.e. ḋij = Gij(Dkl, Ḋkl)
)
, (106)

ensuring the symmetry D = DT (i.e. Dij = Dji) of the damage tensor. Usually GGG(D, Ḋ) is
symmetric semi-definite positive and homogeneous in Ḋ, GGG(D, λḊ) = λGGG(D, Ḋ).
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2. Nonlinearity w.r.t the other mechanical variables, the scalars A, αi, B, C of the previous anisotropic
damage laws being made nonlinear functions of effective von Mises stress, of stress triaxiality and/or
of accumulated plastic strain state (setting for example A = gσ̃(σ̃eq)gTX (TX)gp(p)),

3. Nonlinearity w.r.t both tensorial damage variable and the other mechanical variables.

For first kind of nonlinearity, it is convenient to introduce the symmetric positive definite second order
tensor (Ladevèze, 1983, 1995)

H = (1−D)−
1
2 , (107)

of components Hij . A choice generalizing Eq. (104) to anisotropic damage is (case k 6= −1):

GGG(D, Ḋ) = − 1

k + 1

d

dt
(1−D)k+1 = − 1

k + 1

d

dt
H−2(k+1), (108)

giving

d =
1

k + 1

(
1−H−2(k+1)

)
. (109)

In the case k = −1 a generalization of Eq. (105) is either direct use of

d = − ln (1−D) = 2 ln H, (110)

or the use of pseudo-logarithmic damage rate tensor (Carol et al., 2001)

GGG(D, Ḋ) = H · Ḋ ·H. (111)

For choices (109) and (110), the critical damage criterion maxiDi = Dc in terms of principal values of D
always coincides with the critical damage criterion maxi di = dc in terms of d, with for (109):

dc =
1

k + 1

(
1− (1−Dc)

k+1
)
, (112)

and for (110):
dc = − ln (1−Dc) . (113)

For choice (111) criterion maxiDi = Dc coincides with criterion maxi di = dc in proportional loading,
as then the principal axes of damage tensor remain constant. In that case one also has dc = − ln (1−Dc).
This derivations mean that all the post-processing/uncoupled results of Sections ”Strain induced damage
anisotropy”, ”Stress induced damage anisotropy” and ”Plastic strain induced damage anisotropy” remain
valid, without any change, whatever the nonlinearity with respect to the anisotropic damage itself.

For second and third kinds of nonlinearities, the time integration of damage law cannot always be
performed in a closed form, even in proportional loading. If one focus on plasticity governed anisotropic
damage law (95) with isotropic hardening σ̃eq = σy +R(p), with Ḋ replaced by ḋ, and if one sets
A = A0gσ̃(σ̃eq)gTX (TX)gp(p), B = B0gσ̃(σ̃eq)gTX (TX)gp(p), C = 0, with A0, B0, ω and m as material
constants, one obtains (in proportional loading):

G(p) =
Dc

gTX (TX)

1

B0 +A0 cos Θ−B0ω |cos 3Θ|m , G(p) =

∫ p

0

gσ̃ (σy +R (p)) gp(p) dp. (114)

At given stress triaxiality this time, the plastic strain to rupture p obeys

G(p)

G(p(Θ=0))
=

1

1− α+ β cos Θ + (α− β) |cos 3Θ|m , (115)

with now
α =

A0 −B0ω

A0 +B0(1− ω)
, β =

A0

A0 +B0(1− ω)
. (116)

Both the smoothness and the intensity of Lode angle effect (in octahedral plane) are affected by the
nonlinearity of function G(p). But the types of Lode angle effect obtained (i.e. at which value 0, π

6 or
π
3 of Lode angle Θ is the plastic strain to rupture minimum or maximum) remain then identical to those
encountered in Fig. 21 to 23.
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Conclusion
One has first plotted in octahedral plane several literature criterion functions for rupture of metals, of
geomaterials and of concrete. The different shapes exhibited have then been compared to the rupture
loci obtained by time integration of several (modular) anisotropic damage evolution laws in monotonic
proportional loading for the rupture criterion maxiDi = Dc in terms of maximum principal damage, with
Dc the critical damage (Lemaitre and Chaboche, 1985, 1991).

The Lode angle dependency of the two total strain induced damage anisotropy laws (55) and (60)
dedicated to quasi-brittle materials, i.e.

Ḋ = A 〈ε̇〉+ and Ḋ = A

〈
ε
〉α

+

ε̂α
˙̂ε, α = 1, 2,

has been studied. Then, in order to make the anisotropic damage models able to represent all types of Lode
dependency effect encountered for metals and following the same theoretical approach, the recent datas
concerning metallic materials with low ductility in shear have allowed us to properly enrich the stress/plastic
strain based damage evolution laws:

• as the modular damage law B (Eq. (74), preferred to modular damage law A) for (effective) stress
induced damage anisotropy,

Ḋ = A

〈
d

dt

{
s̃ +

[
2a

3
σ̃eq

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

+ r σ̃H

]
1

}〉

+

,

with s̃ = σ̃′, σ̃H = 1
3 tr σ̃ and Θ̃ =

27

2

det s̃

σ̃3
eq

;

• and as the parametrized law (95) for plastic strain induced damage anisotropy,

Ḋ =
〈
Aε̇p +B

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

ṗ1 + C tr ε̇1
〉

+
,

Let us conclude by the remark that one can plot in the —either stress or plastic strain— deviator plane the
experimental loading paths, but one can also plot in the deviator plane the associated (computed) value of
the maximum principal damage maxiDi(t). Concerning the modeling, this is due to the property that any
kinetic (rate) damage law d

dtD = . . . is able to follow the loading path, time increment by time increment,
contrary to standard rupture criteria. This may prove interesting during the damage parameters identification
process, for instance when some loading non proportionality occurs. In practice, this will be nevertheless
not no easy to do as there may be some damage threshold and as the measurement of the damages Dij at
each time increments is a difficult task. Inverse methods will be needed (Nashed , 1987, Tanaka and Bui ,
1993, Aster et al, 2005, Hild et al , 2015). In a natural (computing) way, one will end up by using fully
coupled anisotropic damage models, such as the ones, enhanced by Lode angle dependency, described in
Appendix B.

Author’s note
A. Mattiello is now at EDF lab Paris-Saclay, Boulevard Monge, 91120 Palaiseau, France.
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Belgique, 5-6 july 2004.

Desmorat, R. (2006). Positivity of intrinsic dissipation of a class of nonstandard anisotropic damage models. Comptes
Rendus de l’Académie des Sciences, Paris, 334(10), 587–592.

Desmorat R., Continuum approach in damage mechanics. In: Summer school hardening and damage of materials
under finite deformations, constitutive modeling and numerical implementation. IBZ TU Dortmund, Germany,
3–7 September 2012. Available at: http://www.lem3.fr/summerschool/00-Files/RD.pdf.

Desmorat R., 2016, Anisotropic damage modeling of concrete materials, International Journal of Damage Mechanics,
25(6), 818-852.

Desmorat R., Gatuingt F., Ragueneau F., Nonlocal anisotropic damage model and related computational aspects for
quasi-brittle materials, Engineering Fracture Mechanics, 74(10), 1539–1560, 2007.

Desmorat R., Cantournet S., Modeling micro-defects closure effect with isotropic/anisotropic damage, International
Journal of Damage Mechanics, vol. 17, pp. 65–96, 2008.

Desmorat R., Otin S., Cross-identification isotropic/anisotropic damage and application to anisothermal structural
failure, Engineering Fracture Mechanics, 75(11), 3446–3463, 2008.

Desmorat R., Gatuing F., Ragueneau F., Nonstandard thermodynamics framework for robust computations with induced
anisotropic damage, International Journal of Damage Mechanics, 19, 53– 73, 2010.

Desmorat R. , Desmorat B. , Olive M. , Kolev B., Micromechanics based framework with second-order damage tensors,
European Journal of Mechanics / A Solids, 69 88–98, 2018.

Di Iorio, S., Briottet, L., Rauch, E. F., and Guichard, D. (2007). Plastic deformation, damage and rupture of PM Ti-6Al-
4V at 20 K under monotonic loading. Acta materialia, 55(1), 105-118.

Dougill J.W., On stable progressively fracturing solids, Z. Angew Math. Phys. 27, 423-437,1976.
Drucker D. C., Prager W., Soil mechanics and plastic analysis for limit design, Quarterly of Applied Mathematics,

10(2), 157–165, 1952.
Dyson, B. F., & McLean, D. (1977). Creep of Nimonic 80A in torsion and tension. Metal science, 11(2), 37-45.
Fichant S., Pijaudier-Cabot G., La Borderie C., Continuum damage modelling : approximation of crack induced

anisotropy, Mechanics Research Communications, 24(2):109–114, 1997.
Freudenthal A. M, Geiringer H., The mathematical theories of the inelastic continuum. In Elasticity and Plasticity, Ed.

S. Flugge, 229–433. Springer, 1958.
Gao X., Zhang T., Zhou J., Graham S.M., Hayden M., Roe, C., On stress-state dependent plasticity modeling:

significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule,
International Journal of Plasticity, 27(2), 217–231, 2011.

Govindjee, S., Kay, G. J., Simo, J. C. (1995). Anisotropic modelling and numerical simulation of brittle damage in con-
crete. International Journal for Numerical Methods in Engineering 38(21), 3611-3633.

Gurson A.L., Continuum theory of ductile rupture by void nucleation and growth – part I. Yield criteria and flow rules
for porous ductile media. J. Eng. Mat. Tech. 99, 2–15,1977.

Halm D., Dragon A., An anisotropic model of damage and frictional sliding for brittle materials. European Journal of
Mechanics – A/Solids, 17, 439–460, 1998.

Halphen, B., Nguyen, Q., 1975. Sur les matériaux standard géneralisés. Journal de Mécanique 14, 39–63.
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Appendix A – Nonlinear isotropic damage laws for ductile materials
In case of ductile materials, a generic evolution law for isotropic damage is Ḋ =
gD(D)gσ̃(σ̃eq)gTX (TX)gp(p) ṗ, with the following particular cases.

• gD(D) = (1−D)r−k, gσ̃(σ̃eq) = AKN
N σ̃

r−N
eq , gTX (TX) = gp(p) = 1 recovers Rabotnov-

Kachanov (1969) creep-damage model

Ḋ = A(1−D)−kσreq, ṗ =

(
σeq

KN (1−D)

)N
, (117)

with KN and N Norton’s viscosity parameters.
• gD(D) = 1, gσ̃(σ̃eq) =

〈
(σ̃eq − σD)/S

〉s
, gp(p) = R′(p) with isotropic hardening σ̃eq = σy +

R(p) gives back Lemaitre and Dufailly (1977) extension —by the introduction of damage threshold
σD ≥ σy— of Broberg (1974) damage law,

Ḋ =

〈
σ̃eq − σD

S

〉s
〈 ˙̃σeq〉. (118)

• gD(D) = (1−D)−k, gσ̃(σ̃eq) = σ̃2s
eq/(2ES)s, gTX (TX) = Rsν =

[
2
3 (1 + ν) + 3(1− 2ν)T 2

X

]s
,

gp(p) = 1 gives

Ḋ = (1−D)−k
(
Y

S

)s
ṗ, Y =

σ2
eqRν

2E(1−D)2
, (119)

which is the generalization of Lemaitre’s damage law used in (Saanouni et al, 1994, Yue et al,
2015). In (Cao et al, 2014, Malcher and Mamiya, 2014), the damage strength S is made Lode angle
dependent.

• gD(D) = gσ̃(σ̃eq) = 1, gTX (TX) = Rsν , gp(p) = Ap2ns gives back Lemaitre (1985) damage law for
ductile plastic damage

Ḋ = ARsνp
2nsṗ, (120)

and particular case 2sn+ 1→ q, s→ 0, gp(p) = qDcp
q−1/εqpR,

Ḋ = qDc

(
p

εpR

)q−1
ṗ

εpR
, (121)

used by Xue (2007) with the plastic strain to rupture εpR made dependent on both hydrostatic stress
and Lode angle.
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Appendix B – Lode angle enhanced fully coupled anisotropic damage models
Let us follow (Lemaitre et al, 2000, Lemaitre and Desmorat, 2005), and consider the enthaply density
ρψ∗ = supε(σ : ε− ρψ), instead of the (strain dependent) energy density ρψ, expressed as

ρψ∗ =
1

4G
tr
(
σ′Hσ′H

)
+

1

18K

(
g(H)〈trσ〉2+ + 〈trσ〉2−

)
+ σ : εp − ws, (122)

with ρ the density, G and K the shear and bulk moduli, (·)′ the deviatoric part. The (scalar) micro-defects
closure effect function

g(H) = 1− η +
1

3
θ tr H2 +

1

9
(η − θ)(tr H)2, (123)

is considered, with η and θ as material parameters (η ≥ θ ≥ 0), and such that g(1) = 1. Expression
(123) unifies both the phenomenological approach of Desmorat (2016) dedicated to concrete (for which
θ = η = 1, εp = 0, ws = 0) and a micro-mechanics based approach (Desmorat et al, 2018, θ = η/10). The
stored energy density does not vanish for metals, for which ws = G(r) + 1

3CX α : α, with r the isotropic
hardening state variable, α the kinematic hardening (tensorial) one and CX a material parameter (Lemaitre
and Chaboche, 1985, 1991). The state laws write

ε = ρ
∂ψ∗

∂σ
=

1

2G
(Hσ′H)

′
+

1

9K
(g(H)〈trσ〉+ + 〈trσ〉−) 1 + εp,

σ = ρ
∂ψ∗

∂εp
,

Z = ρ
∂ψ∗

∂H
=

1

2G
σ′Hσ′ +

1

18K
〈trσ〉2+

∂g(H)

∂H
,

R = −ρ∂ψ
∗

∂r
=

dG(r)

dr
,

X = −ρ∂ψ
∗

∂α
=

1

3
CX α.

The first one allows to define the symmetric effective stress tensor,

σ̃ = s̃ +
1

3
(g(H)〈trσ〉+ + 〈trσ〉−) 1, s̃ = (Hσ′H)

′
. (124)

According to Clausius-Duhem inequality D = σ : ε̇p −R ṙ −X : α̇ + Z : Ḣ ≥ 0 and to the generalized
normality rule for plasticity (Halphen and Nguyen, 1975), the intrinsic dissipation writes

D = Dp +Dd ≥ 0,

{
Dp = λ̇

[
σ : ∂F∂σ +R∂F

∂R + X : ∂F∂X
]
≥ 0,

Dd = Z : Ḣ ≥ 0.

with λ̇ ≥ 0 the plastic multiplier. The plastic dissipation Dp is positive for usual plasticity potentials
F = F (σ̃, R,X) (coupled with damage through the effective stress (124)), which are convex with respect
to σ, R and X (Lemaitre, 1992). The dissipation due to damage Dd is always positive (Desmorat, 2006,
Chambart et al, 2014) thanks i) to the specific shear-bulk splitting in Eq. (122), ii) to the choice (123), with
η ≥ θ ≥ 0, for function g(H) (therefore convex in H) and iii) to the property stating that ”Ḋ is definite
positive” (satisfied by all damage evolution laws exposed in the present work).

For concrete, a fully coupled anisotropic damage model is obtained by setting ws = 0, F = 0 (r = 0,
εp = α = 0) and by considering either one of the strain based anisotropic damage laws Ḋ = A 〈ε̇〉+ or
Ḋ = λ̇〈ε〉α+ (see Desmorat et al (2007)) or the stress based anisotropic damage law Ḋ = A 〈 ˙̃σ〉+, or one
among the Lode angle enhanced laws (66) or (72), or in a more general manner Eq. (74) possibly extended
as

− 1

k + 1

d

dt
H−2(k+1) = A

〈
d

dt

{
s̃ +

[
2a

3
σ̃eq

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

+ r σ̃H

]
1

}〉

+

. (125)
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For metals, a fully coupled elasto-plasticity / anisotropic damage model is obtained by using a plasticity
governed anisotropic damage law, either Ḋ = A

(
ζ |ε̇p|+ (1− ζ) 〈ε̇p〉+

)
(see Desmorat et al (2010)), or a

law among the Lode angle enhanced anisotropic damage ones, as previous Eq. (125) or Eq. (95) possibly
extended as

− 1

k + 1

d

dt
H−2(k+1) = A

〈
ε̇p + b

(
1− ω

∣∣∣cos 3Θ̃
∣∣∣
m)

ṗ1 + c tr ε̇1
〉

+
. (126)

In any case, the prefactor A can be changed into a stress triaxiality dependent function, setting for
example (Rice and Tracey, 1969, Lemaitre, 1984, 1992) A = A0R̃

s
ν with R̃ν = exp(−aT̃X) or R̃ν =

2
2 (1 + ν) + 3(1− 2ν)〈T̃X〉2+ with T̃X = σ̃H/σ̃eq .
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