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Supplementary 1 

Structure of generalized Rayleigh-type surface acoustic wave on a superlattice  

stratified normal to its surface 

  

The mathematical formalism for the theoretical investigation of the surface acoustic waves (SAWs) 

which propagate in the direction of the superlattice (SL) stratification along mechanically free surface 

which is normal to SL layers (Fig. S1) was developed nearly 40 years ago [S1]. In Fig. S1 a bilayer 

SL with individual semi-infinite plane layers oriented parallel to x1 axis is schematically presented. 

In general, the layers are of different thicknesses 𝑑(1) and 𝑑(2)  and are of materials with different 

densities 𝜌(1,2) and elastic moduli tensors 𝐶𝛼𝛽𝛾𝛿
(1,2)

.  

 

Fig. S1. Scheme of a bilayer superlattice stratified normal to the mechanically free surface. 

In the geometry presented in Fig. S1 the generalized Rayleigh-type SAWs, which are denoted in the 

main text of the manuscript as gR waves, are polarized in the sagittal plane (x1,x3). In an acoustic 

wave of cyclic frequency 𝜔 two particle displacements components  𝑢𝛼(𝑥⃗, 𝑡) = 𝑢𝛼(𝑥⃗)𝑒−𝑖𝜔𝑡 , where 

(𝛼 = 1,3), satisfy the system of two coupled Helmholtz equations −𝜔2𝜌(𝑥⃗)𝑢𝛼 =
∂

∂𝑥𝛽
[𝐶𝛼𝛽𝛾𝛿(𝑥⃗)

𝜕𝑢𝛾

𝜕𝑥𝛿
]. 

Note, that the density and the elastic moduli in these equations are periodic functions of x1 coordinate 

and are independent of two other coordinates.  In [S1] the Helmholtz equations were specified for the 

case where the materials composing the SL are both of cubic symmetry, with crystallographic axes 

oriented along the coordinate axes in Fig. S1: 

−𝜔2𝜌(𝑥1)𝑢1(𝑥⃗) =
∂𝐶11(𝑥1)

∂𝑥1

𝜕𝑢1

𝜕𝑥1
+

∂𝐶12(𝑥1)

∂𝑥1

𝜕𝑢3

𝜕𝑥3
+ [𝐶12(𝑥1) + 𝐶44(𝑥1)]

𝜕2𝑢3

∂𝑥1 ∂𝑥3
+ 𝐶11(𝑥1)

𝜕2𝑢1

𝜕𝑥1
2 + 𝐶44(𝑥1)

𝜕2𝑢1

𝜕𝑥3
2 , 

−𝜔2𝜌(𝑥1)𝑢3(𝑥⃗) =
∂𝐶44(𝑥1)

∂𝑥1

𝜕𝑢1

𝜕𝑥3
+

∂𝐶44(𝑥1)

∂𝑥1

𝜕𝑢3

𝜕𝑥1
+ [𝐶12(𝑥1) + 𝐶44(𝑥1)]

𝜕2𝑢1

∂𝑥1 ∂𝑥3
+ 𝐶11(𝑥1)

𝜕2𝑢3

𝜕𝑥3
2 + 𝐶44(𝑥1)

𝜕2𝑢3

𝜕𝑥1
2 . 

The boundary conditions at stress-free surface x3=0 are: 

[𝐶44(𝑥1) (
𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
)]

𝑥3=0

= 0, [𝐶12(𝑥1)
𝜕𝑢1

𝜕𝑥1
+ 𝐶11(𝑥1)

𝜕𝑢3

𝜕𝑥3
]

𝑥3=0

= 0. 

These equations and boundary conditions are valid for all the SLs in our experiments. In [S1] the 

mathematical formalism for revealing the gR SAWs was developed for an arbitrary periodic 

distributions of density 𝜌(𝑥1) and elastic moduli 𝐶11(𝑥1), 𝐶12(𝑥1) and 𝐶44(𝑥1), expanding them in 

the Fourier series: 

 𝑓(𝑥1) = ∑ 𝑓(𝑚)𝑒𝑖𝑚𝑞𝑥1 ,∞
𝑚=−∞  𝑓(𝑚) =

1

𝑑𝑆𝐿
∫ 𝑑𝑥1

𝑑𝑆𝐿/2

−𝑑𝑆𝐿/2
𝑓(𝑥1)𝑒−𝑖𝑚𝑞𝑥1 ,                                          (S1)                                                            

where 𝑓 denotes either the density or the elastic modulus,  𝑑𝑆𝐿 ≡ 𝑑(1) + 𝑑(2) and 𝑞𝑆𝐿 ≡ 2𝜋/𝑑𝑆𝐿  
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are the SL period and SL wave number, respectively.  In accordance with Bloch-Floquet property 

of the waves in the spatially periodic media [S2] the solution of the Helmholtz equations for the bulk 

eigen modes has the following form: 

𝑢𝛼(x1, 𝑥3)=∑ 𝑢𝛼(𝑚, 𝑥3)𝑒𝑖𝑘𝑚𝑥1∞
𝑚=−∞ ,                                                                                                                        (S2) 

where 𝑘𝑚= 𝑘 + 𝑞𝑆𝐿𝑚.   Thus, each component of the mechanical displacement is a periodic function 

along x1 axis composed of the component with wave number 𝑘, corresponding to m = 0 in Eq. (S2) 

and independent of the SL periodicity, and an infinite number of the components with wave numbers 

shifted relative to 𝑘 by a 𝑞𝑆𝐿𝑚 (𝑚 = ±1, ±2, … . ).  Saying differently, each component 𝑢𝛼(x1, x3) of 

the mechanical displacement vector is composed of an infinite number of contributions from all the 

« diffraction orders » m. The periodic inhomogeneity of the material couples all the « diffraction 

orders » and it also couples different components of the mechanical displacement additionally to their 

coupling by the boundary conditions. Substitution of the spatially periodic distributions of the 

material parameters, Eq. (S1), and of the mechanical displacements, Eq. (S2), in the system of the 

Helmholtz equations results in the infinite system of coupled algebraic equations for 𝑢𝛼(𝑚, 𝑥3) [S1]. 

For the particular frequencies 𝜔, the evanescent bulk eigen modes, i.e., those decaying with the 

increasing distance x3 from the surface (x1,x2), can be combined with particular relative amplitudes 

to satisfy the conditions at the stress-free surface. In [S1] an infinite system of equations for the 

amplitudes of the bulk components contributing to the surface acoustic wave was derived. These 

equations are compatible only for the particular values of frequencies, which are the eigen frequencies 

of the SAWs. Because all the wave numbers 𝑘𝑚= 𝑘 + 𝑞𝑚 of the displacement field are equivalent, 

the dispersion relations 𝜔 = 𝜔(𝑘) of the acoustic waves in the structure presented in Fig. S1 can be 

folded inside the Brillouin zone −𝜋/𝑑𝑆𝐿  ≤ 𝑘 ≤ 𝜋/𝑑𝑆𝐿, where  𝜋/𝑑𝑆𝐿 ≡ 𝑘𝑒𝑑𝑔𝑒 denotes the Brillouin 

zone edge (Fig. S2 and Fig. 2 (c) of the manuscript).  

 

Figure S2. Schematic presentation of the surface Rayleigh modes (red lines) and surface skimming transverse and 

longitudinal bulk modes (green and blue lines, respectively) in the Brillouin zone, obtained by formal folding the 

dispersion relations of the surface and bulk modes in an “average” homogenous medium.  The lowest (acoustical-type) 

branches of the surface skimming bulk waves describe the boundaries for the existence of the bulk modes. The Rayleigh 

SAW 𝜔(𝑘 = 0) = 𝜔𝑅 obtained in the limit 𝜇 = 0 is marked as Rayleigh zone center mode. In the limit  𝜇 ≠ 0, 𝜇 ≪ 1,  

the SAW weakly interacts with the bulk acoustic modes. The parts of the SAW spectrum that are expected to be modified 

by these interactions are symbolically shaded in grey.  The developed theory predicts that this interaction results in small 

shift of the frequency and in weak attenuation of the gR wave in the Brillouin zone center, i.e., 

∆𝑅𝑒(𝜔𝑅)/𝜔𝑅~𝜇2, 𝐼𝑚(𝜔𝑅)/𝜔𝑅~𝜇2. The revealed gR wave in the limit 𝜇 ≠ 0, 𝜇 ≪ 1 is, in general, a three-component wave, 

while in the limit 𝜇 = 0  it is a two-component wave. Additionally,  𝜇 ≠ 0 generally results in frequencies splitting of 

symmetrical and anti-symmetrical gR waves in the center and the edge of the Brillouin zone (not presented in the scheme, 

but evidenced in Fig. 2 (c) of the manuscript). 
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The derived systems of algebraic equations were solved in [S1] only numerically and only non-

attenuated SAWs, i.e., with real valued frequencies, were in the scope of [S1]. Thus, mostly the lowest 

(acoustical-type) branch of the SAW dispersion relation was evaluated from the zone center, where 

for this mode 𝜔(𝑘 = 0) = 0, to the zone edge  𝑘 = 𝑘𝑒𝑑𝑔𝑒. The possibility of the gap opening between 

acoustical-type SAW branch and the nearest in frequencies (first) optical-type SAW branch at the 

Brillouin zone edge was revealed. The first optical-type SAW branch was studied in [S1] only rather 

close to the zone edge. With the diminishing wave number, the first optical-type SAW branch 

intersects the lowest (acoustical-type) branches of the bulk modes, e.g. Fig. S2 and Fig. 2 (c) of the 

manuscript. At wave numbers smaller than the first intersection point, the SAW is supersonic relative 

to some of the bulk modes and emits energy in the bulk of the sample. Purely real solution for the 

SAW eigen frequency disappears. The attenuated SAWs, including optical-type SAW modes in the 

zone center (𝑘 = 0) and nearby, which are playing the dominant role in our experiments, were not 

studied in [S1] at all.  

In our experiments, the 𝑘  spectrum of the photo-generated SAWs is controlled by the spatial 

distribution of the stresses that could be photo-induced by the pump laser pulses. Of course, in 

general, the distribution of the photo-induced stresses depends on the physical mechanisms of 

optoacoustic conversion (thermoelasticity, electron-phonon deformation potential, inverse 

piezoelectric effect, electrostriction, etc. [S3, S4]). The dominant physical mechanisms in each 

particular case are determined by the physical properties of the materials composing the SL and the 

energy quanta of the pump laser radiation. For example, the pump light penetration depth in the 

materials composing the SL can importantly influence the depth distribution of the photo-induced 

stresses [S3, S4]. The universal influence on the lateral distribution of the photo-induced stresses, i.e., 

along the free surface, and, respectively, on the 𝑘 spectrum of the photo-induced stresses, stems from 

the lateral distribution of the pump laser radiation penetrating inside the SL. In our experiments, the 

lateral modulation of the photo-induced stresses at nanometer spatial scales is due to the difference 

in the optical properties of the two layers. In the infinite SL composed of spatially homogeneous 

layers the stresses photo-induced by the laterally homogeneous incident pump laser radiation will 

have the periodicity of SL and will exhibit the Bloch-Floquet property. Thus, in this limiting case the 

folded 𝑘 spectrum of the photo-induced stresses would contain only zone center components, 𝑘 = 0. 

Focusing of the pump laser radiation localizes initial optical excitation laterally at the scale which is 

larger or comparable to the pump optical wavelength. Consequently, in our experiments the 𝑘 

spectrum of the photo-induced stresses would be broadened. However, in our experiments, the period 

of the SL, 𝑑, is much smaller than the optical wavelengths. Therefore, this broadening is much 

narrower than the width of the Brillouin zone 𝜋/𝑑𝑆𝐿 ≡ 𝑘𝑒𝑑𝑔𝑒 . Consequently, the photo-generated 

SAWs 𝑘 spectrum is expected to be strongly localized near the Brillouin zone center 𝑘 = 0. 

In order to get a physical insight relevant to our experiments, we drastically simplified the general 

approach for the description of the gR waves [S1]. Firstly, based on the above-described arguments, 

we evaluate analytically only 𝑘 = 0 modes. Secondly, assuming the layers of equal thickness, we 

take into account only the first two lowest order components of the waves, i.e., corresponding to 𝑚 =

0 and 𝑚 = ±1, in Eq. (S2). This simplification is based on the following arguments. If  𝑑(1) = 𝑑(2), 

then only 𝑚 = 0 and odd 𝑚 contribute to the Fourier spectra of the material parameter distributions 

in Eq. (S1), while the Fourier components with |𝑚| > 1  are significantly smaller than |𝑚| = 1 

components. The same is valid for the lateral components of the pump laser intensity penetrating 

inside the infinite SL because they are controlled by the periodic distribution of optical reflection 
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coefficient. Consequently, the dominant components in the SAWs are expected to be 𝑚 = 0 and  

|𝑚| = 1, coupled inside the SL by the Fourier components |𝑚| = 1 of the density and of the elastic 

moduli distributions. Thirdly, as the laser spot size on focal plane is much larger than the SL period, 

the lateral variations of the photo-induced stresses across an individual layer thickness are small in 

comparison with the stresses themselves. This leads to the expectations that the symmetric motions 

of the individual SL layers are photo-excited with larger amplitudes than antisymmetric ones. A 

symmetric mode exhibits, relative to the central plane of the individual layer, an odd distribution of 

the horizontal mechanical displacement, 𝑢1,  and an even distribution of vertical mechanical 

displacement, 𝑢3 . Combining the above assumptions, we search the solutions of the Helmholtz 

equations for the bulk modes in the following simplified form: 

 𝑢1(𝑥1, 𝑥3) = 2𝑢𝑆 𝑠𝑖𝑛(𝑞𝑆𝐿𝑥1)𝑒−𝛼𝑥3, 𝑢3(𝑥1, 𝑥3) = [𝑢0 + 2𝑢𝐶𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1) ]𝑒−𝛼𝑥3 ,  

f(𝑥1) = 〈𝑓〉 + 2∆𝑓 cos(𝑞𝑆𝐿), ⟨𝑓⟩=(𝑓(1) + 𝑓(2))/2, ∆𝑓 = (𝑓(1) − 𝑓(2))/𝜋.                                 (S3) 

Here 𝛼  denotes the depth propagation/penetration constant [S1], related to the projection of the 

acoustic wave vector on the 𝑥3 direction. Substitution of the displacement field (S3) and the spatial 

distributions of density 𝜌(𝑥1)  and elastic moduli 𝐶11(𝑥1), 𝐶12(𝑥1)  and 𝐶44(𝑥1) in the Helmholtz 

equations and separation of the constant terms and the terms proportional to  𝑠𝑖𝑛(𝑞𝑥1)  and to 

𝑐𝑜𝑠(𝑞𝑥1), results in the system of equations for the displacement amplitudes 𝑢𝑆, 𝑢0 and 𝑢𝑐: 

 

 

 

The compatibility condition for these equations defines the bulk eigen modes in the geometry 

presented in Fig. S1. Although the compatibility condition can be solved exactly, we use here the 

method of the successive approximations, based on the following assumption of a weak modulation 

of the material parameters: ∆𝜌/〈𝜌〉~∆𝐶12/〈𝐶12〉~∆𝐶11/〈𝐶11〉~𝜇 ≪ 1 . This ineuualit  is satisfied 
sufficientl  well in our samples and leads to ver  insightful estimates. Additionall , to avoid rather 

cumbersome formulas and get even more insightful predictions, we assume that the SL is composed 

of elasticall  isotropic la ers, 𝐶12= 𝐶11- 2𝐶44.  Therefore, relations between the elastic moduli and 

the velocities of the bulk acoustic waves are significantl  more compact than in the cubic cr stals: 

𝐶11 = 𝜌𝐶𝐿
2  and 𝐶44 = 𝜌𝐶𝑇

2 . erer 𝐶𝐿  and 𝐶𝑇  drnotr thr vrlocitirs of thr longitudinal and thr 
teansvresr bulk acoustic wavrs, ersprctivrly. Thr rquations foe thr rigrn modrs takr thr feom: 
 

(

[𝜔2 + 𝛼2𝐶𝑇
2 − 𝑞

𝑆𝐿
2 𝐶𝐿

2] 𝛼𝑞𝑆𝐿(𝐶𝐿
2 − 𝐶𝑇

2) ~𝜇

−𝛼𝑞𝑆𝐿(𝐶𝐿
2 − 𝐶𝑇

2) [𝜔2 + 𝛼2𝐶𝐿
2 − 𝑞

𝑆𝐿
2 𝐶𝑇

2] ~𝜇

~𝜇 ~𝜇
1

2
[𝜔2 + 𝛼2𝐶𝐿

2]

) (

𝑢𝑆

𝑢𝐶

𝑢0

)=(
0
0
0

),                           (S4) 

 
where the small parameter 𝜇  is defined as 𝜇~∆𝜌/〈𝜌〉~∆𝐶𝐿/〈𝐶𝐿〉~∆𝐶𝑇/〈𝐶𝑇〉 ≪ 1.  In the limit of 

infinitel  small, i.e., disappearing, modulation of the sample parameters, we assume 𝜇 = 0. Then, the 
compatibilit  condition for Eu. (S4) predicts three bulk acoustic modes differing b  their depth 

propagation constants 𝛼𝑧,𝐿,𝑇 : laterall  unmodulated bulk longitudinal 𝑘 = 0  mode (𝛼𝑍
2 = −(𝜔/

𝐶𝐿)2 ≡ −𝑘𝐿
2), laterall  modulated bulk longitudinal 𝑘 = 0 mode (𝛼𝐿

2 = 𝑞
𝑆𝐿
2 − (𝜔/𝐶𝐿)2 ≡ 𝑞

𝑆𝐿
2 − 𝑘𝐿

2) 

and laterall  modulated bulk transversal 𝑘 = 0  mode (𝛼𝑇
2 = 𝑞

𝑆𝐿
2 − (𝜔/𝐶𝑇)2 ≡ 𝑞

𝑆𝐿
2 − 𝑘𝑇

2) . Sa ing 

differentl , the theor  predicts a single wave (longitudinal) in the zeroth diffraction order (𝑚 = 0) 
and two waves (longitudinal and transverse) in the first diffraction orders (𝑚 = ±1). Note that the 

(

[𝜔2𝜌 + 𝛼2𝐶44 − 𝑞𝑆𝐿
2 𝐶11] 𝛼𝑞𝑆𝐿

(𝐶12 + 𝐶44) 𝛼𝑞𝑆𝐿∆𝐶12

−𝛼𝑞𝑆𝐿
(𝐶12 + 𝐶44) [𝜔2𝜌 + 𝛼2𝐶11 − 𝑞𝑆𝐿

2 𝐶44] [𝜔2∆𝜌 + 𝛼2∆𝐶11]

−𝛼𝑞𝑆𝐿∆𝐶12 [𝜔2∆𝜌 + 𝛼2∆𝐶11]
1

2
[𝜔2𝜌 + 𝛼2𝐶11]

) (

𝑢𝑆

𝑢𝐶

𝑢0

)=(
0
0
0

). 
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transverse acoustic mode is absent in the zeroth diffraction order via s mmetr  considerations, 

because we have limited our anal sis to the s mmetric modes onl . In the presence of a weak 

modulation of the material parameters in the SL, 𝜇 ≪ 1 ≠ 0 , the revealed three modes become 

coupled because of the scattering on the SL spatial periodicit . However, this scattering leads onl  to 

small modifications of the depth propagation constants, i.e., ~𝜇2 : 𝛼𝑧,𝐿,𝑇 ⇒ 𝛼𝑧,𝐿,𝑇(1 − 𝛽𝑧,𝐿,𝑇𝜇2) ≡

𝛼𝑧,𝐿,𝑇
(𝜇)

.  Here 𝛽𝑧,𝐿,𝑇 is of the order 𝜇
0. 

Each of the above-derived eigen modes includes the components 𝑢𝑆 , 𝑢𝑐   and 𝑢0  (in a paeticulae 
peopoetions), and, as a conseuuence, the components of the mechanical displacement include, in 

general, the contributions from all three eigen modes: 

 

𝑢1 = ∑ 2𝐴𝑗 𝑠𝑖𝑛(𝑞𝑆𝐿)𝑒
−𝛼𝑗

(𝜇)
𝑥3 ,𝑗=𝑧,𝐿,𝑇  𝑢3 = ∑ 𝐴𝑗 [(

𝑢0

𝑢𝑆
)

𝑗
+ 2 (

𝑢𝐶

𝑢𝑆
)

𝑗
𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1)] 𝑒

−𝛼𝑗
(𝜇)

𝑥3 .𝑗=𝑧,𝐿,𝑇       (S5) 

 

In the considered case of the weak modulation, 𝜇 ≪ 1,  the proportions of the different components 

in the displacements structure are controlled in the leading order b  the following relations: 

 (
𝑢𝐶

𝑢𝑆
)

𝑧,𝐿,𝑇
~𝜇0, (

𝑢0

𝑢𝑆
)

𝐿,𝑇
~𝜇, (

𝑢0

𝑢𝑆
)

𝑧
~𝜇−1.  The choice of the amplitudes 𝐴𝑗 in the displacement fields 

(S5) provides opportunit  to satisf  the boundar  conditions at mechanicall  free surface. 

Substitution of the displacement fields (S5) and the spatial distributions of the elastic moduli 

𝐶11(𝑥1), 𝐶12(𝑥1) and 𝐶44(𝑥1) in the boundary conditions and separation of the constant terms and the 

terms proportional to  𝑠𝑖𝑛(𝑞𝑆𝐿𝑥1)  and to 𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1) , results in the system of equations for the 

displacement amplitudes 𝐴𝑧 , 𝐴𝐿 and 𝐴𝑇: 

 

(

𝛾11 + 𝛿11𝜇2 𝛾12 + 𝛿12𝜇2 𝛾13 + 𝛿13𝜇2

𝛾21 + 𝛿21𝜇2 𝛾22 + 𝛿22𝜇2 𝛾23 + 𝛿23𝜇2

𝛾31𝜇 𝛾32𝜇 𝛾33𝜇−1 + 𝛿33𝜇

) (
𝐴𝐿

𝐴𝑇

𝐴𝑧

) = (
0
0
0

).                                                                    (S6) 

 

In Eu. (S6) 𝛾𝑖𝑗 and 𝛿𝑖𝑗 are the constants of the 𝜇
0 order, and onl  the terms of the first two leading 

orders are kept in each of the euuations composing the s stem (S6). In accordance with (S6), when 

𝜇=0, the laterall  unmodulated mode, i.e., z mode, does not contribute to the SAW (𝐴𝑧=0), while the 

modes 𝐴𝐿  and 𝐴𝑇  are coupled via: (
𝛾11 𝛾12

𝛾21 𝛾22
) (

𝐴𝐿

𝐴𝑇
) = (

0
0

) . Here the matri  (
𝛾11 𝛾12

𝛾21 𝛾22
)  is 

proportional to the Ra leigh SAW matri  (
2𝛼𝐿 𝛼𝑇 + 𝑞2/𝛼𝑇

(𝑐𝐿
2 − 2𝑐𝑇

2)𝑞𝑆𝐿 − 𝑐𝐿
2𝛼𝐿

2/𝑞𝑆𝐿 −2𝑐𝑇
2𝑞𝑆𝐿

) . The 

Ra leigh determinant is zero, (2𝑞
𝑆𝐿
2 − 𝑘𝑇

2)
2

− 4𝑞
𝑆𝐿
2 𝛼𝐿𝛼𝑇 = 0, at the freuuencies 𝜔𝑅 of the Ra leigh 

SAW eigenmode. This solution, obtained in the limit 𝜇 = 0, predicts that the gR wave at 𝜔 = 𝜔𝑅 

with the propagation vector euual to 𝑘 = 𝑞𝑆𝐿 ≡ 2𝜋/𝑑𝑆𝐿, i.e., with the initiall  e pected periodicit , 

belongs in the scheme of folded Brillouin zone to the optical-t pe branch of the gR wave, 𝜔(𝑘 =
0) = 𝜔𝑅 (Fig. S2).  It propagates at the Ra leigh velocit  𝑐𝑅 of an « average » medium. 

When 𝜇 ≠0 all three amplitudes of the bulk modes 𝐴𝐿, 𝐴𝑇 and 𝐴𝑧 in Eu. (S5) are coupled in the gR 

wave, which contains a laterall  unmodulated part, although smaller than the modulated ones:  

𝑢1~ 𝜇0𝑠𝑖𝑛(𝑞𝑆𝐿𝑥1), 𝑢3~𝜇 + 𝜇0 𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1).                                                                                                                        (S7) 

Euuation (S7) describes the lateral structure of the horizontal and vertical components of the 

mechanical displacement on the free surface.  The complete description of the spatial structure of the 

generalized Ra leigh SAWs in the limit 𝜇 ≠ 0, 𝜇 ≪ 1  could be obtained from Eu. (S6), which 

predicts that in this limit 𝐴𝑧~𝜇2𝐴𝐿~𝜇2𝐴𝑇 . Therefore, if the corrections ~𝜇2  are omitted, in the 
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description of the gR wave, the spatial structure of the generalized Ra leigh wave can be described 

b   

𝑢1 = ∑ 2𝐴𝑗 𝑠𝑖𝑛(𝑞𝑆𝐿𝑥1)𝑒−𝛼𝑗𝑥3
𝑗=𝐿,𝑇 , 𝑢3 = ∑ 𝐴𝑗 [(

𝑢0

𝑢𝑆
)

𝑗
+ 2 (

𝑢𝐶

𝑢𝑆
)

𝑗
𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1)] 𝑒−𝛼𝑗𝑥3

𝑗=𝐿,𝑇 ,           (S8)               

where the ratio of 𝐴𝐿 and 𝐴𝑇 can be evaluated in the limit 𝜇 = 0. Thus, if the corrections ~𝜇2 are 

omitted, then the generalized Ra leigh wave is a two-component wave similar to the Ra leigh wave 

in the limit 𝜇 = 0, however the two evanescent bulk components (modes) of the gR wave contain, in 

comparison with the Ra leigh wave in averaged medium, the laterall  unmodulated contributions, 

i.e., Eu. (S8). In comparison with the freuuenc  of the Ra leigh wave predicted in the absence of the 

parameters modulation, 𝜔𝑅 = 𝑞𝑆𝐿𝑐𝑅 = 2𝜋𝑐𝑅/𝑞𝑆𝐿 , the freuuenc  evaluated with parameters 

modulation shifts b  ∆𝑅𝑒(𝜔𝑅)/𝜔𝑅~𝜇2 and it acuuires an imaginar  part 𝐼𝑚(𝜔𝑅)/𝜔𝑅~𝜇2.  

The above-presented simplest theor , predicts that surface confined modes on a semi-infinite SL 

stratified normal to its surface contain laterall  homogeneous components in their mode structure. 

This means that, potentiall , these modes could be e cited even b  a laterall  homogeneous (averaged 

over the SL period) part of the distributed photo-induced stresses and even in the case of a SL without 

an  optical contrast between the la ers. This also suggests that the  could be detected b  normall  

incident probe radiation as oscillating motion of the laterall  homogeneous (averaged over the SL 

period) near-surface la er of the sample. Importantl , in the case of weak modulation of the materials 

parameters in the SL, these generalized Ra leigh-t pe SAWs e hibit weak attenuation.  
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[S2] Kittel, C., McEuen, P., & McEuen, P. (1996). Introduction to solid state physics (Vol. 8, pp. 105-

130). New York: Wile .  

[S3] Akhmanov, S. A., & Gusev, V. É. (1992). Laser e citation of ultrashort acoustic pulses: New 

possibilities in solid-state spectroscop , diagnostics of fast processes, and nonlinear acoustics. Soviet 

Physics Uspekhi, 35(3), 153. 

[S4] V. Gusev and A. Karabutov, Laser Optoacoustics (AIP, New York, 1993).  
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Supplementary 2 

Optical detection of generalized Rayleigh-type surface acoustic wave on a superlattice  

stratified normal to its surface 

 

In picosecond laser ultrasonics, the acoustic waves in the GHz-THz frequency range are detected via 

the interference on the photodetector of the probe light scattered by them and the probe light scattered 

by the stationary surfaces/interfaces of the sample. The general approach to predict the transient 

acoustically induced optical reflectivity changes, monitored by the photodetector, consists of the three 

following stages. Firstly, the probe light fields reflected by the sample and transmitted into the sample 

in the absence of the coherent acoustic waves should be evaluated. The probe light reflected by the 

sample and incident on the photodetector should be predicted. Secondly, the probe light scattered by 

the acoustic wave either at the sample surface or in the bulk of the sample, or both should be 

evaluated. The scattered light reaching the photodetector should be predicted. Thirdly, the component 

of the probe light intensity incident on the photodetector, which is proportional to the product of the 

amplitudes of the reflected and scattered light should be found. The components of the intensity, 

which depend only on the intensity of the reflected light, do not provide information on the acoustic 

waves, while the intensity components which depend only on the intensity of the acoustically 

scattered light are negligibly small, because of the small amplitude of the acoustically-scattered probe 

light, in comparison with the amplitudes of the reflected probe light. 

To get insightful predictions on the detection of the generalized Rayleigh-type SAWs, which are 

denoted in the main text of the manuscript as gR waves, in the SL presented in Figs. S1 and S3, we 

retain all the simplifying assumptions predicting the gR SAWs, leading to their description in Eq. S8, 

and we introduce both specific and similar simplifying assumptions for the description of the probe 

light field. 

 

 

Figure S3. Schematic presentation of the Brillouin scattering of probe light by the gR SAW in the SL stratified normal 

to the mechanically free surface. In the considered case of sub-optical SL, only plane laterally unmodulated reflected, 

transmitted and scattered waves should be accounted for the description of the leading order optical and acousto-optical 

processes.  𝑡𝑆𝐿/𝑎𝑖𝑟 and 𝑡𝑎𝑖𝑟/𝑆𝐿  denote the transmission coefficient of light from the SL into the air and in the opposite 

direction, respectively. The acoustically induced changes in transient optical reflectivity monitored by the photodetector 

result from the heterodyning at the photodetector of the acoustically backscattered probe light ~∆𝑟𝐸𝑖 by the probe light 

reflected at the air/SL interface ~𝑟𝐸𝑖. 

 



9 
 

The first specific assumption, which makes the problem significantly less cumbersome, while 

retaining the main features of the detection process, is the postulation that the normally incident probe 

light field is polarized parallel to the surfaces of the individual layers, i.e., in the (x2,x3) plane. Under 

this assumption, although the layered half-space under consideration is, in general, an optically 

anisotropic/birefringent medium [S6], the probe light incident along the optical symmetry axis, does 

not exhibit any mode conversion in the reflection/transmission by the SL, and can be described by a 

single component of the electric field, i.e., 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝐸2 ≡ 𝐸𝑖. The reflected probe light incident on 

the photodetector, which provides heterodyning of the acoustically scattered light, is the light 

polarized as the incident one. Therefore, if the probe light is mode converted in its scattering by the 

acoustic field, then the second process of its mode conversion would be required to allow its 

interference with the reflected light. This second mode conversion could be also only due to the 

acoustic waves. Each mode conversion introduces additional smallness in the resulting light field, 

because the SAWs are of small amplitude. Thus, we omit here the contributions to the transient 

reflectivity signal of the probe light mode conversion processes. However, it is worth noting that a 

modified optical scheme, i.e., of the depolarized transient reflectivity measurements, can be suggested 

for the dedicated study of these processes and the detection of SAWs via these processes, if required. 

The probe light in the geometry of Fig. S3 is described by the following Helmholtz equation: 

(
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥3
2) 𝐸 + 𝑘0

2𝜀(𝑥1, 𝑥3)𝐸 = 0.                                                                                                                     (S9) 

Here 𝑘0 is the probe wave number in vacuum, 𝜀(𝑥1, 𝑥3 > 0) is the relative permittivity of the SL, 

while the permittivity of air is 𝜀(𝑥1, 𝑥3 < 0) ≡ 1. Under the assumptions identical to those leading 

to Eq. (S3), the distributions of the relative permittivity in the SL and the probe light eigen modes in 

the system presented in Fig. S3 have the following simplest descriptions 

𝜺(𝑥1, 𝑥3 > 0) = 〈𝜀〉 + 2∆𝜀 cos(𝑞𝑆𝐿𝑥1), 〈𝜀(𝑥3 > 0)〉 =
𝑑(1)𝜀(1)+𝑑(2)𝜀(2)

𝑑(1)+𝑑(2) ,  

∆𝜀(𝑥3 > 0) =
1

𝜋
(𝜀(1) − 𝜀(2))𝑐𝑜𝑠 [

𝜋

2

|𝑑(1)−𝑑(2)|

(𝑑(1)+𝑑(2))
], 

𝐸(𝑥1, 𝑥3) = [〈𝐸〉 + 2𝐸𝐶𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1) ]𝑒−𝛽𝑥3.                                                                                                      (S10) 

Here 𝛽 denotes the propagation/penetration constant, related to the projection of the optical wave 

vector on the 𝑥3 direction. The approximation suggested in Eq. (S10), results in the following solution 

of Eq. (S9) for the reflected probe light, 

𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑥1, 𝑥3 < 0) = 〈𝐸𝑟〉 𝑒𝑖𝑘0𝑥3 + 2𝐸𝑟,𝐶𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1)𝑒
𝑖√𝑘0

2−𝑞𝑆𝐿
2 𝑥3

.                                                 (S11) 

Note, that the second contribution to the reflected light in Eq. (S11) is an evanescent wave for the 

considered-by-us sub-optical SLs, as 𝑘0 < 𝑞𝑆𝐿 . Thus only the plane (laterally unmodulated) 

component of the reflected probe light reaches the photodetector for the interference with the 

acoustically scattered probe light and, consequently, only the plane components of the scattered light 

reaching the photodetector could contribute to the transient reflectivity signal. The substitution of Eq. 

(S10) into Eq. (S9) leads to the description of the optical eigen modes inside the SL 

(
𝛽2 − 𝑞

𝑆𝐿
2 + 𝑘2 (

∆𝜀

〈𝜀〉
) 𝑘2

2 (
∆𝜀

〈𝜀〉
) 𝑘2 𝛽2 + 𝑘2

) (
𝐸𝐶

〈𝐸〉
) = (

0
0

) ,  𝑘2 ≡ 〈𝜀〉𝑘0
2 ≡ 𝑛2𝑘0

2.                                                 (S12) 
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Equation (S12) predicts inside the SL two optical modes with the different propagation/penetration 

constants, 

𝛽∓
2 = −𝑞

𝑆𝐿
2 +

𝑞𝑆𝐿
2

2
[1 ∓ √1 + 2 (2

𝑘2

𝑞𝑆𝐿
2 )

2

(
∆𝜀

〈𝜀〉
)

2

] ≡ −𝑘2 +
𝑞𝑆𝐿

2

2
[1 ∓ √1 + 2𝜂2]. Here a compact notation 

𝜂 is introduced for a parameter 𝜂 ≡ (2
𝑘2

𝑞𝑆𝐿
2 ) (

∆𝜀

〈𝜀〉
)=(2

𝑑𝑆𝐿
2 2

𝜆2 ) (
∆𝜀

〈𝜀〉
)<<1, which is small in sub-optical 

SLs with 𝑘2 ≪ 𝑞
𝑆𝐿
2  even in the case of strong optical contrast between the individual SL layers, i.e., 

∆𝜀~〈𝜀〉. The existence of a small parameter 𝜂  is another difference in the theory of the optical 

detection of SAWs in comparison with the theory of the SAW eigen modes in Supplementary S1. 

Neglecting the corrections of the order 𝜂2 to the propagation constants and to the modes structure in 

general, the transmitted and acoustically backscattered probe light fields inside the SL can be 

presented in the following forms 

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑(𝑥1, 𝑥3 > 0) = 𝐴𝑡
𝑞[− 𝜂 + 2𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1) ]𝑒−𝑞𝑆𝐿𝑥3 + 𝐴𝑡

𝑖𝑘[1 + 𝜂𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1) ]𝑒−𝑖𝑘𝑥3  (S13)                

𝐸 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑(𝑥1, 𝑥3) = 𝐴𝑠
−𝑞[− 𝜂 + 2𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1) ]𝑒𝑞𝑆𝐿𝑥3 + 𝐴𝑠

−𝑖𝑘[1 + 𝜂𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1) ]𝑒𝑖𝑘𝑥3 .      (S14)                  

In the single scattering approximation, valid due to the smallness of the acoustic strain, it is possible, 

first, while neglecting the acoustically scattered field, to find (from the conditions of the continuity 

at the interface of the electrical field component 𝐸2  and of the magnetic field component 

𝐻1~𝜕𝐸2/𝜕𝑥3)  the reflection/transmission coefficients, defining the amplitudes of the 

reflected/transmitted probe fields 

𝑟 ≡
〈𝐸𝑟〉

𝐸𝑖
≅ −

𝑛−1

𝑛+1
, 𝑡𝑎𝑖𝑟

𝑆𝐿

≡
𝐴𝑡

𝑖𝑘

𝐸𝑖
≅

2

𝑛+1
,

𝐴𝑡
𝑞

𝐸𝑖
≅ −

𝜂

𝑛+1

(𝑛+√1−
𝜆0

2

𝑑𝑆𝐿
2 2)

(√𝑛2−
𝜆0

2

𝑑𝑆𝐿
2 2+√1−

𝜆0
2

𝑑𝑆𝐿
2 2)

≈ −
1

2(𝑛+1)
𝜂 ≪ 1.               (S15)                                 

The solutions in Eq. (S15), where only the leading order terms in the powers of the small parameter 

𝜂<<1 has been retained, indicate the smallness of the probe optical field transmitted in the first 

diffraction order, i.e., of the evanescent part of the transmitted field, and the direct relation of this 

smallness to the sub-optical periodicity of the SL.  

The weakness of the coupling between the different diffraction orders (when light is transmitted 

across the air/SL interface in the considered sub-optical SL) revealed by Eq. (S15) suggests that, if 

the detection process is possible in the asymptotic case 𝜂 = 0, then accounting for the corrections of 

its description in the case 𝜂 ≠ 0, 𝜂 ≪ 1 would be unnecessary. In the limit  𝜂 = 0, the transmitted 

light field in Eq. (S13) reduces to 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑(𝑥1, 𝑥3 > 0, 𝜂 = 0) = 𝐴𝑡
𝑖𝑘𝑒−𝑖𝑘𝑥3 and only the plane 

unmodulated acoustically backscattered field, i.e., in the zeroth diffraction order in Eq. (S14), can 

contribute (after the transmission from the SL into air) to the signal of our interest, 

𝐸 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑(𝑥1, 𝑥3 > 0, 𝜂 = 0) = 𝐴𝑠
−𝑖𝑘𝑒𝑖𝑘𝑥3 . These light fields are coupled due to the acoustic 

field in the following Helmholtz equation 

(
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥3
2) 𝐸 + 𝑘0

2[𝜀(𝑥1) + 𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1, 𝑥3)]𝐸 = 0, 

where 𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1, 𝑥3 > 0) denotes acoustically induced changes in the relative permittivity. In the 

single scattering approximation, this equation describes the emission of the scattered probe light by 

the acoustically-induced non-linear polarization: 
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𝜕2

𝜕𝑥3
2 𝐸𝑠 + 𝑘0

2〈𝜀〉𝐸𝑠 = −𝑘0
2〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1, 𝑥3)〉𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑.                                                               (S16) 

Here the lateral averaging over the period of the SL takes into account the fact that the plane (laterally 

unmodulated) transmitted probe light field 𝐸𝑡 can be scattered into the plane (laterally unmodulated) 

light only by the laterally unmodulated (averaged) component of the acoustically induced changes of 

permittivity. Note that Eq. (S16) accounts for both forward and backward propagating scattered light 

but only the evaluation of the backward scattered probe light incident on SL/air interface is required 

for the evaluation of the signal. The required solution of Eq. (S16) leads, finally, to the following 

presentation for the amplitude of the acoustically scattered probe light contributing to the changes in 

the transient optical reflectivity monitored by the photodetector (Fig. S3) 

∆𝑟 = −
𝑖𝑘

2
(1 − 𝑟2) ∫

〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1,𝑥3)〉

〈𝜀〉

∞

0
𝑒−2𝑖𝑘𝑥3𝑑𝑥3.                                                                                            (S17) 

If we introduce the notation 𝛿𝑓 for the acoustically induced variation of the physical parameter 𝑓 and 

assume that the SLs for the generation and the detection of SAW are identical (as it is in our 

experiments), then, in the gR SAW, Eq. (S8), acting on the electrical permittivity, Eq. (S10), 

〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1, 𝑥3)〉 can be written as  

〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1, 𝑥3)〉  ≡ 〈𝛿𝜺(𝑥1, 𝑥3)〉 = 〈𝛿〈𝜀〉 + 2𝛿(∆𝜀) cos(𝑞𝑆𝐿𝑥1)〉.  

The first term in this expression describes the possibility to detect generalized Rayleigh SAWs due 

to the fact that its spatially unmodulated component modulates in time the spatially-averaged part of 

the SL electrical permittivity. The second term predicts the possibility to detect generalized Rayleigh 

SAWs due to the interaction (parametric) of the spatially modulated (~cos(𝑞𝑥1)) component of 

SAWs with the spatially modulated part of the electrical permittivity. 

An intermediate result, which is obtained with the use of Eq. (S10) for the SL with the equal 

thicknesses of two layers, 𝑑(1) = 𝑑(2) reads 

〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1, 𝑥3)〉 = (𝜀(1) − 𝜀(2))
𝛿𝑑(1)−𝛿𝑑(2)

2𝑑𝑆𝐿
+ 〈

𝛿𝜀(1)+𝛿𝜀(2)

2
+ 2

𝛿𝜀(1)−𝛿𝜀(2)

𝜋
cos(𝑞𝑆𝐿𝑥1)〉.                     (S18)   

Here the terms ~(𝛿𝑑(1)−𝛿𝑑(2)) and ~(𝛿𝜀(1) + 𝛿𝜀(2)) are contributions from 〈𝛿〈𝜀〉〉. Equation (S18) 

attracts our attention to the fact that acousto-optic detection of SAWs, even in the SLs with constant 

period, which is not modified by the symmetric generalized Rayleigh SAW under consideration here 

and  𝛿𝑑(1)+𝛿𝑑(2) = 0, could take place not only due to the photo-elastic effect in the individual 

layers. If 𝜀(1) ≠ 𝜀(2) , the detection can be also due to the geometrical effect of the acoustically 

induced variations in the thicknesses of the layers. For the SAW in Eq. (S8), this geometrical 

contribution can be evaluated as follows                                  

〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1,𝑥3)〉𝑔𝑒𝑜𝑚

(𝜀(1)−𝜀(2))
=

𝛿𝑑(1)

𝑑𝑆𝐿
=

𝑢1(𝑥1=
𝑑𝑆𝐿

4
, 𝑥3)−𝑢1(𝑥1=−

𝑑𝑆𝐿
4

, 𝑥3)

𝑑𝑆𝐿
=

2𝑢1(𝑥1=
𝑑𝑆𝐿

4
,𝑥3)

𝑑𝑆𝐿
=

4

𝑑𝑆𝐿

∑ 𝐴𝑗𝑒−𝛼𝑗𝑥3 .𝑗=𝐿,𝑇   (S19)  

The derivation of Eq. (S19) assumes that only the horizontal components of the mechanical 

displacement in SAWs contribute to the modification (breathing) of the layers thicknesses. The 

contributions into 〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥3)〉 from the photo-elastic effect in the individual layers are described by 

𝛿𝜀(𝑖) = −(𝜀(𝑖))2𝑝21
(𝑖)

(
𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢3

𝜕𝑥3
) ≡ 𝑝̅(𝑖) (

𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢3

𝜕𝑥3
)

= 𝑝̅(𝑖) ∑ 𝐴𝑗 {−𝛼𝑗 (
𝑢0

𝑢𝑆
)

𝑗

+ 2 [𝑞 − 𝛼𝑗 (
𝑢𝐶

𝑢𝑆
)

𝑗

] 𝑐𝑜𝑠(𝑞𝑆𝐿𝑥1)} 𝑒−𝛼𝑗𝑥3 .

𝑗=𝐿,𝑇

 



12 
 

Here 𝑝21
(𝑖)

 denote the relevant component of the photo-elastic tensor [S7]. Substitution of this result 

into Eq. (S18) and averaging over the SL period lead to the description of photo-elastic contribution 

into 〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥1, 𝑥3)〉 

 〈𝜀𝑎𝑐𝑜𝑢𝑠𝑡(𝑥3)〉𝑝ℎ𝑜𝑡𝑜−𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = ∑ 𝐴𝑗 {−𝛼𝑗 (
𝑢0

𝑢𝑆
)

𝑗

𝑝̅(1)+𝑝̅(2)

2
+ 2 [𝑞 − 𝛼𝑗 (

𝑢𝐶

𝑢𝑆
)

𝑗
]

𝑝̅(1)−𝑝̅(2)

𝜋
} 𝑒−𝛼𝑗𝑥3 .𝑗=𝐿,𝑇  (S20) 

The first combination in the figure brackets of Eq. (S20) predicts the detection due to the SL averaged 

photo-elasticity, 
𝑝̅(1)+𝑝̅(2)

2
, of the laterally unmodulated (averaged) component of the generalized 

Rayleigh wave,  ~ (
𝑢0

𝑢𝑆
)

𝑗
~𝜇  (see Eqs. (S7) and (S8)). The second combination in the figure brackets 

of Eq. (S20), is due to the averaging of the product of the laterally modulated components of the strain 

in SAW and laterally modulated component of the SL photo-elasticity. It appears   

due to 〈𝑐𝑜𝑠2(𝑞𝑆𝐿𝑥1)〉 = 1/2 ≠ 0 and predicts the changes in the averaged acousto-optical response 

of the SL due to the coupling of the SL periodicity to the laterally modulated components of the SAW. 

It is worth mentioning here that we call Eq. (S20) the photo-elastic contribution, because it would 

disappear with diminishing components of the photo-elastic tensor 𝑝21
(𝑖)

, however the parameter 

controlling this contribution, i.e., 𝑝̅(𝑖) , is additionally proportional to the square of the permittivity, 

𝑝̅(𝑖) ≡ −(𝜀(𝑖))2𝑝21
(𝑖)

.  

The results in Eqs. (S19) and (S20) demonstrate that even when  𝑑𝑆𝐿/𝜆 → 0 , i.e., in deeply sub-

optical SLs, the detection of deeply sub-optical generalized Rayleigh SAWs is possible. It is 

theoretically possible even in the absence of the contrast between both the permittivity and photo-

elastic constants of the individual layers. In this case, the SAW is detected via its laterally 

unmodulated component, which is an essential feature of the generalized Rayleigh waves in the 

considered nanostructured sample. However, in the case of weak contrast between both the densities 

and the elastic moduli of the individual layers, i.e., in the regime 𝜇 ≪ 1 evaluated in details in 

Supplementary 1, the dominant contributions to the detection of SAWs are expected due to the 

contrast in either permittivity, or photo-elastic constant, or both, of the individual layers. This contrast 

has not been assumed a weak one in the above-presented theoretical approach. Moreover, for the 

effective generation of SAWs by the pump laser pulses, the optical contrast between the individual 

layers is profitable to increase, e. g., combining the layers opaque and transparent to pump light. Thus, 

in the limiting case, where both 𝜇 → 0 and 𝑑𝑆𝐿/𝜆 → 0, the acoustically-induced changes in electric 

field reflectivity are described by: 

∆𝑟

𝑟
=

4𝑖𝑘

(𝜀(1)+𝜀(2))
(𝑟 −

1

𝑟
) ∑

𝐴𝑗

𝛼𝑗+2𝑖𝑘
{(𝜀(1) − 𝜀(2)) + [1 −

𝑑𝑆𝐿𝛼𝑗

2𝜋
(

𝑢𝐶

𝑢𝑆
)

𝑗
] (𝑝̅(1) − 𝑝̅(2))}𝑗=𝐿,𝑇 .                 (S21)                            

This solution is obtained by substitution of Eqs. (S19) and (S20) in Eq. (S17). If we take into account 

that the penetration depths of the gR SAW components are of the order of the SAW wavelength, i.e., 

𝛼𝑗~1/𝑑𝑆𝐿, then, in the considered limit 𝑑/𝜆 → 0, Eq. (S21) additionally simplifies to 

∆𝑟

𝑟
=

4𝑖𝑘

(𝜀(1)+𝜀(2))
(𝑟 −

1

𝑟
) ∑

𝐴𝑗

𝛼𝑗
{(𝜀(1) − 𝜀(2)) + [1 −

𝑑𝑆𝐿𝛼𝑗

2𝜋
(

𝑢𝐶

𝑢𝑆
)

𝑗
] (𝑝̅(1) − 𝑝̅(2))}𝑗=𝐿,𝑇 ,                    (S22) 

demonstrating that ∆𝑟/𝑟~𝑑𝑆𝐿/𝜆 . Thus, the SAW induced transient reflectivity signal inevitably 

diminishes with the diminishing pitch of the SL even in its leading order retained in Eq. (S22). 

However, this diminishing is much slower than in some other processes of light scattering by sub-

optical inhomogeneities/objects. For example, the Rayleigh scattering of light by sub-optical spheres 
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scales ~(𝑑𝑆𝐿/𝜆)4. Moreover, it is important to mention here that to reach the regime, which we denote 

for the simplicity of the above discussions as 𝑑𝑆𝐿/𝜆 → 0, could be not that easy under some practical 

circumstances. In fact, the precise condition for the transition from Eq. (S21) to Eq. (S22) is not 

𝑑/𝜆 ≪ 1, but 4𝜋|𝑛|𝑑𝑆𝐿/𝜆0 ≪ 1, where |𝑛| denotes the modulus of the averaged refractive index of 

the SL for the probe light of the wavelength 𝜆0 in vacuum. In the considered SL with the equal 

thicknesses of the individual layers, even if one of the two different layers strongly absorbs or reflects 

probe light, then 
𝜆0

4𝜋|𝑛|
≈ 20 − 30 nm. In this case, the asymptotic ∆𝑟/𝑟~𝑑𝑆𝐿/𝜆 could be reached only 

in the SLs with the single digit nanometers period. 

To conclude, it is worth reminding here that in our optical scheme only the amplitude of ∆𝑟/𝑟 and 

not its phase is monitored. The signal in this optical scheme is due to the changes in the light intensity 

reflectivity, 𝑅 ≡ 𝑟𝑟∗, 𝑑𝑅/𝑅 ≡ 2𝑅𝑒(∆𝑟/𝑟) [S8], where “*” denotes the comple  conjugation. This is 

one of the reasons for omitting, in the above-presented theory, the contribution to the detection 

process of SAWs from the motion of the air/SL interface induced by them [S9]. In fact, in analogy 

with the above-presented theoretical analysis, one could expect that the generalized Rayleigh SAW, 

in addition to lateral surface ripples, could induce the average surface displacement. However, this 

averaged surface displacement modifies only the phase and not the amplitude of ∆𝑟/𝑟. This averaged 

surface motion could be monitored by the optical interferometry or by the beam deflection technique, 

if required. At the same time the SAW induced ripples with the sub-optical periodicity are diffracting 

the incident probe light into the evanescent orders (see the second term in Eq. (S11)), where it does 

not reach the photodetector. 
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