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Abstract: Significant research endeavors have been devoted to developing adhesives with reversible
switching capabilities, allowing them to activate adhesion in response to diverse environmental
stimuli. Among these, photo-switchable adhesives stand out as particularly promising. The presence
of a photo-reversible solid-to-liquid transition, characterized by a transition temperature (TSL), in
certain azobenzene-containing polymers offers a compelling avenue for creating such adhesives. The
development of a method based on Atomic Force Microscopy to measure both the glass transition
temperature (Tg) and TSL provided an opportunity to investigate the impact of various structural
parameters on the solid-to-liquid transition of azopolymers. Our findings revealed that increasing
the molecular weight (Mn) from 3400 to 8100 g/mol needed to achieve a highly cohesive adhesive
resulted in an elevation in TSL (>10 ◦C), making the solid-to-liquid transition at room temperature
more challenging. However, incorporating a highly flexible substituent at the para position of the
azobenzene group proved effective in significantly reducing the TSL value (from 42 ◦C to 0 ◦C).
This approach allows for the creation of photo-switchable adhesives with intriguing properties.
We believe that our results establish a pathway toward developing a robust room-temperature
photo-switchable adhesive.

Keywords: adhesive; phase transition; smart coating; polymer; AFM; azobenzene; glass temperature
transition

1. Introduction

While advancements in adhesion technology have been noticeable in recent decades,
creating materials with on-demand stickiness continues to pose a challenge. Extensive
research efforts have been dedicated to the creation of switchable adhesives featuring an
adjustable and reversible bonding–debonding process that can be activated in response to
various environmental stimuli [1]. Among them, light is regarded as a highly promising
external stimulus due to its benefits, including athermal operation, precise control, and
environmental friendliness. Despite advancements in switchable adhesives, enhancing
adhesion strength and reusability remains a formidable challenge.

It is widely acknowledged that the three main properties for characterizing the nature
of an adhesive are tack (initial adhesion), adhesion (interaction with the substrate), and
cohesion (intermolecular interactions), which all depend on the thermo-mechanical proper-
ties of the polymeric material [2]. Consequently, opting for materials capable of controlled
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solid–liquid phase transitions holds promise for the development of improved switchable
adhesives. Because light can induce a reversible change in the mechanical properties
of the material called a solid-to-liquid phase transition [3,4], azobenzene-functionalized
polymers, the so-called azopolymers, generate a strong enthusiasm for elaboration of photo-
switchable adhesives [1,5–13]. Until recently, the characterization of the photo-reversible
solid-to-liquid transition of azopolymer was made in almost all situations in a qualitative
way. Typically, optical microscopy was used for bulk materials [11,14,15]. While convenient,
this method proves unsatisfactory for the precise determination of transition conditions [16].
In a recent article [17], we demonstrated for the first time that the photo-reversible solid-to-
liquid transition can be characterized by a transition temperature (TSL). By using a method
based on Atomic Force Microscopy (AFM), this temperature can be accurately measured,
allowing us to propose a mechanism for the photo-reversible solid-to-liquid transition.

In the present article, the AFM method is used to measure both TSL and Tg on thin
coatings composed of various azopolymer architectures. By correlating the TSL value with
the chemical structure of the azopolymer, we gain insights into the chemical parameters
governing the photo-reversible solid–liquid transition. Based on these findings, the selec-
tion of an optimized azopolymer architecture for the formulation of a room-temperature
photo-switchable adhesive is performed and its properties are tested.

2. Materials and Methods
2.1. Azopolymer Synthesis

To synthesize the different azopolymers, we used Nitroxide-Mediated Polymerization
(NMP). All the azopolymers synthesis details and characterization can be found in [16].
Size exclusion chromatography was used in THF as an eluent to check the molecular weight
and the dispersity values of polymers. The chemical formula of azopolymers based on
acrylate or the methacrylate polymerizable group and their main properties are presented
in Table 1. Number-average molar mass (Mn) was calculated from a calibration derived
from polystyrene standards. All the synthesized polymers present a dispersity between 1.2
and 1.3. Once purified, the polymers were kept in the dark at a low temperature (3 ◦C).

Table 1. Structure of the azopolymers synthetized and considered in this study.

Formula R1 R2 Name Mn (g/mol) DP(1) Conversion (%)
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2.2. Azopolymer Coating

Azopolymer coatings were applied onto a meticulously cleaned microscopic glass
slide. The cleaning procedure involved immersing the slide in a mixture of methanol
and hydrochloric acid (in an equal volume ratio) for 30 min. Subsequently, the glass was
thoroughly rinsed with ultrapure water, dried, and subjected to a 15-min treatment in a
UV-ozone cleaner (Novascan PSD-UVT, Ames, IA, USA). For film preparation, a 10 g/L
solution of azopolymer in dichloromethane (CH2Cl2) was slowly deposited onto a heated
plate at 40 ◦C. The resulting films are homogeneous (Supplementary Figure S1) with a
thickness ranging from 1 to 1.2 µm and an RMS roughness of 10 to 20 nm, as measured
by AFM.

2.3. Atomic Force Microscopy (AFM)

AFM measurements were conducted using an Agilent 5500 equipped with an envi-
ronmental chamber. Temperature control was achieved using a PID controller (Lakeshore-
Westerville, OH, USA) coupled with a heating plate. Experiments covered a temperature
ranging from −20 ◦C to 200 ◦C with an accuracy of 0.1 ◦C, facilitated by a Peltier and a
heater stage. Stage temperature calibration was performed using different standard fusion
point solids to cover the experimental temperature range. Force–distance measurements
were obtained using CP-FM-SiO-B tips (NanoandMore, Paris, France) featuring a silica
sphere (R = 3.5 µm). The spring constant, ranging from 0.5 to 1.2 N.m−1, depending on
the tip, was determined using the thermal noise method. A calibrated z-close loop scanner
(90 × 90 µm2) controlled the indentation depth and maximum load on films to prevent any
deterioration. For each temperature, a 4 × 4 mapping on a 2 × 2 µm2 surface was generated,
with each pixel averaging 10 force-distance curves acquired at 1 Hz. Pull-off force inten-
sities, Young moduli (JKR model, Poisson ratio of 0.33), and uncertainties were extracted
from these measurements using Atomic J [18]. Relative pull-off force was calculated by
dividing all the pull-off forces by the minimum pull-off force value.

2.4. Ellipsometry

Ellipsometry measurements were carried out using a Horiba spectroscopic ellipsome-
ter. This instrument consists of a xenon source covering a wide spectral range from far
infrared to ultraviolet (250–1700 nm), as well as a polarizer, an analyzer, and a monochroma-
tor responsible for managing dispersion and selecting wavelengths for a photomultiplier.
The ellipsometer was equipped with a heating plate (LinKAM®TMS600—London, UK)
to control thermal variations (30–145 ◦C) and transitions in the azopolymer films. Mea-
surements for each sample were taken at 3 ◦C intervals between 25 and 106 ◦C, preceded
by a 2-min equilibration period at a fixed temperature. The heating rate between the
two measurements was set at 1◦/min. To confirm the reproducibility of the measurements,
at least three measurements were carried out on several samples. The thermal transitions
of the trans isomer were assessed by introducing a UV filter (Longpass OD4—Edmund
Optics, Villeurbane, France) that blocks UV radiation below 400 nm from the incident beam.
This precautionary measure was taken to avoid any bias toward the cis state of the azopoly-
mer. To analyze ellipsometry measurements, it is normally necessary to define a model
representing the internal structure of the film in order to fit the curves. The limitations of
this approach are that it can be difficult to define the most appropriate model, for example,
the number of layers needed to perfectly describe the film morphology, etc. The choice of
model can influence the adjustments and, therefore, the results obtained. Another analysis
method [19] consists of observing the behavior of the raw data as a function of temperature,
without modeling and adjustment. In this way, it is possible to detect transitions that would
be less visible by choosing a model.

2.5. Adhesion Strength Measurement

Initially, two polycarbonate (PC) substrates, measuring 20 mm in length, 10 mm in
width, and 3 mm in thickness, were manually polished for 15 s using 400 mesh sandpapers
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(resulting in RMS roughness = 100 nm). Subsequently, they were washed with ethanol and
allowed to air dry. Next, approximately 1–2 mg of the selected azopolymer was placed
on the rough surface of one PC substrate, followed by exposure to UV irradiation for 30 s
(365 nm, 300 mW.cm−2). This UV treatment aimed to reach the TSL of the azopolymer,
ensuring it became fully molten. Afterward, another rough-surfaced PC substrate was
manually pressed onto the molten azopolymer for 30 s. Upon cooling to room temperature,
an azopolymer specimen was obtained with an approximate bonding area of 100 mm2.
Subsequently, the specimen was affixed to the grips of a universal tensile test machine
(Mecmesin®-, London, UK) and subjected to stretching at a rate of 2 mm.min−1 to generate
the force–elongation curve [9].

2.6. Reversible Bonding–Debonding Experiment

Polyethylene Naphthalate (PEN), Polycarbonate (PC), and Polyethylene Terephthalate
(PET) strips with dimensions of 10 cm (length) × 5 mm (width) × 0.3 mm (thickness) were
used. First, 1–2 mg of azopolymer was placed on one end of the strip. After 2 min of UV
irradiation, the azopolymer was molten and was then glued (by thumb pressure for 30 s)
with the other end of the stripe to acquire a ring. The ring was again submitted to UV light
(365 nm, 300 mW.cm−2) for the debonding process [9].

3. Results
3.1. Measurement of Tg and TSL

The comprehensive experimental methodology for measuring TSL on the azopolymer
coating has been thoroughly elucidated in earlier publications [17,20]. In summary, by
performing pull-off force measurement between the AFM tip and the surface of an azopoly-
mer coating as a function of the film temperature, different transition temperatures can be
detected. As seen in Figure 1a for P6-azo-CH3 azopolymer (Mn = 8100 g/mol), the glass
temperature transition (Tg) for both trans (Tg(trans) = 54(2) ◦C) and cis (Tg(cis) = 32(2) ◦C)
isomers are identified as the first slope breakage of the pull-off force vs. the temperature
curve. We also demonstrated in our previous articles that the position of the maximum
pull-off force (i.e., Tmax) corresponds to a solid-like to liquid-like transition [17,20]. For
P6-azo-CH3 azopolymer with Mn = 8100 g/mol, we measured Tmax(trans) = 90(2)◦ and
Tmax(cis) = 42(2) ◦C. All these temperature transitions were also detected on azopolymer
coatings by multiwavelength ellipsometry. Figure 1b shows the quantity IS extracted
from the output signal by harmonic analysis (synchronous detection at the modulator
frequency) and related to the ellipsometric angles (ψ and ∆) by Is = sin(2ψ)sin(∆). Its
behavior as a function of temperature is entirely consistent with the AFM measurements.
These earlier investigations have contributed to the understanding of the photo-reversible
solid-to-liquid transition mechanism. As shown in Figure 1b, the trans-to-cis isomeriza-
tion of the azopolymer coating by UV irradiation (UV–visible spectra are provided in
Supplementary Figure S2) is not sufficient to reach the solid-to-liquid transition. A greater
irradiation intensity (or external heating) is required to surpass Tmax(cis). Reversibility
is achieved either through storage of the material in the dark or exposure to green light
irradiation. Consequently, TSL and Tmax(cis) represent the same transition temperature [17].
With the ability to accurately measure Tg and TSL, we are able to study the influence of the
polymer architecture on the photo-reversible solid-to-liquid transition.
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(Mn) from 5000 to 100,000 g/mol [21]. In this work, pull-off force vs. temperature experi-
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may be explained by the conformation of the azomolecule substituent. Indeed, the trans-

Figure 1. (a) (left) Relative pull-off force vs. the temperature curve and (right) raw ellipsometry data
vs. temperature at an energy of 1.2 eV, for trans- and cis-P6-azo-CH3 (Mn = 8100 g/mol) (for the cis
experiment, irradiation with a UV lamp: λmax = 365 nm, Ee = 300 mW.cm−2, t = 30 s). (b) Optical
microscopy images (350 µm × 264 µm) of P6-azo-CH3 grains as a function of the irradiation and
temperature conditions.

3.2. Influence of Azopolymer Chain Length

In 2020, Chen et al. synthesized azopolymers with the same chemical structure as
P6-azo-CH3. They measured an increase in Tg(trans) from 48 to 80 ◦C for a molecular
weight (Mn) from 5000 to 100,000 g/mol [21]. In this work, pull-off force vs. temperature
experiments were performed on P6-azo-CH3 with Mn = 3400 to 8100 g/mol in order to
measure the evolution of both Tg and TSL with Mn. The extracted Tg and TSL values
from the pull-off force vs. temperature curves (Supplementary Figure S3) are plotted as
a function of Mn in Figure 2. At first, it can be seen that Tg(trans) is always measured
above Tg(cis). This may be explained by the conformation of the azomolecule substituent.
Indeed, the trans-to-cis photo-isomerization leads to a modification of the geometry of the
azomolecule substituent, which passes from a rod-like shape favoring good packing with
adjacent azomolecules to a banana-like shape increasing the free volume of the polymer
material. Although the measured Tg(trans) values of the P6-azo-CH3 azopolymers are
in agreement with those measured by Chen et al. [21], here, we demonstrate that both
Tg(trans) and Tg(cis) increase with Mn. This evolution, expected for linear polymers with
low Mn, follows the Fox–Flory equation: Tg = Tg,∞ − K

Mn , where Tg,∞ is a parameter that
can be associated with the glass transition for an infinity high Mn and K is a material
dependent parameter [22]. The fitting parameters are available in Supplementary Table
S1 and show a similar K parameter (K~72,000–73,000 g/mol) for both the trans and cis
isomers, which is closed from the calculated critical entanglement molecular weight (i.e.,
Mc = 68,000 g/mol) for this azopolymer [21]. Finally, we can observe that for this polymer
architecture, whereas Tmax(trans) increases with Mn, TSL seems to saturate for Mn greater
than 5000 g/mol. At present, the absence of theoretical work concerning the solid-to-liquid
transition hinders drawing any definitive conclusions about this evolution.
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of the molecular mass of the P6-azo-CH3 azopolymers.

3.3. Influence of the Alkyl Length Ligand

For acrylate azopolymers, Weiss et al. observed that the solid-to-liquid transition is
impacted by the alkyl spacer length since the transition was only observed for n = 6 and
n = 12 (with n the number of carbon atoms) [23]. Here, we compare azopolymers with
alkyl spacer lengths of n = 6 (P6-azo-CH3) and n = 10 (P10-azo-CH3) with two different Mn
(Supplementary Figure S4).

When comparing azopolymers with different linker lengths but similar Mn, it can be
seen (Table 2) on one side that Tg(trans) and Tmax(trans) are close and thus fairly impacted
by the linker length. On the other side, an increase in the linker length leads to a strong
decrease (∆T < −20 ◦C) of both Tg(cis) and TSL. For a similar Mn (i.e., 8600 g/mol), Weis
measured Tg(cis) = −14 ◦C on powder for the n = 12 linker [23], which is in agreement
with the evolution observed here. These results may indicate that the linker length has a
stronger impact on the thermo-mechanical properties of the cis form than on those of the
trans form. The molecule packing of the trans rod-like shape azomolecule may be fairly
impacted by the linker length, whereas in the cis conformation, the banana shape with
a higher linker length may create a consequent excess of free volume and thus a strong
decrease in the transition temperatures.

Table 2. Influence of the linker length on transition temperatures Tg and Tmax. All the measured data
have measurement uncertainties of 2 ◦C.

Tg (◦C) Tmax (◦C)

P6-azo-CH3
Mn=5900 g/mol

Trans 52 80
Cis 30 42 (TSL)

P10-azo-CH3
Mn=6000 g/mol

Trans 52 75
Cis 0 15 (TSL)

P6-azo-CH3
Mn=8100 g/mol

Trans 54 90
Cis 32 42 (TSL)

P10-azo-CH3
Mn=11400 g/mol

Trans 60 85
Cis 47 60 (TSL)
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3.4. Influence of the Substituent Nature

In order to study the influence of the azobenzene chemical structure, we compared
the values of Tg and TSL for three azopolymers, namely, (P6-azo-CH3, P6-azo-C6H13, and
P6-azo-OC6H13) (Supplementary Figure S5). These azopolymers have similar Mn and
the same alkyl linker length (n = 6) but a different substituent on the para position of the
azobenzene group.

When comparing P6-azo-CH3 and P6-azo-C6H13 (Table 3), we can see that the increase
in the alkyl tail of the substituent leads to a net decrease in all the transition temperatures.
Our results agree with the work of Liang et al. [24], who measured Tg(trans) = 68 ◦C and
Tg(cis) = −27 ◦C for n = 10, and with Li et al. [25], who studied the effect of substituents
length on the transition temperature of alkyl on poly(n-alkyl-acrylate) polymer and demon-
strated that Tg decreases with the substituent length, reflecting the greater side chain
mobilities of long alkyl substituents.

Table 3. Influence of the substituent nature on the transition temperatures. All the measured data
have measurement uncertainties of 2 ◦C.

Tg (◦C) Tmax (◦C)

P6-azo-CH3
Mn=8100 g/mol

Trans 54 90
Cis 32 42 (TSL)

P6-azo-C6H13
Mn=7100 g/mol

Trans 33 57
Cis <−10 0 (TSL)

P6-azo-OC6H13
Mn=7400 g/mol

Trans 45 87
Cis <20 30 (TSL)

Whereas P6-azo-C6H13 and P6-azo-OC6H13 have comparable substituent lengths,
they show different behavior. Indeed, both the Tg and Tmax transition temperatures of
P6-azo-OC6H13 are much higher. Compared with P6-azo-C6H13, the presence of the
oxygen group in P6-azo-OC6H13 may, via a mesomeric effect with the azobenzene group,
lead to a higher rigidity of the substituent [26,27]. This loss of flexibility may explain the
observed increase in both Tg and Tmax. This outcome illustrates that the crucial factor in
adjusting TSL may not be the length of the substituent but rather its flexibility.

3.5. Photo-Switchable Adhesive

Hot melt adhesives (HMAs) are widely used in the industry because they are solvent-
free, they form a strong bond quickly, simply by cooling, are compatible with most materials,
and are clean and easy to handle [28]. Such adhesives undergo a phase transition into
a liquid state when heated, facilitating their application between two substrates. Upon
cooling, the adhesive solidifies via physical crosslinks and creates a bond between the
substrates. For photo-switchable adhesives, the goal is to replace the heating/cooling step
of the HMA with light irradiation. As a consequence, a good candidate should present
(1) a temperature of solid–liquid transition (TSL) slightly above the operating tempera-
ture. This is essential because, during the bonding process, the liquid form can be rapidly
achieved using moderate UV irradiation. Subsequently, reversible debonding can be
accomplished by UV irradiation of the assembly (cis liquid form and loss of adhesive
cohesion). (2) The glass transition temperature of the trans state (Tg trans) should surpass
the operating temperature, and (3) Mn should be high. These two last conditions ensure
that after the bonding process, a solid form can be attained with thermal cis-to-trans iso-
merization and that physical crosslink may append both enhancing the cohesion of the
adhesive. As a consequence, in order to prepare an adhesive with an operating temperature
of 20 ◦C, the selected formulation should fulfill the following conditions: (1) TSL ≤ 35 ◦C;
(2) Tg(trans) > 20 ◦C; and (3) high Mn. Even if high Mn azopolymers could not be ob-
tained in this study, among the synthesized azopolymers, only two fulfill these conditions:
P6-azo-C6H13 and P6-azo-OC6H13.
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At first, the adhesion strengths were investigated by lap shear strength tests using
polycarbonate substrates to determine the best adhesive candidate. The stress−strain
curves of P6-azo-C6H13 and P6-azo-OC6H13 are shown in Figure 3. The bonding shear
strengths of the two adhesives were 3.3 MPa and 6.1 MPa, respectively. Even though
the absolute values of adhesive strength have to be taken with caution because they are
related to the condition of the bonded substrate, the measured values are comparable
with the ones measured by Lee et al. [8] and are higher than Li et al. [10,13]. It is clear
that P6-azo-OC6H13 shows a higher adhesive strength than P6-azo-C6H13 in the trans
state. This can be explained by the difference in Tg(trans). Indeed, the Tg(trans) of P6-
azo-C6H13 is lower than the Tg(trans) of P6-azo-OC6H13 and much closer to the ambient
temperature. As a result, the mechanical properties at 20 ◦C (i.e., modulus, cohesive
energy. . .) of P6-azo-C6H13 are lower than P6-azo-OC6H13.
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Based on the good adhesive strength of the two candidates, the reversible opening
and closing of a plastic ring were successfully achieved (Figure 4) [9]. After the deposition
of azopolymer powder on one end of the strip, the powder was UV irradiated for 30 s
(365 nm, 100 mW.cm−2) in order to cause the trans–cis isomerization and the reaching
of TSL where the solid-to-liquid transition occurs. The polymer strip was then pressed
end-to-end under room light to acquire a ring. We checked that the pressing time of t = 30 s
was enough for the back cis–trans isomerization to proceed. Debonding of the ring can
be performed upon UV irradiation, where the ring opens within 30 s. The opening and
closing of the ring could be reversibly achieved when the adhesive position was exposed to
alternating UV and pressure. Different polymer film substrates were tested as a ring strip
either with P6-azo-OC6H13 or P6-azo-C6H13 glue. To compare the different assemblies, the
time for the ring to self-debond when kept at room temperature was measured. The results
presented in Figure 4b show that whatever the substrate, P6-azo-OC6H13 is a stronger
adhesive than P6-azo-C6H13, indicating that P6-azo-OC6H13 seems to be a good candidate
for a photo-switchable adhesive.
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for a total duration of 8 days.

4. Conclusions

In summary, the possibility of using the pull-off force vs. temperature method to
measure both Tg and TSL gave us the opportunity to study the effect of different structural
parameters on the solid-to-liquid transition of azopolymers. Our study has demonstrated
that the increase in Mn needed to have high cohesive adhesive led to an increase in TSL,
rendering the solid-to-liquid transition more difficult to access. However, the use of a highly
flexible substituent on the para position of the azobenzene group gives the opportunity to
strongly decrease the value of TSL and obtain photo-switchable adhesives with interesting
properties. Upon alternating UV light exposure, the adhesive showed reversible debonding
and bonding, which was applicable to various substrates. The result indicates that P6-azo-
OC6H13 had superior adhesive performance and reusability, which may be applicable in
the near future. We believe that our results pave the way for the route toward a robust
photo-switchable adhesive.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/coatings14030275/s1, Figure S1: Optical profilometry im-
age of the surface of the P6-azo-CH3 (Mn = 5900 g/mol) coating; Figure S2: UV–visible absorp-
tion spectrum for a film of trans-P6-azo-CH3 (Mn = 8100 g/mol) before and after UV irradiation
(λmax = 365 nm, Ee = 300 mW.cm−2) and after keeping the film in the dark for 10 h; Figure S3:
Relative pull-off force vs. temperature curves for both trans and cis-P6-azo-CH3 for Mn = 3400, 4900,
5900, and 8100 g/mol; Table S1: Fox Flory equation and resulting fitting parameters for the variation
in Tg with Mn of both trans and cis P6-azo-CH3; Figure S4: Relative pull-off force vs. temperature
curves for both trans and cis-P10-azo-CH3 for Mn = 6000 and 11,400 g/mol; Figure S5: Relative
pull-off force vs. temperature curves for both trans and cis-P6-azo-C6H13 and P6-azo-OC6H13.
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