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• A modelling intercomparison for NO2 
long-term average concentrations in 
urban area. 

• Different model approaches (CFD, 
Lagrangian, Gaussian, and AI) were 
analysed. 

• The time evolution of NO2 hourly con-
centrations was well estimated by all 
models. 

• Complex models provide quite accurate 
one-month averaged NO2 concentration 
maps. 

• Monthly averages can be reliably esti-
mated through a set of scenario CFD 
simulations.  
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A B S T R A C T   

In the framework of the Forum for Air Quality Modelling in Europe (FAIRMODE), a modelling intercomparison 
exercise for computing NO2 long-term average concentrations in urban districts with a very high spatial reso-
lution was carried out. This exercise was undertaken for a district of Antwerp (Belgium). Air quality data includes 
data recorded in air quality monitoring stations and 73 passive samplers deployed during one-month period in 
2016. The modelling domain was 800 × 800 m2. Nine modelling teams participated in this exercise providing 
results from fifteen different modelling applications based on different kinds of model approaches (CFD – 
Computational Fluid Dynamics-, Lagrangian, Gaussian, and Artificial Intelligence). Some approaches consisted of 
models running the complete one-month period on an hourly basis, but most others used a scenario approach, 
which relies on simulations of scenarios representative of wind conditions combined with post-processing to 
retrieve a one-month average of NO2 concentrations. 

The objective of this study is to evaluate what type of modelling system is better suited to get a good estimate 
of long-term averages in complex urban districts. This is very important for air quality assessment under the 
European ambient air quality directives. The time evolution of NO2 hourly concentrations during a day of 
relative high pollution was rather well estimated by all models. Relative to high resolution spatial distribution of 
one-month NO2 averaged concentrations, Gaussian models were not able to give detailed information, unless 
they include building data and street-canyon parameterizations. The models that account for complex urban 
geometries (i.e. CFD, Lagrangian, and AI models) appear to provide better estimates of the spatial distribution of 
one-month NO2 averages concentrations in the urban canopy. Approaches based on steady CFD-RANS (Reynolds 
Averaged Navier Stokes) model simulations of meteorological scenarios seem to provide good results with similar 
quality to those obtained with an unsteady one-month period CFD-RANS simulations.   

1. Introduction 

Over the past few decades European cities have made significant 
progress in improving air quality to protect human health. Despite 
progress, several cities are still facing acute air pollution episodes, with 
various urban areas frequently exceeding European air quality standards 
and the guidelines established by the World Health Organization (WHO) 
(EEA, 2023). To reduce air pollution levels, particularly in cities where 
the majority of the European population lives, it is essential to define 
effective planning strategies to improve air quality (Rodrigues et al., 
2021; Viana et al., 2020). 

Numerical models have played a fundamental role in this context 
(Vivanco et al., 2021; Borge et al., 2018). Air quality models typically 
cover distinct spatial and temporal scales depending on the purpose of 
the application. For compliance purposes, Chemical Transport Models 
(CTM) have been widely used at the regional scale (Vivanco et al., 2009; 
Martin et al., 2014). However, their calculation grid spacing above 1 km 
does not resolve the high concentration gradients that occur in the vi-
cinity of road sources, which remain the dominant source of air pollu-
tion in urban areas. Thus, modelling applications at microscale may be 
required when exceedances occur at local hotspots. Microscale model-
ling is the simulation of air quality at very high resolution (typically 
down to few meters) usually in urban environments. For this to be 
possible, factors that affect the dispersion at this level must be present 
explicitly or implicitly, such as urban structures (like buildings layout 
and roads) and how they affect wind patterns and turbulence. This type 
of modelling applications is increasingly used in the Ambient Air Quality 
Directive (AAQD) policy context (EC, 2008), driven by increased focus 
on urban air quality, which requires high spatial resolution to identify 
hotspot locations, understand the causes, determine exceedance areas 
and set up specific measures to mitigate or even avoid problems if 
considered at the urban planning stage. 

At microscale, Computational Fluid Dynamics (CFD) models have 
been widely used to assess pollutants dispersion within street-canyons 
(Santiago et al., 2007; Santiago et al., 2021). CFD models accurately 
simulate the turbulent flow dynamics, and subsequent dispersion pat-
terns, by solving the Navier-Stokes equations, and explicitly accounting 
for the complexity of the built-up environment. However, there are some 
limitations associated with CFD models, namely they require large 
computational resources to perform long-term simulations. Applications 
are typically available for short periods such as a single day or a few 
hours (Amorim et al., 2013; Sanchez et al., 2017; Rafael et al., 2018; 

Rivas et al., 2019). These limitations make applications associated with 
air quality legislation compliance challenging because there is a 
requirement for microscale model outputs to be aggregated to the longer 
temporal and spatial scales, typically a year. 

Some attempts have been made to derive long-term air pollution 
averages in urban hotspots using CFD models. Parra et al., 2010 pre-
sented an early approach to the methodology for the derivation of long- 
term averages of NOx and PM10 concentrations based on a steady-state 
Reynolds-Averaged Navier–Stokes equations (RANS) and standard k-ε 
turbulence model. CFD simulations were performed for a set of 16 
different inlet wind directions over a real urban area, for two winter 
months, neglecting chemical reactions. Santiago et al., 2013, Santiago 
and Martin, 2015 and Santiago et al., 2017 applied an extension of the 
Parra et al., 2010 methodology using a weighted-average approach (WA 
CFD-RANS) to estimate the time evolution of pollutants concentration 
using a sequence of steady state simulations adjusting the simulated 
atmospheric parameters to the actual conditions at hourly frequency. 
NOx maps were reconstructed using CFD simulations for different 
meteorological conditions covering several months, assuming non- 
reactive pollutants and negligible thermal effects. Sanchez et al., 2017 
generated long-period average NOx concentrations employing the same 
weighted-average methodology but using meteorological inflow condi-
tions from a mesoscale model. Rivas et al., 2019 presented annual 
average NO2 and NOx concentrations over an entire city applying the 
WA CFD-RANS methodology. Vranckx et al., 2015 simulated the impact 
of trees on the dispersion of elemental carbon and PM10 in urban street 
canyons using the CFD OpenFOAM model. CFD simulations were per-
formed for ten vegetation settings and a range of wind directions. The 
simulation results were combined using meteorological statistics and the 
effects of seasonal leaf loss, to determine the annual average effect of 
trees in street canyons. 

Air quality modelling applications in urban areas have also been 
performed using less complex numerical methods, such as second- 
generation Gaussian models (Oliveira et al., 2022, Rafael et al., 2021) 
and Lagrangian models. Gaussian models have been routinely used for 
regulatory purposes in assessing the impacts on local and urban air 
quality of pollution sources, because they are not computationally 
demanding and they are easy to couple with other models like weather 
prediction models and chemical transport models, and in this way give 
fast and reliable answers in operational setups that are accessible to a 
wide range of users. Their conceptual basis is an idealized uniform flow 
with homogeneous turbulence, and they include several assumptions, 
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which if not followed decrease substantially the accuracy, as e.g., mean 
wind speed must be larger than the turbulence so that diffusion in the x 
direction is negligible in comparison with advection. In urban terrain, 
different approaches can be applied in order to adjust the effects of 
obstacles on wind speed vertical profiles, turbulence and dispersion 
parameters and/or include parameterizations of street effects on 
dispersion. As with other dispersion modelling approaches, they are 
very dependent on the reliability of the meteorological data used and the 
final estimate is a result of a mean flow in time and space which may not 
be adequate to capture concentration hotspots in a complex urban 
infrastructure. 

Lagrangian models simulate air pollutant dispersion through virtual 
particles, each representing a small amount of the mass of the released 
substance. The average motion and diffusion of the particles are deter-
mined by the local wind, computed with a meteorological model, and 
the velocities derived from solving the Langevin stochastic differential 
equations. The equations can accurately reproduce the statistical char-
acteristics of the turbulent flow. For example, Veratti et al. (2020) Vil-
lani et al. (2021) and Barbero et al. (2021) reconstructed the air quality 
in urban areas with the modelling suite PMSS, that couples a terrain- 
following 3D diagnostic mass-consistent model and a Lagrangian Par-
ticle Dispersion Model. In particular, the meteorological model could be 
run resolving the momentum equations (averaged Navier Stokes equa-
tions), initialized with the standard diagnostic solution (Carissimo et al., 
2021). 

Recently, the potential of using artificial neural networks (ANNs) to 
model the dispersion of air pollution in urban areas has been investi-
gated with the use of a convolutional neural network (CNN) based al-
gorithm trained on CFD results (Jurado et al., 2022). The model then 
demonstrated its computational efficiency on a larger scale, allowing 
real-time modelling at the scale of the city without compromising micro- 
scale phenomena, such as street canyon effects, which are generally 
neglected in larger scale models, or, at least, modelled through addi-
tional street canyon models (Jurado et al., 2023). 

Furthermore, ambient air pollutant concentrations are a result of 
dispersion, chemistry and deposition processes in urban areas, short 
time scale NOx chemical reactions strongly influence NO2 concentra-
tions at distances of a few metres from a road. Gaussian and Lagrangian 
models commonly account for simple NOx chemistry while chemical 
reactions are rarely represented explicitly within CFD models. Some 
examples of including NOx chemistry in CFD models are Sanchez et al. 
(2016, 2017). 

FAIRMODE aims to bring together air quality modelers and groups 
for the exchange of experiences and results from air quality modelling, 
thus supporting the harmonized use of modelling for air quality 
assessment and management between Member States, in the context of 
the AAQD. Within FAIRMODE, several working groups (WG) have been 
created to develop best practice guidance for several aspects of air 
quality modelling; among which the WG4 deals with microscale 
modelling in the context of the AAQD, i.e. air quality modelling at very 
high spatial resolution in urban environments, where local hotspots 
occur. One of the main goals of the WG4 is to test the robustness of 
developed methodologies to retrieve long-term averaged concentra-
tions, and other AAQD indicators (e.g., percentiles), applying microscale 
models, and, overall to discuss the ability of microscale models to be 
used for air quality assessment and planning in the framework of the 
AAQD. The first activity in the WG4 was to perform an intercomparison 
exercise of methodologies to derive long-term pollutant concentration 
indicators. This allows to identify microscale modelling best practices in 
the context of the AAQD, by (i) assessing the importance of meteorology 
(e.g., understanding the differences between unsteady full year simu-
lations and wind sector scenario approaches); (ii) specifying simulation 
requirements in terms of input data (e.g., microscale emission in-
ventories, meteorological data) and observation datasets for validation, 
and (iii) deriving relevant information from the simulation outputs (e.g., 
exceedance area indicators, spatial representativeness areas of 

monitoring stations). 
In this paper, an intercomparison of high spatial resolution air 

quality modelling is presented. The intercomparison is based on an ex-
ercise over an urban district of Antwerp (Belgium). The main objective 
of this work is to assess the suitability of distinct methodologies for 
computing long-term average air pollutant concentration maps in urban 
hot spots. The paper is organized as follows: in Section 2, the numerical 
modelling approaches are described in detail, followed by a description 
of the application specificities of the selected area, of the input data, and 
of the selected statistical indicators. Section 3 presents the results of the 
comparison of the modelling estimates with observations. In Section 4, 
those results and their implications are discussed. Finally, conclusions 
are given in Section 5. 

2. Methodology 

2.1. Description of the input data and exercise settings 

The model intercomparison is set up for an urban district of the city 
of Antwerp (800 × 800 m2), Belgium; this district is an urban built-up 
area, typical of North-West European cities, consisting of a mix of 
street canyons and open areas. The majority of the buildings are 2 or 3 
floor residential houses with small private gardens in the backyard. 
Commercial and residential buildings of varying heights are located 
along the main road (Plantin en Moretuslei) crossing the area in the East- 
West direction. The density of buildings in the domain was 40.7 %. The 
height of the buildings is mostly <16 m. However, there are some tall 
buildings (>30 m high even reaching >40 m high in a few cases) in 
different parts of the domain, but more concentrated in the main avenue. 
The layout of the study area is depicted in Fig. 1. 

Two automated fix monitoring AQ stations operated by the Flemish 
Environment Agency (VMM) are positioned along the main road (Fig. 1). 
The traffic station (42R802) is located 7 m away from the kerb, while the 
urban background station (42R801) is located at a distance of 30 m from 
the first traffic lane. NO2 data is collected on an hourly basis at both 
stations alongside other air pollutants including PM10, PM2.5, O3 and 
BC. Hourly NO2 concentrations representing the transport of pollutants 
into the study area are provided by the RIO model (Janssen et al., 2008). 
The RIO model is a detrended Ordinary Kriging interpolation model 
used to derive regional background concentrations based on measure-
ments recorded by the automated monitoring network (Janssen et al., 
2008). RIO NO2 concentrations are derived at an hourly frequency and 
are deemed to be representative of the urban background (or rooftop) 
concentrations. 

The official monitoring network data is complemented by the results 
of a passive sampling campaign, organized by the University of Ant-
werp, in the context of the citizen science project CurieuzeNeuzen (https 
://ringland.be/academie/curieuzeneuzen/overzicht/). In total, about 
2000 passive samplers were distributed among Antwerp's citizens to 
collect data during the period 2016-04-30 to 2016-05-28. At each 
location, NO2 concentration values recorded by 73 samplers within the 
study area, averaged over this period, are available for model evalua-
tion. The sampling data has been collected, validated and quality 
controlled according to the procedures described in De Craemer et al. 
(2020) and Hooyberghs et al. (2022). 

Meteorological data recorded at the VMM measurement station 
M802 at Antwerp-Luchtbal (Location: 51.261, 4.425) was used by some 
models; this station is classified as an urban background location. 
Meteorological parameters recorded include wind speed components 
(m/s, measured at 30 m), temperature (K, measured at 3 m), relative 
humidity (%, measured at 3 m) and total radiation (W/m2, measured at 
3 m), all available at hourly frequency. 

Traffic emissions are available for a selection of major and secondary 
roads (see Fig. 2) from the official Flemish FASTRACE traffic emission 
model (version 2.1), based on COPERT 5 emission factors. Emission 
factors are combined with modelled traffic flows and recordings of the 
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fleet composition for the year 2016 (Department for Mobility). For each 
line segment, NOx and NO2 emission are available in g/m/y com-
plemented by information about the road type: U (urban), R (rural) or H 
(highway), the free-flow speed (in m/s), the number of light (cars +
LDV) and heavy vehicles (HDV + bus) per year. Finally, monthly and 
daily time profiles (Department of Mobility) are used to derive hourly 
emissions. 

All the mentioned datasets (measurements, meteorology, emissions, 
and background concentrations) are available on an hourly basis for the 
entire year of 2016. Only for the passive sampling campaign data are 
limited to a monthly average for the month of May. Background con-
centrations as well as the emission database was common to all partners. 

2.2. Description of the modelling applications 

Various models and model applications were used to compute the 
long-term averaged pollutant concentrations. In this study, model stands 
for the software, which was used, while model application indicates the 
method applied to compute the long-term averaged pollutant concen-
trations. While some methods were based on simulating a set of sce-
narios, most commonly employing the CFD RANS steady state approach, 
others were based on performing CFD unsteady state simulations, per-
forming a full month simulation with non-CFD approaches and applying 

a convolutional neural network. Detailed information is provided in 
Tables 1, 2 and 3. All the CFD simulations were performed neglecting 
chemical reactions by assuming a passive scalar pollutant and only 
neutral atmospheric stability conditions were imposed. 

The main limitations of the CFD approaches are associated with 
neglecting thermal effects and considering non-reactive pollutants. 
Furthermore, for steady state simulations, concentrations at a specific 
hour are assumed to only depend on the emissions within the compu-
tational domain, and on meteorological conditions and background 
values for that specific hour. The assumption of Reynolds independence 
entails a linear relation between concentrations and wind speed which 
has been verified both numerically and in wind tunnels for momentum 
free sources (Schatzmann and Leitl, 2011). 

For the scenario-based approaches, the number of scenarios varied 
from 16 wind sectors (four of the modelling applications) to a maximum 
of 36 wind sectors using VITO's OpenFOAM application. However, when 
investigating what number of scenarios are better, results for other 
different number of scenarios starting at four scenarios has been ana-
lysed. Distinct procedures were implemented for retrieving annual or 
monthly average concentrations. These include the reconstruction of 
hourly concentration maps by assigning a representative scenario to 
each hour in the time series and applying a linear correction for the wind 
speed and the emissions or by applying weighted averages of the 

Fig. 1. Modelling domain (aprox 800 × 800 m2) in the city of Antwerp, Belgium (red rectangle). Pink dots represent the locations of the passive samplers in the study 
area (blue dots are related to a second campaign not used in this study). Red arrows indicate the location of the official monitoring stations 42R801 and 42R802 along 
the major road Plantin en Moretuslei. 
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scenarios based on probability density functions. 
In contrast to the scenario-based approaches, a number of models 

were able to compute directly hour by hour time series for either the full 
month or episodes. These are models such as Gaussian plume models 
with and without street canyon parameterizations, a Lagrangian model, 
an Eulerian dispersion model with imbedded Gaussian model, a CFD- 
LES (CFD-Large Eddy Simulation) and a CFD-RANS unsteady state. 
These simulations were performed considering the distinct modelling 
approaches, distinct methods to include urban morphology, distinct 
sizes of computational domain, grid types, resolution and total number 
of cells used to characterize those simulations, applying a wide range of 
approaches to account for chemistry reactions, atmospheric stabilities, 
and meteorology data. On the other hand, the different methods were 
more aligned concerning emissions. 

Each model had its own model domain but all of them included a 
common 800 × 800 m2 domain for the model intercomparison (see 
Fig. 1). 

Concerning the computational cost of running this model applica-
tions, (model simulations plus, in some cases, postprocessing for 
retrieving long-term pollutant concentration), it depends on the 
complexity of the model and the computer power. Some models, like 
CFD models, require high-performance computers, but others can 
operate on personal computers. The most expensive option is the un-
steady full period CFD simulation. This type of simulations is not usually 
affordable in most cases. In this study, the SZE group used a very 
powerful supercomputer, which is not easily available for most, 
spending several weeks to run a full-year unsteady CFD simulation. This 
makes the use of other approaches or models necessary. In contrast, 
other approaches such as scenario-based CFD simulations need several 
hours or a few days to simulate all the scenarios and less than an hour to 
compute the long-term averages. Other models such as Gaussian, 
Lagrangian, and AI models also need a few hours or even less than 1 h in 
the case of the simplest models. 

2.3. Description of the intercomparison exercise 

The modelling applications were used to calculate the monthly 
averaged NO2 within the 800 × 800 m2 domain (Fig. 1), where two AQ 
stations are sited. The monthly period goes from April 30th to May 28th, 
2016, which corresponds to the duration of the passive sampler 
campaign described in Section 2.1. 

During the campaign period (April 30th-May 28th, 2016), the 
weather was mostly clear skies or with few clouds, with 8 rainy days 
(total precipitation was 54 mm). The average temperature was 15 ◦C 
ranging from 2.7 to 26.9 ◦C. Wind speed ranged from 0.3 to 7.8 m/s and 
there were 3 dominant wind directions: NNW (12.5 % of the cases), E 
(10.04 %), and SW (10.02 %). The average NO2 concentrations were 35 
and 36 μg/m3 in the background and traffic air quality stations, 
respectively. The maxima hourly concentrations were 173 and 178 μg/ 
m3, respectively, which happened on May 6th. 

Previously the performance in estimating the hourly time series NO2 
concentrations for the day of highest pollution (May 6th, 2016) at the 
two air quality monitoring locations have been analysed (see Supple-
mentary material). The computed NO2 average concentration for the 
campaign period were compared with the measured data from the 73 
samplers deployed in the computational domain (see Fig. 1). Addition-
ally, the computed 2D concentration maps were intercompared. 

Both graphical and statistical analysis were performed. In terms of 
the graphical analysis, scatter plots and 2D maps were employed. 

Statistical analysis was carried out using the following statistical 
metrics:  

1. Pearson correlation coefficient (R): 

R =
1

N − 1
∑N

i=1

(Mi − M)(Oi − O)

σMσO    

2. Mean Fractional Bias (MFB): 

Fig. 2. Line segments with modelled traffic flow used in the FASTRACE model to derive traffic emissions. The red square represents the modelling domain.  
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Table 1 
Description of the models (and model setup) used for directly estimating the monthly average concentrations with full period simulations on an hourly basis.  

Institution VITO CERC ENEA NILU UPM SZE 

Model ATMOStreet ADMS PMSS EPISODE PALM4U OpenFOAM 
Description Gaussian plume (IFDM) 

with street canyon 
parameterization 
(OSPM) 

Quasi-Gaussian Mass consistent 
diagnostic 
reconstruction +
conservation of 
momentum for 
meteorology & obstacle 
aware Lagrangian 
dispersion 

3D grid Eulerian 
dispersion model with 
imbedded Gaussian 
dispersion model 

CFD-LES CFD Unsteady RANS 
with k-eps 
turbulence 
modelling 

Urban 
morphology 

Building footprints and 
heights 

Buildings data processed 
to generate road by road 
street canyon, and 
gridded building, 
parameters. Parameters 
used to model dispersion 
in street canyons and 
within the urban 
canopy. 

Data provided by VITO. 
Buildings simplified and 
grouped in blocks. 

None. Data provided by 
VITO. 3D buildings 
as cubes (5x5x5 m) 

Data provided by 
VITO. 

Computational 
domain 

Full Antwerp city Model input horizontal 
domain: 7822 m × 7750 
m. Vertically, model 
extends to above the 
boundary layer. 

Buildings within an 800 
m × 800 m region 
centered in the AQ 
station. No distance is 
needed from buildings to 
lateral boundaries; 
height of domain = 500 
m; Hmax = height of 
tallest building 

Larger domain defining 
all the road net 
available. The 3D grid 
had the resolution of 1 
kmx1kmx20m. Then in 
the smaller 800mx800m 
domain we set points at 
the passive samplers' 
locations and regularly 
in 20mx20m and at a 2 
m height. 

3D grid: 200 (x) x 
200 (y) x 70 (z) grid 
cells. 5 m spatial 
resolution. 

2.6 km × 2.6 km 
with buildings in 
AOI. 8.6kmx8.6 km 
total simulation 
domain. Height of 
domain = 400 m 

Grid type Receptor points Irregular, source 
oriented. Higher 
receptor network where 
concentrations gradients 
are highest. 

Regular horizontal grid, 
terrain following vertical 
grid with 17 levels 

Regular Regular Octree mesh. 

Grid resolution 10 m From 0.3 m to 25 m 3 m horizontal 
resolution 

1kmx1km and 20mx20m 5 m 200 × 200 grid 
cells 

2 m on ground level, 
up to 32 m in the 
outside of the area of 
interest 

Total number of 
cells    

81 and 1600  3.3 million 

Emissions data Computed using the 
FASTRACE model, and 
applying time profiles 

Traffic emission data, together with the temporal 
profiles provided by VITO 

Traffic emission data, 
together with the 
temporal profiles 
provided by VITO, 
except for hourly 
profiles 

Traffic emission data, together with the 
temporal profiles provided by VITO 

Chemistry Simple chemistry NOx photolytic 
chemistry module, 
which accounts for fast, 
near-road oxidation of 
NO by O3 to form NO2 

No chemistry, passive 
pollutant. NOx/NO2 
transformation as post- 
processing based on 
NOx/NO2 ratio of RIO 
model 

Calculations of NO2 are 
based on using 
photochemical 
equilibrium between the 
three fast-cycle reactive 
compounds NO, NO2 
and O3. 

Photo-stationary. 
Chemistry 
mechanism 

No chemistry yet. 
Passive scalar 
pollutant. 

Atmospheric 
stability 

Stable, neutral and 
unstable 

Full range, characterized 
by ratio of boundary 
layer height to Monin- 
Obukhov length 

Depending on 
meteorological 
conditions and 
parameterized through 
Surface Layer scaling 
variables 

Pasquill-Guifford 
stability class. 

Stability dependent 
simulation 

Neutral conditions 

Meteorological 
boundary 
conditions 

Data from the 
meteorological station: 
Antwerpen-Luchtbal. 

Measured 
meteorological data in 
Antwerp (VITO data) 
adjusted to account for 
the change in roughness 
at the meteorological 
measurement station 
compared to the 
dispersion site. 

Data from the 
meteorological station: 
Antwerpen-Luchtbal. 

WRF was configured in a 
system with 3 one-way 
nested domains until the 
1 kmx1km resolution for 
the larger domain. 

From WRF/Chem 
simulation 1 km 
spatial resolution  
Off-line nesting, 

BCs frequency 10 
min. Wind 
components (u, v, 
w). Potential 
temperature and 
humidity. Soil 
temperature and 
moisture. 

Logarithmic 
boundary wind 
profile based on data 
from the 
meteorological 
station: Antwerpen- 
Luchtbal. 

Meteorology 
within the 
domain    

We used the data from 
the meteorological 
model WRF in the 1  

Diffusion 
coefficients depend 
on PBL height and 

(continued on next page) 
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MFB =
1
N

∑N

i=1

Mi − Oi

(Mi + Oi)/2    

3. Mean Fractional Error (MFE): 

MFE =
1
N

∑N

i=1

|Mi − Oi|

(Mi + Oi)/2    

4. Normalized Root Mean Square Error (NRMSE): 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Mi − Oi)

2

∑N

i=1
Oi

2

√
√
√
√
√
√
√

5. Ratio of predictions falling into a factor 2 (0.5 ≤ Mi/Oi ≤ 2) of the 
observations (FAC2). 

Mi and Oi are the modelled and observed data i (concentration at 
hour or sampler i), respectively, and N is the number of data values. σM 
and σO are the sample standard deviations of model results and obser-
vations, respectively. The ideal value of R is unity, and the ideal values 
of MFB, MFE and NRMSE are all zero. MFB, MFE and NRMSE quantify the 
magnitude of the model error to some extent due to their dependence on 
‘(Mi − Oi)’. 

These metrics were applied for the monthly-averaged concentrations 
at sampler locations and for the spatial gradients of concentrations. 

The spatial concentration gradients of NO2 concentrations ∇Ci,j be-
tween pairs of samplers (i,j) have been computed by means of: 

∇Ci,j =
Ci − Cj

di,j
(1)  

where Ci is the concentration at sampler i and di,j is the distance between 
the samplers i and j. These gradients were computed for the measured 
data and for the modelling results and were compared both statistically 
and graphically. This comparison aims to investigate if the concentra-
tion distributions are appropriately reproduced by the modelling 
systems. 

3. Results 

Despite the main focus of the paper being to investigate how good are 
the model applications in estimating long-term average concentrations 
of NO2 in an urban district, previously an evaluation of the models' 
performance simulating the hourly NO2 concentration at the two air 
quality stations during one day of high pollution (see Supplementary 
material). In short, most of the model applications were able to simulate 
quite well the time evolution of NO2 concentration along a day of 
relatively high pollution. Most applications underpredicted (especially 
in the early night peak), and some models failed to predict the timing of 
the concentration peaks. The model applications also seem to simulate 
background air quality station concentrations more accurately than 
those from the traffic station. 

3.1. Monthly average data of NO2 concentrations recorded by passive 
samplers 

3.1.1. NO2 concentrations at all samplers 
Using a statistical approach to the comparison of NO2 concentration 

data recorded by passive samplers for the campaign period (monthly 
average data) with modelled data (Fig. 3), the correlation coefficient (R) 
is higher than or equal to 0.70 for ten modelling applications, six 

Table 1 (continued ) 

Institution VITO CERC ENEA NILU UPM SZE 

kmx1km horizontal 
resolution. 

turbulence diffusion 
coefficient. 

Pollution 
boundary 
conditions/ 
background 
concentrations 

Background concentrations provided by RIO model. For NO2 and NO we used 
RIO background and for 
O3 we used observations 
available. 

From WRF/Chem 
simulation 1 km 
spatial resolution 
Off-line nesting, 
BCs frequency 10 
min. 

Background 
concentrations 
provided by RIO 
model. 

Assumptions and/ 
or limitations 

Gaussian plume 
parameterization. No 
account for explicitly 
3D effects. Street 
canyon 
parameterization 
(OSPM model) 

Street canyon flow and 
dispersion assumes 
uniform properties along 
the length of each 
modelled road with well- 
established flow patterns 
(no specific modelling of 
individual buildings or 
junctions); thermal 
effects on in-canyon flow 
(e.g., differential solar 
heating) neglected; 
concentration at a 
selected hour only 
depends on the 
emissions within the 
modelling domain and 
meteorological 
conditions at that hour.  

Gaussian plume model 
for the dispersion from 
the roads. No buildings 
accounted. Meteorology 
data from a model with 
coarse resolution, which 
means that for the 
800mx800m we worked 
with two data points. 
Simplified meteorology 
in the 3D eulerian grid.  

Diffusion 
coefficients equal in 
each direction. 

References Hooyberghs et al. 
(2022) 

Zhong et al. (2021),  
Hood et al. (2021),  
Biggart et al. (2020),  
Owen et al. (2000),  
Carruthers et al. (1994) 

Oldrini et al. (2017),  
Trini et al. (2018),  
Veratti et al. (2020),  
Russo et al. (2021),  
Villani et al. (2021),  
Barbero et al. (2021) 

Hamer et al., 2020 Belda et al. (2021),  
Maronga et al. 
(2019), (San José 
et al. (2021), San 
José and Perez- 
Camanyo (2022, 
2023) 

Horváth et al. 
(2016), Környei 
et al. (2021)  
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Table 2 
Description of the models used for making scenario simulations for retrieving monthly average concentrations through scenarios-based approaches.   

VITO CIEMAT UOWM SZE AIR&D AIR&D 

Model OpenFOAM Star CCM+ ADREA-HF OpenFOAM OpenFOAM FOLLOWAIR 
Description CFD – RANS steady state CFD – RANS steady 

state 
CFD – RANS steady 
state 

CFD – RANS steady 
state 

CFD – RANS unsteady 
state (time-average 
after convergence) 

Encoder decoder 
Convolutional 
Neural Network 
(CNN) trained on 
CFD-RANS unsteady 
averaged results 

Schmidt number 
(Sc) 

0.5 0.3 0.7 0.5 0.7 0.7 

Urban 
morphology 

LOd1.2: 3D 
reconstruction based on 
building footprints and 
heights. Used 
CITY4CFD. 

Data provided by VITO. 
Buildings simplified 
and grouped in blocks. 

Data provided by VITO. No simplifications. 

Computational 
domain 

Buildings: 1.5 ×
1.5km2. Avg distance to 
boundary ~500 m 

Buildings within a 
rectangle 1 km × 1 km. 
Distance from buildings 
to lateral boundaries =
8H; Height of domain 
= 8H; Hmax = height 
of tallest building 

Buildings within 1 km 
× 1 km. The horizontal 
domain has been 
extended by 20 m in 
each for the four (4) 
sides flat with 
roughness 0.3 m. 
Vertical dimension 300 
m 

2.6 km × 2.6 km with 
buildings in AOI. 
8.6kmx8.6 km total 
simulation domain. 
Height of domain =
400 m 

Buildings within a 
rectangle 1.3 km × 1.3 
km. Distance from 
buildings to lateral 
boundaries = 200 m; 
Height of domain =
358 m; Hmax = 70 m 

Buildings within a 
rectangle 1.3 km ×
1.3 km. 

Grid type Unstructured 
Polyhedral mesh. Build 
with SnappyHexMesh 

Irregular. Polyhedral 
with hexahedral prism 
layers close to buildings 
and ground 

Structured, irregular Octree mesh with cell 
sizes from 2 to 32 m. 

Regular. Unstructured. 
Cubical 

Regular. 

Grid resolution Resolution at building 
level ~1 m 

<1 m/> Horizontal resolution 
uniform 5 m; NX = 204, 
NY = 204. Vertical 
resolution nonuniform; 
dz-min = 2.0 m, dzmax 
= 10.0 m;NZ = 60 m 

2 m at ground level 0.5 × 0.5 m (proximity 
to walls) up to 16 × 16 
m (for the highest 
altitudes) 

Resolution of 1x1m2 

Total number of 
cells 

19 million 1,180,000  3.3 million 12 million  

Emissions data Computed using the 
FASTRACE model, and 
applying time profiles 

Traffic emission data, together with the temporal profiles provided by VITO 

Chemistry Passive scalar. NO2/NOx 

correction based on 
measurements 

No chemistry. Passive scalar pollutant. Passive scalar. NO2/ 
NOx correction based 
on DERWENT and 
BACHLIN 
parametrizations 

Passive scalar. NO2/ 
NOx correction 
based on DERWENT 
and BACHLIN 
parametrizations 

Atmospheric 
stability 

Neutral atmospheric stability conditions. 

Meteorological 
boundary 
conditions 

Data from the meteorological station: Antwerpen-Luchtbal. 

Pollution 
boundary 
conditions/ 
background 
concentrations 

Background concentrations provided by RIO model. 

Assumptions 
and/or 
limitations 

Concentrations 
proportional to 1/wind 
speed; Non-reactive 
pollutants; Thermal 
effects negligible; 
Concentration at a 
selected hour only 
depends on the 
emissions within the 
modelling domain, 
NO2/Nox ratio and 
meteorological 
conditions at that hour. 

Concentrations 
proportional to 1/wind 
speed; Non-reactive 
pollutants; Thermal 
effects negligible; 
Concentration at a 
selected hour only 
depends on the 
emissions within the 
modelling domain and 
meteorological 
conditions at that hour. 

Concentrations 
proportional to 1/wind 
speed; Non-reactive 
pollutants; Thermal 
effects negligible; 
Concentration at a 
selected hour only 
depends on the 
emissions within the 
modelling domain and 
meteorological 
conditions at that hour. 

Concentrations 
proportional to 1/wind 
speed; Non-reactive 
pollutants; Thermal 
effects negligible; 
Concentration at a 
selected hour only 
depends on the 
emissions within the 
modelling domain and 
meteorological 
conditions at that hour. 

Concentrations proportional to 1/wind speed 
(neutral assumption); Non-reactive pollutants; 
Thermal effects negligible; Concentration at a 
selected hour only depends on the emissions 
within the modelling domain, meteorological 
conditions at that hour and the background 
pollution model provided by the RIO model. 

References Janssen et al. (2008),  
Vranckx et al. (2015),  
Sousa et al. (2018),  
Sousa and Gorlé (2019), 
Hooyberghs et al. 
(2022), Paden et al. 
(2022) 

Rivas et al. (2019);  
Santiago et al. (2013, 
2017, 2022); Santiago 
and Martin (2015),  
Sanchez et al. (2017);  
Parra et al. (2010) 

(Bartzis et al. (2015, 
2020a,b, 2021, 2022);  
Sakellaris et al. (2022) 

Horváth et al. (2016);  
Környei et al. (2021) 

Reiminger et al. 
(2020a, 2020b);  
Jurado et al. (2021) 

Jurado et al. (2022)  
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Table 3 
Description of methodologies involved in the model applications for retrieving monthly average concentrations in the case of scenarios-based approaches.  

Institution VITO CERC-CIEMAT CIEMAT detailed CIEMAT simple CIEMAT wind-factor UOWM AIR&D AIR&D 

Model OpenFOAM Star CCM+ Star CCM+ Star CCM+ Star CCM+ ADREA-HF OpenFOAM FOLLOWAIR 
Set of 

simulations 
required/no. 
of scenarios 

36 wind sectors scenarios 16 wind sector scenarios +
wind speed bins from VITO 
met measurements +
roadside & background 
pollutant concentration 
measurement 

16 wind sector scenarios 16 wind sector 
scenarios 

16 wind sector scenarios 
+ wind speed bins 

32 wind sector scenarios 18 wind 
sector 
scenarios 

36 wind 
sector 
scenarios 

Criteria for 
selecting 
scenarios 

Measured wind direction 
(VITO meteorological data) 

Measured wind speed, wind 
direction, and peak or off- 
peak traffic flows 

Measured wind direction (VITO meteorological data) 

Procedure for 
retrieving 
annual/ 
monthly 
concentrations 

Series of hourly 
concentration maps (gridded 
data) computed by assigning 
one scenario each hour and 
applying corrections by wind 
speed or by hour/date 
(emissions). NO2/NOx ratio 
per hour and adding 
background concentrations. 
Annual/monthly 
concentration maps 
estimated averaging for the 
time series of maps for a 
year/month 

1) Derive wind-speed and 
traffic emissions correction 
factors from measured 
concentration data. 2) 
Calculate the frequency of 
occurrence of each wind 
speed/traffic emissions 
combination on a sector by 
sector basis (monthly/ 
annual). 3) Calculate 
weighted sum of 16 CFD 
gridded concentration maps 

Series of hourly 
concentration maps (gridded 
data) computed by assigning 
one scenario each hour and 
applying corrections by wind 
speed or by hour/date 
(emissions) and adding 
background concentrations. 
Annual/monthly 
concentration maps 
estimated averaging for the 
time series of maps for a 
year/month 

Weighted average based 
on probability density 
function (wind 
direction) + corrections 
by hour/date 
(emissions) and wind 
speed and adding 
background 
concentrations. 

Weighted average based 
on probability density 
function (wind direction 
and wind speed 
scenarios) + corrections 
by hour/date (emissions) 
and wind speed and 
adding background 
concentrations. 

32 Steady state reference 
simulations (i.e. one (1) per 
each sector) with wind 
velocity at the 
meteorological station 5 m/ 
s. These 32 simulations are 
utilized to estimate the 
8764 h applying corrections 
by wind speed and by hour/ 
date (emissions) and adding 
background concentrations. 

Series of hourly concentration 
maps (gridded data) 
computed by assigning one 
scenario each hour and 
applying corrections by wind 
speed or by hour/date 
(emissions) and adding 
background concentrations. 
Annual/monthly 
concentration maps estimated 
averaging for the time series 
of maps for a year/month 

Assumptions 
and/or 
limitations  

Dependence of 
concentrations on wind 
speed and traffic emissions is 
spatially homogeneous; 
Influence of atmospheric 
stability on solution 
dependent through wind 
speed magnitude only; non- 
reactive pollutants; thermal 
effects negligible; 
concentration at a selected 
hour only depends on the 
emissions within the 
modelling domain and 
meteorological conditions at 
that hour.        
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Fig. 3. Statistical results of R (Pearson correlation coefficient), MFB (mean fractional bias), MFE (mean fractional error), NRMSE (normalized root mean square 
error) and FAC2 (Ratio of predictions falling into a factor 2 of the observations) for the model predictions of average NO2 concentrations at sampler points for the 
campaign period (April 30th to May 28th, 2016) for each model application (left, the blue colored bars refer to CFD models, green to the Lagrangian model, red to the 
Gaussian models and yellow to the AI models) and grouped by model types (right, the black bar is the range and the red squares mean value). CFD = Computational 
Fluid Dynamics, GAUSS = Gaussian models, LAGR = Lagrangian models, and AI = Artificial Intelligence models. 
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applications have an R higher than 0.60, and one model approach 
(NILU-EPISODE) has relatively low correlation (0.43). Most of the 
modelling applications underpredict slightly the monthly average con-
centration at sampler locations with MFB ranging between (− 0.25 and 
− 0.07), except UPM-PALM4U. Prediction errors are small (MFE and 
NRMSE ranging between 0.10 and 0.25). All models score FAC2 equal to 
1 (Fig. 3). The resulting scores for MFB, MFE, and NRMSE are better for 
the monthly concentration average at sampler points than for the hourly 
time series at the air quality stations (see Supplementary material, SM1). 

Analyzing the statistical metrics for the NO2 concentrations by model 
types, the Gaussian models have R values lower than the other type of 
models and with a larger spread, which shows the importance in 
including street parameterizations and local meteorology; CFD, 
Lagrangian and AI model-based modelling applications provide better 
correlation coefficients, which indicates a better performance simu-
lating the spatial variability of concentrations. The trend across statis-
tical metrics for all models is broadly similar. In terms of the metrics that 
relate to the magnitude of the model error (MFB, MFE and NRMSE) all 
types of models show a similar trend, showing some underprediction 
(averages values of MFB − 0.24 and − 0.13) and averages MFE and 
NRMSE values lower than 0.24. All model applications have FAC2 close 
to 1.00. 

These results are in agreement with the scatter plots of model pre-
dictions versus sampler measurements (Fig. SM2.1), which showed that 
the Gaussian models have the lowest regression slopes (<0.50, the 
extreme case is the NILU-EPISODE model with regression slope close to 
0 as the only high resolution input taken into account is traffic emis-
sions) in contrast with the other model types, which have higher 

regression slopes closer to 1.0, but mostly lower than 1.0. 

3.1.2. NO2 concentrations at all samplers of streets with and without 
emission data 

One aspect rising of the analysis of the scatter plots of model pre-
dictions versus passive sampler measurements (Fig. SM2.1) is that all 
models have points of predicted low concentration when the measured 
concentration are not so low. These situations correspond to samplers 
(>60 %) that are located in streets for which there are no emission data. 
In fact, the emissions data is only covering main streets where results of 
the underlying traffic model are available and represent the only emis-
sion information available for models. Hence, it is important to compute 
separate statistical metrics for samplers located in streets with and 
without emission data, to evaluate the impact of emission data on 
simulated concentrations. 

Fig. 4 clearly shows that the CFD, Lagrangian and AI models monthly 
average concentration statistical metrics at sampler locations improves 
very significantly only when data from samplers located in streets with 
emission data are used. These metrics worsen when only samplers from 
streets without emission data are considered. This behaviour does not 
seem to be detected for the Gaussian models, because buildings are 
inexistent or parameterized and the dispersion occurs to the further 
away streets without emission data. 

3.1.3. Spatial gradients of NO2 concentrations 
The statistical metrics computed for the NO2 concentration gradients 

between every pair of sampler points for the campaign period computed 
using Eq. (1) are shown in Fig. 5. 

Fig. 4. Statistical results of R (Pearson correlation coefficient), MFB (mean fractional bias), MFE (mean fractional error), NRMSE (normalized root mean square 
error) and FAC2 (Ratio of predictions falling into a factor 2 of the observations) for the modelling applications predictions of average NO2 concentrations at sampler 
points for the campaign period (April 30th to May 28th, 2016) for the different type of modelling applications using data from all the samplers, only from samplers 
located in streets with emission data (labeled EMI) and without emission data (labeled NOEMI). CFD = Computational Fluid Dynamics, GAUSS = Gaussian models, 
LAGR = Lagrangian models, and AI = Artificial Intelligence models. 
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Fig. 5. Statistical results of R (Pearson correlation coefficient), MFB (mean fractional bias), MFE (mean fractional error), NRMSE (normalized root mean square 
error) and FAC2 (Ratio of predictions falling into a factor 2 of the observations) for the predictions of NO2 concentration gradients between every pair of sampler 
points for the campaign period (April 30th to May 28th, 2016) for each model application (left, the blue colored bars refer to CFD models, green to the Lagrangian 
model, red to the Gaussian models and yellow to the AI models) and grouped by model types (right, the black bar is the range and the red squares mean value). CFD 
= Computational Fluid Dynamics, GAUSS = Gaussian models, LAGR = Lagrangian models, and AI = Artificial Intelligence models. 
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The correlation coefficient (R) is higher or equal to 0.70 for 10 
modelling applications, while only the simplest configuration by NILU- 
EPISODE has R <0.50. 

VITO-OpenFOAM, UPM-PALM4U, AIR-D-CFD Derwent, AIR-D-CFD 
Bachlin, and CERC-CIEMAT have very small biases. In the case of 
CERC-CIEMAT this is because the hourly measurements from back-
ground and roadside air quality stations have been used to calibrate 
model results. The remaining modelling applications underpredict. Most 
of the methodologies have MFB between − 0.50 and − 0.20. However, 
the MFB of three modelling applications is lower than − 0.40, they are 
AIR-D-AI-DERWENT, CERC-ADMS, and NILU-EPISODE with the mini-
mum value of MFB (− 0.98). 

Concerning the error metrics, MFE values are higher than 0.80 with 
the highest value for NILU-EPISODE. Two modelling applications 
(CERC-CIEMAT and VITO-OPENFOAM) have NRMSE values higher than 
1.00. Only ENEA-PMSS has a NRMSE value lower than 0.60. The 
remaining modelling applications have NRMSE values between 0.60 and 
1.00. 

FAC2 values are relatively low ranging from 0.16 (NILU-EPISODE) 
and 0.47 (AIR-D-BACHLIN, VITO-OpenFOAM, and UPM-PALM4U). The 
remaining modelling applications have FAC2 higher than 0.30. It is clear 
that models providing little spatial variability have worse statistical 
results. 

When the capability of the different types of models simulating the 
concentration gradients is analysed, the CFD model-based modelling 
applications, AI and Lagrangian models clearly obtain the highest R 
values (higher than 0.67). The CFD models underpredict to the least 
extent with MFB equal to − 0.18, while other models such as Gaussian or 
AI strongly underpredict the gradients on average (MFB of − 0.56 and 
− 0.44, respectively). The MFE values are <1.00 for all the modelling 
applications except the Gaussian models. However, the NRMSE values is 
lower than 1 for all models but several cases of the CFD models can reach 
NRMSE values higher than 1. The lowest corresponding to the 

Lagrangian models. The higher values of FAC2 correspond to the CFD, AI 
and Lagrangian model (Fig. 5). It is worth to note that these results relate 
to averages over model types, while for the Lagrangian, values are for 
only one – high performing – application. 

In Supplementary material (Fig. SM2.2), the scatter plots of con-
centration gradients predictions versus sampler measurements gradients 
are shown. The slopes of the regression lines look rather similar to those 
of concentration scatter plots (see Fig. SM2.1). Seven modelling appli-
cations have a regression slope close to 1. Two applications (CERC- 
CIEMAT and VITO-OpenFOAM) have a regression slope higher than 1). 
The slope for eight modelling applications is lower than 1, some of them 
with slopes lower than 0.50 (CERC-ADMS) or even close to 0 (NILU- 
EPISODE). The maximum predicted gradient is higher than the observed 
maximum gradient for all modelling applications except for ENEA-PMSS 
and NILU-EPISODE. The last one especially underpredicts strongly the 
concentration gradients. 

3.2. Monthly average NO2 concentration maps 

The monthly average NO2 concentration fields computed by the 
diverse modelling applications and the measured data at the passive 
sampler locations are compared and their results are discussed in this 
section. 

Nineteen samplers showed concentration values between 40 and 50 
μg/m3. They had been placed close to the main thoroughfare of Plantin 
en Moretuslei (the main avenue crossing West to East by the center of the 
domain), especially in locations with stop signs (the driving conditions 
around stop signs are conducive to higher exhaust emissions), and at or 
close to several crossings at smaller streets to the North (see green 
squares in Fig. 6). Higher concentration hotspots, with monthly con-
centrations between 50 and 60 μg/m3 are found at zone A at North (two 
samplers) and zone B in the center of the domain (four samplers). 

It is important to point out that there were no emission data for the 

Fig. 6. Map showing the monthly NO2 concentrations at each sampler point. The green rectangles and circles show the samplers with concentrations between 40 and 
50 μg/m3and the orange ones group the samplers with concentrations higher than 50 μg/m3. Back lines show the streets, where emission data are available. White 
areas are buildings. 
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streets corresponding to the high NO2 concentration samplers of zones 3, 
4, 5, 7, 8, 10, and 12 (see Fig. 6). This is the main cause for all models 
underprediction of the NO2 concentration at these samplers' locations. 
Therefore, the discussion about the performance of the models will be 
mainly focused on zones 1, 2, 9, 11, 6, A and B. 

It is relevant to highlight that most of the models (especially the more 
complex ones) predict very high concentrations at the same places 
mainly along the main avenues and streets. Unfortunately, in some of 
these high-concentration areas, there were no samplers' measurements 
available. Nevertheless, there are few discrepancies between models as 
will be discussed later. 

As shown in Fig. 7, the most basic modelling approach NILU- 
EPISODE using a Gaussian submodel, with a coarse modelled wind 
field and no building information, could only capture the hotspot area 
(concentrations above 40 μg/m3) at and around Plantin en Moretuslei 
(zones 8 and 11, and one sampler of zone 1 and another one of zone B) 
depicting the main road with the higher traffic emissions in the domain. 
All models agree that this road has high pollution levels. The other 
Gaussian models VITO-ATMOSTREET and CERC-ADMS, which account 
for the urban morphology could detect its effect on concentrations at 
zones 1, A, B, and some samplers of zone 11. For these zones, VITO- 
ATMOSTREET underestimated the passive sampler concentrations at 
samplers of zones 11, A, and B, but it overestimated at samplers of zone 
1. CERC-ADMS was able to simulate well the hotspots of zones 1, 11, A, 
and B, but it overestimated most of the samplers of zone 1. 

CFD models explicitly calculate the airflow within the 3D urban 
structure and thus can provide detailed results within the street as we 
can see from the monthly mean NO2 concentration gradients in Fig. 8. 
The maps of the concentration predicted by the CFD models are quite 
similar but with some differences in the location and intensity of some 
high-concentration zones. For example, in zone 1, almost all models 
overpredict, except UOWM-ADREA, which underpredict in some sam-
plers, or CERC-CIEMAT and CIEMAT, which fit quite well the observa-
tions here. Zone 6 is not well predicted by most of the CFD models. 
Except for SZE-C16C (SZE, 16 wind direction scenarios CFD simulations) 
and CIEMAT that can reproduce a hotspot in the beginning of the street 
and then do not overestimate along the street. Zone B is mostly over-
estimated by the majority of the CFD models, but to a lesser extent by 
CIEMAT. 

The CFD models mostly underestimated Zone A, but AIR-D and 
UOWM predicted it quite well. Zone 2 is well predicted by SZE-unsteady, 
VITO-OPENFOAM, and AIR-D, whereas most modelling applications 
underpredict. There is mostly underestimation in zone 9. However, in 
zone 11, several models estimate correctly the concentration (UPM, AIR- 
D, VITO-OPENFOAM, and to a lesser extent CIEMAT, CERC-CIEMAT, 
and SZE-unsteady). 

The long-term CFD unsteady simulation (SZE-Unsteady) map has 
been selected as a reference map since no statistical post-processing was 
applied to derive the monthly or annual mean. Maps from the other 

modelling applications have features consistent with those of the un-
steady simulation. The maps from CIEMAT-DETAILED, CERC-CIEMAT, 
and SZR-C16C seem to be more similar to the SZE-unsteady map. Most of 
the high-concentration areas in SZE-unsteady are predicted by all 
models. However, there are also some high concentrations inside some 
secondary streets which are not predicted by all models. The values of 
the maximum concentrations are significantly different among the 
models. In contrast with the Gaussian models, the CFD models (also the 
Lagrangian and AI models) simulate the inhomogeneity in terms of the 
buildings that form street canyons. The maximum concentrations at the 
streets are shifted to the upwind sidewalks (due to the street-canyon 
vortex), and they predict lower concentrations at street crossings (due 
to higher ventilation). It is important to highlight the variability of the 
magnitude of the predicted higher concentration among the different 
maps. For example, UPM-PALM4U, VITO-OpenFOAM, and especially 
UOWM-ADREA predict much higher concentrations in some areas. 

The Lagrangian model with CFD simplified meteorology ENEA-PMSS 
results show a spatial distribution that is very similar to the CFD modelś
results, with the highest concentration in almost the same zones, but 
with overall lower concentrations (Fig. 9). This model underestimates 
concentrations at several sampler locations of zones A, B, 1, 2, 6, 9, and 
11, but it overestimates in one sampler of zone 1 right located at the 
main W-E avenue. The prediction is correct in one sampler of zone B 
located at the main avenue, and another one of zone 11. 

The AI results also show a quite similar distribution to the CFD 
models, with similar or higher concentrations. The AI models predict 
quite well the zone 1, but they overpredict at the southern sampler (like 
most of the models do). On the contrary, the concentration at the sam-
plers of zones A, B, 2, 6, and 11 are mostly underpredicted. 

The concentration estimated using the DERWENT parameterization 
accounting for NO2/NOx ratios is very similar to the maps when the 
BACHLIN parameterization is used. The same happens with the AIR-D- 
CFD simulations using both parametrizations (Fig. 10). 

3.3. Evaluation of long-term simulations versus and modelling 
applications based on a limited number of scenarios 

The SZE group made an unsteady CFD RANS simulation for all the 
campaign period (April 30th-May 28th, 2016) for NO2. Additionally, 
SZE, UOWM, VITO and CIEMAT groups computed the NO2 concentra-
tion using a methodology based on steady CFD-RANS simulations of 
wind direction sector scenarios corresponding to 4, 8, 16, 32 and 36 
sectors, but not all groups covered all of them (Table 4). The aim of this 
analysis is to assess differences in scenario-based results deviating from 
those of the long-term unsteady simulation. 

In this section, the results of the comparison of all these simulations 
for the monthly (April 30th-May 28th, 2016) NO2 concentrations (and 
concentration gradients) with data recorded by the passive samplers 
deployed in the modelling domain were analysed in order to answer the 

Fig. 7. Maps of the monthly average NO2 concentrations (μg/m3) for the three Gaussian models and concentrations measured by passive samplers (colored dots).  

F. Martín et al.                                                                                                                                                                                                                                  



Science of the Total Environment 925 (2024) 171761

15

following questions:  

1) How good are scenario-based modelling applications in comparison 
to long-term simulations?  

2) How many scenarios are needed to get results similar to long-term 
simulations in dense urban areas? 

The results are shown in Fig. 11. 
For the SZE-OpenFOAM unsteady simulation. The values of metrics 

for NO2 concentration prediction are similar to the SZE-OpenFOAM 
modelling application based on scenario simulations for FAC2 and 
MFE, whereas the metrics are clearly better for MFB (slight under-
prediction), and a little bit worse for R and NRMSE. In the case of the 
NO2 concentration gradients, the FAC2 is very similar for the SZE- 
OpenFOAM unsteady simulation and the SZE-OpenFOAM modelling 
application, while for R and MFE the unsteady simulation provides 
slightly worse results and more clearly worse for MFB (increasing the 
overprediction) and NRMSE. 

Analyzing the differences when using different number of scenarios, 
in the case of SZE, correlation coefficients change very little with the 

number of scenarios for the sampler's concentrations and concentration 
gradients. The MFB values for concentrations are very similar regardless 
of the number of scenarios. However, for concentration gradients the 
MFB changes following roughly a parabolic curve with a minimum 
around the 16-scenarios case, but with very similar MFB values to those 
obtained for the 8- and 32-scenario cases. MFE values do not seem to 
vary significantly with the number of scenarios. NRMSE has similar 
values for all scenario cases for concentrations, but for concentration 
gradients, NRMSE values are worse for 4-scenario case than for the 
others. FAC2 values are 1 (the maximum possible value) for all cases for 
NO2 concentrations. However, for the NO2 concentration gradients, 
there is some variability depending on the number of scenarios. Best 
values are for 16 and 32 scenarios. 

Concerning the UOWM results, the correlation coefficients also 
change very little with the number of scenarios for the NO2 concentra-
tions and concentration gradients. Very little differences of the MFB 
values (for concentration and gradients) and MFE and NRMSE (only for 
concentrations) are detected for the UOWM, while for the MFE and 
NRMSE values for the concentrations gradients slightly improve as the 
number of scenarios increases. For the NO2 concentration gradients, the 

Fig. 8. Maps of the monthly average NO2 concentration (μg/m3) for the long-term CFD unsteady simulation (upper left) and for eight modelling applications based 
on scenario CFD simulations and concentration measured by passive samplers (colored dots). 
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best values of FAC2 are for 16 and 32 scenarios. 
Referring to CIEMAT estimates, correlation coefficients for concen-

trations and concentration gradients increase with the number of sce-
narios, with a more significant change from 4 to 8 scenarios when NO2 
concentrations are considered. In spite of little differences of the MFB 
values being detected, there is a clear decrease of the overprediction of 
concentration gradients when the number of scenarios increases. The 
MFE values clearly decrease as the number of scenarios increases, but for 
the concentration gradients the minimum of MFE is for the 8-scenario 
case with a similar value when 16 scenarios are used. There is a clear 
improvement of NRMSE when the number of scenarios increases (the 
best for 16 scenarios) and also of the FAC2 values for concentration 
gradients but not so strongly. 

With respect to VITO cases, correlation coefficients decrease as the 
number of scenarios increases up to 16 scenarios and keep similar values 
for 32 and 36 scenarios. The underprediction of NO2 concentrations and 
gradients seems to be minimum when 32 scenarios are used. Addition-
ally, the best MFE and NRMSE values for VITO also seem to be for the 32- 
scenario case for concentrations and concentration gradients, but very 
similar to the results for the 4-scenario case. However, for concentration 
gradients, the NRMSE values are slightly better for the 4-scenario case. 
Finally, the worst FAC2 values for the NO2 concentration gradients are 
obtained for 16 and 36 scenarios and the best is for four scenarios. 

4. Discussion 

4.1. What is the impact of the emissions data? 

The statistical metrics for the CFD, Lagrangian, and AI models (but 
not for all the Gaussian ones) improved notably when only data from 
samplers located at streets where emission data were available, whereas 
clearly worse for the samplers without emission data (see Section 3.1.2. 
Fig. 4). It is a very coherent performance. As expected, this analysis 
confirms that the lack of emission data in some streets has a relevant 
influence on the results of CFD, Lagrangian and AI modelling applica-
tions. For Gaussian models, the dispersion from line sources is still 
depicted in far away points of the streets, as buildings are not included or 
parameterized weakening the differences. Gaussian models rely 

extremely on the high resolution of road emission data to depict the 
spatial distribution of NO2 concentrations and their challenge is how to 
include the effect of buildings on meteorology and dispersion. For 
models with detailed building information and their effects on meteo-
rology and pollutant dispersion, further work on providing very detailed 
emission data both at spatial and temporal resolution is essential to 
provide better results in terms of long-term air quality predictions at 
microscale. 

4.2. What type of modelling applications are more suitable to simulate the 
spatial distribution of long-term averaged NO2 concentrations in complex 
urban morphology? 

Most of the model applications were able to simulate quite well the 
time evolution of hourly NO2 concentration along a day of relatively 
high pollution, but underpredicting peaks and sometimes their timings. 
Best predictions are for the background air quality station concentra-
tions more accurately than those from the traffic station, mainly because 
background from the RIO model already partially account for the ob-
servations at the background station (see Supplementary material SM1). 

Although the analysed methodologies generally underpredict the 
monthly NO2 concentration, the spatial distribution of monthly NO2 
concentration is quite well simulated by many methodologies, but there 
are important differences. Concerning statistical metrics for modelled 
concentrations, Gaussian models have the best statistical results in terms 
of magnitude of error, followed by CFD then Lagrangian and AI. How-
ever, CFD and Lagrangian have the best correlation coefficients, fol-
lowed by AI and then Gaussian (see Fig. 3). 

Urban areas show very significant gradients of pollutants emitted 
from traffic such as NO2. The data from the samplers deployed along this 
domain have shown that some gradients could be higher than 0.4 μg/ 
m3/m, which means that in the case of a 50 m wide street, the difference 
of concentration could be up to 20 μg/m3 or more between both street 
sides. Hence, it is very important that the model be able to estimate the 
concentration gradients well in order to provide a reliable spatial dis-
tribution of pollutant concentration, allowing for a better air quality 
assessment. 

In terms of statistical results for concentration gradients, the 

Fig. 9. Map of the monthly average NO2 concentration (μg/m3) for the ENEA-PMSS model, and concentration measured by passive samplers (colored dots).  
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performance of the models varies with the metrics, e.g., CFD, Lagrangian 
and AI applications perform better in terms of FAC2, MFE and R, CFD 
applications have the better values of MFB, while the worst in average 
for the NRMSE (Lagrangian and AI show the best values of this metric). 
The CFD models, and to some extent the Lagrangian and AI models, are 
able to simulate rather well the spatial variation of pollutant concen-
trations both along and across street canyons (Fig. 5). 

It is noteworthy that some streets with minimal traffic flow can 
nonetheless exhibit elevated pollutant concentrations in some cases. 
This counterintuitive phenomenon is attributed to local aerodynamic 
effects and specific wind patterns, such as vortices generated within 
street canyons, which can effectively trap pollutants. These dynamics 
may underscore the complexity of microscale dispersion and the po-
tential for significant pollution levels in areas with low vehicular volume 
due to topographical and meteorological influences that confine pol-
lutants to a restricted space. 

The Gaussian models do not seem to have so good statistical results 
for concentration gradients. It is because they estimate much smoother 
concentration fields with low variability inside the streets, under-
estimating the concentration gradients, especially in the case of the 
simpler Gaussian model configuration (by NILU-EPISODE, with only 
emissions at high resolution and no adjustment for buildings or building 

morphology). Similar results were found by other authors in other 
studies (Pullen et al., 2005, Bady, 2014, Tripathi et al., 2018, Haeger- 
Eugensson et al., 2021 among others). Nevertheless, the Gaussian 
models with street-canyon parameterizations are able to detect hotspots 
and simulate strong across road variations (CERC-ADMS or VITO- 
ATMOSTREET models) having better statistical metrics than the NILU- 
EPISODE model. However, they do not simulate well along-road vari-
ability associated with changes in building density because individual 
building geometries are not accounted for by the models as can be seen 
in the results of the concentration maps of Section 3.2 (Figs. 7–10). 

Some models (UPM, CERC-ADMS and NILU) that account for more 
complex chemistry processes provide a more accurate prediction of 
concentrations at the lower concentration range (see Supplementary 
material SM2). In general, the scatter plots indicate that the majority of 
the modelling applications underpredict the monthly average concen-
tration. There are several possible explanations for the model under-
prediction of NO2. In this comparative analysis, background 
concentrations were derived using two distinct methodologies across the 
evaluated models. Some models incorporated NO2 background levels 
directly from the RIO model outputs. In contrast, other models har-
nessed nitrogen oxides (NOx) background levels from the RIO model, 
subsequently converting these to NO2 through a dedicated chemical 

Fig. 10. Maps of the monthly average NO2 concentration (μg/m3) for the AIR-D-CFD (upper) and AIR-D-AI (lower) for the Derwent (left) and Bachlin (right) pa-
rametrizations accounting for the NO2/NOx ratios and concentration measured by passive samplers (colored dots). 
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module. The direct use of NO2 background data from the RIO model 
resulted in reliable estimates of the minimum pollution levels as 
measured by the samplers. On the other hand, utilizing NOx as a pre-
cursor and processing it to NO2 via the chemical module provided a 
robust approximation of the mean values within clusters of samplers 
marginally affected by emissions. This methodological divergence pre-
sents challenges in model comparison, particularly at lower concentra-
tion values, due to differing underlying assumptions regarding 
background concentration definitions and values (i.e., the smallest 
observed value versus the average of clustered low values). In addition, 
in this study, the results of the AIR-D (CFD and AI) models using the 
Derwent and Bachlin parametrization of the NO2/NOx ratio are not 
significantly different (Fig. 10). A specific study for investigating the 
importance of NO2 chemistry at microscale for improving estimates of 
long-term averaged NO2 concentrations is needed. 

Despite all the CFD models used being RANS-type, the differences 
among the results seem to be relatively significant. These differences can 
be due to particular features of each model simulation or related to the 
long-term averaging method of the scenario cases. This means differ-
ences related to the particular processing of the emission input data, the 
type of selected scenarios, the post-processing of the scenarios simula-
tions for retrieving long-term average concentrations, or the configu-
ration of the specific CFD simulations of every scenario. To understand 
better the causes of the differences, a dedicated detailed study is needed, 
and this is now beyond the scope of this paper. 

From this analysis, we conclude that the models that account for the 
full complexity of urban morphology and the involved atmospheric 
flows predict a more realistic spatial distribution of the NO2 concen-
trations. In this sense, modelling applications based on CFD data and 
Lagrangian model seem to be suitable for an accurate simulation of the 
spatial variability of long-term averages of air pollutant concentrations. 
The modelling applications based on artificial intelligence trained with 
CFD simulations have also quite encouraging good results. However, 
Gaussian models that parameterise urban morphology generate 
comparatively simplistic representations of in-street concentration var-
iations. They could be improved by including better parameterizations 
of the effects of buildings and streets on pollutant dispersion. CFD 
models could be also improved by better accounting for meteorological 
variations and atmospheric chemical reactions of the pollutants. Other 
options to be further explored in the future include coupled modelling 
systems. 

4.3. Long term simulations versus modelling applications based on a 
limited number of scenarios 

As said before, there two important questions:  

1) How good are scenario-based modelling applications in comparison 
to long-term simulations?  

2) How many scenarios are needed to get results similar to long-term 
simulations in dense urban areas? 

With respect to the first question, in general modelling applications 
based on wind direction sector scenarios using the same model (SZE- 
OpenFOAM) provide results of comparable quality to those of as the SZE 
unsteady simulation (Fig. 11). 

Concerning the second question, the statistical metrics for the results 
provided by the different groups do not agree completely, which makes 
it challenging to determine how many scenarios are required to have 
optimal results (Fig. 11). In the case of the SZE results, there are small 
differences on the performance in function of the number of scenarios, 
although using 16 or 32 scenarios leads to slightly better results. The 
UOWM results seem to be slightly more sensitive to the number of 
scenarios than SZE results and show somewhat better results when 16 or 
32 scenarios are used. However, the CIEMAT results are the most sen-
sitive to the increasing of number scenarios. Overall, eight or more wind 
direction sector scenarios demonstrates the best performance. Finally, in 
the case of the VITO simulations, the results seem to be not conclusive 
because for some metrics the best results are for 32 or 36 scenarios 
(MFB, MFE) but for others (R, NRMSE and FAC2) the best ones are for 
the case of only 4 scenarios. Although, all statistical results are rather 
similar regardless of the number of scenarios. 

In general, there are small differences in the performance of 
scenario-based methodologies in function of the number of scenarios. 
Nonetheless some of the modelling approaches appear to give slightly 
better results when eight or more wind direction sector scenarios are 
used although the trends are modelling application or model dependent. 

Nevertheless, it is unclear to what extent these conclusions can 
change with other types of urban morphology. Jurado et al. (2021) 
carried out a similar study for an urban district of a city of France aiming 
to find the minimum number of wind directions required to be simulated 
to accurately estimate annual averaged concentrations based on CFD 
results. They considered two approaches: one using wind direction 
sectors evenly spaced (the same approach used in this study), and 
another considering predominant wind directions. They found that the 
first approach is better on average and a limited number of wind di-
rection scenarios (at least, six or nine) could be enough to obtain good 
estimates of annual mean concentrations with low computational cost. 
However, they concluded that it could depend on the building layout 
and wind-rose. Surely, more studies in other types of urban areas are 
necessary to reach more consistent conclusions. 

5. Conclusions 

An intercomparison exercise of modelling applications for 
computing long-term average of NO2 concentrations in urban districts 
with a very high spatial resolution was performed under the framework 
of the Forum for Air Quality Modelling in Europe (FAIRMODE). This 
exercise involved modelling of a district of Antwerp (Belgium). Air 
quality data from two monitoring stations recording hourly concentra-
tions, and 73 passive samplers recording the NO2 monthly average 
concentrations deployed in the district for a month in 2016. The 
modelling domain was a square of 800 × 800 m2. Nine modelling teams 
participated in this exercise providing results from 15 different meth-
odologies based on different kinds of models (CFD, Lagrangian, 
Gaussian, and Artificial Intelligence). The majority of models used 
scenario-based approaches, which consisted of simulating representa-
tive scenarios and then applying a processing for retrieving a one-month 
average of NO2 concentrations. The less computational intense models 
calculate predictions of hourly concentrations, which are then averaged 
over the month period. Additionally, an unsteady CFD simulation for the 
full month was carried out. 

In the following lines, the main findings of this study are 
summarized. 

Most of the model applications were able to simulate quite well the 
time evolution of NO2 concentration along a day of relatively high 
pollution, but underpredicting some concentration peaks. 

Although the analysed model applications generally underpredict 
the monthly NO2 concentration, the spatial distribution of monthly NO2 
concentration is quite well simulated by many methodologies, but there 
are important differences especially evident in the performance pre-
dicting the concentration gradients. Model applications involving CFD 

Table 4 
Group, model and number of wind direction sectors used for computing average 
NO2 concentrations for the campaign period (April 30th to May 28th, 2016).  

Group/model Number of wind direction sector scenarios 

SZE OpenFOAM 4, 8, 16, 32 
UOWM ADREA 8, 16, 32 
VITO OpenFOAM 4, 8, 16, 32, 36 
CIEMAT STAR CCM+ 4, 8, 16  
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or Lagrangian or AI modelling trained with CFD simulations are able to 
simulate better the very notable spatial gradients of NO2 concentration 
inside the streets. In contrast, the simpler Gaussian models provide 
smoother concentration fields underpredicting the concentration gra-
dients. This is much less notable in the case of the Gaussian models, 
which include parametrization representing the effect of the street- 
canyons on flow and dispersion. 

Any modelling study that generates air pollution maps at very high 
spatial resolution gives the illusion that the modelled concentrations are 
accurate at that level of detail. Detailed modelling should be presented 
alongside evaluation using measured data. Also, the resolution of 
emissions data should be consistent with the resolution of the outputs. 
The lack of emission data in some streets has a relevant influence on the 
CFD, Lagrangian and AI model applications' results and less for the 
Gaussian ones. This study has highlighted the need for good and detailed 
pollutant emission data resolution traffic, covering all the streets (not 
only the main ones), in order to obtain accurate simulation of pollution 
in urban hot spots at the microscale. 

It seems that some models considering NO2 chemistry provides 
better results for low concentration, but there were not important dif-
ferences when different NO2/NOx parametrizations were used with the 
same model. The impact of chemistry at microscale for improving esti-
mates of long-term averaged NO2 concentrations is a question for further 
research. 

It is important to underline that some methodologies using a limited 
number of CFD simulated scenarios (wind direction scenarios) provide 
quite similar monthly NO2 maps to those obtained with the long-term 
CFD unsteady simulation. Additionally, there are only small differ-
ences in the performance of scenario-based methodologies depending on 
the number of scenarios, although some methodologies give slightly 
better results when eight or more wind direction sector scenarios are 
used. Nevertheless, these results may depend on the urban area under 
study, and hence, more studies in other types of urban areas are needed. 
The authors are keen to undertake additional studies to deepen under-
standing of the detected differences observed in the results obtained 
with quite similar methodologies based on similar CFD models. 

Given that the complexity of the models is associated with their 
ability to account for the full complexity of urban morphology and the 
associated atmospheric flows, we can conclude from the results of this 
study that the more complex the model, the more realistic the predicted 
spatial distribution of NO2 concentrations appears to be. The results 
show simple Gaussian models without including any parametrization of 
the street canyon phenomena must not be used for a detailed analysis of 
the long-term NO2 concentration distribution in urban districts. 
Advanced Gaussian models that include the effect of buildings on wind 
flow can be used to detect quite efficiently streets with hot spots. 
However, they have some limitations in terms of predicting the detailed 
spatial distribution of NO2 concentrations within the streets, despite 
they seem to perform relatively well in terms of simulating hourly time 
series in the air quality stations locations. The more complex models 
(mainly CFD based methodologies, Lagrangian, or AI models) seem to 
provide better estimates of the spatial distribution of one-month aver-
ages of NO2 concentrations. Overall, the CFD models seem to provide the 
best results. Approaches based on steady CFD-RANS model simulations 
(with their relatively minimal computational costs) of meteorological 
scenarios (different wind direction sectors) seem to provide good results, 
of similar quality to the results obtained with the unsteady CFD-RANS 
simulation (very high computational cost) for the complete one-month 
period. 

This type of study is very relevant in order to determine what type of 

modelling applications could be best suited for detecting hotspots and 
getting a good estimate of the complex distribution in urban districts, 
which is very important for air quality assessment (determining the area 
of exceedance of air quality standards). Pollution maps generated from 
detailed AQ models, which have been evaluated using measurement 
data, are of use to local policy makers when considering options for 
addressing pollution hotspots issues including planning for air pollution 
abatement. In this sense, one of the applications of the best microscale 
model applications is to simulate scenarios for rearranging the traffic to 
reduce the air pollution in urban hot spots. Some studies applying CFD 
models can be found in the literature such as Parra et al. (2010), San-
tiago et al. (2017), Rivas et al. (2019) or Santiago et al. (2022). 
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Fig. 11. Statistical results of R (Pearson correlation coefficient), MFB (mean fractional bias), MFE (mean fractional error), NRMSE (normalized root mean square 
error) and FAC2 (Ratio of predictions falling into a factor 2 of the observations) for the model predictions of average NO2 concentrations (left) and gradients (right) at 
the passive sampler locations for the experimental campaign (April 30th-May 28th, 2016) for the SZE, VITO, UOWM and CIEMAT simulations for different number of 
wind direction sector scenarios and for the long-term unsteady simulations (labeled as 0 scenarios). 
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