
HAL Id: hal-04513292
https://hal.science/hal-04513292

Preprint submitted on 20 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The lost equation of Network Calculus
Damien Guidolin Pina, Marc Boyer

To cite this version:

Damien Guidolin Pina, Marc Boyer. The lost equation of Network Calculus. 2024. �hal-04513292�

https://hal.science/hal-04513292
https://hal.archives-ouvertes.fr

The lost equation of Network Calculus
Damien GUIDOLIN--PINA

RealTime-at-Work
Nancy, FRANCE

https://orcid.org/0000-0003-1149-0861

Marc BOYER
ONERA/DTIS, Université de Toulouse

F-31055 Toulouse, France
https://orcid.org/0000-0003-0344-6991

Abstract—Network Calculus is a theory designed to analyze
real-time systems, especially real-time networks. It offers a uni-
fied, extendable mathematical framework handling flows crossing
servers, and deriving upper bounds on delays and memory
usage. The real-time research community globally agrees that
network calculus has powerful mathematical roots. However, the
criticism is that the semantics are hidden behind mathematical
details, limiting its adoption by non-specialists. In particular, the
semantics of a server behavior was unclear to derive from most
used equations. This paper claims that both formal and intuitive
definitions of the server were lost in the literature. This paper
presents it in a comprehensive way and gives new proof, adding
a few new minor results. It also presents the history of the main
notions through the state of the art.

I. INTRODUCTION

Network Calculus (NC) is a theory that has been first
designed to compute bound on network delays [1], [2], making
a specific use of the (min, plus) dioid [3], [4]. It has been
extended to also compute the response time of task scheduling
and then named Real-Time Calculus (RTC) [5]–[7]. A global
overview can be found in [8], [9].

As will be formally defined in Section II, Network Cal-
culus is based on the notion of cumulative arrival curve A,
representing input data flow, and the notion of server, S, that
transforms the arrival A into a departure D.

Performance bounds on delay, and memory usage, can be
derived from contracts on A and S. The contract on A is called
an arrival curve or envelope, denoted α. There are several
kinds of service contracts, minimal strict service, often denoted
βS , minimal min-plus service, often denoted βm, variable
capacity node, often denoted βvnc, maximal min-plus service,
often denoted βM , and shaping curves, denoted σ.

Such models set constraints on the possible departures
associated to an arrival A and a server S, but do not (in
general) explicitly associate one departure D to an arrival A.

Conversely, in real-time calculus [5], an explicit notion of
capacity function C of a server is given, with also a contract
on workload (named “request curves”, also denoted α), and
contract on capacity (named “delivery curves”, also denoted
β).

This notion of capacity is also the root of the definition of
the variable capacity node [8, § 4.3.2].

Both branches have developed similar results, and it has
been proved in [10] that RTC is equivalent to the notion

of minimal strict service for contracts with finite values (cf.
Section IV for details).

In this paper, we show clearly how the notion of capacity
of a server is related to the notion of variable capacity nodes.

This paper claims that this capacity is the core of the service
notion (as stated by RTC) and can be formally defined simply
and intuitively (by rewriting a result on variable capacity nodes
from [8]). Moreover, it provides an elegant expression of the
departure function.

The paper aims to ease the understanding of network
calculus.

This paper first presents a recap of Network Calculus’ main
definitions (Section II). Then Section III derives, from the
notion of server capacity, the expression of a server output.
Last, Section IV presents the history of the different notions.

II. NETWORK CALCULUS REMINDER

Network Calculus theory is rooted in the seminal work of
[1], [2]. From these works, a large area of research has been
developed [8], [9], [11], [12], with some small variations. Here
is a small recap of Network Calculus in its modern form.

The Network Calculus theory is a theory based on the
min-plus dioid. It deals with functions from time to data
amount, e.g. A, such that A(t) represents the total amount
of data observed up to t through an observation point of the
network. These functions, called cumulative curves, are non-
decreasing, from R+ to R+, and piecewise continuous. The
set of cumulative curves is noted C.

Since the exact behavior is in general unknown at design
time, the Network Calculus theory uses envelopes of the
cumulative curves called arrival curves. A function αA (resp.
αA) is a maximal (resp. minimal) arrival curve of cumulative
curve A if ∀d, t ∈ R+ : α ≤ A(t+ d)−A(t) ≤ α(d).

Also, the elements of the network are modeled by servers.
A server is a left-total1 relation, associating to each arrival at
least one departure D such that ∀(A,D) ∈ S : D ≤ A, where
D ≤ A represents the fact data are forwarded after being
received. Note that a server is not a deterministic function2, it
is just a relation.

1A relation S is left-total when ∀A, ∃D such that (A,D) ∈ S
2For example, sending back-to-back two frames of size L or a single frame

of size 2L leads to the same amount of data, so the same cumulative function
A whereas the server can react with different behaviors and different departure
cumulative curves

An interval I is a backlogged period (in the equation BP)
for (A,D) ∈ S if ∀t ∈ I, A(t)−D(t) > 0 (since A(t)−D(t)
represents the backlog at time t).

Whereas there exist only two kinds of contracts on cumu-
lative curves, there are five main contracts on server behavior.
The server S can:

1) offer a min-plus minimal service curve βm if

∀(A,D) ∈ S : D ≥ A ∗ β. (1)

2) offer a maximal service curve βM if

∀(A,D) ∈ S : D ≤ A ∗ βM . (2)

3) be a σ-shaper if

∀(A,D) ∈ S =⇒ D ≤ D ∗ σ. (3)

4) offer a strict minimal service curve βS if

∀(A,D) ∈ S, ∀(s, t] a BP , D(t)−D(s) ≥ βS(t− s)
(4)

5) be a variable capacity node of curve βvnc if

∀(A,D) ∈ S,∃C,
∀t ≥ 0 : D(t) = inf

0≤s≤t
A(s) + C(t)−A(s),

∀0 ≤ s ≤ t : C(t)− C(s) ≥ βvns(t− s) (5)

where ∗ is the min-plus convolution defined by ∀f, g ∈ F ,
(f ∗ g)(t) = inf0≤s≤t {f(s) + g(t− s)}.

However, as it is said previously, they all are stationary
functions: they are independent of the time and only consider
duration.

III. A NEW FORMULATION OF CAPACITY-BASED SERVER

This section provides a (partially new) definition and char-
acterization of a server. The links with past definitions will be
provided in Section IV.

Definition 1 (Capacity functions). A capacity function is a
function Ĉ : R+ × R+ → R such that s ≤ t =⇒ Ĉ(s, t) ≥
0 and that respects the Chasle’s relation: ∀s, t, u ∈ R+ :
Ĉ(s, t) + Ĉ(t, u) = Ĉ(s, u).

Definition 2 (Capacity-based server). Let A a cumulative
curve, S a server, and Ĉ a capacity function. Then S partially
offers to A the capacity Ĉ if

for all interval [u, t] :D(t)−D(u) ≤ Ĉ(u, t). (6)

LetD =
{
X ∈ C D ≤ A,∀u ≤ v : D(t)−D(u) ≤ Ĉ(u, t)

}
the set of possible departures. Then S offers to A the full
capacity Ĉ if D = supD,

We claim that this definition of server captures both a
clear and formal way of the notion of service: the departure
can never be more than the capacity of the server, and the
full capacity is the maximal possible departure respecting the
server capacity.

Definition 3 (Capacity cumulative function). If Ĉ is a capacity
function, the capacity cumulative function C : R+ → R+

is defined by ∀t : C(t) = Ĉ(0, t). This function is non-
decreasing.

Conversely, from a non-decreasing function C : R+ → R+,
one can define Ĉ(s, t) = C(t)−C(s), so in the following, we
will call “capacity function” both Ĉ and C.

Theorem 1 (Output of a capacity-based server). Let A a
cumulative curve, S a server, and Ĉ a capacity function. If S
offers to A the full capacity Ĉ, then

D = C + (A− C) ∗ 0 and D ∈ D. (7)

Moreover, if A and C are both left-continuous (resp. right
continuous), D also is.

Note that eq. 7 is not new by itself: the output of an RTC
component was already defined in [5] as

D(t) = inf
0≤u≤t

{A(u) + C(t)− C(u)} , (8)

and since min0≤u≤t {R(u) + C(t)− C(u)} = C(t) +
min0≤u≤t {A(u)− C(u) + 0(t− u)} = C(t) + ((A − C) ∗
0)(t), this is just a rewriting. Theorem 1 is neither new since
it was already given in [8], as will be detailed in Section IV.

The result can also be written D(t) = C(t) −
sup0≤s≤t C(s) − A(t) to highlight the fact that the output
is the capacity of the server minus the part of the capacity
that overtakes the input.

Continuity is often an annoying technical detail in network
calculus, but Definition 2 here is independent of continuity,
and Theorem 1 shows that continuity choice (left or right) is
preserved.

Proof. Let A be a cumulative curve and C(t) the amount
of service that the server can at most offer up to t. Let us
introduce D̃ = C + (A−C) ∗ 0. Then, we first have to prove
that D̃ satisfies the conditions of a cumulative curve and of
Definition 2 and secondly that it is the supremum.

1) D̃ is a non-decreasing function: Suppose there exists
v, w ∈ R+, v ≤ w such that D̃(w)− D̃(v) < 0. Then, it
means

C(w)− C(v)− inf
0≤s≤v

{A(s)− C(s)}

+ inf
0≤s≤w

{A(s)− C(s)} < 0

⇔ C(w)− C(v)− inf
0≤s≤v

{A(s)− C(s)}

+

(
inf

0≤s≤v
{A(s)− C(s)} ∧ inf

v≤s≤w
{A(s)− C(s)}

)
< 0

Note that (x ∧ y)− x = 0 ∧ (y − x). Then,
⇔ C(w)− C(v)

+ 0 ∧
(

inf
v≤s≤w

{A(s)− C(s)} − inf
0≤s≤v

{A(s)− C(s)}
)
< 0

⇔ 0 ∧
(

inf
v≤s≤w

{A(s)− C(s)}

− inf
0≤s≤v

{A(s)− C(s)}
)
< C(v)− C(w)

But v ≤ w and C is nondecreasing. So,
=⇒ inf

v≤s≤w
{A(s)− C(s)}

− inf
0≤s≤v

{A(s)− C(s)} < C(v)− C(w)

⇔ inf
v≤s≤w

{A(s)− C(s)}

< inf
0≤s≤v

{A(s)− C(s) + C(v)− C(w)}

As it is infinium, it means that
∃t ∈ [v, w],∀s ∈ [0, v],

A(t)− C(t) < A(s)− C(s) + C(v)− C(w)
In particular for s = v:
∃t ∈ [v, w], A(t)− C(t) < A(v)− C(w)
=⇒ ∃t ∈ [v, w], A(t)−A(v) < C(t)− C(w)

But t ∈ [v, w] and A and C are nondecreasing. So, A(t)−
A(v) ≥ 0 and C(t) − C(w) ≤ 0. Consequently, D̃ is
nondecreasing.

2) D̃ ≤ A: Let t ∈ R+, By definition of the infinium,

inf
0≤s≤t

{A(s)− C(s)} ≤ A(t)− C(t)

⇔ C(t) + (A− C) ∗ 0(t) ≤ A(t).

3) ∀t, u ∈ R+, u ≤ t : D̃(t) − D̃(u) ≤ C(t) − C(u): Let
∀t, u ∈ R+, u ≤ t, as [0, u] ⊆ [0, t],

inf
0≤s≤t

{A(s)− C(s)} − inf
0≤s≤u

{A(s)− C(s)} ≤ 0

by adding C(t)− C(u) on both sides:

⇔ D̃(t)− D̃(u) ≤ C(t)− C(u).

4) D̃ ∈ D: direct from 6–3
5) D̃ = supD: By contradiction, assume ∃D which satisfies

the conditions of Definition 2 and ∃t ∈ R+ such that
D(t) > D̃(t). Let us introduce 2ε = D(t)− D̃(t). Then,

D(t)− ε > D̃(t) = C(t) + inf
0≤s≤t

{A(s)− C(s)}

But, ∀η > 0,∃sη such that inf0≤s≤t {A(s)− C(s)} >
A(sη) + C(sη)− η and in particular for η = ε. Then,

D(t)− ε > C(t) +A(sε)− C(sε)− ε
But, D satisfies the first condition: D ≤ A, then

=⇒ D(t) > C(t) +A(sε)− C(sε)
=⇒ D(t) > C(t) +D(sε)− C(sε)
=⇒ D(t)−D(sε) > C(t)− C(sε)

Consequently, D doesn’t satisfy the second condition:
∀t, u ∈ R+, u ≤ t : D(t)−D(u) ≤ C(t)− C(u).

6) D̃ has the same continuity as A and C: First, the sum
and the subtraction is stable regarding the continuity.
Also, according to [13], ∀f, g two functions, if they are
both right-continuous, or both left-continuous, then the
convolution has the same continuity. As the function
0 = t 7→ 0 is left and right continuous, (A − C) ∗ 0
has the same continuity as A and C. Consequently, D̃
has the same continuity as A and C.

Definition 4 (Capacity bounds). Let Ĉ a capacity function. A
pair β, β is a capacity min/max service pair if

∀s ≤ t : β(t− s) ≤ Ĉ(s, t) ≤ β(t− s). (9)

Then, S is a variable capacity node of curve β and is a
β-shaper.

IV. STATE OF THE ART

A. History of service notion

The first work on network calculus [1], [2] where considered
only pure rate service functions (i.e. β(t) = Rt with R the
link rate), which is time-invariant (for all s ≤ t, s′ ≤ t′,
if t − s = t′ − s′, Rt − Rs = Rt′ − Rs′). This notion is
generalized in [14, Eq. (13)] to any kind of function, but with
a time-invariant contract. Using modern notations, it states that
it should exist a function β such that for any instant t, it exists
s ≤ t such that there is no backlog at s (A(s) = D(s)) and
D(t) − D(s) ≥ β(t − s). This is a kind of time-invariant
property since for any t, t′, and corresponding s, s′, if t −
s = t′ − s′, then the same contact is offered. The service is
dependent on the duration of the backlogged interval, not on
the starting instant of the intervals. Notice that this definition
is currently called weakly strict service [9], [10], not presented
in this paper.

In [3], the “no backlog on s” condition is removed, leading
to the introduction of min-plus convolution and the min-plus
minimal service. Linking the definition with the min-plus
operators allow to use of the rich set of associated results,
but it also makes it more difficult to have an intuition of the
semantics of the notion of service. This is also a time-invariant
notion.

A time dependant notion, the capacity function C is intro-
duced in [5], when defining the Real-Time Calculus (RTC)
with the following semantics “C(t) represents the maximum
amount of computation that could be delivered up to time
t (if the processor runs under full load).” The fundamental
relation D = inf0≤s≤tA(s) − C(t) − C(s) is given, without
any long justification. The delivery curve is a function β such
that ∀s ≤ t : C(t)−C(s) ≥ β(t− s). This notion of capacity
is more formally introduced in [7]. In § 2.3.1, is introduced
a “differential service function” Ĉ with two arguments such
that Ĉ(s, t) represents denotes “the sum of available resource
units, e.g. processor cycles or transmittable bits on a bus, in the
time interval [s, t).” The cumulative function C(t) = Ĉ(0, t)
is also defined. But the formal definitions of the service are
given in [7, § A.4.1]: to a given arrival A (and the associated
Â), the departure D̂ is defined using the set of equations

B(s) = A(s)−D(s), (10)

D̂(s, t) = Ĉ(s, t)− Ĉ ′(s, t), (11)

Ĉ ′(s, t) = sup
s≤u≤t

{
Ĉ(s, u)−R(s, u)−B(s), 0

}
. (12)

Then, several results are formally defined using these equa-
tions.

The notion of variable capacity is introduced in [8, § 4.3.2]
also as a function C such that “C(t) is the total capacity
available to the flow between times 0 and t”. Then, a variable
capacity node is defined as the maximal output D satisfying
A ≤ D and ∀0 ≤ s ≤ t : D(t)−D(s) ≤ C(t)−C(s) (which
is exactly the Definition 2). Then, using some very general
theorem on “upper semi-continuous operator” [8, Thm. 4.3.1],
it shows that D = inf0≤s≤tA(s) − C(t) − C(s). The proof
does not consider continuity issues.

The notion of strict service is introduced in [15].
Proof that a server with a strict service β is also a service

with a min-plus service β can be found in [8].
In [10] and [16], it is shown that a variable capacity node

of the curve, β is equivalent to an RTC capacity node with
delivery curve β. And also that the variable capacity is a
stronger property than the strict service property, but for a
function β such that β � β has only finite values (with
(f � g)(t) = supu≥t f(t + u) − g(u)), both notions are
equivalent (more will be discussed further).

Also, note that all notions collapse in the case of a constant
rate capacity C(t) = Rt for some R.

B. More on VNC and strict service

It has been shown in [10] that any server being a variable
capacity node of curve β also offers a strict service of curve β,
meaning that VNC is a stronger property than strict service and
that both notions collapse when β � β has only finite values.
We may wonder what this means in practice this restriction.

Consider d such that (β � β)(d) = ∞, where can come
from? Either there exists u such that β(u+d) =∞ and β(u) is
finite. If β has only finite values, it means that ∀M > 0,∃uM
such β(uM + d)− β(uM) ≥M . If a server offers a variable
capacity of curve β, then it exists C such that C(uM + d)−
C(uM) ≥M . It means that the capacity offered by the server
on an interval of duration d can be as large as possible. It
somehow states that the “speed” of the server always increases.
It does not imply that the server offers an infinite capacity but
that this capacity tends to infinity on finite intervals.

Then, when considering systems with bounded capacity per
interval (i.e., with some finite constants r, b such that ∀t, d :
C(t)−C(t) ≤ rd+ b), both strict service and VCN nodes are
equivalents.

V. CONCLUSION

Several mathematical definitions have been provided over
the years to capture the service offered by a server. We claim
that defining a server as the one offering its full capacity C to
an arrival A is the one that best fits the engineer’s intuition.
This intuition was expressed by [5], [7] but the mathematical
proof was provided by [8]. Unfortunately, this result did not
received the full attention of the community, perhaps because it
is presented as a corollary of a more generic and quite complex
result.

This paper presents it as a more central definition and gives
a direct proof.

We hope that this presentation will help in the understanding
of what is network calculus. It shows that shaping and variable
capacity nodes are the core properties and that other services
are approximations, used for their mathematical properties.

Some illustrations on two example are provided in appendix:
a TDMA system and an example from [17].

REFERENCES

[1] R. L. Cruz, “A calculus for network delay, part I: Network elements in
isolation,” IEEE Transactions on information theory, vol. 37, no. 1, pp.
114–131, January 1991.

[2] ——, “A calculus for network delay, part II: Network analysis,” IEEE
Transactions on information theory, vol. 37, no. 1, pp. 132–141, January
1991.

[3] J.-y. Le Boudec, “Network calculus made easy,” Ecole Polytechnique
Fédérale de Lausanne (EPFL), Technical Report EPFL-DI 96/218,
December 1996.

[4] C.-S. Chang, “A filtering theory for deterministic traffic regulation,”
in INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Driving the Information Rev-
olution., Proceedings IEEE, vol. 2, Apr 1997, pp. 436–443 vol.2.

[5] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems.” in Proc. IEEE International Sym-
posium on Circuits and Systems (ISCAS), 2000, pp. 101–104.

[6] E. Wandeler, A. Maxiaguine, and L. Thiele, “On the use of greedy
shapers in real-time embedded systems,” ACM Transactions on Embed-
ded Computing Systems (TECS), vol. 11, no. 1, p. 1, 2012.

[7] E. Wandeler, “Modular performance analysis and interface-based de-
sign for embedded real-time systems,” Ph.D. dissertation, ETH Zurich,
September 2006.

[8] J.-Y. Le Boudec and P. Thiran, Network Calculus, ser. LNCS. Springer
Verlag, 2001, vol. 2050. [Online]. Available: https://leboudec.github.io/
netcal/

[9] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus – From theory to practical implementation. Wiley, 2018,
no. ISBN: 978-1-119-56341-9.

[10] A. Bouillard, L. Jouhet, and E. Thierry, “Service curves in Network
Calculus: dos and don’ts,” INRIA, Research Report RR-7094, 2009.
[Online]. Available: http://hal.inria.fr/inria-00431674/en/

[11] C.-S. Chang, Performance Guarantees in communication networks, ser.
Telecommunication Networks and Computer Systems. Springer, 2000.

[12] M. Fidler, “Survey of deterministic and stochastic service curve models
in the network calculus,” IEEE Communications Surveys and Tutorials,
vol. 12, no. 1, pp. 59–86, First 2010.

[13] D. Guidolin-Pina and M. Boyer, “Looking for equivalences of the
services between left and right continuity in the Network Calculus
theory,” Sep. 2022, working paper or preprint. [Online]. Available:
https://hal.science/hal-03772867

[14] R. Cruz, “Quality of service guarantees in virtual circuit switched
networks,” IEEE Journal on Selected Areas in Communications, vol. 13,
no. 6, pp. 1048–1056, Aug 1995.

[15] R. Cruz and C. Okino, “Service guarantees for window flow control,”
in Proc. of the annual Allerton Conf. on communication control and
computing, vol. 34, 1996, pp. 10–21.

[16] A. Bouillard, L. Jouhet, and E. Thierry, “Comparison of different
classes of service curves in network calculus,” in Proc. of the 10th
International Workshop on Discrete Event Systems (WODES 2010),
Technische Universität Berlin, August 30 - September 1 2010.

[17] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,
R. Henia, R. Racu, R. Ernst, and M. G. Harbour, “Influence of different
system abstractions on the performance analysis of distributed real-time
systems,” in Proc. of the 7th ACM & IEEE Int. Conf. on Embedded
Software (EMSOFT’07). ACM, 2007, pp. 193–202.

https://leboudec.github.io/netcal/
https://leboudec.github.io/netcal/
http://hal.inria.fr/inria-00431674/en/
https://hal.science/hal-03772867

APPENDIX

In the case of a constant rate server (ie. a simple data link),
all service notions collapse, so this VNC expression give the
same result as the others.

Here are presented two examples that illustrate how this
formula can capture the expected behaviour of a system in
other contexts.

A. TDMA

Consider a Time-Division Multiple Access server with,
for instance, an output speed rate of 1KB/s and access to
the output only during intervals [2n + 1, 2(n + 1)], n ∈ N.
The capacity function is an alternation of constant slope and
plateaus, and can be written as C(t) =

0 if t = 0

C(2n) if t ∈ [2n, 2n+ 1], n ∈ N
C(2n+ 1) + t− (2n+ 1) if t ∈ [2n+ 1, 2(n+ 1)], n ∈ N

.

(13)
The function C is depicted in Figure 1.

Consider now the arrival of four packets, the first of size
300B at time 0 (while the TDMA offer no access), the second
of size 200B at time t=1.5 (during an active slot), the third
of size 400B at time t=2.9 (during a no-service slot) and
the fourth of size 100B at time t=3.2 (during an active slot).
The expected behaviour is that the first and the third packets
will start their transmission at start of next active slot, the
second is received during an active slot after the transmission
of the first and can start its transmission immediately, whereas
the fourth is also received during an active slot, but during
the transmission of the third packet and have to wait. This
behaviour is depicted on upper part of Figure 1.

The cumulative curve A corresponding to this arrival pattern
can be defined as

A(t) =

0B if t = 0

300B if 1.5 > t > 0

500B if 2.9 > t > 1.5

900B if t > 2.9

and is drawn in the lower part of Figure 1, with the cumulative
departure D = C + (A− C)⊗ 0.

We can see that the shape of D perfectly fits the expected
behaviour.

B. Static priority and task chain

In [17], several examples are provided to compare different
methods. The first benchmark consists of four tasks, T1–T4,
with constant execution time, running on two CPU, using a
fully preemptive static priority, as illustrated in Figure 2. The
parameters of the tasks are given in Table I.

Tasks T1, T2, T4 are purely periodic without offsets. The
the end of execution of T2 releases T3. Such a system can
be modelled using VCN. The constant CPU capacity can be
modelled by β(t) = t. The cumulative functions of tasks T1,
T2, T4 are simple staircase functions. And a fully preemptive

output link

time (s)

0 1 2 3 4

da
ta

(K
B

)

0

1

2
A
C
D

Fig. 1: TDMA system: on upper part, active and idle TDMA
intervals (plain red boxes) plus packets arrivals (plain blue
boxes with arrows) and transmissions (plain green boxes); on
lower part, capacity function C, arrival A and departure D.

CPU1

T2

T1
CPU2

T4

T3

P ∈ [60ms,110ms]

P=60ms

P=5ms

Fig. 2: Four tasks on two CPU

VNC node shared by two arrivals A1, A2 can be modelled as
D1 = C − (A1 −C)⊗ 0 (the higher priority flow get the full
capacity), and the global output D1+D2 also receive the full
capacity, ı̂.e. D1 +D2 = C + ((A1 + A2)− C)⊗ 0, leading
to D2 = C + (A1 + A2 − C) ⊗ 0 − D1. And the same for
the second CPU. The fact that T3 starts its execution when
T2 is fully executed is modelled in network calculus as a
packetizer, which is a flooring function in case of constant
size. The change of size between T2 and T3 is done with
a scaling function in network calculus. The curves are not
drawn, but the set of expressions is given in listing 1, which
can be run online 3.

The delay computed with this model is equal to 43ms, which
is exactly the worst delay computed in [17] using model-
checking of timed automata. In [17], no other method was
able to get this value.

3https://www.realtimeatwork.com/minplus-playground

TABLE I: Table of the parameters of the four tasks on two
CPU represented Figure 2

T1 T2 T3 T4
Priority high low low high
Execution time 35ms 2ms 4ms 12 ms

https://www.realtimeatwork.com/minplus-playground

T4 := 60
A1 := s t a i r (0 , 6 0 , 3 5)
A2 := s t a i r (0 , 5 , 2)
A4 := s t a i r (0 , T4 , 1 2)
C := a f f i n e (1 , 0)
D1 := C + (A1 − C)* z e r o
D2 := C + (A1 + A2 − C) * z e r o − D1
D4 := C + (A4 − C)* z e r o
f l o o r := r i g h t−e x t (s t a i r (1 , 1 , 1))
A3 := (f l o o r comp (D2 / 2)) * 4
D3 := C + (A3 + A4 − C) * z e r o − D4
hDev (A3 , D3)

Listing 1: Set of equations for static priority example

	Introduction
	Network Calculus reminder
	A new formulation of capacity-based server
	State of the art
	History of service notion
	More on VNC and strict service

	Conclusion
	References
	Appendix
	TDMA
	Static priority and task chain

