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The Brus equation describes the relation between the lowest energy of an electron-hole pair and the size of a semi-
conductor crystallite. However, taking the strong confinement regime as a starting point, the equation does not cover
the transition from weak to strong confinement, the accompanying phenomenon of charge-carrier delocalization, or
the change in the transition dipole moment of the electron-hole pair state. Here, we use a one-dimensional (1D), two-
particle Hubbard model for interacting electron-hole pairs that extends the well-known tight-binding Hueckel approach
through a point-like electron-hole interaction. On infinite chains, the resulting exciton states exhibit the known relation
between the Bohr radius, the exciton binding energy and the effective mass of the charge carriers. Moreover, by in-
troducing infinite-well boundary conditions, the model enables the transition of the exciton states from weak to strong
confinement to be tracked, while straightforward adaptations provide insight in the relation between defects, exciton
localization, and confinement. In addition, by introducing the dipole operator, the variation of the transition dipole mo-
ment can be mapped when shifting from electron-hole pairs in strong confinement to delocalized and localized excitons
in weak confinement. The proposed model system can be readily implemented and extended to different multi-carrier
states, thus providing researchers a tool for exploring, understanding and teaching confinement effects in semiconductor
nanocrystals under different conditions.

I. INTRODUCTION

In two seminal papers published about 40 years ago, Louis
Brus described the impact of size on the energy levels of
spherical semiconductor crystallites.1,2 These studies led to
the formulation of what became the Brus equation; an ex-
pression that describes the impact of quantum confinement
and Coulomb interaction on the lowest energy εgap of the
electron-hole pair in a semiconductor crystallite. This equa-
tion is mostly reproduced as:3

εgap = εgap,∞ +
h̄π2

2R2

(
1

m⋆
e
+

1
m⋆

h

)
−1.8

e2

4πε0εR
(1)

Here, all symbols have there usual meaning, while R denotes
the radius of the nanocrystal, and εgap,∞, m⋆

e , m⋆
h and ε are

the band gap, the effective masses of the electron and the
hole, and the dielectric constant of the semiconductor at hand,
respectively. In Eq 1, the first R-dependent term describes
the increase in kinetic energy caused by the confinement of
the electron-hole pair, while the second is the electron-hole
Coulomb interaction. What Brus highlighted in his work, is
that for radii of a few nanometer, the R−2 scaling will make
the confinement energy the dominant contribution to the en-
ergy of the electron-hole pair, a characteristic that defines the
regime of strong confinement.3

Brus derived Eq 1 using first order perturbation theory,
starting from the assumption that the confinement energy was

a)Also at Center for Nano and Biophotonics, Ghent University, 9000 Gent,
Belgium

dominant. In that respect, Eq 1 is self-consistent – confirm-
ing the initial assumption – but does not describe the gradual
change of the energy of the electron-hole pair when reduc-
ing the crystal size. This change includes, for example, the
weak confinement regime, in which the Coulomb interaction
is largest and confinement mostly affects the bound electron-
hole pair, i.e., the exciton, rather than the separate charge
carriers.3 This point was recognized by Brus,2 yet opposite
from the strong confinement regime, the analysis of weak con-
finement he put forward did not transpire into a single equa-
tion that is readily reproduced in papers, textbooks or disser-
tations.

Interestingly, Louis Brus developed his theory on strong
confinement in the context of the redox potentials of small
semiconductor crystallites,1 a chemical problem that remains
relevant today in view of photocatalysis and electrocatalysis
by nanocrystals.4 This interplay between physics and chem-
istry remained a key characteristic of the field of colloidal
quantum dots, which quickly developed in the years follow-
ing the pioneering work of Louis Brus.5 More recently, in-
terest has been extending from semiconductor nanocrystals
in strong confinement to larger nanocrystals exhibiting exci-
tons in weak confinement or, at room temperature, bulk char-
acteristics. Examples include three-dimensional nanocrys-
tals of lead halide perovskites or cadmium chalcogenides,6–8

and two-dimensional nanocrystals that can be synthesized as
colloidal nanoplatelets with atomically-precise thicknesses,9.
Bulk CdS nanocrystals, for example, where recently shown to
have exceptional promise as an optical gain material,8 while
CsPbBr3 nanocrystals have been put forward as sources of in-
distinguishable single photons.7 Nanoplatelets, on the other
hand, feature strong quantization out of plane and weak or
no in-plane quantization, which leads to the formation of
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two-dimensional excitons. The giant oscillator strength of
such excitons leaves a clear imprint in the absorption spec-
trum, but does not translate into ultrafast exciton recombina-
tion at room temperature; an inconsistency indicative of exci-
ton localization.10 Similar difference betwee absorption and
emission were observed on larger epitaxial nanocrystals,11

but are absent for nanocrystals in strong confinement.12 So
weakly confined excitons have markedly different properties
than strongly confined electron-hole pairs. While these di-
verging characteristics of excitons in weak confinement are
not unexpected, they fall outside the scope of the simplified
approaches used to teach size quantization, such as Eq 1. In
this way, the emerging interest in excitons in bulk nanocrys-
tals creates a need for a simple model system that can illustrate
the concept of size quantization in full – from weak to strong
confinement – to the broad field of researchers working on
confined semiconductor nanocrystals.

In this work, we use a one-dimensional (1D) description of
electron-hole pair states to discuss the interplay between size,
electron-hole interaction and deviations from periodicity on
the states of the electron-hole pair. The approach involves
a two-particle Hubbard model that extends the well-known
Hückel or tight-binding analysis of single electron states on
a 1D chain to states of an interacting electron-hole pair. Im-
plementing a point-like electron-hole interaction, we obtain an
analytical solution for the delocalized, bound exciton state that
illustrates the relation between the exciton Bohr radius, the
exciton binding energy and the effective mass of the charge
carriers. Next, we map the transition from weak to strong
confinement by reducing the length of the chain, which even-
tually makes the bound exciton resemble a free electron-hole
pair. Next, we introduce a deviation from the crystal peri-
odicity to discuss localization of excitons, and the impact of
localization on the confinement regime. Finally, we use the
different model systems – free electron-hole pair, delocalized
and localized exciton – to track the variation of the transition
dipole moment of the exciton as a function of the chain length
and the electron-hole interaction. Given the surprisingly rich
variety of exciton properties that can be addressed, the tight-
binding Hueckel model presented here can help researchers in
the field of confined semiconductors to better understand and
explore the properties of confined excitons, for which the Brus
equation provided a first description in the regime of strong
confinement.

II. DESCRIPTION OF ELECTRON-HOLE PAIR STATES

A. General Concepts

The model introduced here is a one-dimensional (1D), two-
particle Hubbard model that extends the tight-binding Hückel
approach for calculating single-electron states on a 1D chain
of atoms to electron-hole pair states. A similar approach
was used to highlight the distinction between Wannier and
Frenkel excitons on infinite chains,13 or to describe oscilla-
tor strengths and higher harmonic generation in semiconduc-
tor nanostructures.14,15 For simplicity, we use the following

assumptions:

1. The lattice parameter is set at d = 1, effectively taking
d as the unit of length.

2. States |as ⟩ and |bt ⟩ are considered that represent an
electron on atom s and a hole on atom t, respectively.
The underlying atomic orbitals have even parity, and
the on-site matrix elements are denoted as:

⟨as |He |as ⟩= εa (2)
⟨bt |Hh |bt ⟩= εb (3)

Here, He and Hh are the Hamiltonian operators for the
electron and hole energy, respectively.

3. Only nearest-neighbor coupling is taken as non-zero,
with the hopping matrix element defined for any s and t
as:

⟨as−1 |He |as ⟩=V (4)
⟨bt−1 |Hh |bt ⟩=V (5)

The approach to obtain single-particle eigenstates for such
a chain, and link the results to properties of real, 3D semi-
conductors, is discussed in many textbooks,16 and is detailed
in Appendix A for completeness. Note that the hopping ma-
trix element V is inversely proportional to the effective mass.
Hence, taking V identical for electrons and holes describes
a system where both charge carriers have the same effective
mass. This assumption simplifies the analysis, but the exten-
sion of the approach to electrons and holes with different ef-
fective masses is straightforward. In this section, we outline
the characteristics of the electron-hole pair eigenstates for in-
finite chains, with the aim of introducing a common terminol-
ogy for describing the eigenstates and a view on the exciton
properties. These results will help rationalize the impact of
size quantization and localization on the opto-electronic prop-
erties of the exciton states in the following sections. More
extensive discussions of the Hubbard model can be found in
specialized texts.17

B. Atom-Localized Electron-Hole Pair States

Extending the notion of single-electron states, we introduce
a set of basis states |as,bt ⟩ for electron-hole pairs as the direct
product of the electron state |as ⟩ and the hole state |bt ⟩. As
outlined in Figure 1a, these states represent an electron local-
ized on atom s and a hole on atom t, respectively. Figure 1b
illustrates that the electron and hole position can be equally
set using the center-of-mass R of the electron-hole pair and
the electron-hole distance r, two quantities defined in terms of
s and t as:

R = 1
2 (s+ t)

r = s− t
⇔

s = R+ r
2

t = R− r
2

(6)
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FIG. 1. Spatial coordinates for describing atom-localized electron-
hole pairs. (a) Definition of electron-hole pair state |as,bt ⟩ on the
1D atom chain as the direct product of the single-electron state |as ⟩
and the single-hole state |bt ⟩, which represent an electron localized
an atom s and a hole on atom t, respectively. (b) Relation between
the electron and hole coordinates s and t, and the electron-hole center
of mass coordinate R and the electron-hole interdistance r.

Therefore, the state |R,r ⟩ featuring an electron-hole pair with
center-of-mass R and electron-hole distance r is identical to
the atom-localized electron-hole pair state defined as:

|R,r ⟩= |aR+ r
2
,bR− r

2
⟩ (7)

As outlined in Appendix B, conjugate wavenumbers K and κ

can be defined for the coordinates R and r.
The N2 atom-localized states |as,bt ⟩ can be used as a ba-

sis to construct the electron-hole pair Hamiltonian matrix, and
find the actual electron-hole pair eigenstates as linear combi-
nations of the atom-localized states. This approach has sev-
eral advantages. The electron-hole pair Hamiltonian matrix
is readily expressed in terms of the single-particle on-site and
hopping matrix elements, and the implementation of infinite-
wall boundary conditions for a finite chain is straightforward.
On the other hand, this brute-force approach involves a Hamil-
tonian with dimensions scaling like N2, and does not give ex-
tensive insight in the properties of the eigenstates. To over-
come both drawbacks, we will first design states in agreement
with the translational symmetry of the atom chain and then
construct for each symmetry-adapted subset of states a Hamil-
tonian matrix with lower dimensions.

C. Symmetry-Adapted Electron-Hole Pair States

To understand the characteristics of symmetry adapted elec-
tron/hole pair states, consider the atom-localized state |as,bs ⟩,
which consists of an electron and a hole co-localized on the
same atom s. Such a state could be an eigenstate if electron-
hole attraction is the dominant interaction. However, a left-
ward shift of the chain by a lattice parameter changes |as,bs ⟩
into |as−1,bs−1 ⟩, a different state. Given this lack of invari-
ance under translation, |as,bs ⟩ cannot be an electron-hole pair
eigenstate on the infinite chain. On the other hand, using the
same approach to create translation-invariant single-particle
states, see Appendix A, a co-localized electron-hole pair state
|K,ν ⟩ that transforms correctly under translation can be con-
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FIG. 2. Representation of the procedure to form electron-hole pair
states in line with the translation symmetry of the atom chain, involv-
ing the addition of shifted copies of a fixed combination of atom-
localized states – only one is shown – where a shift by a lattice pa-
rameter involves a multiplication by a phase factor eiK .

structed as:

|K,ν ⟩= 1√
N ∑

s
ei(k+l)·s|as,bs ⟩= ∑

s
eiK·R|aR,bR ⟩ (8)

Here, we introduced k and l as the electron and hole wavenum-
bers, see Appendix A, we identified s with the center-of-mass
R of the electron-hole pair, and used ν as a label for the
internal state – the co-localized electron and hole – of the
electron-hole pair. Note that the phase shift of the state |K,ν ⟩
upon translation by a single lattice parameter is determined by
k+ l, a sum of wavenumbers. As shown in Appendix B, this
sum can be interpreted as the wavenumber K conjugate to the
center-of-mass R of the electron-hole pair. Note that K acts
as a quantum number that characterizes an electron-hole pair
state adapted to the symmetry of the crystal.

To appreciate the difference between an electron-hole pair
state such as |K,ν ⟩ and an atom-localized state |as,bs ⟩, three
elements are important:

1. While |as,bs ⟩ is localized on a single atom, the state
|K,ν ⟩ is fully delocalized across the entire chain. This
characteristic is essential in view of the required invari-
ance of the eigenstates under translations of the chain.

2. Opposite from the atom-localized electron-hole pair
state |as,bs ⟩, the state |K,ν ⟩ cannot be written as a di-
rect product of an electron and a hole state, but is an
inseparable linear combination of such states.

3. While fully delocalized across the entire chain of atoms,
the position of the electron and the hole in the state
|K,ν ⟩ are strongly correlated. In fact, by the extreme
choice of constructing the exciton using states localized
on the same atom, knowing the position of one carrier
removes all uncertainty on the position of the other car-
rier.

While |K,ν ⟩ transforms correctly under a translation of the
chain, the state will only be an electron-hole pair eigenstate in
the specific case where the electron-hole attraction is the dom-
inant energy term, vide infra. Even so, given the requirement
of translational symmetry, the actual eigenstates will have a
similar structure. As outline in Figure 2, a first part consists
of the linear combination of atom-localized electron-hole pair
states with a given center-of-mass R. This will yield N linearly
independent combinations that can be characterized by the in-
ternal quantum number ν . A second part involves the addition
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4

of shifted copies of this state, each weighed by the phase fac-
tor exp(iKR), where K serves as a second quantum number.
As there will be N center-of-mass wavenumbers, there is in-
deed room for N2 eigenstates.

Implementing these principles, the following expansion for
any electron-hole pair eigenstate |K,ν ⟩ on an infinite chain
can be put forward:

|K,ν ⟩= ∑
R

eiKR
(

∑
r

ψν(r)|aR+ r
2
,bR− r

2
⟩
)

(9)

For a given eigenstate, ψν(r) is the expansion coefficient for
an atom-localized basis state where the electron and the hole
are separated by a distance r. Hence, the set of coefficients
ψν(r) can be interpreted as the internal wavefunction of the
electron-hole pair state, and only an N ×N internal Hamilto-
nian matrix is needed to determine the N internal eigenstates
of the electron-hole pair.

D. The Internal Hamiltonian of the Electron-Hole Pair

Given the symmetry-adapted formulation of the eigen-
states, see Eq 9, we will express the Hamiltonian using basis
states |K,r ⟩ characterized by a center-of-mass wavenumber
K and an electron hole pair separated by an interdistance r:

|K,r ⟩= 1√
N ∑

R
eiKR|aR+ r

2
,bR− r

2
⟩ (10)

For a given center-of-mass wavenumber K, the different ele-
ments Hpq of the Hamiltonian matrix can be written as:

HK;p,q= ⟨K, p |H |K,q⟩= 1
N ∑

R1,R2

eiK(R1−R2)

×⟨aR2+
p
2
,bR2− p

2
|H |aR1+

q
2
,bR1− q

2
⟩ (11)

In line with the construction of the single-particle Hamilto-
nian – see Appendix A – we assume that the matrix elements
⟨aR2+

p
2
,bR2− p

2
|H |aR1+

q
2
,bR1− q

2
⟩ between the atom-localized

states will be different from zero only in the following cases:

• On-site matrix element. This involves matrix elements
⟨as,bt |H |as,bt ⟩ that involve the same atom-localized
states |as,bt ⟩ as ket and bra, featuring an electron on
atom s and a hole on atom t. Due to electron-hole in-
teraction, the on-site matrix element can depend on the
electron-hole interdistance r = s− t.

• Hopping matrix element. This involves matrix elements
such as ⟨as+1,bt |H |as,bt ⟩=V , where either the elec-
tron or the hole are on nearest neighbor atoms, while
the other carrier is on the same atom. For simplicity, we
will use a single hopping energy V in this work that is
independent of the electron-hole interdistance.

Using these assumptions, one readily shows that the only non-
vanishing matrix elements of the electron-hole Hamiltonian at

given K are:

HK;p,p = εeh(p) (12)

HK;p+1,p = 2V cos
(

K
2

)
(13)

HK;p−1,p = 2V cos
(

K
2

)
(14)

Hence, by labeling the rows and columns by the internal coor-
dinate r for the N atom chain, we obtain the following internal
electron-hole pair Hamiltonian matrix:

HK =



...
...

...

· · · εeh(−1) 2V cos
(K

2
)

0 · · ·

· · · 2V cos
(K

2
)

εeh(0) 2V cos
(K

2
)

· · ·

· · · 0 2V cos
(K

2
)

εeh(1) · · ·
...

...
...


(15)

Appendix C generalizes this internal Hamiltonian to the de-
scription of electron-hole pairs with different hopping matrix
elements for the electron and the hole, a situation correspond-
ing to different effective masses for both charge carriers.

III. EXAMPLES OF ELECTRON-HOLE PAIR STATES

A. Free Electron-Hole Pairs

Absent any electron-hole interaction, the on-site electron-
hole energy εeh will be independent of the electron-hole in-
terdistance, and equal to εa + εb. The resulting Hamiltonian
HK,kin measures the kinetic energy of the relative motion of
the electron-hole pair, and is formally identical to the Hamilto-
nian of a single electron on a chain discussed in Appendix A.
Hence, the expansion coefficients ψν(r) will be the phase fac-
tors of running waves, for which the internal wavenumber κ ,
see Appendix B, serves as the quantum number. Given the
K-dependent coupling in HK , the energy εK,κ of these eigen-
states is then obtained as:

εK,κ= εa + εb +4V cos
(

K
2

)
cos(κ)

= εa + εb +2V cos
(

K
2
+κ

)
+2V cos

(
K
2
−κ

)
(16)

Considering the relation between the center-of-mass and in-
ternal wavenumbers K and κ and the electron and hole
wavenumbers k and l, see Eq B3, we find that the ap-
proach developed merely reproduces the free electron/hole
pair states. A similar result is obtained when using differ-
ent hopping matrix elements for the electron and the hole, see
Appendix C. This outcome confirms the consistency of the
proposed method of obtaining electron-hole pair states from
the internal electron-hole pair Hamiltonian.

Figure 3 displays the dispersion relation ε0,κ and the cor-
responding density of states for the infinite chain, and for a
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FIG. 3. Free electron-hole pair states. (a) Representation of the
dispersion relation ε0,κ for the energy related to the internal state
of the free electron-hole pair at K = 0. The horizontal lines in-
dicate the states obtained for a N = 128 atom chain with periodic
boundary conditions. The lowest energy of the electron-hole pair
(εgap,∞ = εa + εb −4|V |) is taken as the energy reference, and ener-
gies are expressed in units of |V |. (b) Number of internal states per
energy bin |V |/5 for a N = 128 chain. The full line represents the
number of states in the same energy bins for the infinite chain, cal-
culated per N = 128 atoms.

N = 128 chain under periodic boundary conditions. Here, we
took the energy of the lowest energy electron-hole pair state –
the quasi-particle gap εgap,∞ – as the energy reference. While
providing a view on the free electron-hole pair states, the fig-
ure mostly shows that periodic boundary conditions – which
preserve the translation symmetry and thus the concomitant
quantum numbers – are an apt choice to model infinite chains.

B. Bound Excitons

As a second example, we take the case where the atom-
localized states for which the electron and hole are co-
localized on the same atom have an energy ∆ lower than all
other atom-localized states. Such a situation would result
from a point-like attraction between the electron and the hole,
as used within the Hubbard-model. This approach can be im-
plemented in HK by taking the diagonal elements as follows:

εeh(0) = εa + εb −∆ (17)
εeh(r) = εa + εb for r ̸= 0 (18)

This assignment of matrix elements can be summarized by
writing HK as:

HK = HK,kin +HK,int (19)

Here, HK,kin is the free electron-hole Hamiltonian and HK,int
the interaction Hamiltonian, which is zero except for the di-
agonal element −∆ at r = 0. Using this separation of HK , we

can break down the energy of each exciton state in an internal
kinetic and an electron-hole interaction part. Moreover, taking
the quasi-particle gap εa + εb − 4|V | as the energy reference,
the energy level spectrum will scale proportionally to V for a
given setting of the ratio ∆/|V |. Henceforth, we will therefore
represent energies as reduced quantities in units of |V |, where
the interaction energy ∆/|V | distinguishes different parameter
settings.

Figures 4a-b represent the energy spectrum and the den-
sity of states of the internal electron-hole pair eigenstates, ob-
tained by numerically solving the eigenvalue equation of the
Hamiltonian at K = 0 and taking ∆/|V | = 2 for an N = 128
chain with periodic boundary conditions. As can be seen,
a band of energy levels is obtained that features a density
of states similar to the corresponding free electron-hole pair.
However, one state, denoted as |0,X⟩, stands out by hav-
ing an energy εX below this band of states. Considering the
expansion coefficients shown in Figure 4c, one sees that the
electron-hole distance for this state is distributed in a narrow
range around r = 0. Hence, we interpret this state as a bound
electron-hole pair or exciton.

What makes the point-like electron-hole interaction inter-
esting, is that analytical expressions exist for the eigenstates
and eigenenergies of the resulting internal Hamiltonian.17 In
particular, the expansion coefficients ψX(r) and the energy εX
of the exciton state |0,X⟩ can be found using the following
Ansatz:

ψX(r) = φX(0)e
− |r|

rX (20)

Indeed, with this set of expansion coefficients, the eigenvalue
equation of the internal Hamiltonian is reduced to a set of two
equations with the energy εX and the characteristic length rX
as the two unknowns:

(εa + εb −∆− εX)+4Ve−
1

rX = 0 (21)

(εa + εb − εX)+2V
(

e−
1

rX + e
1

rX

)
= 0 (22)

We thus obtain:

εX = 4|V |

(
1−
√

1+
∆2

16V 2

)
(23)

rX =
1

asinh
(

∆

4|V |

) (24)

A similar result is obtained for electron-hole pairs with differ-
ent hopping matrix elements for the electron and the hole, for
which 4V should be replaced by 2Ve +2Vh, see Appendix C.

Note that Eq 23 yields εX relative to εgap,∞, i.e., the bot-
tom of the free electron-hole pair energy band. Moreover,
as predicted, the energy scales proportionally to |V |, while
the reduced interaction energy ∆/|V | determines the exciton
properties. Finally, considering the breakdown of the energy
εX into a kinetic and an interaction energy part, one readily
shows that the interaction energy εX,int amounts to:

εX,int = ⟨X ,0 |H0,int |X ,0⟩=−∆ tanh
(
r−1

X
)

(25)
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FIG. 4. Bound exciton states. (a) Reduced energy of the different eigenstates relative to the quasi-particle gap, obtained for a chain char-
acterized by a point-like, reduced electron-hole interaction ∆/|V | = 2 at K = 0. The calculation involved periodic boundary conditions on a
N = 128 chain. The full line shows the dispersion of the free electron-hole pair states at K = 0. The bound exciton state |0,X ⟩ stands out as
the one state with an energy εX below that of the free electron-hole pairs. (b) Density of states for the same system, with the full line showing
the corresponding density of free electron-hole pair states. The bound exciton state is highlighted by a filled marker. (c) Expansion coefficients
of the exciton state |0,X ⟩ as a function of r for (red) ∆/|V | = 2 and (light red) ∆/|V | = 0.5. (d) Variation of the binding energy εX and the
radius rX of |0,X⟩ state as a function of the reduced electron-hole interaction energy. The markers correspond to the parameter settings used
in (c).

Since the center-of-mass wavenumber is zero, the difference
between εX and εX,int can be seen as the kinetic energy related
to internal motion of the bound electron-hole pair.

Figure 4d represents εX and rX as a function of the re-
duced interaction energy ∆/|V |, where the vertical line at
∆/|V | = 4 delineates two regimes. In the weak-binding limit
(∆/|V | ≪ 4; rX ≫ 1), the electron and the hole can be several
atoms apart, as is the case for the examples shown in Fig-
ure 4c. This spreading increases the more the electron-hole
interaction is reduced. This limit agrees with what is com-
monly denoted as the Wannier exciton. The strong-binding
limit (∆/|V | ≫ 4; rX ≪ 1), on the other hand, is characterized
by a pronounced co-localization of the electron and the hole
on the same atom; a state that can be seen as a Frenkel exciton.

In the weak-binding limit, the exciton characteristics εX and
rX can be approximated as:

εX ≈− ∆2

8|V |
rX ≈ 4|V |

∆
(26)

These expressions directly show how the exciton binding en-
ergy and the exciton radius result from the trade off between
delocalization – so strong coupling or low effective masses –
and electron-hole interaction. Interestingly, the product εXr2

X
boils down to 1/2|V |. Since the reduced effective mass of the
exciton amounts to 1/4|V |= m⋆/2 – note the hopping matrix
elements of 2V in H0 – this result coincides with the expected
for hydrogen-like internal exciton states. We will therefore re-
fer to rX as the exciton Bohr radius. Moreover, as outlined in
Appendix A, an electron effective mass m⋆ = 0.1 would cor-
respond to a hopping matrix element of 2 eV. In that case, an
interaction energy ∆/|V | = 1/4 would yield an exciton bind-

ing energy of ≈ 15 meV, and a Bohr radius of ≈ 16 unit cells,
a typical result for tetrahedral semiconductors. In what fol-
lows, we will take this value as a reference when screening
the interaction energy.

C. Exciton Center-of-Mass Motion

Similar to the K = 0 case, the internal Hamiltonian HK at
K ̸= 0 will feature a bound exciton state. Since the coupling
matrix elements scales as 2V cos(K/2), the exciton energy
will depend on the center-of-mass wavenumber as:

εX(K) = εa + εb −
√

16V 2 cos2 K
2
+∆2 (27)

Obviously, such a K-dependence is not unexpected if states
|K,X⟩ are to describe a moving exciton. However, this rela-
tion involves a combination of the kinetic energy of the center-
of-mass motion and the K-dependent change of the exciton
binding energy. Figure 5a represents the corresponding dis-
persion relation for the free electron-hole pair (∆ = 0) and
three selected cases of bound excitons. Clearly, the corre-
sponding energy band εX(K) narrows down when the inter-
action energy increases.

Considering the internal Hamiltonian HK , one sees that for
small deviations of the center-of-mass wavenumber from K =
0, the hopping matrix element will be constant up to first order
in K. Hence, wave packets with the same internal exciton
state can be constructed to describe center-of-mass motion at
small K, and the effective mass M of the center-of-mass can be
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FIG. 5. Exciton center-of-mass motion. (a) Dispersion of the ex-
citon energy as a function of the center-of-mass wavenumber, repre-
sented for selected values of the electron-hole interaction ∆/|V | as in-
dicated. Note that each band is plotted relative to the energy attained
for K = π . (b) Effective mass related to center-of-mass motion as a
function of the electron-hole interaction. The vertical line indicates
the separation between the weak-binding and strong-binding limits.

related to the inverse of the second derivative d2εX(K)/dK2 at
K = 0:

M⋆ =
1
|V |

√
1+

∆2

16V 2 = 2m⋆

√
1+

∆2

16V 2 (28)

As shown in Figure 5b, the exciton center-of-mass features a
nearly constant effective mass M⋆ = 2m⋆, i.e., the sum of the
electron and hole effective mass, in the weak binding limit.
Hence, the Wannier exciton moves as a quasi-particle with a
mass equal to the sum of the masses of its constituents. The
strong-binding limit, on the other hand, is characterized by a
pronounced increase of M⋆. Note that energy-transfer terms,
which were not considered here, can counteract the resulting
drop in mobility of Frenkel excitons.13

IV. EXCITONS ON FINITE CHAINS

A. From In�nite to Finite Chains

A finite, N-atom chain lacks the translational symmetry of
the infinite chain. Single-electron or electron-hole pair eigen-
states will therefore no longer have the symmetry-adapted
from, see Eqs A3 and 9, and the eigenvalue equation of the full
Hamiltonian must be solved to find the eigenstates. In this re-
spect, the atom-localized basis provides a straightforward way
of implementing infinite-well boundary conditions, by taking
into account only the hopping elements to atoms within the
chain for the outermost atoms – possibly using different ma-
trix elements Ve and Vh for electron and hole hopping, respec-
tively. Since the center-of-mass and the internal coordinate of
an electron-hole pair cannot be varied independently on a fi-
nite chain – for R = 1, r can only be zero – the states |as,bt ⟩
that index the position of the electron and the hole make for

 !
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FIG. 6. Single-electron confinement. (a) Spectrum of eigenstates for
an N = 9 chain, represented on top of the dispersion relation for the
infinite chain. (b) Representation of the expansion coefficients of the
four lowest-energy states on the finite chain. The lower line repre-
sents the finite chain, with open circles indicating the edge positions
at n = 0 and n = N + 1 where the expansion coefficients are forced
to zero.

a more appropriate basis. However, as mentioned before, this
approach raises the dimension of the Hilbert space of eigen-
states to N2.

For single-electron states, an alternative approach to find
eigenstates of the N-atom chain involves forming linear com-
binations of degenerate eigenstates on the infinite chain, such
that the expansion coefficients c0 and cN+1 are zero. For such
states, hopping from atom 1 or N to atom 0 or N + 1 is ruled
out, a result that implements in effect infinite-well boundary
conditions.18 In the case of a single electron, for example, the
states |kp ⟩ and | − kp ⟩ are degenerate, and an eigenstate |φp ⟩
of the finite chain can be obtained as:

|φp ⟩= 1√
2
(|kp ⟩− | − kp ⟩)

kp =
pπ

N +1
with p = 1,2, . . . ,N (29)

The eigenstates |φp ⟩ can be seen as standing waves with an in-
creasing number of nodes along the chain, see Figure 6, where
the difference between the energy of state |φ1 ⟩ and the bottom
of the bulk energy band yields the kinetic energy in the con-
fined state εkin,con f as:

εkin,con f = 4|V |sin2
(

π

2(N +1)

)
≈ π2

2m⋆a2 (30)

This increase in kinetic energy upon confining a particle in
space is typically called the confinement energy. In a first
order approximation, εkin,con f scales with 1/a2 and 1/m⋆, a
characteristic that is expected for parabolic energy bands.
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electron-hole separation and center-of-mass coordinates. (e-f) The same for the first excited exciton state.

B. The Strong Con�nement Reference

Strong confinement refers to the regime in which the con-
finement energy is the dominant energy term, which makes
the finite chain hosting a free electron-hole pair the reference
system to describe this regime.3,19 In that case, the boundary
conditions require that both the electron and hole eigenstates
have expansion coefficients vanishing at n = 0 and n = N +1.
As a result, the ground state of the electron/hole pair will ex-
hibit an energy increase εSQ as given by:

εSQ = 8|V |sin2
(

π

2a

)
≈ π2

2µ⋆a2 (31)

Here, µ⋆ =m⋆/2 is the reduced mass of the electron-hole pair.
Given the absence of any electron-hole interaction, εSQ can be
attributed entirely to a kinetic energy change, i.e., the confine-
ment energy. In particular, the first order approximation in
Eq 31 is the 1D equivalent of the confinement energy in the
expression proposed by Brus, see Eq 1.

C. The Weak Con�nement Reference

Weak quantization corresponds to the limit in which the
Bohr radius of the bound exciton is considerably smaller than
the length of the chain.3 In this regime, the boundary condi-
tions can be implemented in good approximation by applying
the procedure for single-particle states to the center-of-mass
motion of the exciton, thereby restricting K to multiples of
π/(N +1). Considering the dispersion relation for the center-
of-mass motion of the bound exciton, Eq 27, we thus obtain

an increase ∆εX of the exciton energy of:

∆εX ≈ 1

2
√

1+ ∆2

V 2

π2

M⋆a2 (32)

Here, M⋆ = 2m⋆ is the total mass of the electron-hole pair.
Hence, also in the weak quantization limit, we find that the
increase of the exciton energy scales in proportion to 1/a2.3

Moreover, in the case of Wannier excitons, the coefficient re-
lating the quantization energy and 1/a2 will be a quarter of
that in the strong quantization limit, a difference reflecting the
ratio between the effective mass M⋆ of center-of-mass motion
and the reduced effective mass µ⋆ of the electron-hole pair. In
that case, ∆εX can be interpreted as εWQ, i.e., the additional
kinetic energy of the exciton in the weak confinement limit:

εWQ = 2|V |sin2
(

π

2a

)
≈ π2

2M⋆a2 (33)

For the Frenkel exciton, on the other hand, ∆εX will be a com-
bination of a change in kinetic and interaction energy.

D. Excitons in Intermediate Con�nement

Within the basis of atom-localized electron-hole pair states
|as,bt ⟩, the Hamiltonian matrix can be constructed for any
chain length and any electron-hole interaction ∆/|V |. Similar
to the internal Hamiltonian, see Eq 19, the resulting operator
can be split into a kinetic and an interaction energy part:

H = Hkin +Hint (34)
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FIG. 8. Transition from weak to strong confinement. (a) Variation of (filled red) the kinetic energy and (filled blue) the interaction energy of
the exciton ground state as a function of the atom chain length. Light colors represent the bulk contributions to both energies, dark colors the
additional energy for the confined exciton on a finite chain. Parameter settings were taken as indicated. (b) Variation of the ratio between the
kinetic energy of confinement and the strong confinement reference for different electron-hole interaction energies. The limits for weak and
strong confinement have been indicated. (c) Representation of (top) the relative confinement energy and (bottom) the relative exciton energy
change obtained for different interaction energies as a function of the reduced chain length, i.e., the chain length in units of the Bohr radius. In
particular for the relative confinement energy, a nearly unique relation is obtained. For the exciton energy changes, deviations from a unique
relation are visible for the ∆/|V |= 2 and ∆/|V |= 4, settings that approach the Frenkel excitons.

Factorizing out the hopping energy V , one sees that also in
this case, the ratio ∆/V will be the defining parameter for the
Hamiltonian. Moreover, exciton eigenstates can be obtained
by numerically solving the eigenvalue equation of H, without
resorting a priori to the limit of strong or weak confinement.
Figure 7a represents, for example, the energy calculated for
the exciton ground state on a N = 24 chain with an interac-
tion energy ∆/|V | = 1/2. For this interaction energy, rX ≈ 8,
which means that the length of the chain is about three times
the Bohr radius rX . As can be seen in Figure 7a, the energy
of the exciton ground state on this chain indeed exceeds that
for the infinite chain. In line with the relation proposed by
Brus,2 Figure 7b displays the breakdown of εX into a kinetic
and an interaction energy part. For the bulk exciton, the inter-
action energy is about twice the kinetic energy of the exciton –
the same ratio as for the hydrogen atom ground state. Reduc-
ing the chain length, however, raises the kinetic energy more
than the interaction energy, which leads to the resulting net
increase of the exciton energy upon size reduction.

Figures 7c-d display the expansion coefficients of the ex-
citon ground state in the atom-localized basis using the elec-
tron and hole position, and the center-of-mass and the internal
coordinate, respectively. In line with the parameter settings
yielding rX ≈ 8, the states where r = 0 – so s = t – feature
the largest expansion coefficients. On the other hand, the fi-
nite chain length imposes a sine-like modulation of the expan-
sion coefficients along the center-of-mass coordinate, whereas
the spread of the exciton wavefunction at fixed R is clearly
restricted close to the chain edge. In addition, Figures 7e-
f give a similar representation of the expansion coefficients
of the first excited state. In agreement with the discussion

of weak quantization, this state consists approximately of the
bound exciton state, but modulated as a first overtone by a
sine-like envelope whose wavelength matches the full length
rather than half the length of the chain.

E. The Transition from Weak to Strong Con�nement

Taking the chain length as an adjustable parameter, we can
systematically track the change in the exciton energy, and the
breakdown of this energy change in a kinetic and interaction
part, for a given setting of the hopping and interaction energy.
Figure 8a displays the result of this exercise using the same
parameter setting as in Figure 7, i.e., ∆/|V | = 1/2. As can
be seen, the kinetic energy becomes the dominant contribu-
tion to the exciton energy upon size reduction. Moreover, the
change in kinetic energy approaches the strong confinement
reference with decreasing size; the central assumption of the
Brus equation. To better evaluate the impact of size reduction,
Figure 8b displays the ratio between the calculated change in
kinetic energy, and the change expected in the limit of strong
confinement. This relative confinement energy indeed levels
off at 0.25 – the weak confinement limit – for long chains
and a strong electron-hole interaction, and approaches 1 – the
strong confinement limit – in the case of short chains and a
weak electron-hole interaction. Focusing on the ∆/|V |= 1/2
case – for which rX ≈ 8 – one sees that the shift between both
limits takes about a 10-fold reduction of the chain length.

Interestingly, the traces obtained for different electron-hole
interaction energies as shown in Figure 8b appear as shifted
copies of a single, underlying relation between the relative
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confinement energy and the chain length. Figure 8c shows
that such a nearly unique relation is indeed obtained when
considering the reduced chain length ared = a/rX, i.e., the
chain length in units of the Bohr radius, as the independent
variable. From this relation, it follows that the confinement
energy is halfway the weak and strong confinement limit for
ared = 4 and attains 95% of the strong confinement reference
when ared = 1. Clearly, this result highlights the relevance
of the Bohr radius – as proposed by Brus – as an upper limit
of strong quantization. Moreover, leaving aside the cases of
the highest electron-hole interaction that yield Frenkel exci-
tons, also the combination of the confinement energy and the
change in interaction energy yields a relative exciton energy
shift that is a nearly unique function of the reduced chain
length, see Figure 8c. Not unlike the sizing curve in the strong
confinement regime,20 this observation suggests that also the
transition from weak to strong confinement could be described
using a generic sizing curve.

F. Con�nement and Charge-Carrier Delocalization

Figure 9a-c displays the expansion coefficients of the exci-
ton ground state on a finite chain, for a progressively smaller
electron-hole interaction. One sees that this variation comes
with a transition from a state where the electron and hole
remain in close proximity and the center-of-mass is delo-
calized along the entire chain, to a state where the electron
and hole delocalize both as independent particles. The lat-
ter state closely resembles the lowest energy state of the non-
interacting electron-hole pair shown in Figure 9d. This change
in delocalization regime can be quantified using the participa-
tion fraction f , which we define for a given eigenstate as:

f =
1

N2 × 1
∑s,t c4

s,t
(35)

Here, cs,t is the normalized expansion coefficient for the basis
state |as,bt ⟩. By normalizing to the number of basis states, f
can be interpreted as the fraction of the basis states that con-
tribute to a given eigenstate. A state localized on a single pair
of atoms, will show a participation fraction of 1/N2, while
f will scale proportional to 1/N for states delocalized along
one coordinate – such as the center-of-mass – and states with
equal contributions from all basis states will have f = 1.

Figure 9e displays the participation fraction as a function
of the chain length, for different settings of the electron-
hole interaction. Taking the scaling references, one sees that
the weak confinement regime, i.e., long chains and strong
electron-hole interaction, is indeed characterized by a par-
ticipation fraction scaling as N−1, which reflects the delo-
calization of the center-of-mass. For short chains and weak
electron-hole interaction, however, a nearly constant partic-
ipation fraction is obtained that coincides with the expected
for the confined free electron-hole pair. Importantly, this tran-
sition again occurs for chain lengths comparable to the exciton
Bohr radius. This point underscores that the full delocaliza-
tion of the electron and the hole is a second defining feature of
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FIG. 9. Confinement and delocalization. (a-d) Representation of
the expansion coefficients of the confined exciton ground state in the
localized electron-hole pair basis for a decreasing electron-hole in-
teraction as indicated. The same color coding is used throughout. (e)
Participation fraction as a function of the number of atoms per chain.
The filled background represents the limit for strong quantization of
non-interacting electron-hole pairs, while the thin red line displays
the trend line expected for weak quantization.

the strong quantization limit, next to an energy change domi-
nated by the confinement energy.

V. DEFECT-LOCALIZATION AND CONFINEMENT

A. Single Electron Localization by Defects

Until now, we considered exciton states on an infinite chain
that is invariant under a translation by a lattice vector, or fi-
nite chains that are simply a shortened version of this perfect
infinite chain. In the case of electron/hole pairs, the eigen-
states of such chains are either running waves on infinite, and
delocalized confined states on finite chains – in terms of the
center-of-mass in the case of weak confinenemt and of the sep-
arate charge carriers in the case of strong confinement. In real
chains, however, the position of an atom can deviate from the
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FIG. 10. Single electron localization (a) Representation of a point
defect where the on-site energy on a single atom is lower than on all
other atoms. (b) Energy level spectrum calculated for an N = 128
atom chain with periodic boundary conditions using a lower energy
on atom s = 64 as indicated. The bottom inset provides a zoom on
the low-energy edge, showing the formation of a state with energy
εloc,e below the band of delocalized states. (c) Expansion coeffi-
cients of the single-electron ground state |ψe,loc ⟩, underscoring the
localization of the electron around the defect, with a characteristic
localization length sloc.

perfect lattice points. Such defects break translational sym-
metry, thereby affecting the properties of the eigenstates on
the bulk chain and the way these states change when chains
are made shorter.

In the case of a single electron, analytical expressions for
the eigenstates can be found in cases where a single atom in
the chain has a different on-site energy – which would repre-
sent a substitutional point defect – or where a single pair of
atoms exhibits a different hopping matrix element. As out-
lined in Appendix D, such defects lead to a lowest energy
eigenstate |ψe,loc ⟩ that is no longer delocalized across the en-
tire crystal, but localized around the defect. As illustrated in
Figure 10, the expansion coefficients of this state in the atom-
localized basis drop exponentially with the distance from the
point defect. The state |ψe,loc ⟩ can therefore be character-
ized by a localization length sloc, which is the characteristic
decay length of these expansion coefficients. As shown in
Appendix D, sloc will be shorter, and the defect-localization
energy εe,loc larger, for stronger deviations from the lattice pe-
riodicity; while a larger hopping matrix element – so lower
effective masses – limits the impact of localization.

B. Exciton Localization by Defects

According to Eq 15, describing the interacting electon/hole
pair by means of a center-of-mass and an internal coordinate
yields a Hamiltonian matrix HK from which the internal states
can be obtained for a given center-of-mass wavevector K. Im-
portantly, one sees that for small K, HK is constant up to
first order in K. Therefore, minor defects will mostly lead
to a localization of the center-of-mass, by creating eigenstates
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FIG. 11. Exciton localization. (a) Representation of (red) the lowest
energy state of a defective atom chain, for which the on-site electron
and hole energy are reduced on one atom as indicated and (blue) the
dispersion relation for center-of-mass motion of the bound exciton
on the perfect chain. (b) The break down of the energy of the exciton
ground state in terms of kinetic, interaction and defect-localization
energy. One sees that localization hardly changes the electron-hole
interaction energy. (c-d) Representation of the expansion coefficients
as a function of the center-of-mass and internal coordinates for the
exciton ground state on the (c) perfect and (d) defective chain. The
side curves represent the variation of the expansion coefficients as a
function of R and r, respectively. Calculations done using periodic
boundary conditions, where the defective atomic site is placed in the
center of the chain.

|L,X⟩ that are a superposition of exciton eigenstates |K,X⟩
with different K but the same internal exciton state |X⟩:

|L,X⟩= ∑
K

∑
R

ΦL(K)eiKR
(

∑
r

ψX(r)|aR+ r
2
,bR− r

2
⟩
)

= ∑
R

ΨL(R)
(

∑
r

ψX(r)|aR+ r
2
,bR− r

2
⟩
)

(36)

Here, ΦL(K) and ΨL(R) are introduced as the expansion co-
efficients of the center-of-mass state in the plane-wave and
atom-localized basis, respectively. Note that ΨL(R) therefore
describes the spread of the eigenstate |L,X⟩ along the center-
of-mass coordinate.

The approximate description of exciton localization as im-
pacting only the center-of-mass coordinate is illustrated in
Figure 11. Here, Figure 11a displays the lowest energy state
for a chain containing one atom with reduced on-site ener-
gies εa and εb, in comparison with the dispersion relation of
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FIG. 12. Confinement of localized excitons. (a) Breakdown of the energy of the localized exciton ground state in contributions of (red) kinetic,
(green) localization and (blue) interaction energy as a function of the chain length. Parameter settings as indicated. The energy reduction refers
to a change of the on-site electron and hole energy of the atom in the center of the chain. (b-c) Relative confinement energy and participation
fraction as a function of chain length, for different electron-hole interaction energies as indicated. (d-g) Representation of the localized exciton
ground state for an N = 40 atom chain for decreasing electron-hole interaction as indicated. The same defect is used for all simulations shown.

the bound excitons on the perfect chain. Similar to the single
particle case, a reduction of the on-site energy leads to an ex-
citon eigenstate with an energy lower than the |0,X⟩ state. In
Figure 11b, the energy of this eigenstate is broken down in a
kinetic, interaction and defect contribution, which is accom-
plished by writing the Hamiltonian as (see also Eq 34):

H = Hkin +Hint +Hde f (37)

Here, Hde f contains all deviations from the perfect chain – in
this case the lowering of εa and εb for a single atom. More-
over, by factorizing out the hopping energy V , one sees that
the parameters defining the Hamiltonian are now the reduced
interaction energy ∆/|V |, and the reduced defect energy, such
as the on-site terms δ (εa)/|V | and δ (εb)/|V |

As can be seen in Figure 11b, a point defect such as a vari-
ation of the on-site energy changes the energy of the lowest
exciton state through the combination of a negative defect-
localization energy that is partially compensated by an in-
creased kinetic energy. The interaction energy, on the other
hand, is mostly unchanged. This result confirms the interpre-
tation that defects mostly induce a localization of the center-
of-mass around the defect, in which case the electron-hole in-
teraction would remain unchanged and the additional kinetic
energy reflects the localization of the center-of-mass around
the defect. This conclusion is illustrated further in Figure 11c-
d, where the expansion coefficients of the lowest energy exci-
ton state are shown on a perfect and a defective chain. A com-
parison of the expansion coefficients as a function of R for
r = 0 – shown on top of each graph – highlight the transition
from a delocalized to a localized center-of-mass induced by
the defect. On the other hand, the variation of the expansion

coefficients as a function of r at fixed R hardly changes upon
introduction of the defect.

C. Con�nement of Localized Excitons

Using the Hamiltonian expressed by Eq 37, exciton eigen-
states can be calculated as a function of the length of a given
chain. Figure 12a displays the breakdown of the exciton
ground state energy in a kinetic, interaction and defect contri-
bution for a finite chain where the central atom has the on-site
energies lowered by δ (εa)/|V | = δ (εb)/|V | = 1/16. For the
interaction energy considered, such a defect yields a center-
of-mass localization length rloc ≈ 10. As a result, the exciton
ground state on a long chain features, next to a non-zero ki-
netic and interaction energy, also a given defect-localization
energy. With decreasing chain length, the interaction and
defect-localization energy become more negative – the latter
reflecting the increasing weight of the confined exciton state
on the defect site. However, this energy reduction is outpaced
by the increase of the confinement energy, which again be-
comes the dominant energy contribution in the limit of short
chains and weak electron-hole interaction.

To better track the size dependence of the confinement en-
ergy, Figure 11b represents the relative confinement energy as
a function of the chain length. In line with the Brus equation,
one sees that excitons with a weak electron-hole interaction
on short chains, still evolve towards the strong-confinement
limit, even if localization makes that the deviation from strong
confinement is more pronounced with increasing chain length.
On the other hand, for strongly bound excitons on long chains,
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FIG. 13. Representation of optical excitations as related to the for-
mation of electron-hole pairs on the same atom.

the relative confinement energy no longer levels off at the
weak confinement limit. Rather, the confinement energy van-
ishes entirely. This trend reflects the formation of exciton
states localized around a defect site. As soon as the Bohr
radius and the center-of-mass localization length are consid-
erably smaller than the chain length, these states no longer
experience any influence from the chain boundaries. This
point is confirmed by the participation fraction, which fea-
tures the N−2 dependence characteristic for localized, point-
like states for excitons with high interaction energy on large
chains. Hence, while localization makes that the transition to
strong confinement only occurs at a shorter chain lengths for a
given electron-hole interaction energy, the weak confinement
regime is undone by defect-related exciton localization.

Figure 11d-g illustrates this conclusion by means of the lo-
calized exciton ground state for N = 40 chains with a point
defect on atom 20. In particular for the largest interaction en-
ergy, one sees that the center-of-mass localization keeps the
exciton centered within the chain, such that neither the inter-
nal coordinate nor the center-of-mass coordinate really extend
to the chain edges. This situation still exemplifies a point-
like exciton state, which only changes little with varying chain
length. Figures 11e-g illustrate the gradual transition towards
a delocalized free electron-hole pair when the electron-hole
interaction is decreased, although even for ∆/|V |= 0, the im-
print of the on-site defect on the electron-hole pair eigenstate
can still be discerned.

VI. LIGHT ABSORPTION BY CONFINED EXCITONS

A. The Dipole Operator

Upon absorption of a photon, the atomic chain makes a
transition from the ground state |0⟩ to an electron-hole pair
eigenstate |n⟩, where n would be the combination of a center-
of-mass wavenumber K and an internal quantum number ν

for eigenstates on an infinite chain. The transition rate W be-
tween both states is proportional to the square of the transition
dipole moment Dn;0, which is the matrix element of the dipole
operator D:

Dn;0 = ⟨n |D |0⟩= ∑
s,t

cn,st⟨as,bt |D |0⟩ (38)

A straightforward way to make the dipole operator more
concrete, is by considering the electron-hole pair states in the
atom-localized basis that we used in the above equation for
expanding |n⟩. Here, the most significant transition dipole

moments will be obtained for states |as,bs ⟩ where the elec-
tron and the hole are found on the same atom, see Figure 13.15

These are, in fact, transitions between the atomic orbitals on
the same atom, which is the usual situation for interband tran-
sitions in semiconductors. When neglecting transitions be-
tween neighboring atoms and writing the transition dipole mo-
ment ⟨as,bs |D |0⟩ as d0, D can be written as:

D = d0 ∑
s
|as,bs ⟩⟨0 | (39)

Note that in this expression, we limit D to the part responsible
for light absorption, and omit contributions that would yield
stimulated emission. For a given eigenstate |n⟩, Dn0 is then
obtained as the sum of the expansion coefficients of all basis
states |as,bs ⟩:

Dn;0 = d0 ∑
s

cn,ss (40)

As outlined in Appendix E, a sum rule applies, stating that the
sum of the squares of the transition dipole moments over all
eigenstatets |n⟩ will always equal the number of atoms in a
given chain:

∑
n

D2
n;0 = Nd2

0 (41)

B. Transition Dipole Moments for States on In�nite Chains

1. Free Electron-Hole Pair States

The eigenstates of the free electron-hole pair are running
waves characterized by electron and a hole wavenumbers k
and l, respectively. Considering an N-atom chain with peri-
odic boundary conditions, the expansion coefficients of these
states in the atom-localized basis read:

ckl,st =
1
N

ei(ks+lt) (42)

Hence, the transition dipole moment D(kl)0 is obtained as:

D(k,l);0 =
d0

N ∑
s

ei(ks+ls) =
d0

N ∑
R

ei(k+l)R (43)

As outlined by the second part of this relation, the transi-
tion dipole moment is obtained as the sum over the center-
of-mass coordinate of all r = 0 expansion coefficients for a
given electron-hole eigenstate. Since k and l will be inte-
ger multiples of 2π/N, D(kl);0 will therefore be zero unless
l = −k. We thus retrieve the familiar selection rule that only
transitions between valence- and conduction-band states that
preserve the electron wavenumber – or that keep the center-
of-mass wavenumber K at zero – are allowed. Moreover, for
such transitions, D2

(kl)0 is a fixed number, independent of the
chain length N:

D2
(k,−k);0 = d2

0 (44)

Note that a chain will have N bright free electron-hole pair
eigenstates, so this result for D2

(k,−k);0 aligns with the sum rule
given by Eq 41.
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2. Bound Excitons

The bound exciton eigenstates |K,ν ⟩ are most conveniently
written in the atom localized basis characterized by the center-
of-mass coordinate R and the internal coordinate r:

|K,ν ⟩= 1√
N ∑

R
eiKR

∑
r

ψν ,K(r)|aR+ r
2
bR− r

2
⟩ (45)

For every center-of-mass position R, only the state for r = 0
– for which the electron and the hole are on the same atom –
will contribute to the transition dipole moment. We thus have:

D(K,ν);0 =
d0√

N ∑
R

eiKR
ψK,ν(0) (46)

Hence, the transition dipole moment is obtained as the sum of
the expansion coefficients at r = 0 for all center-of-mass posi-
tions. As shown in Figure 14a-b, these expansion coefficients
add up coherently when K = 0, while they will cancel in pairs
once K ̸= 0. Therefore, we again reach to conclusion that only
K = 0 states will be optically active, for which the square of
the transition dipole moment is obtained as:

D2
(0,ν);0 = Nd2

0ψ0,ν(0)2 (47)

Since the expansion coefficients ψ0,ν(0) are normalized, we
again find a result in agreement with the sum rule for D2

(0,ν);0.
Note that according to Eq 47, the square of the transi-

tion dipole moment for the formation of, for example, the
bound exciton |X,0⟩ will scale proportionally to the number
of atoms in the chain. This is a known result,21 which con-
trasts with transitions involving free electron/hole pairs, and
is brought about by the delocalization of the center-of-mass
of the bound exciton, for which all atomic transition dipole
moments contribute in phase when K = 0. The scaling of the
transition probability with N forms the basis of the so-called
giant oscillator strength of the bound exciton – a situation we
will denote here as the giant transition dipole moment. Using
the analytical expression for the bound exciton wavefunction
ψX, the square of the transition dipole moment can be rewrit-
ten in terms of the exciton Bohr radius as:

D2
(0,ν);0 = Nd2

0 tanh
(

1
rX

)
(48)

Hence, the smaller rX, the more significant the transition
dipole moment of the bound exciton.

3. Localized Excitons

Using the approximate description that a defect mostly
leads to center-of-mass localization, see Eq 36, the transition
dipole moment of the localized exciton can be written as:

D2
(L,X);0 =

(
∑
R

ΨL(R)

)2

d2
0ψ0,ν(0)2 (49)

Hence, opposite from the delocalized exciton, we find that lo-
calized excitons have a fixed transition dipole moment, inde-
pendent of the number of atoms in the chain. In fact, the scal-
ing with N is replaced by a proportionality with (∑R ΨL(R))2.
To better grasp the meaning of this prefactor, let us as-
sume ΨL(R) exhibits an exponential decay away from the de-
fect, with a characteristic localization length Rloc. Assuming
Rloc ≫ 1, one shows that:(

∑
R

ΨL(R)

)2

= 4Rloc = Ncoh (50)

Hence, (∑R ΨL(R))2 is a measure of the spatial extension of
the center-of-mass wavefunction ΨL(R). Typically, this quan-
tity is referred to as the coherence length – in the units adopted
here the coherence number – Ncoh, which provides the number
of atoms that coherently add their transition dipole moment to
obtain the overall transition dipole moment of the localized
exciton. Obviously, one has:

D2
(L,X);0 =

Ncoh

N
D2
(0,X);0 (51)

Note that this relation can also be seen as defining the coher-
ence length.22

C. Transition Dipole Moments for States on Finite Chains

By means of these reference models on infinite chains, one
can analyze the evolution of the transition dipole moment
upon reducing the chain length. Here, we again calculated
the eigenstates and eigenenergies by omitting the hopping ma-
trix elements to atoms outside of the chain, and obtained the
transition dipole moment as a sum of the r = 0 expansion
coefficients, as outlined in Eq 40. Focusing first on perfect
chains, Figure 15a shows that the in the regime of weak con-
finement, i.e., long chains with strong electron-hole interac-
tion, the square of the transition dipole moment scales with
the chain length, in agreement with the expected for the gi-
ant transition dipole moment of the delocalized bound exci-
ton. On the other hand, the shift to strong confinement, i.e.,
short chains with weak electron-hole interaction, makes the
transition dipole moment level off at that of the delocalized
free electron-hole pair, which serves as a lower limit to the
transition dipole moment.

Figure 15b displays the transition dipole moment obtained
through a similar procedure for excitons confined on a defec-
tive chain, where we implemented the same on-site defect in
the chain center as in Figure 12. In line with the conclusion
that such defects do not significantly alter the strong confine-
ment behaviour, one sees that in the limit of short chains and
weak electron-hole interaction, the transition dipole moment
still concurs with the expected for the free electron/hole pair.
In the weak confinement limit, on the other hand, the pres-
ence of a defect breaks the development of the giant transition
dipole moment. Rather than systematically increasing with
the number of atoms in the chain, one sees that the square
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FIG. 14. Transition dipole moment for exciton states. (a) Representation of expansion coefficient of the bound exciton state at K = 0 in the
atom-localized basis. The diagram on top displays the coefficients ψK,0(0) for r = 0 as a function of R. (b) Representation of the real and
imaginary parts of the expansion coefficient of the bound exciton state at K = π/32, and the expansion coefficients ψK,0(0) as a function of R.
Calculations done for a N = 64 chain with periodic boundary conditions using ∆/|V |= 1/2.
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FIG. 15. Transition dipole moment for confined excitons. (a) Repre-
sentation of the square of the transition dipole moment for an exciton
confined on a perfect chain, for different interaction energies as indi-
cated. The limiting cases of the free electron-hole pair and the bound
exciton on an infinite chain have been indicated. (b) The same for
an exciton confined on a defective chain, featuring a reduced on-site
energy ∆(ε)/|V |= 1/16 for the electron and hole in the center of the
chain. The limiting cases of the free electron-hole pair and the bound
exciton on an infinite chain for ∆/|V |= 1/16 have been indicated.

of the transition dipole moment levels off at a fixed value,
which coincides with the expected for the localized exciton
on an infinite chain featuring the same point defect. Hence,
while the regime of strong confinement appears quite robust
against crystal defects, deviations from the ideal chain can
have a strong effect on the energy and the transition dipole
moments of the exciton states in the regime of weak con-
finement, thereby eliminating for example the giant transition
dipole moment of the delocalized exciton.

VII. CONCLUSIONS

We used a two-particle, 1D Hubbard model to describe the
impact of size reduction on the eigenstates and energy lev-
els of electron/hole pairs in a semiconductors. Using the
free electron/hole pair, and the bound exciton as reference
states, the gradual transition from weak to strong confine-
ment can be tracked as a function of the electron/hole inter-
action. We show that states in strong confinement approach
those of the free electron/hole pair, for which the confinement
energy dominates and the electron and the hole fully delocal-
ize across the chain. States in weak confinement, on the other
hand, approach exciton center-of-mass standing waves, for
which only the center-of-mass delocalizes across the chain.
Moreover, by introducing point defects, we demonstrate that
mostly in the weak confinement regime, localized exciton
states are obtained that are unaffected by size quantization
once the chain length is considerably larger than the localiza-
tion length. Moreover, we provide the transition dipole mo-
ment for these different reference states – free electron/hole
pair, delocalized and localized exciton – and show that the
transition to weak confinement comes with the development
of a giant transition dipole moment, which is again capped at
a fixed value for excitons on a defective chain. Rooted in the
existing theory of the Hubbard model, this 1D chain can be
further adapted to explore different aspects of size quantiza-
tion, in relation to the properties of a given semiconductor, or
specific quasi particles, such as trions or biexcitons.
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Appendix A: Single Electrons on a 1D Chain

1. Constructing the Single-Electron Eigenstates

To establish single-electron states on an infinite 1D chain,
we take as a basis states |as ⟩, which represent an electron
localized on atom s, see Figure 16. In line with the Hückel
model, we will assume that the states (|a0 ⟩, |a1 ⟩, . . . ,) form
an orthonormal basis. We accordingly expand the single-
electron eigenstates – which we already label |k ⟩ – as:

|k ⟩= ∑
s

ck,s|as ⟩ (A1)

In principle, the expansion coefficients are found by solving
the eigenvalue equation of the Hamiltonian. However, the re-
sulting eigenstates must reflect the translational symmetry of
the chain of atoms. More specifically, a leftward shift of the
chain by one lattice parameter maps the chain on itself, while
changing the expansion coefficient ck,s into ck,s+1. However,
as the Hamiltonian is invariant for such a translation, the left-
ward shift can change eigenstates by a phase factor exp(ik) at
best. Hence:

ck,s+1 = eikck,s (A2)

Identifying k with the wavenumber, we obtain the following
set of Bloch waves as single-electron eigenstates on the chain:

|k ⟩= 1√
N ∑

s
eik·s|as ⟩ (A3)

Note that we took here the lattice parameter as the unit of
length and introduced the number of atoms N on the chain in
this expression for the purpose of normalization. For com-
pleteness, we note that the expansion of the Bloch wave |k ⟩
in atom-localized states |as ⟩ can be inverted to yield:

|s⟩= 1√
N ∑

k
e−ik·s|k ⟩ (A4)
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FIG. 17. Single-electron dispersion relation. (a) Energy band dis-
persion for the 1D, single-state atom chain, together with the best
fitting parabola corresponding to the effective mass approximation.
(b) Relation between the hopping energy and the effective mass of
the electron, calculated for a lattice parameter a = 0.42 nm.

2. Determining the Single-Electron Eigenenergies

Having the eigenstates |k ⟩, the corresponding eigenener-
gies εk are obtained as the expectation value of the Hamilto-
nian H:

εk = ⟨k |H |k ⟩= 1
N ∑

s,s′
e−iks′⟨s′ |H |s⟩eiks (A5)

Note that the matrix elements ⟨s′ |H |s⟩ involve the basis
states where the electron is located on atom s′ and s, respec-
tively. In line with the Hückel model, we will take all these
matrix elements as zero, unless s′ and s label the same or
neighboring atoms. This leads to the so-called on-site and
hopping matrix elements, which we write as:

⟨s |H |s⟩= εa (A6)
⟨s−1 |H |s⟩= ⟨s+1 |H |s⟩=V (A7)

Using these two quantities, the eigenenergy εk reads:

εk = εa +V
(

e−ik + eik
)
= εa +2V cos(k) (A8)

We thus obtain the well-known dispersion of a single-state en-
ergy band, as illustrated in Figure 17a.

3. Relevance of the Single-Electron States

While somewhat academic as an example, we can use the
1D chain as a model to describe electron states in the conduc-
tion band of a semiconductor. This brings the bottom of the
conduction band at k = 0, an often encountered situation in
tetragonal semiconductors such as CdSe or InP. In the effec-
tive mass approximation, these bands are reduced the parabo-
las around the conduction-band minimum, with the curvature
of the parabola related to the inverse of the effective mass of
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FIG. 18. Combined energy band dispersion for electron and hole
states on the 1D, single-state atom chain. The plot was made assum-
ing the same hopping matrix for electrons and holes.

the conduction-band electrons. Taking the unit of energy as
h̄2/med2, with me the free electron mass, we have:

m⋆ =
1

2|V |
(A9)

As can be seen in Figure 17a, a chain with a higher |V | will
represent electrons with a smaller effective mass. Moreover,
as shown in Figure 17b, setting d = 0.42nm, Eq A9 relates an
effective mass m⋆ = 0.1 to a hopping matrix element of 2 eV,
a number we can use for referencing any energy expressed in
units of |V |.

Note that the same 1D chain can be used to describe hole
states in the valence band of a semiconductor. Since hole en-
ergies are the opposite of electron energies, we will obtain a
band having an energy maximum at k = 0, and a hopping ma-
trix element related to the hole effective mass. The resulting
combined dispersion relation, with the hole energy indexed
as b and the same hopping matrix for electrons and holes is
represented in Figure 18.

Appendix B: Center-of-Mass and Internal Wavenumber

An electron-hole pair state constructed as the direct product
of single-electon and single-hole Bloch waves will be charac-
terized by expansion coefficients cs,t given by:

cs,t = ei(k·s+l·t) (B1)

Expressing the same state using the center-of-mass R and the
electron-hole distance r as coordinates will have the same ex-
pansion coefficients when the wavenumbers K and κ conju-
gate to R and r are taken such that:

K ·R+κ · r = k · s+ l · t (B2)

Hence, we have:

K = k+ l

κ = 1
2 (k− l)

⇔
k = K

2 +κ

l = K
2 −κ

(B3)

Appendix C: Chains with Di�erent Electron and Hole Hopping
Matrix Elements

The tight-binding model has been developed by taking
the hopping matrix element for electrons and holes equal, a
situation that yields electron-hole pairs with equal effective
masses. This assumption simplifies the analytical formulas,
but the approach is not limited to this specific case. In the
more general case, which would describe electrons and holes
with different effective masses, the two-particle Hamiltonian
must be constructed using two hopping matrix elements:

⟨as−1 |He |as ⟩=Ve (C1)
⟨bt−1 |Hh |bt ⟩=Vh (C2)

These hopping matrix elements are related to the effective
masses according to:

m⋆
e =

1
|Ve|

(C3)

m⋆
h =

1
|Vh|

(C4)

To illustrate the impact of these changes, we again derive the
Hamiltonian matrix for the internal exciton motion on the in-
finite chain.

Since different hopping matrix elements do not change the
overall symmetry requirement on the eigenstates, the states as
described by Eq 10 can still be used as a basis for the internal
Hamiltonian:

|K,r ⟩= 1√
N ∑

R
eiKR|aR+ r

2
,bR− r

2
⟩ (C5)

Again, hopping of electrons and holes to neighboring atoms
will couple states |K, p⟩ and |K, p+1⟩, and states |K, p⟩ and
|K, p − 1⟩. More specifically, the matrix element HK;p+1,p
will consist of a contribution ⟨K, p+ 1 |H |K, p⟩e due to an
electron hopping to the right, and a contribution ⟨K, p +
1 |H |K, p⟩h due to a hole hopping to the left. For the elec-
tron, hopping right changes the center-of-mass and relative
coordinate by 1/2 and 1, respectively. Hence, we have:

⟨K, p+1 |H |K, p⟩e

=
1
N ∑

R
e−i K

2 ⟨aR+ p+1
2
,bR− p

2
|H |aR+ p

2
,bR− p

2
⟩=Vee−i K

2

Similarly, for the hole, hopping left changes the center-of-
mass and relative coordinate by −1/2 and 1, respectively.
Hence, we have:

⟨K, p+1 |H |K, p⟩h

=
1
N ∑

R
ei K

2 ⟨aR+ p
2
,bR− p+1

2
|H |aR+ p

2
,bR− p+1

2
⟩=Vhei K

2

A similar reasoning can be applied to coupling due to the elec-
tron hopping left and the hole hopping right, which eventually
yields the matrix elements of the internal Hamiltonian as:

HK;p,p = εeh(p) (C6)

HK;p+1,p =Vee−i K
2 +Vhei K

2 (C7)

HK;p−1,p =Veei K
2 +Vhe−i K

2 (C8)
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In the absence of electron-hole interaction, the eigenenergies
are obtained as:

εK,κ= εa + εb +2Ve cos
(

K
2
+κ

)
+2Vh cos

(
K
2
−κ

)
= εa + εb +2Ve cos(k)+2Vh cos(l) (C9)

This energy is the sum of the electron and hole energy in states
characterized by the wavenumbers k and l.

For the Hamiltonian describing the electron and the hole
interacting through a point-like interaction, the K = 0 states
are obtained by replacing the off-diagonal matrix element 2V
by Ve +Vh. Given the inverse relation between the coupling
matrix elements and the effective mass of the electron and the
hole, this change is tantamount to replacing the reduced mass
1/2m⋆ by 1/m⋆

e +1/m⋆
h in the expressions for εX and rX.

Appendix D: Eigenstates for Electron Localization by Point
Defects

If the on-site energy for the electron on one of the atoms is
lower by an amount δ (ε) than all other on-site energies, a sin-
gle electron Hamiltonian is obtained that strongly resembles
the Hamiltonian describing the internal state of the electron-
hole pair in the case of a point-like electron hole interaction.
Labeling the position of the point defect as s = 0, the expan-
sion coefficients ψe(s) of the lowest energy state can be ob-
tained using the following Ansatz:

ψe(s) = φx(0)e
− |s|

sloc (D1)

Using these expansion coefficients, and setting εa = 0, the
eigenvalue equation of the electron Hamiltonian is reduced
to a set of two equations with the energy εe,loc of the lowest
energy eigenstate and the localization length sloc as the two
unknowns: (

−δ (ε)− εe,loc
)
+2Ve−

1
sloc = 0 (D2)

−εe,loc +V
(

e−
1

sloc + e
1

sloc

)
= 0 (D3)

We thus obtain:

εe,loc = 2|V |

(
1−
√

1+
δ (ε)2

4V 2

)
(D4)

sloc =
1

asinh
(

δ (ε)
2|V |

) (D5)

Hence, we obtain a lowest-energy eigenstate that discribes an
electron localized around the defect, and with an energy that
is lower than the electron of the free electron state at the bot-
tom of the conduction band. Clearly, localization and energy
lowering are more pronounced the lower the on-site energy of
the point defect, while a larger hopping matrix element – so a
lower effective mass – counteracts the impact of localization.

Similarly, the coupling between two atoms is larger by an
amount δ (V ) than between any other pair of atoms, the ex-
pansion coefficients ψe(s) of the lowest energy state can be
obtained using the following Ansatz:

ψe(s) = φx(0)e
− |s−1/2|

sloc (D6)

Here, we numbered the pair of atoms with the enhanced cou-
pling as s = 0 and 1. Using these expansion coefficients,
and setting εa = 0, the eigenvalue equation of the electron
Hamiltonian is reduced to a set of two equations with the en-
ergy εe,loc of the lowest energy eigenstate and the localization
length sloc as the two unknowns:

−εe,loc +(V +δ (V ))+Ve−
1

sloc = 0 (D7)

−εe,loc +V
(

e−
1

sloc + e
1

sloc

)
= 0 (D8)

We thus obtain:

εe,loc =− δ (V )2

V +δ (V )
(D9)

sloc =− 1

ln
(

1+ δ (V )
V

) (D10)

Hence, we again find that larger deviations from the lattice
periodicity will force a stronger localization, which will be
counteracted by a larger hopping matrix element.

Appendix E: Sum Rule for Transition Dipole Moments

Within the basis of localized electron hole pair states
|as,bt ⟩, the transition dipole moment Dn;0 of an eigenstate
|n⟩ can be written as:

Dn;0 = d0 ∑
s

cn,ss = d0
(
cT ·d

)
(E1)

Here, cT is a row vector containing the expansion coefficients
cn,st , whereas d is a column vector containing a 1 for each
position where s = t, and a 0 for all other positions. Hence,
Dn;0 can also be written as:

Dn;0 = d0(C ·d)n (E2)

Here, C is a matrix whose rows are filled with the expansion
coefficients of the N2 different exciton eigenstates; Dn;0 then
corresponds to the entry at row n of the column vector d0C ·d.
We therefore have:

∑
n

D2
n;0 = d2

0
(
dTCTCd

)
(E3)

Since C is a unitary matrix by construction, we have:

∑
n

D2
n;0 = d2

0
(
dTd

)
= d2

0N (E4)

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
92

03
1



19

REFERENCES

1L. Brus, “A simple model for the ionization potential, electron affinity,
and aqueous redox potentials of small semiconductor crystallites,” J. Chem.
Phys. 79, 5566–5571 (1983).

2L. Brus, “Electron-electron and electron-hole interactions in small semi-
conductor crystallites - the size dependence of the lowest excited electronic
state,” J. Chem. Phys. 80, 4403–4409 (1984).

3A. L. Efros and L. E. Brus, “Nanocrystal quantum dots: from discovery to
modern development,” ACS Nano 15, 6192–6210 (2021).

4R. Burke, K. L. Bren, and T. D. Krauss, “Semiconductor nanocrystal pho-
tocatalysis for the production of solar fuels,” J. Chem. Phys. 154, 030901
(2021).

5M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R.
Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. Guyot-
Sionnnest, G. Konstantatos, W. J. Parak, T. Hyeon, B. A. Korgel, C. B.
Murray, and W. Heiss, “Prospects of nanoscience with nanocrystals,” ACS
Nano 9, 1012–1057 (2015).

6M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J.
Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons,
T. Stoferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Raino, and A. L.
Efros, “Bright triplet excitons in caesium lead halide perovskites,” Nature
553, 189+ (2018).

7A. E. K. Kaplan, C. J. Krajewska, A. H. Proppe, W. Sun, T. Sverko, D. B.
Berkinsky, H. Utzat, and M. G. Bawendi, “Hong-ou-mandel interference
in colloidal CsPbBr3 perovskite nanocrystals,” Nat. Photonics 17, 775–780
(2023).

8I. Tanghe, M. Samoli, I. Wagner, S. A. Cayan, A. H. Khan, K. Chen,
J. Hodgkiss, I. Moreels, D. V. Thourhout, Z. Hens, and P. Geiregat, “Optical
gain and lasing from bulk cadmium sulfide nanocrystals through bandgap
renormalization,” Nat. Nanotech. 18, 1423–1429 (2023).

9M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, and B. Dubertret, “Two-
dimensional colloidal nanocrystals,” Chem. Rev. 116, 10934–10982 (2016).

10P. Geiregat, C. Roda, I. Tanghe, S. Singh, A. Di Giacomo, D. Lebrun,
G. Grimaldi, J. Maes, D. Van Thourhout, I. Moreels, A. J. Houtepen,

and Z. Hens, “Localization-limited exciton oscillator strength in colloidal
CdSe nanoplatelets revealed by the optically induced stark effect,” Light-
Sci. Appl. 10, 112 (2021).

11S. Stobbe, T. W. Schlereth, S. Höfling, A. Forchel, J. M. Hvam, and P. Lo-
dahl, “Large quantum dots with small oscillator strength,” Phys. Rev. B 82,
233302 (2010).

12Z. Hens and I. Moreels, “Light absorption by colloidal semiconductor quan-
tum dots,” J. Mat. Chem. 22, 10406–10415 (2012).

13K. Ishida, H. Aoki, and T. Chikyu, “One-dimensional exciton in a two-band
tight-binding model with long-range interactions,” Phys. Rev. B 47, 7594–
7597 (1993).

14G. W. Bryant, “Hubbard model for intermediate-dimensional excitons,”
Phys. Rev. B 49, 16129–16140 (1994).

15U. Peschel, M. Thümmler, T. Lettau, S. Gräfe, and K. Busch, “Two-particle
tight-binding description of higher-harmonic generation in semiconductor
nanostructures,” Phys. Rev. B 106, 245307 (2022).

16W. A. Harrison, Solid State Theory (Dover Publications, Inc., 1980).
17F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The

One-Dimensional Hubbard Model (Cambridge University Press, 2005).
18W. Harrison, “Tight-binding theory of surface states in metals,” Phys.

Scripta 67, 253–259 (2003).
19A. Efros, M. Rosen, M. Kuno, M. Nirmal, D. Norris, and M. Bawendi,

“Band-edge exciton in quantum dots of semiconductors with a degenerate
valence band: Dark and bright exciton states,” Phys. Rev. B 54, 4843–4856
(1996).

20T. Aubert, A. A. Golovatenko, M. Samoli, L. Lermusiaux, T. Zinn,
B. Abecassis, A. Rodina, V, and Z. Hens, “General expression for the size-
dependent optical properties of quantum dots,” Nano Lett. 22, 1778–1785
(2022).

21R. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108,
1384–1389 (1957).

22J. Feldmann, G. Peter, E. Gobel, P. Dawson, K. Moore, C. Foxon, and R. El-
liott, “Linewidth dependence of radiative exciton lifetimes in quantum-
wells,” Phys. Rev. Lett. 59, 2337–2340 (1987).

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
92

03
1


