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EFFECTIVE RATIONALITY OF SECOND ORDER SYMMETRIC TENSOR

SPACES

M. OLIVE AND R. DESMORAT

Abstract. We consider the natural SO(3, k) linear representation, k = C or R, on the k vector space

V = 𝑛S2(R3) of 𝑛 second order symmetric tensors, the associated invariant field k(V)SO(3,k) being
known to be a purely transcendental extension in the complex case. We give an explicit tensorial form
of a minimal generating set of the field of invariants, in both the complex and the real cases, showing
that the invariant field is also a purely transcendental extension in the real case. Present results rely on
some octahedral polynomial invariants obtained from Clebsch-Gordan projectors defined by a fourth
order octahedral covariant. Thanks to Cartan’s map we also obtain a minimal set of generators for
the SL(2,C)-rational invariant field of 𝑛 binary quartics.

1. Introduction

The invariant theory, which finds its source in works as distinct as those of Boole [7] and Gauss [29],
has acquired such a maturity so that its mathematical framework is both well delimited, and the
application domains addressed by it is very broad: it goes from the theory of group representation [74]
to the one of algebraic geometry [36, 54], cryptography via hyperelliptic curves [38, 46] and biomarkers
in neuroimaging or shape recognition [55, 32, 4]. Its fields of application and investigation are not
limited to mathematics, see in particular the works on Qubits [47, 43] and also in mechanics [63, 77].
For instance, let us mention specific concerns in hyper-elasticity of rubber-like materials [2, 44, 58],
in the determination of distances to elasticity symmetry (isotropy) classes [69], in the modeling of
porous or granular material anisotropy [13], in the description of magneto-elasticity coupling [16, 68],
further applications to material instabilities [37] and wave propagation being expected.

It was in the 1960s and 1970s [60, 5] that the continuum mechanics community seized the abstract
tools developed by Weyl [74] to produce notable results in effective invariant theory, producing min-
imal integrity bases of O(3,R) –and its closed subgroups– representations on tensor spaces of order
less than 2, where O(3,R) denotes the group of orthogonal transformations in R3. Due to the lack
of communication between the mechanical and mathematical community [25], it took them a decade
to obtain results in fact established in 1898 by Young [76], but difficult to access without Cartan
map [15, 14] (see [3, 52, 18]): indeed, it should have been necessary to explicit the link between the
SL(2,C) representations on binary forms and the SO(3,R) representations on tensor spaces.

Such a link has later been successfully exploited by Boehler–Kirilov–Onat [6] to propose, in tensorial
form, an explicit integrity basis for the space of fourth order harmonic tensors (i.e. traceless and
totally symmetric tensors), equivariant to the space of binary octavics, for which the associated
SL(2,C) invariant algebra was already known from the works of von Gall [71] and Shioda [59].

The effective invariant theory, where effectiveness means the ability to display existing objects a
priori, continues to raise questions [19, 20, 17, 10, 11, 51, 45]. The main difficulty in effectivity is
particularly well illustrated by Hilbert’s finiteness theorem [36]. Indeed, after Gordan’s constructive
demonstration for the finiteness of the invariant algebra of binary form [31], Hilbert obtained a
theoretical and abstract result in a much more general framework (that of reductive groups). Since
there was no real evidence of any construction of a finite integrity basis in Hilbert’s general proof,
effectiveness was finally put aside. As emphasized by Weyl himself [74]: ”Hilbert almost killed the
subject”.

Nevertheless, Hilbert’s work allowed the invariant theory to fit into a very rich formal frame-
work, and Noether’s work [33] did fix the algebraic objects specific to this theory, enriched over
the years [35, 54, 21]. Nowadays’ general framework concerns some reductive group action over an
algebraic variety [54], and its associated invariant algebra and field of rational invariants.
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2 M. OLIVE AND R. DESMORAT

As mentioned above, the continuum mechanics community [56, 60, 63, 77] did take up this theory
in the case of real tensorial representations V of the group O(3,R). One goal was to be able to get
parametrization of the associated orbit space, and thus find a finite set {𝑠1, . . . , 𝑠𝑝} of invariants,
called a separating set, such that for any two vectors (in fact, tensors or any family of tensors) 𝑣𝑣𝑣1,
𝑣𝑣𝑣2 ∈ V

∀𝑖, 𝑠𝑖(𝑣𝑣𝑣1) = 𝑠𝑖(𝑣𝑣𝑣2) iff 𝑣𝑣𝑣1, 𝑣𝑣𝑣2 belong to the same orbit.

In the case of first order tensors, Weyl’s theorem on polarization [74, Theorem 2.9-A] was enough
to obtain polynomial separating sets of 𝑛R3 := R3 ⊕ . . .⊕ R3 (𝑛 times), so the next question was to
find similar results for 𝑛S2(R3), where S2(R3) is the space of symmetric second order tensors. Being
in the case of a real representation of a compact group, it was noticed that the algebra of polynomial
invariants had this separating property [1] (while a separating set is not necessary an integrity basis).
By Hilbert’s theorem, it was therefore theoretically possible to obtain a finite separating set: the
possibly non–minimal one coming from a finite integrity basis. A notion of separating algebra was
then proposed in [24, 42], and Draisma et al. [23] obtained an algorithm to compute a polynomial
separating set of a direct sum of the same representation, using polarization procedure on separating
invariants.

It was therefore important to obtain an effective construction of minimal integrity bases or minimal
separating sets for 𝑛S2(R3) := S2(R3) ⊕ . . . ⊕ S2(R3) endowed with the standard SO(3,R) diagonal
representation. By using a complexification process, the problem reduces in fact to the one of deter-
mining an SL(2,C) integrity basis of 𝑛 quartic forms (see [6, 51]), first obtained by Young in 1899 [76].
Unfortunately, as recalled above, such results were unknown by the mechanical community, and they
were established back over the years [56, 60, 63].

The quite high number of elements in these minimal integrity bases and polynomial separating
sets was such that these results were not very useful in practice (see Table 1). There was then the
idea of returning to the notion of functional basis (that is to say a generating set of all invariant
functions [75]). It was in fact a question of taking up Weyl’s own ideas [74]: finding a finite set of
invariants {𝜑1, . . . , 𝜑𝑘} such that any other invariant function 𝑓 can be expressed in terms of the 𝜑𝑖’s.
As Weyl pointed out, the term function is here to be taken in its broadest sense.

The hard work carried out in [72, 60, 73, 5] made it possible to obtain minimal polynomial functional
bases (in the sense that any subset is no longer a functional basis), in the case of 𝑛S2(R3). Their
cardinals are given in Table 1 (minimality was obtained in [53]).

Cardinal 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
Mininimal

integrity basis
3𝑛 + 4

(︂
𝑛

2

)︂
+ 7

(︂
𝑛

3

)︂
+ 20

(︂
𝑛

4

)︂
28 84 261 684

+26

(︂
𝑛

5

)︂
+ 10

(︂
𝑛

6

)︂
Mininimal

separating set
3𝑛 + 4

(︂
𝑛

2

)︂
+

(︂
𝑛

3

)︂
=

𝑛(𝑛2 + 17)

6
22 40 65 98

Table 1. Cardinals of minimal integrity bases and minimal polynomial separating
sets for (𝑛S2(R3), SO(3,R)).

If we further aim at reducing the cardinal of a separating set (i.e. a functional basis [75]), we have
to join the standard approach in invariant theory, introducing no longer polynomial invariants but
rational ones, and considering at first the complexification of the group and of its representation. In
that scope, the question then becomes the one of determining a generating set of the field of rational
invariants C(𝑛S2(C3))SO(3,C).

Now, in the complex case, and only in this case (i.e. of an algebraically closed field), such generating
sets are obtained using a separating property of the orbits in general position, thanks to Popov’s
lemma 2.2 [54, p.155]. Indeed, for any complex linear representation (V, 𝐺) of a reductive group, if
one exhibits a finite set {𝑟1, . . . , 𝑟𝑠} of rational invariants and a dense open set X ⊂ V such that, for
all 𝑥𝑥𝑥1,𝑥𝑥𝑥2 ∈ X,

∀𝑖 𝑟𝑖(𝑥𝑥𝑥1) = 𝑟𝑖(𝑥𝑥𝑥2) =⇒ 𝑥𝑥𝑥1,𝑥𝑥𝑥2 belong to the same orbit,
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then we can deduce that the field C(V)𝐺 of rational invariants is generated by {𝑟1, . . . , 𝑟𝑠}. It is
important here to note that such a result ceased to be true in the real case R(V)𝐺 (see Remark 2.10).

Using this approach, we can aim at obtaining an optimal bound for the cardinal of a generating
set of the field C(V)𝐺. This can be achieved when such a field is rational, meaning that it is a purely
transcendental extension of C. In such a case, there exists a finite set 𝑟1, . . . , 𝑟𝑑 of rational invariants
such that

C(V)𝐺 = C(𝑟1, . . . , 𝑟𝑑), 𝑟𝑖 ∈ C(V)𝐺,

where 𝑑 = dim(V)−dim(𝐺) is the transcendence degree of C(V)𝐺 (see [21, Corollary 6.2] for instance).
The question of the rationality of the field C(V)𝐺 is in general a difficult one, both from a theoretical
and from an effective point of view [22]. In the specific case of 𝐺 = SL(2,C) representations, the
rationality was theoretically obtained by Katsylo for all reducible representations [40, 39]. It was then
Maeda [48] who produced an explicit generating set of 6 rational invariants for SL(2,C) representations
on the space of binary octavics.

We present here effective results about the rationality of SO(3,C) representations on the space
𝑛S2(C3) of 𝑛 second order symmetric tensors on C3. From such results, we also obtain effective
rationality for the space 𝑛S4 of 𝑛 quartic forms, endowed with its natural SL(2,C) representation.
In fact, we propose an effective approach of the slice lemma [28, 40], following Maeda’s strategy for
binary octavics [48]:

(1) Compute an explicit minimal integrity basis of octahedral invariants of S2(C3) ;
(2) Construct SO(3,C) rational invariants 𝑡1, . . . , 𝑡9 of S2(C3) ⊕ S2(C3) from this integrity basis;
(3) Find a Zariski open space 𝒵𝑐 in S2(C3) ⊕ S2(C3) so that 𝑡1, . . . , 𝑡9 separate all points in 𝒵𝑐 ;
(4) Propose a generalization to vector space V = 𝑛S2(C3) so to obtain a minimal generating set

𝑡1, . . . , 𝑡𝑑 of C(V)SO(3,C), with 𝑑 = 6𝑛− 3.

Thus, as a first result we will obtain (the tensor expressions for the invariants being detailed in theorem
4.2):

Theorem 1.1. There exists an explicit set of 9 rational invariants {𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑠3, 𝑟4, 𝑟5}
separating SO(3,C) orbits of S2(C3) ⊕ S2(C3) in general position, so that

C(S2(C3) ⊕ S2(C3))SO(3,C) = C(𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑠3, 𝑟4, 𝑟5)

where the number 9 is exactly the transcendence degree of C(S2(C3) ⊕ S2(C3))SO(3,C).

An important fact here is that all such invariants are given using integers as coefficients so that,
when evaluated to real second order symmetric tensors, we obtain real numbers. We will have as a
second result:

Theorem 1.2. The invariant field R(S2(R3)⊕S2(R3))SO(3,R) is rational and generated by the explicit
minimal set of 9 rational invariants 𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑠3, 𝑟4, 𝑟5:

R(S2(R3) ⊕ S2(R3))SO(3,R) = C(𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑠3, 𝑟4, 𝑟5)

These results will be generalized to the SO(3, k) representation on the space 𝑛S2(k3) of 𝑛 second
order symmetric tensors on k3, where k = R or C, the tensor expressions for the invariants being
detailed in theorem 5.1:

Theorem 1.3. The invariant field k(𝑛S2(k3))SO(3,k) is rational and is generated by an explicit minimal
set 𝑟1, . . . , 𝑟𝑑 of 𝑑 = 6𝑛− 3 rational invariants:

k(𝑛S2(k3))SO(3,k) = k(𝑟1, . . . , 𝑟𝑑), k = R or C

where, in the case k = C, 6𝑛− 3 correspond to the transcendence degree of C(𝑛S2(C3))SO(3,C).

Finally, we will exploit an explicit equivariant isomorphism 𝜑−* between the SO(3,C) space 𝑛S2(C3)
and the SL(2,C) space 𝑛S4 of 𝑛 quartic forms on C2 (from the so-called Cartan’s map, see section 6),
so to obtain:

Theorem 1.4. The invariant field C(𝑛S4)
SL(2,C) is rational and generated by a minimal set {𝑟1, . . . , 𝑟𝑑}

of 𝑑 = 5𝑛− 3 rational invariants:

C(𝑛S4)
SL(2,C) = C(𝑟1, . . . , 𝑟𝑑), 𝑟𝑖 = 𝑟𝑖 ∘ 𝜑−*,

where 5𝑛− 3 correspond to the transcendence degree of C(𝑛S4)
SL(2,C).
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Organisation of the paper. We first recall in section 2 some general results about rational invariants
and weak separating sets, closely related in the complex case to a generating set of the field of rational
invariants k(V)𝐺, all this being done in the scope of a linear representation of a reductive group 𝐺. In
section 3 we focus on the standard linear representation of the octahedral group on the space S2(k3) of
second order symmetric tensors on k3, where k = R or C. We then produce a minimal integrity basis
for the octahedral polynomial invariants on the space S2(k3), where such a space decomposes into two
octahedral stable subspaces: the one Diag2 of diagonal tensors and its complement Adiag2. Such an
octahedral integrity basis will be given in tensorial form, using a fourth order covariant projector and
contraction operations.

Thanks to the use of the generalized cross product (definition 4.1), we then produce a weak sepa-
rating set of 9 rational invariants for the SO(3,k) space S2(k3)⊕S2(k3) of two second order symmetric
tensors, both valid in the case k = R or C. We then deduce in corollary 4.7 that this weak separating
set is also a generating set of the field of rational invariants C(S2(C3) ⊕ S2(C3))SO(3,C), and corol-
lary 4.8 provides the same result in the real case k = R. We also deduce in section 5 a weak separating
set of 6𝑛− 3 rational invariants for the SO(3, k) space 𝑛S2(k3) (theorem 5.1), so that this defines also
a generating set of the associated field of invariant (corollary 5.3). Finally, all such results obtained
for second order symmetric tensors are used to produce an explicit set of 5𝑛 − 3 rational invariants
of the SL(2,C) space 𝑛S4 of 𝑛 binary quartic forms, equivariant to the SO(3,C) space 𝑛H2(C3) of 𝑛
second order harmonic tensors (symmetric and traceless).

2. Separating sets of an orbit space

Let us consider the field k to be either R or C and (V, 𝐺, 𝜌) a finite dimensional k linear represen-
tation of a group 𝐺, so that

𝜌 : 𝐺 −→ GL(V)

is a group morphism, where GL(V) stands for the group of linear invertible maps of V. This means
that for any 𝑔 ∈ 𝐺, 𝜌(𝑔) is a linear invertible map of V and that

𝜌(𝑔1𝑔2)𝑣𝑣𝑣 = 𝜌(𝑔1) (𝜌(𝑔2)𝑣𝑣𝑣) , 𝜌(𝑒)𝑣𝑣𝑣 = 𝑣𝑣𝑣

for all 𝑔1, 𝑔2 ∈ 𝐺 and 𝑣𝑣𝑣 ∈ V, where 𝑒 is the unit element of 𝐺. For any 𝑣𝑣𝑣 ∈ V its associated orbit is
the set

Orb(𝑣𝑣𝑣) := {𝜌(𝑔)𝑣𝑣𝑣, 𝑔 ∈ 𝐺}
and the orbit space is the set of all orbits.

A important question in effective invariant theory is to obtain a clear description of the associated
orbit space [70], which can be done using k-valued invariant functions, where such functions can be
polynomials, rationals, etc.

Such invariants may be used to get either separating sets or weak separating sets, as defined below.

Definition 2.1 (Separating set). A finite set {𝑠1, . . . , 𝑠𝑝} of k-valued invariant functions is a separating
set if for all 𝑣𝑣𝑣1, 𝑣𝑣𝑣2 in V

∃𝑔 ∈ 𝐺, 𝜌(𝑔)𝑣𝑣𝑣1 = 𝑣𝑣𝑣2 ⇐⇒ ∀𝑘 ∈ {1, . . . , 𝑝} 𝑠𝑘(𝑣𝑣𝑣1) = 𝑠𝑘(𝑣𝑣𝑣2).

Invariant functions do not need to be polynomial invariants. Note that a more general definition is
the one of a separating algebra introduced by Derksen and al [24, 17]. Let us now recall in Theorem 2.2
a theoretical result stating when a separating set is directly given by a finite generating set of the
algebra k[V]𝐺 of polynomial invariants, where

k[V]𝐺 := {𝑝 ∈ k[V], 𝑔 ⋆ p = p, ∀𝑔 ∈ 𝐺, 𝑣𝑣𝑣 ∈ V} , (𝑔 ⋆ p)(𝑣𝑣𝑣) := p(𝜌(𝑔−1)𝑣𝑣𝑣).

Theorem 2.2. Suppose that either

(a) 𝐺 is a finite group and k = R or C;
(b) 𝐺 is a compact Lie group and k = R.
Then any finite generating set {𝐼1, . . . , 𝐼𝑝} of the algebra k[V]𝐺 of polynomial invariants is a separating
set.

In case (𝑎) the proof follows from [23, Lemma 2.1], while the proof of case (𝑏) is given in [1,
Appendix C]. Note that in both cases, a finite generating set of k[V]𝐺, also known as an integrity
basis [74], always exists from Hilbert’s finiteness theorem [36]. In the case of the real vector space
V = 𝑛S2(R3) and the compact Lie group 𝐺 = SO(3,R), explicit computations of minimal integrity
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bases were obtained in the 1960’s by Smith [62], where the cardinals of such minimal integrity bases
are those of table 1.

In the case of complex representations of a linearly reductive group, such as SL(2,C), one also
defines weak separating sets:

Definition 2.3 (Weak separating set). Given some dense open set U ⊂ V, a finite set {𝑠1, . . . , 𝑠𝑝} of
k-valued invariant functions is a weak separating set if, for all 𝑣𝑣𝑣1, 𝑣𝑣𝑣2 in U

∃𝑔 ∈ 𝐺, 𝜌(𝑔)𝑣𝑣𝑣1 = 𝑣𝑣𝑣2 ⇐⇒ ∀𝑘 ∈ {1, . . . , 𝑝} 𝑠𝑘(𝑣𝑣𝑣1) = 𝑠𝑘(𝑣𝑣𝑣2).

Remark 2.4. In the scope of invariant theory, it is classical to consider a dense open set defined in the
Zariski topology, where closed sets are defined as

𝒵 := {𝑣𝑣𝑣 ∈ 𝑉, p(𝑣𝑣𝑣) = 0, ∀p ∈ 𝑆} , 𝑆 ⊂ k[V].

Every open Zariski set is the complementary set 𝒵𝑐 = V ∖ 𝒵 of a closed set 𝒵, which is open and
dense for the classical topology on V.

As a corollary of [54, Proposition 3.4] and theorem 2.5, for any complex representation V of 𝐺 =
SO(3,C) or 𝐺 = SL(2,C), an integrity basis of the invariant algebra C[V]𝐺 is also a weak separating
set. Nevertheless, its cardinal can be very big: for instance, a minimal integrity basis of the SL(2,C)
space of binary decimic is given by 106 invariants [10].

One question is then to obtain a weak separating set of low cardinal. An interesting approach is to
consider rational invariants instead of polynomial ones.

Let k(V) be the field of quotients of the coordinate ring k[V],

k(V) =

{︂
p

q
, p, q ∈ k[V]

}︂
.

Then we define k(V)𝐺 to be the field of rational invariants

k(V)𝐺 := {r ∈ k(V), 𝑔 ⋆ r = r, ∀𝑔 ∈ 𝐺, 𝑣𝑣𝑣 ∈ V} , (𝑔 ⋆ r)(𝑣𝑣𝑣) := r(𝜌(𝑔−1)𝑣𝑣𝑣).

For the groups and fields under consideration, we have in particular:

Theorem 2.5. Suppose (V, 𝐺, 𝜌) is a finite dimensional linear representation of 𝐺 = SL(2,C),
SO(3,C) or SO(3,R), where the ground field is either k = R or C. Then the field of rational in-
variants k(V)𝐺 is the quotient field of k[V]𝐺, meaning that for any rational invariant r ∈ k(V)𝐺 we
can write

r =
p

q
, p, q ∈ k[V]𝐺.

Proof. This proof follows the one of Popov [54, Theorem 3.3] and Brion [8], initially stated in the
scope of an action of a group on some algebraic variety, defined on an algebraically closed field.

Let us consider a given rational invariant r ∈ k(V)𝐺 and write r = p/q with p, q ∈ k[V] relatively
prime. We thus have

𝑔 ⋆ r =
𝑔 ⋆ p

𝑔 ⋆ q
=

p

q
, ∀𝑔 ∈ 𝐺

so that 𝑔 ⋆ q = 𝛼(𝑔)q, where 𝛼 : 𝐺 → k* is a group morphism. In case 𝐺 = SL(2,C), SO(3,C)
or SO(3,R) and k = R or C, 𝛼 defines a one dimensional representation of 𝐺, and the only one
dimensional representation is given by the trivial one (see [9] for instance), so that 𝛼 ≡ 1, which
conclude the proof. �

Remark 2.6. In the case of a finite group, the result still holds (a proof is for instance given in [8,
Proposition 1], also valid in the real case).

Finally, Katsylo was able to solve the rationality problem [22] for 𝐺 = SL(2,C), so that we get
(theoretically) an optimal generating set for the field of rational invariants:

Theorem 2.7 (Katsylo [39]). Let (V, SL(2,C)) be a finite dimensional complex linear representation

of the special linear group SL(2,C). Then the field of rational invariants C(V)SL(2,C) is a purely
transcendental extension of C, so there exists rational invariants 𝑟1, . . . , 𝑟𝑑 such that

C(V)SL(2,C) = C(𝑟1, . . . , 𝑟𝑑), 𝑑 = dim(V) − 3.
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Remark 2.8. The number 𝑑 = dim(V) − 3 is here the transcendental degree of the field C(V)SL(2,C),
which is given by (see [21, Corollary 6.2] for instance):

𝑑 = dim(V) − dim(𝐺).

As SL(2,C) is the universal covering space of SO(3,C) [66], we also deduce the same theoretical
results for SO(3,C) reducible representations.

To conclude this section, we recall an important result from Popov [54, Lemma 2.2] which connects
a finite generating set of the quotient field k(V)𝐺 and a weak generating set:

Lemma 2.9. Let k be an algebraically closed field. If {𝑟1, . . . , 𝑟𝑝} is a finite weak generating set of
rational invariants, then {𝑟1, . . . , 𝑟𝑝} generates the field k(V)𝐺.

Remark 2.10. In the real case, Lemma 2.9 is no longer true: taking 𝐺 = {𝐼𝑑} the trivial group and
V = R, the field of invariant is simply given by R(V) ≃ R(𝑥). The polynomial invariant p(𝑥) := 𝑥3

separates all the orbits but is not a generator of R(V).

3. Octahedral integrity basis of one second order symmetric tensor

Let us consider the standard octahedral linear representation on the space S2(k3) of second order
symmetric tensors on k3, with k = R or C. Here, the space k3 is endowed with the standard non
degenerate quadratic form

q(𝑥𝑥𝑥) := 𝑥2 + 𝑦2 + 𝑧2, 𝑥𝑥𝑥 = (𝑥, 𝑦, 𝑧) ∈ k3

Consider now an orthonormal basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3) of k3, with respect to the quadratic form q. The
octahedral group O+ is defined as:

O+ := {𝑔 ∈ GL(3, k), 𝑔𝑒𝑒𝑒𝑖 = ±𝑒𝑒𝑒𝑗 , det(𝑔) = 1} .

It is a finite group of order 24 and is generated by⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ ,

⎛⎝0 −1 0
1 0 0
0 0 1

⎞⎠ .

The space S2(k3) is the space of second order (covariant) symmetric tensors

S2(k3) :=
{︀
a ∈ (k3)* ⊗ (k3)*, a(𝑥𝑥𝑥1,𝑥𝑥𝑥2) = a(𝑥𝑥𝑥2,𝑥𝑥𝑥1), ∀𝑥𝑥𝑥1,𝑥𝑥𝑥2 ∈ k3

}︀
.

In fact, using quadratic form q, there is an isomorphism between (k3)* and k3, so, from now on, we
do not distinguish between covariant and contravariant tensors, and we write

a = 𝑎𝑖𝑗𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑗

where Einstein convention on repeated indices has been used.
The standard O+ representation on the space S2(k3) is now given by

(1) 𝑔 ⋆ a := 𝑔a𝑔𝑡

with 𝑔𝑡 the transpose matrix of 𝑔, and where matrix product is used, so that the symmetric tensor a
is identified with a 3 × 3 matrix.

A minimal integrity basis of the invariant algebra R[S2(R3)]O
+

has already been obtained in [61],
but we propose here to write such an integrity basis in a tensorial intrinsic form, both in the real and
in the complex case.

To do so, we next provide the Hilbert series and a homogeneous system of parameters of this
algebra. From this, we deduce a degree bound for an integrity basis (see Lemma 3.3), and finally
use Macaulay software [34] to check the minimality. Note that such a strategy to obtain en explicit
integrity basis in the case of a finite group is close to the one proposed in [67] (see also [10, 11] for
a similar strategy to compute integrity basis in classical invariant theory). Let us now provide the
details.

For any graded algebra 𝒜 = ⊕𝑘𝒜𝑘, its associated Hilbert series is the formal series

𝐻𝒜(𝑧) =
∑︁
𝑘≥0

dim(𝒜𝑘)𝑧𝑘.
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In the case of invariant algebra of a finite group, there is an a priori way to compute such Hilbert series

(see [67, Theorem 2.2.1] for instance). In our specific case, Hilbert series 𝐻 = 𝐻octa of k[S2(k3)]O+
is

obtained by direct computation:

(2) 𝐻octa(𝑧) =
1 + 𝑧3 + 𝑧4 + 𝑧5 + 𝑧6 + 𝑧9

(1 − 𝑧)(1 − 𝑧2)2(1 − 𝑧3)2(1 − 𝑧4)
.

To go one step further, let us introduce the so-called homogeneous system of parameters [67] of a
graded k algebra 𝒜 = ⊕𝑘𝒜𝑘.

Definition 3.1. A family 𝜃1, . . . , 𝜃𝑠 is a homogeneous system of parameters of a graded algebra 𝒜 if:

(1) Each 𝜃𝑖 belongs to some homogeneous space 𝒜𝑘𝑖 of 𝒜.
(2) The family 𝜃1, . . . , 𝜃𝑠 is algebraically free.
(3) The algebra 𝒜 is a k[𝜃1, . . . , 𝜃𝑠]-module of finite type.

An explicit determination of a homogeneous system of parameters is in general not straightfor-
ward [19, 41, 12], but in case of a finite group, and thus the group O, the following result holds [64,
Proposition 5.3.7]:

Lemma 3.2. A familly 𝜃1, . . . , 𝜃𝑠 of homogeneous invariants form a system of parameters of the

invariant ring k[S2(k3)]O+
(k = R or C) if and only if 𝑠 = 6 and{︀
a ∈ S2(C3), 𝜃1(a) = . . . = 𝜃𝑠(a) = 0

}︀
= {0}

Finally, recall that a graded algebra 𝒜 is said to be Cohen–Macaulay if for any homogeneous
system of parameters 𝜃1, . . . , 𝜃𝑠, the algebra 𝒜 is a free k[𝜃1, . . . , 𝜃𝑠]–module, so that the following
lemma holds [67, Proposition 2.3.6].

Lemma 3.3. Let 𝒜 be some Cohen-Macaulay algebra with a homogeneous system of parameters
𝜃1, . . . , 𝜃𝑠. Then the Hilbert series of 𝒜 is given by

𝐻(𝑧) =
𝑧𝑒1 + . . . + 𝑧𝑒𝑟

(1 − 𝑧𝑑1) . . . (1 − 𝑧𝑑𝑠)

where 𝑑𝑖 = deg(𝜃𝑖) and 𝑒𝑗 ∈ N. Furthermore, a degree bound for a generating family of 𝒜 is
max(𝑑𝑖, 𝑒𝑗).

General statements having been recalled, let us now consider the invariant algebra of k[S2(k3)]O+
.

Following Smith and Kiral [61], first perform the decomposition:

S2(k3) = Diag2 ⊕ Adiag2

where

(3) Diag2 := {𝜆1e11 + 𝜆2e22 + 𝜆3e33} ⊂ S2(k3), e𝑖𝑖 := 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑖

and

(4) Adiag2 := {𝛼1e23 + 𝛼2e13 + 𝛼3e12} ⊂ S2(k3), e𝑖𝑗 := 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑗 + 𝑒𝑒𝑒𝑗 ⊗ 𝑒𝑒𝑒𝑖 (𝑖 ̸= 𝑗)

are O+ stable.

Remark 3.4. Using the well–known isomorphism between O+ and the permutation group S4 of four
elements [27], we can check from S4 character table that Adiag2 is the irreducible (standard) repre-
sentation 𝜒std corresponding to Young’stable

when Diag2 = 𝜒triv ⊕ 𝜒(2,2) is reducible, with 𝜒triv the trivial representation and 𝜒(2,2) the irreducible
S4 representation corresponding to square Young’stable
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Let us define the so-called out-of-diagonal octahedral fourth order projector tensor P [57, 50, 26, 49]:

(5) P =
1

2

∑︁
𝑖<𝑗

e𝑖𝑗 ⊗ e𝑖𝑗 .

The projection of S2(k3) onto the vector space Adiag2 parallel to Diag2 is given by P. More specifically,
for any c = c𝑖𝑗𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑗 ∈ S2(k3) we have

(6) P : c =

⎛⎝ 0 c12 c13
c12 0 c23
c13 c23 0

⎞⎠ , and c−P : c =

⎛⎝c11 0 0
0 c22 0
0 0 c33

⎞⎠
where ” : ” stands for the double contraction (P : c)𝑖𝑗 := 𝑃𝑖𝑗𝑝𝑞𝑐𝑝𝑞.

A minimal integrity basis of k[S2(k3)]O+
is provided in the next result.

Theorem 3.5. Let a ∈ S2(k3) and

a1 := P : a ∈ Adiag2, a2 := a−P : a ∈ Diag2.

The 9 polynomial invariants

𝐼𝑐1 := tra, 𝐼𝑐2 := tr(a22), 𝐼𝑐3 := tr(a32),

𝐽𝑐
2 := tr(a21), 𝐽𝑐

3 = tr(a31), 𝐽𝑐
4 = tr

(︀
(P : a21)

2
)︀
,

𝐾𝑐
3 = tr

(︀
a21a2

)︀
, 𝐾𝑐

4 = tr((a1a2)
2), 𝐼𝑐5 = tr(a1a2a1(P : a21))

constitute a minimal integrity basis of k[S2(k3)]O+
.

A proof of this theorem relies on two essential results: one about an explicit homogeneous system of
parameters (corollary 3.6), and the other one related to a degree bound given by Lemma 3.3 deduced

from the Cohen–Macauleyness of C[S2(k3)]O+
.

By a direct computation we first deduce from Lemma 3.2:

Corollary 3.6. The family 𝐼𝑐1, 𝐼𝑐2, 𝐼𝑐3, 𝐽𝑐
2, 𝐽𝑐

3, 𝐽𝑐
4 is a homogeneous system of parameters of the

invariant algebra k[S2(k3)]O.

Proof of Theorem 3.5. From corollary 3.6, Lemma 3.3 and Hilbert series (2), we know that there

exists a generating set of the invariant algebra 𝒜 = k[S2(k3)]O+
with maximum degree 9. Taking now

the following algebra,

ℬ := k[𝐼𝑐1, 𝐼
𝑐
2, 𝐼

𝑐
3, 𝐽

𝑐
2 , 𝐽

𝑐
3 , 𝐽

𝑐
4 ,𝐾

𝑐
3,𝐾

𝑐
4, 𝐼

𝑐
5] = ⊕𝑘ℬ𝑘 ⊂ 𝒜

where ℬ𝑘 are homogeneous spaces. We check by direct computation (done using Macaulay2 [34]
software) that for all 𝑘 ≤ 9 we have dim(ℬ𝑘) = dim(𝒜𝑘), where we have from Hilbert series (2)

𝐻octa(𝑧) = 𝐻𝒜(𝑧) = 1 + 𝑧 + 3𝑧2 + 6𝑧3 + 11𝑧4 + 18𝑧5 + 32𝑧6 + 48𝑧7 + 75𝑧8 + 111𝑧9 + . . .

By induction on the degree 𝑘 of the homogeneous space ℬ𝑘, we also check that any subfamily of
{𝐼𝑐1, . . . , 𝐼𝑐5} is no longer a generating set of 𝒜, so we can conclude. �

Note here that the invariants 𝐽𝑐
2 , 𝐽

𝑐
3 , 𝐽

𝑐
4 form a homogeneous system of parameter of the invariant

algebra k[Adiag2]
O+

(using [64, Proposition 5.3.7] once again), with Hilbert series given by:

𝐻Adiag2(𝑧) =
1

(1 − 𝑧2)(1 − 𝑧3)(1 − 𝑧4)
.

We finally directly deduce from Remark 2.6:

Corollary 3.7. The algebra of invariant k[Adiag2]
O is generated by 𝐽𝑐

2 , 𝐽
𝑐
3 , 𝐽

𝑐
4, as well as the field of

invariant k(Adiag2)
O+

, which is rational:

k(Adiag2)
O = k(𝐽𝑐

2 , 𝐽
𝑐
3 , 𝐽

𝑐
4).
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4. Rational invariant field of two symmetric second order tensors

One still considers the canonical quadratic form q(𝑥𝑥𝑥) := 𝑥2 +𝑦2 +𝑧2 on k3, k = R ot C, and defines
the associated orthogonal group of linear transformation preserving q:

O(3,k) :=
{︀
𝑔 ∈ GL(3, k), 𝑔𝑡𝑔 = 𝐼

}︀
Then SO(3,k) is the subgroup of elements 𝑔 ∈ O(3,k) such that det(𝑔) = 1.

The diagonal representation 𝜌 of SO(3,k) on S2(k3) ⊕ S2(k3) is given by

𝜌(𝑔)(a,b) := (𝑔 ⋆ a, 𝑔 ⋆ b) = (𝑔a𝑔𝑡, 𝑔b𝑔𝑡)

and we consider the associated invariant algebra k[S2(C3) ⊕ S2(C3)]SO(3,C) with its quotient field

corresponding to its field of rational invariants C(S2(C3) ⊕ S2(C3))SO(3,C) (see Theorem 2.5).
From Katsylo’s result (Theorem 2.7), we know that there exist rational invariants r1, . . . , r9 such

that

C(S2(C3) ⊕ S2(C3))SO(3,C) = C(r1, . . . , r9)

and we address the question of finding explicit sets of such invariants, for the complex case as well as
for the real case. We already know a minimal integrity basis of k[S2(k3)⊕ S2(k3)]SO(3,k), given by the
10 polynomial invariants (see [65] for instance):

𝐼1 = tr(a), 𝐽1 = tr(b), 𝐼2 = tr(a2), 𝐽2 = tr(b2), 𝐾2 = tr(ab)

𝐼3 = tr(a3), 𝐽3 = tr(b3), 𝐾3 = tr(a2b), 𝐿3 = tr(ab2), 𝐼4 = tr(a2b2).

Before we produce an explicit generating set of rational invariants, we need to introduce the gen-
eralized cross product defined for totally symmetric tensors [52]. Recall here that a totally symmetric
tensor of order 𝑝 is a 𝑝 linear form

S : (𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑝) ∈ (k3)𝑝 ↦→ S(𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑝)

which is invariant under any permutation of (𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑝).

Definition 4.1 (Generalized cross product). Let 𝜀𝜀𝜀 be the Levi-Civita symbol in k3 and A ∈ S𝑝(k3),
B ∈ S𝑞(k3) be totally symmetric tensors. Then the totally symmetric tensor A×B, of order 𝑝+𝑞−1,
is defined by

A×B := (B · 𝜀𝜀𝜀 ·A)𝑠 ∈ S𝑝+𝑞−1(k3)
where ()𝑠 is the total symmetrization and · means the contraction over one subscript.

In coordinates, this gives for two second order symmetric tensors a,b ∈ S2(k3)

(a× b)𝑖𝑗𝑘 =
1

6

∑︁
𝜎∈S3

𝑏𝜎(𝑖)𝑝𝜀𝑝𝜎(𝑗)𝑞𝑎𝑞𝜎(𝑘)

=
1

6

(︀
𝑏𝑖𝑝𝜀𝑝𝑗𝑞𝑎𝑞𝑘 + 𝑏𝑖𝑝𝜀𝑝𝑘𝑞𝑎𝑞𝑗 + 𝑏𝑗𝑝𝜀𝑝𝑖𝑞𝑎𝑞𝑘 + 𝑏𝑗𝑝𝜀𝑝𝑘𝑞𝑎𝑞𝑖 + 𝑏𝑘𝑝𝜀𝑝𝑖𝑞𝑎𝑞𝑗 + 𝑏𝑘𝑝𝜀𝑝𝑗𝑞𝑎𝑞𝑖

)︀
,

where S3 is the permutation group of three elements.
We obtain now:

Theorem 4.2. For a pair (a,b) ∈ S2(k3) ⊕ S2(k3), let Ca be the fourth order tensor

(7) Ca := (a2 × a) · (a2 × a)

and c,d the two second order symmetric tensors

(8) c := Ca :b ∈ S2(k3), d := Ca : c2 ∈ S2(k3).

Then, the set of 9 rational invariants

𝐼1 = tra, 𝐽1 = trb, 𝐾2 = tr(ab), 𝐾3 = tr(a2b),

𝑟2 =
tr(c2)

‖a2 × a‖4
, 𝑟3 =

tr(c3)

‖a2 × a‖6
, 𝑠3 =

tr(ac2)

‖a2 × a‖4
, 𝑟4 =

tr(d2)

‖a2 × a‖12
, 𝑟5 =

tr(ad2)

‖a2 × a‖12

is a weak separating set of the SO(3, k) space S2(k3) ⊕ S2(k3).
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Remark 4.3. In fact, the second order symmetric tensors c and d defined by (8) and the fourth order
tensor Ca given by (7) are polynomial covariants of (a,b) ∈ S2(k3) ⊕ S2(k3), meaning 𝑖) that their
coordinates are polynomial expression in (a,b) coordinates and 𝑖𝑖) that

c(𝑔a𝑔𝑡, 𝑔b𝑔𝑡) = 𝑔c(a,b)𝑔𝑡, C𝑔a𝑔𝑡 = 𝑔 ⋆Ca,

with

(𝑔 ⋆Ca)(𝑥𝑥𝑥1,𝑥𝑥𝑥2,𝑥𝑥𝑥3,𝑥𝑥𝑥4) := Ca(𝑔−1𝑥𝑥𝑥1, 𝑔
−1𝑥𝑥𝑥2, 𝑔

−1𝑥𝑥𝑥3, 𝑔
−1𝑥𝑥𝑥4).

To obtain Theorem 4.2, we first explicitly define some Zariski open set connected to the announced
weak separating set. For any (a,b) ∈ S2(k3) ⊕ S2(k3), one defines

̂︀c :=
1

3
‖a2 × a‖2b−Ca :b,

̂︀d :=
1

3
‖a2 × a‖2 (Ca :b)2 −Ca :

(︁
(Ca :b)2

)︁
,

and considers the Zariski open set

(9) 𝒵𝑐 :=
{︁

(a,b) ∈ S2(k3) ⊕ S2(k3), a2 × a ̸= 0 and ̂︀d2 × ̂︀d ̸= 0
}︁
.

As a first step we have:

Lemma 4.4. Any symmetric second order tensor a ∈ S2(k3) has three distinct eigenvalues if and
only if

(10) a2 × a ̸= 0.

Proof. Consider the invariant given by the squared norm (which is indeed a norm in the real case)

‖a2 × a‖2 := (a2 × a)𝑖𝑗𝑘(a2 × a)𝑖𝑗𝑘.

Now, taking pa(𝑋) to be the polynomial characteristic of a, we check directly that 6‖a2 × a‖2 is the
square of the discriminant of pa(𝑋), so we can conclude. �

As a second step, let us point out that covariant Ca given by (7) is strongly linked to the octahedral
projector (5). Indeed, by direct computation we have:

Lemma 4.5. Let a =
∑︀

𝑖 𝜆𝑖𝑒𝑒𝑒𝑖⊗𝑒𝑒𝑒𝑖 ∈ Diag2, b ∈ S2(k3) and fourth order tensor P defined by (5). We
have

(11) ‖a2 × a‖2 = Π𝑖<𝑗(𝜆𝑖 − 𝜆𝑗)
2, Ca = (a2 × a) · (a2 × a) =

1

3
‖a2 × a‖2P

and,

c = Ca : b =
1

3
‖a2 × a‖2

⎛⎝ 0 𝑏12 𝑏13
𝑏12 0 𝑏23
𝑏13 𝑏23 0,

⎞⎠ ,

̂︀c =
1

3
‖a2 × a‖2(b−P : b) =

1

3
‖a2 × a‖2

⎛⎝𝑏11 0 0
0 𝑏22 0
0 0 𝑏33,

⎞⎠ ,

̂︀d =
1

27
‖a2 × a‖6(c2 −P : c2) =

1

27
‖a2 × a‖6

⎛⎝𝑏213 + 𝑏212 0 0
0 𝑏223 + 𝑏212 0
0 0 𝑏213 + 𝑏223

⎞⎠ .

Proof of Theorem 4.2. Let (a,b) ∈ S2(k3) ⊕ S2(k3) and (̃︀a, ̃︀b) ∈ S2(k3) ⊕ S2(k3) in the Zariski open
set 𝒵𝑐 defined by (9) such that

𝐼1(a,b) = 𝐼1(̃︀a, ̃︀b), . . . ,𝐾2(a,b) = 𝐾2(̃︀a, ̃︀b), . . . , 𝑟5(a,b) = 𝑟5(̃︀a, ̃︀b).

From lemma 4.4, we can always suppose that

a =

⎛⎝𝜆1 0 0
0 𝜆2 0
0 0 𝜆3,

⎞⎠ ∈ Diag2, ̃︀a =

⎛⎜⎝̃︀𝜆1 0 0

0 ̃︀𝜆2 0

0 0 ̃︀𝜆3,

⎞⎟⎠Diag2, tr(a) = tr(̃︀a).
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Thus, from lemma 4.5 we have P : a = a and P : ̃︀a = ̃︀a with projector (5) equal to

P =
3Ca

‖a2 × a‖2
=

3C̃︀a
‖̃︀a2 × ̃︀a‖2 .

We deduce that

𝑟𝑘(a,b) = 𝐽𝑐
𝑘(P : b) = 𝐽𝑐

𝑘(P : ̃︀b), 𝑘 = 1, 2, 3,

with octahedral invariants 𝐽𝑐
𝑘 defined in theorem 3.5. Thus, from theorem 2.2, we can write P : ̃︀b =

𝛾 ⋆ (P : b) for some 𝛾 ∈ O.
As Diag2 is a stable O space, both 𝛾 ⋆ a and 𝛾 ⋆ ̃︀a are still in Diag2, so we can now suppose that

b1 := P : b = P : ̃︀b =
∑︁
𝑖 ̸=𝑗

𝑏𝑖𝑗𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑗 ∈ S2(k3)

and we can write from lemma 4.5

𝑠3(a,b) = tr(a(b1)
2) = tr(̃︀a(b1)

2) = 𝛼,

𝑟5(a,b) = tr(a(h1)
2) = tr(̃︀a(h1)

2) = 𝛽, h1 := P : (b2
1)

so that 𝜆𝑖, ̃︀𝜆𝑗 are solutions of the linear system

(𝒮) :

{︃
(𝑏212 − 𝑏223)𝑥 + (𝑏212 − 𝑏213)𝑦 = 𝛼− (𝑏12𝑏13 − 𝑏223)𝑡

𝑏213(𝑏
2
23 − 𝑏212)𝑥 + 𝑏223(𝑏

2
13 − 𝑏212)𝑦 = 𝛽 − 𝑏212(𝑏

2
13 + 𝑏223)𝑡

, 𝑥 + 𝑦 + 𝑧 = 𝑡

where (𝒮) has non-zero determinant (𝑏213 − 𝑏212)(𝑏
2
12 − 𝑏223)(𝑏

2
23 − 𝑏213). Indeed, the eigenvalues of

̂︀d =
1

27
‖a2 × a‖6(b2

1 −P : (b2
1))

are all distincts (see Lemma 4.5). We thus deduce that a = ̃︀a.
Finally, let

b =

⎛⎝𝜇1 0 0
0 𝜇2 0
0 0 𝜇3,

⎞⎠ + P :b, ̃︀b =

⎛⎝̃︀𝜇1 0 0
0 ̃︀𝜇2 0
0 0 ̃︀𝜇3,

⎞⎠ + P :b, 𝑡′ := tr(b) = tr(̃︀b).

From 𝐾2(a,b) = tr(ab) = tr(ã︀b) = 𝛼′ and 𝐾3(a,b) = tr(a2b) = tr(a2̃︀b) = 𝛽′ we deduce that 𝜇𝑖, ̃︀𝜇𝑗

are solutions of the linear system

(12) (𝒮 ′) :

{︃
(𝜆1 − 𝜆3)𝑥 + (𝜆2 − 𝜆3)𝑦 = 𝛼′ − 𝜆3𝑡

′

(𝜆2
1 − 𝜆2

3)𝑥 + (𝜆2
2 − 𝜆2

3)𝑦 = 𝛽′ − 𝜆2
3𝑡

′ , 𝑥 + 𝑦 + 𝑧 = 𝑡′

where (𝒮 ′) has non-vanishing determinant (see (11)), so that b = ̃︀b, which concludes the proof. �

Remark 4.6. When taking the standard representation of SO(3,k) on S2(k3) (see (1)), we know that
the vector space Diag2 is in fact a linear slice [39, 48] for generic tensors (the genericity condition
being of course useless for k = R): for any a ∈ S2(k3) with three distinct eigenvalues, there exists
𝑔 ∈ SO(3, k) such that 𝑔 ⋆ a ∈ Diag2.

From lemma 2.9 we directly have:
Corollary 4.7. The invariant field C(S2(C3)⊕S2(C3))SO(3,C) is rational and generated by the minimal
set {𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑠3} of 9 rational invariants given in Theorem 4.2:

C(S2(C3) ⊕ S2(C3))SO(3,C) = C(𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑠3).

A remarkable fact is that all the rational invariants given by Theorem 4.2 are such that

r(𝑣𝑣𝑣) ∈ R(S2(R3) ⊕ S2(R3)), ∀𝑣𝑣𝑣 ∈ S2(R3) ⊕ S2(R3).

Following the proof of [51, Lemme 6.14] we thus get:

Corollary 4.8. The invariant field R(S2(R3)⊕S2(R3))SO(3,R) is rational and generated by the minimal
set {𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑠3} of 9 rational invariants given in Theorem 4.2:

R(S2(R3) ⊕ S2(R3))SO(3,R) = R(𝐼1, 𝐽1,𝐾2,𝐾3, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑠3).
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5. Rational invariants of 𝑛 symmetric second order tensors

Using the results of previous section leads to a SO(3, k) weak separating set of 𝑛S2(k3) (𝑛 ≥ 3),
where we consider the standard diagonal representation. Recall that the cross product is given by
Definition 4.1 and that the notations · and : stand for contractions, respectively over one subscript
and over two subscripts.

Theorem 5.1. For (a,b, c1, . . . , c𝑘) ∈ 𝑛S2(k3) (𝑛 ≥ 3), let Ca be the fourth order tensor

Ca = (a2 × a) · (a2 × a)

and c,d the two second order symmetric tensors

c := Ca :b ∈ S2(k3), d := Ca : c2 ∈ S2(k3).
Then the set of 6𝑛− 3 rational invariants

𝐼1 = tr(a), 𝐽1 = tr(b), 𝐾2 = tr(ab), 𝐾3 = tr(a2b), 𝐼1,𝑘 = tr(c𝑘),

𝐼2,𝑘 = tr(ac𝑘), 𝐽2,𝑘 = tr(bc𝑘), 𝐼3,𝑘 = tr(a2c𝑘) 𝐽3,𝑘 = tr(abc𝑘), 𝐼5,𝑘 = tr((ab− ba)2c𝑘),

𝑟2 =
tr(c2)

‖a2 × a‖4
, 𝑟3 =

tr(c3)

‖a2 × a‖6
, 𝑟4 =

tr(d2)

‖a2 × a‖12
, 𝑠3 =

tr(ac2)

‖a2 × a‖4
, 𝑟5 =

tr(ad2)

‖a2 × a‖12

is a weak separating set of the SO(3, k) space 𝑛S2(k3), with associated Zariski open set 𝒵𝑐 ⊕ (𝑛− 2)S2(k3) ,
where 𝒵𝑐 is defined by (9).

Before we get to the proof, we need:

Lemma 5.2. Let (a,b) in the Zariski open set 𝒵𝑐 defined by (9). Then a,b do not share any common
eigenvector and (q,a,b, (ab)𝑠, [a,b]2) is a basis of S2(k3).
Proof. Let us suppose that a and b have one common eigenvector, so we can write

a =

⎛⎝𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞⎠ , b =

⎛⎝𝑏11 0 0
0 𝑏22 𝑏23
0 𝑏23 𝑏33

⎞⎠
and we have a non trivial element 𝑔 in the isotropy group of (a,b)

𝑔 :=

⎛⎝1 0 0
0 −1 0
0 0 −1

⎞⎠ .

Then we obtain from Lemma 4.5

̂︀d = 𝑘‖a2 × a‖6
⎛⎝0 0 0

0 𝑏223 0
0 0 𝑏223

⎞⎠ ⇒ ̂︀d2 × ̂︀d = 0

so that (a,b) /∈ 𝒵𝑐. We deduce that any (a,b) ∈ 𝒵𝑐 has a trivial isotropy group (otherwise a and b
have a common eigenvector), so we can conclude using [18, Lemma 4.4]. �

Proof of Theorem 5.1. Let us consider (a,b, c1, . . . , c𝑘) and (̃︀a, ̃︀b,̃︀c1, . . . ,̃︀c𝑘) in the open Zariski set
𝒵2
𝑐⊕(𝑛−2)S2(k3) so that all the rational invariants from the theorem statement have equal evaluations.
First of all, from Theorem 4.2 we obtain some 𝑔 ∈ SO(3,k) such that (a,b) = (𝑔 ⋆ a, 𝑔 ⋆b), and we

can suppose from now on that (a,b) = (̃︀a, ̃︀b).
Furthermore, from corollary 4.4 we can suppose that

a = ̃︀a =

⎛⎝𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞⎠ .

Finally, as invariants 𝐼1,𝑘, 𝐼2,𝑘, 𝐽2,𝑘, 𝐼3,𝑘, 𝐽3,𝑘, 𝐼5,𝑘 give linear projections of any tensor c𝑘 ∈ S2(k3) on
(q,a,b, (ab)𝑠, [a,b]2), we conclude using Lemma 5.2. �

As from the previous results with the SO(3, k) space S2(k3) ⊕ S2(k3) (Corollary 4.7 and 4.8), we
can deduce:

Corollary 5.3. The invariant field k(𝑛S2(k3))SO(3,k) is rational and generated by the minimal set of
6𝑛− 3 rational invariants given in Theorem 5.1, for either k = R or k = C.
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6. Rational invariants of 𝑛 quartic binary forms

All results previously stated concern SO(3,k) tensor spaces with k either R or C. Concerning
binary forms, Katsylo has obtained the rationality of all SL(2,C) representations [40, 39]. Maeda has
explicited generators for the SL(2,C)-invariant field of binary octavics [48].

Let us now address the question of effective rationality of SL(2,C) spaces of quartic forms. We give
in corollary 6.1 a minimal set of generators for the SL(2,C)-invariant field of 𝑛 binary quartics.

First define S𝑛 to be the complex vector space of 𝑛th degree binary forms

f(𝜉𝜉𝜉) = 𝑎0𝑢
𝑛 + 𝑎1𝑢

𝑛−1𝑣 + . . . + 𝑎𝑛𝑣
𝑛, 𝜉𝜉𝜉 := (𝑢, 𝑣) ∈ C2, 𝑎𝑖 ∈ C.

Such a space is naturally endowed with the SL(2,C) representation given by

(𝛾 ⋆ f)(𝜉𝜉𝜉) := f(𝛾−1𝜉𝜉𝜉), 𝛾 ∈ SL(2,C).

There is a deep connection between SO(3,C) and its universal cover SL(2,C), so that the SL(2,C) rep-
resentation on the space S2𝑛 of 2𝑛th degree binary forms is equivariant to the SO(3,C) representation
on the space of 𝑛th order harmonic polynomials (see [18] for more details).

To obtain an explicit equivariant isomorphism, let us first consider the adjoint representation Ad
of SL(2,C) on its Lie algebra sl(2,C)

Ad𝛾(𝑚) := 𝛾𝑚𝛾−1.

As it preserves the quadratic form det(𝑚) defined on 𝑚 ∈ sl(2,C), we have

Ad𝛾 ∈ SO(3,C), ∀𝛾 ∈ SL(2,C).

Take now Cartan’s map [14, p. 48],

𝜑 : C2 → C3, (𝑢, 𝑣) ↦→
(︂
𝑢2 + 𝑣2

2
,
𝑢2 − 𝑣2

2𝑖
, 𝑖𝑢𝑣

)︂
which induces an equivariant isomorphism

𝜑* : ℋ2(C3) −→ S4, h ↦→ h ∘ 𝜑

where ℋ2(C3) is the space of degree 2 harmonic polynomials, also isomorphic to the space H2(C3) of
second order symmetric and traceless tensors (see [30] for instance):

a ∈ H2(C3) ↦→ p(𝑥𝑥𝑥) := a(𝑥𝑥𝑥,𝑥𝑥𝑥) ∈ ℋ2(C3), ∆p = 2 tr(a) = 0.

Using the inverse map 𝜑−* of 𝜑*, this defines an equivariant isomorphism

𝜑−* : 𝑛S4 −→ 𝑛H2(C3).

In the case of a single quartic form

f = 𝑎0𝑢
4 + 𝑎1𝑢

3𝑣 + 𝑎2𝑢
2𝑣2 + 𝑎3𝑢𝑣

3 + 𝑎4𝑣
4

we simply have

𝜑−*(f) =
(︁𝑎2

3
+ 𝑎0 + 𝑎4

)︁
e11 +

(︁𝑎2
3

− 𝑎0 − 𝑎4

)︁
e22 −

2𝑎2
3

e33

+ 𝑖(𝑎0 − 𝑎4)e12 −
1

2
𝑖(𝑎1 + 𝑎3)e13 +

1

2
(𝑎1 − 𝑎3)e23

where e𝑖𝑗 are given by (3) and (4).
From Theorem 5.1 we finally get:

Corollary 6.1. Let us consider the representation (𝑛S4,SL(2,C)) for 𝑛 ≥ 2. Then the invariant field

C(𝑛S4)
SL(2,C) is rational and generated by the minimal set of 5𝑛− 3 rational invariants given by

𝐾2 ∘ 𝜑−*, 𝐾3 ∘ 𝜑−*, 𝐼2,𝑘 ∘ 𝜑−*, 𝐽2,𝑘 ∘ 𝜑−*, 𝐼3,𝑘 ∘ 𝜑−* 𝐽3,𝑘 ∘ 𝜑−*, 𝐼5,𝑘 ∘ 𝜑−*,

𝑟2 ∘ 𝜑−*, 𝑟3 ∘ 𝜑−*, 𝑟4 ∘ 𝜑−*, 𝑠3 ∘ 𝜑−*, 𝑟5 ∘ 𝜑−*

where 𝐾2, . . . , 𝑟5 are the rational invariants given in Theorem 5.1.
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7. Conclusion

Considering both the complex k = C and the real k = R cases, we have obtained explicit minimal
separating sets of 6𝑛− 3 rational invariants for the SO(3,k) linear representation on 𝑛 copies of S2(k3)
(k vector spaces second order symmetric tensors, Theorem 5.1). We have shown the rationality of the

invariant field k(𝑛S2(C3))SO(3,k) (Corollary 5.3). Thanks to Cartan map, we have obtained a minimal

set of 5𝑛 − 3 rational invariants for the SL(2,C) invariant field C(𝑛S4)
SL(2,C) of 𝑛 quartic forms

(Corollary 6.1), leading to an explicit version of the theoretical rationality result from Katsylo [39].
A first issue (Theorem 4.2) was that a weak separating set of the SO(3, k) space S2(k3) ⊕ S2(k3)

consists in 9 rational invariants, the rationality of the invariant field C(S2(C3) ⊕ S2(C3))SO(3,C) and

R(S2(R3)⊕S2(R3))SO(3,R) having been obtained as Corollaries 4.7 and 4.8. As a by-product, a minimal

integrity basis of k[S2(k3)]O+
, for orientation preserving octahedral group O+, has been explicited in

Theorem 3.5, and a homogeneous system of parameters of the invariant algebra k[S2(k3)]O has been
provided.
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