
HAL Id: hal-04513607
https://hal.science/hal-04513607v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Internal State Monitoring in RISC-V Microarchitectures
for Security Purpose

Roua Boulifa, Giorgio Di Natale, Paolo Maistri

To cite this version:
Roua Boulifa, Giorgio Di Natale, Paolo Maistri. Internal State Monitoring in RISC-V Microarchi-
tectures for Security Purpose. 25th IEEE Latin American Test Symposium (LATS 2024), Apr 2024,
Maceio (Brazil), Brazil. �10.1109/LATS62223.2024.10534613�. �hal-04513607�

https://hal.science/hal-04513607v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Internal State Monitoring in RISC-V
Microarchitectures for Security Purpose

Roua Boulifa∗, Giorgio Di Natale∗, Paolo Maistri∗
∗Univ. Grenoble Alpes, CNRS, Grenoble INP1, TIMA, 38000 Grenoble, France

Abstract—Embedded systems play a significant role in our
everyday lives, making them prime targets for malicious actors.
Consequently, ensuring the security of such systems becomes a
crucial concern. Among various threats, fault injection attacks
on microprocessors are particularly notable. Understanding the
effects of these attacks within the microarchitecture is thus
essential to assess their impact on overall security.

In this paper, we present the Internal State Monitor (ISM),
which provides observability at the software level of selected
micro-architectural signals in RISC-V processors. ISM will be
used at first to better understand the fault effects and their
propagation patterns. This understanding is pivotal in designing
effective countermeasures to protect processors against these
attacks.

Index Terms—Hardware security, Fault injection, Risc-V se-
curity, Internal monitoring

I. INTRODUCTION

In recent years, security has emerged as a critical concern,
with a notable increase in attacks targeting design vulnera-
bilities in hardware, software, and protocols. Computer-based
digital systems are often composed of software applications
executed on a hardware architecture including a processor,
which itself can be a direct target of physical attacks, known
as hardware attacks. Hardware security aims to protect against
these attacks, which may disrupt the normal system behavior
and thus enable the leakage of sensitive information. In such
cases, gaining a thorough comprehension of the events occur-
ring within the processor both during and immediately after
an attack becomes imperative. This is essential for accurately
characterizing the repercussions to the internal components,
and ultimately designing effective countermeasures.

A running system becomes comprehensible when it gives
insight into its internal state, which helps to understand the
propagation of events in the microarchitecture. For debugging
purposes, therefore, providing visibility of program execution
is essential. For instance, the trace encoder proposed in [12]
allows tracking the execution of instructions from a known
start address. This system is composed of a core with a
trace interface that outputs all relevant information (instruction
address, instruction type). This interface is connected to a
hardware encoder that compresses the information into lower-
bandwidth trace packets, which are transmitted via a trans-
mission channel for storage. The decoder then reconstructs
the program flow based on the trace packets and knowledge
of the program binary. Although these data could be useful

1Institute of Engineering Univ. Grenoble Alpes

to debug and analyse the behavior of the program, Anthony
et al. [1] used the trace encoder to provide information
about the execution path of the user program, its focus (and
the monitored elements) remains rather limited to Control
Flow exceptions, without any insight to internal and hidden
components of the microarchitecture.

In this paper, we introduce the Internal State Monitor (ISM),
an additional module to the RISC-V core capturing flip-flop
output signals for subsequent analysis. Compared to existing
debugging units (which allow observing software details, the
proposed ISM provides the observability at software-level of
selected micro-architectural signals in RISC-V processors. Our
primary core target, Pulpino, based on the RISC-V open-
source ISA, will be used as test case for our approach.
Moreover, this processor together with the proposed ISM will
be implemented in an FPGA-based platform which enables
physical attacks.

The goal of the proposed ISM is to better understand the
fault effects and their propagation patterns. This improved
understanding will help in designing effective countermeasures
to protect processors against attacks.

This paper is organized as follows: section II describes a
concise overview of fault modeling at the microarchitectural
level and how faults are propagated to higher levels. Section
III presents the used RISC-V core. Finally, Section IV details
the proposal of the ISM and its hardware/software integration
within the targeted processor.

II. FAULT ATTACKS AND MODELS

A. Fault Attacks

Fault Injection Attacks, or fault attacks, are a type of active
attacks where the goal of the attacker is to disrupt the circuit
functionality during its operation. The issue of faults was first
known in the aerospace industry, where systems, less protected
by our atmosphere, can be disturbed by particle impact. Unlike
natural (uncontrolled) faults, the implementation of a fault
attack is characterized by many parameters to be possibly
controlled, such as: spatial granularity, i.e., the ability to
precisely select the target position of the attack, as well as
its extent (e.g., one or more bits); the effect of the fault
on these bits (inversion, setting to 1, setting to 0, random
transformation); their temporal precision, i.e., the ability to
control the moment of injection (e.g., during the execution
of an instruction); and their permanence, i.e., the duration
of the perturbation or its effect over time (one cycle, several
cycles, or permanent). When constructing an attack, the fault



TABLE I
PHYSICAL ATTACK PRECISION COMPARISON

Physical Attack Temporal Precision Spatial Precision
Clock glitch High N/A
EM injection High Medium
Voltage glitch High N/A

Laser Very High High
X-ray N/A Very High

injection mechanism is chosen based on these criteria and the
intended exploitation of the attack. Some attacks can be carried
out with a low resolution in terms of precision, while others
require maximum precision to avoid, for instance, triggering
a countermeasure.

In fault injection attacks, various mechanisms are ex-
ploitable, such as clock and voltage glitching, electromagnetic
(EM) interference, laser-induced faults, and X-ray.

The goal of a clock glitch is to shorten the period of one (or
multiple) clock cycles, so that erroneous inputs are sampled
by the flip-flops. This attack is possible when the clock can
be easily manipulated by the attacker. Claudepierre et al. [2]
propose a low-cost mechanism for injecting multiple faults
using clock signal perturbations. Moreover, there are also low-
cost fault injection systems marketed for the general public,
such as the ChipWhisperer board [11].

With voltage glitching, the attacker manipulates the power
supply causing voltage fluctuations that can lead to faulty
behavior on the target device. It can be achieved by precisely
creating variations in a power supply (either over- or under-
powering). Korak et al [3] combine glitches on the clock signal
with glitches on the power supply bus to improve the success
rate of fault injection.

Electromagnetic fault injection is another technique to per-
turb the circuits: during an electromagnetic pulse the wire nets
within the circuit are disturbed for the duration of the pulse.
This disturbance particularly affects the synchronous elements
of the circuits. Recently Elmohr et al [4] showed that EM
fault injection can be injected in 320 MHz RISC-V processor
leading to multiple instruction skip. As a result if the EM pulse
voltage increase, the number of the consecutive instructions
being skipped also increases.

More expensive and complex techniques exist. Laser fault
injection injects errors due to the photoelectric effect re-
sulting from its interaction with silicon. X-ray perturbation
can be used to induce faults in the processor by modifying
the electrical behaviour of a transistor using focused X-ray
beams, by inducing permanent faults. The temporal and spatial
characteristics of these techniques are summarized in Table I.

B. Fault Models

Fault models are proposed to describe the effect of the
physical perturbations. The impact of a fault injection depends
on the specific attack scenario and the targeted system or
component. Different types of attacks may exhibit distinct fault
effects based on their objectives and the vulnerabilities they
exploit. Therefore, observed fault models depend on the type

of physical injection. Moreover, fault model can be described
at different abstraction levels, presenting trade-off between
accuracy and simulation time [9]. The higher the level of
abstraction, the less realistic and accurate the fault model
becomes, but also the simpler to be simulated.

At the electrical level, Single Event Transients (SETs)
model the effect of an ionizing particle striking the blocked
junction of a MOSFET transistor. The resulting transient
current pulse (SET) may propagate through logic gates, poten-
tially causing data corruption or system failure. A Single Event
Upsets (SEUs) models logical state modification in a memory
point, which is a reversible effect. It can model the effect of
a ionizing particles depositing charges on memory points or
by the transformation of a transient upset into a logical error.
Both SET and SEU can lead to Multiple Bit Upset (MBU).

At the logic/gate level, the modeling of fault injection
involves directly the individual logic gates, seen as an atomic
element. It comprises stuck-at faults (i.e., the inputs or the
outputs of a gate are considered fixed at ’0’ or ’1’), delay
faults (i.e., the propagation time from input to output of a
logic gate is altered), or transition faults (i.e., the output of a
gate is not able to make a transition).

At the microarchitectural level, Trouchkine et al. [5] demon-
strated that faults can manifest in different ways, affecting
either the pipeline elements, registers, or memory. They can
be classified into two main categories: those that influence
data and those that impact instructions. Among the former,
fault models describe either register or memory corruption, as
well as wrongly fetched instructions. On the other hand, the
latter faults can result in corruption within the pipeline micro
architectural blocks (MABs), cache, or instruction bus.

At the ISA (i.e., assembly) level, the effects of fault injection
are described as a modification of the instructions executed
by the processor. Incorrect instruction execution may result in
faulty computations, data corruption, or unexpected behavior,
disrupting control flow by altering the program counter (PC)
values, and skipping instructions, which can affect one [6] or
multiple instructions [7]. Bosio and al [9] introduced three
different models: (1) affecting the portion of the instruction
responsible for the encoding of the destination register which
model the data fault model; (2) affecting the instruction
opcode and model the code fault model; and (3) affecting the
condition flags of the instruction, which can result on having
an erroneous flag impacting the control flow of the program.

At software level, hardware faults are translated into the
software domain. They include data fault models, code fault
models, and system fault models. Data fault models simu-
late faults corrupting data processed by software; code fault
models affect the sequence of executed blocks in a program;
and system fault models address timing, communication, or
synchronization faults during software execution.

Lower level fault models are more accurate and they
better represent the effects of perturbations and injections.
Nevertheless, they are more complex and they require longer
simulations. For processor-based systems, electrical and log-
ical fault simulations are not affordable in reasonable times.



TABLE II
MODELING FAULT IN DIFFERENT LEVEL

Fault level Fault model

Electrical level
SET, SEU, MBU, MET
Double exponential
Current injection

Logic gate level

Bit flip, Bit Set, Bit Reset
Stuck-At Fault
Delay Fault
Transition Fault

Micro architectural level

Register Corruption
Memory Corruption
Instruction Bus Corruption
Pipeline and MAB Corruption

ISA level
Instruction Skip, Skip and Repeat
Register Corruption
Incorrect Instruction Execution

Software level Control Flow Error
Variable Corruption

Hence, we need to rely on accurate fault models at higher
levels (microarchitectural/ISA). Nowadays, however, the fault
injection effects at these levels are not fully understood. This
observation motivates our work which proposes to compre-
hend the fault propagation of actual physical fault injections
by resorting to the observation of the internal state of the
processor’s microarchitecture.

III. RISC-V OVERVIEW AND IMPLEMENTATION

A. PULPino

In this paper, we use a RISC-V system as our target. RISC-
V is an open Instruction Set Architecture developed by the
University of California, Berkeley since 2010. Like its name
implies, it is a Reduced Instruction Set Computer. It uses a
load/store architecture, which means that memory and register
operations are decoupled. It can operate on various data
widths: 32, 64 or even 128 bits. The RISC-V architecture is
modular: it is composed primarily of a base integer instruction
set (I), to which several extensions can be attached.

We decide to use PULPino SoC coming from ETH Swiss
because of its lightness, flexibility and relative easiness of
understanding. PULPino is a SoC design based on the proces-
sor CV32E40P (RI5CY) and includes the complete peripheral
interfaces (e.g., I2C, SPI) and AMBA Bus. Concerning the
memory structure, it separate data and instruction memory
and supports the external memory access via SPI. It supports
two debug methods: JTAG Debug via OpenOCD and SPI
Slave debug. CV32E40P is a small and efficient, 32 bit, in-
order RISC-V core with a 4-stage pipeline written in System-
Verilog. It implements the RV32IMC (i.e., Integer, Multiplica-
tion/division, and Compressed instructions), and optionally F
(single-precision Floating point), and other custom extensions
for achieving higher code density, performance, and energy
efficiency. In particular, it supports the compressed instruction
format (16-bits) which is a usual feature but also with a
potential risk of introducing new vulnerabilities [8].

B. Hardware platform

The overall goal of this work is to understand the effect
of physical fault injections at the microarchitectural level of
a processor. We require therefore an evaluation board that
facilitates both the physical fault injection process and the pos-
sibility to implement our target RISC-V core. We have iden-
tified the ChipWhisperer platform, which is a suitable choice
meeting these requirements. Chipwhisperer is an embedded
security analysis platform designed by NewAE, completely
self-contained and requiring no additional hardware besides
a computer [11]. It embeds a programmable FPGA, as well
as a dedicated board equipped with intrinsic fault injection
capabilities, based on manipulations of the clock signal. It
provides a Python environment running on the host PC to
configure, observe, and control the resource of the whole
board. During our experiments, we use the CW305 board
which equips a Xilinx FPGA which can carry the target SoC
design, and an Atmel MCU acting as the communication
bridge between PC and the target. Our experimental setup
consists of two parts: the board CW305 equipped with the
target design (PULPino and some necessary components, such
as the PLL), and the CW1173 board used for communication
and fault injection (which leverages a trigger signal coming
from the target in order to generate a synchronized clock glitch
from the internal clock of the target). Finally, both boards are
interfaced and controlled through the PC. In this paper we
focus on the description of the structure of the ISM, without
details about the actual effects of the injections.

Fig. 1. The hardware platform

IV. INTERNAL STATE MONITOR

In the previous sections, we have demonstrated the impor-
tance of a thorough insight of the internal state of the CPU.
Here, we describe the Internal State Monitor, a processor ex-
tension granting a software-level access to a precise snapshot,
cycle by cycle, of a few selected components. Unlike the trace
encoder described in the previous section, any architectural
element can be monitored; on the other hand, the temporal



horizon that we aim for is limited to very few clock cycles,
as monitoring the system for a long time would incur in a
huge overhead in terms of additional memory. In our context,
however, this is a reasonable limitation: our goal is to analyze
the impact of fault attacks (techniques and parameters) on our
target just after the attck, and not do long-term monitoring.

The internal monitor is based on AXI communication and
is shown in Figure 2. The module consists of three state
machines. The first state machine synchronizes the capture
process with the injection, by monitoring the external trigger,
together with the proper delay parameters associated with the
glitching process. This synchronization is crucial to start filling
the table at the precise cycles of interest. The second state
machine populates the table with selected signals collected
from the architecture. Currently, these signals come from a
wrapper, which filters the selected signal in the post synthesis
netlist, in particular sequential elements. In the future, the tool
will be possibly extended to monitor generic signals as well.
The selection of these signals may be based on an algorithm as
described in [10], that identifies the minimum set of signals
to monitor in order to achieve a certain level of detection.
A third state machine allows reading the table through the
AXI bus. Analyzing the content of the table will allow the
designer to compare between a golden and a faulty execution.
It is important to note that, in order to keep the size of the
table at reasonable levels, a divide-and-conquer approach may
be adopted, and the signals will be likely selected based on
specific parts to be observed in the pipeline.

Fig. 2. Architecture of the Internal State Monitor

On the software side, communication between the CPU
and the AXI bus is established through the use of write and
read instructions. The CPU starts communication by sending
a specific address to the AXI bus.

The trigger signal plays a crucial role in synchronizing the
glitching process, in Figure 3, and initiating the onset of cap-
turing the signals from the wrapper module to be the input of

the ISM table in each clock cycle. The State Machine waits for
the delay, a critical parameter that determines the time between
arming the glitch and the actual execution of instructions.
Once the delay is expired, the capturing process begins. During
this phase, signals from the wrapper module are captured and
utilized to populate the ISM table comprehensively. In the final
step, the content of this table is transferred upon request by
the software into a software accessible register by the third
state machine, which initiates the address of the ISM table
from which the write process starts.

Fig. 3. Process Overview for the Internal State Monitor

V. CONCLUSION

This paper introduced the Internal Monitor State (ISM), a
hardware processor extension designed to enhance the soft-
ware observability of specific microarchitectural components
in the RISC-V processor. The ISM module will contribute in
obtaining a comprehensive understanding of the internal state
after fault injection, with the goal to increase the security of the
processor. Our focus is on advancing the monitoring module
to enable the verification of control flow and instruction
execution integrity.

ACKNOWLEDGMENTS

This work is supported by the ARSENE project, funded by the
“France 2030” government investment plan managed by the French
National Research Agency (ANR-22-PECY-0004).

REFERENCES

[1] A. Zgheib, et al., ”A CFI Verification System based on the RISC-V
Instruction Trace Encoder,” 2022 25th Euromicro Conference on Digital
System Design (DSD).

[2] L. Claudepierre, et al. ”TRAITOR: A Low-Cost Evaluation Platform
for Multifault Injection,” in Proceedings of the 2021 International
Symposium on Advanced Security on Software and Systems.

[3] T. Korak et M. Hoefler,”On the Effects of Clock and Power Supply
Tampering on Two Microcontroller Platforms”, in 2014 Workshop on
Fault Diagnosis and Tolerance in Cryptography, sept.

[4] M. A. Elmohr, H. Liao and C. H. Gebotys, ”EM Fault Injection on ARM
and RISC-V,” 2020 21st International Symposium on Quality Electronic
Design (ISQED).

[5] Trouchkine, Thomas et al. “Fault Injection Characterization on Modern
CPUs.” 2019 Workshop in Information Security Theory and Practice .

[6] Yuce, Bilgiday et al. “Software Fault Resistance is Futile: Effective
Single-Glitch Attacks.” 2016 Workshop on Fault Diagnosis and Tol-
erance in Cryptography (FDTC) (2016): 47-58..



[7] V. Werner, et al. ”An End-to-End Approach for Multi-Fault Attack
Vulnerability Assessment.” 2020 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC).

[8] I. Alshaer, et al.”Variable-Length Instruction Set: Feature or Bug?,”
2022 25th Euromicro Conference on Digital System Design (DSD),
Maspalomas, Spain, 2022.

[9] Natale, Giorgio Di et al., Cross Layer Reliability of Computing Systems,
Ed. IET, ISBN 978-1785617973

[10] Stefano Di Carlo, Giorgio Di Natale, and Riccardo Mariani. On-Line
Instruction-Checking in Pipelined Microprocessors. In Proceedings of
the 2008 17th Asian Test Symposium (ATS ’08).

[11] NewAE Technology Inc. ”ChipWhisperer Documentation”.Available:
https://chipwhisperer.readthedocs.io/en/latest/index.html.

[12] RISC-V International, Nov 2020 https://github.com/riscv-non-isa/riscv-
trace-spec.


