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Abstract

Measurement-based optimization schemes have been developed to deal with uncertainty
and process variations. One of the methods therein, labeled NCO tracking, relies on
appropriate parameterization of the input profiles and adjusts the corresponding input
parameters using measurements so as to satisfy the necessary conditions of optimality
(NCO). The applicability of NCO-tracking schemes has been demonstrated on several
academic-size examples. The goal of this paper is to show that it can be applied with
similar ease to more complex real-life systems. Run-to-run optimization of a batch
reaction-separation system with propylene glycol is used for illustration.

Keywords: Dynamic optimization, Reaction-distillation system, Batch processes,
Measurement-based optimization, Run-to-run optimization.

1. Introduction

The sequence of reaction and separation steps represents a process configuration that is
frequently encountered in batch chemical processing (Schenk et al., 1999). Optimization
of such processes falls under dynamic optimization, where a given performance index is
minimized while satisfying path and terminal constraints. In the presence of uncertainty
(modeling errors, disturbances), the constraints are typically satisfied by applying a
conservative policy that is non-optimal in most cases (Terwiesch et al., 1994).

One possibility of reducing this conservatism consists of using measurements to
improve the performance of the real process. This can be accomplished via model
refinement and re-optimization (explicit optimization) (Eaton et al., 1990) or by
adapting the inputs directly (implicit optimization) (Srinivasan et al., 2003). This paper
considers the use of measurements for optimization via the tracking of the necessary
conditions of optimality (NCO) (Srinivasan et al., 2003). NCO tracking attempts to
meet the NCO by adjusting the parameters of a solution model that is typically
generated from numerical optimization of a nominal (tendency) model. The optimal
inputs are typically discontinuous, but are continuous and differentiable within each arc.
These inputs are dissected into various parts and appropriately parameterized. The
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resulting free variables are then linked to the various elements of the NCO, and
appropriate adaptation laws are provided.

So far, NCO tracking has been investigated via simulation of academic-size problems
involving relatively low-order single-input systems (Frangois et al., 2002, Srinivasan et
al., 2003). However, the scheme should also be applicable to more complex systems
since the ease with which it is implemented does not depend on the complexity of the
system (in terms of the number of states or equations), but rather on the possibility of
approximating the optimal solution with a solution model. Along these lines, this paper
investigates a realistic two-input batch reaction-separation system for which a large-
scale rigorous model is available (337 states and about 2000 algebraic equations).

The paper is organized as follows. Section 2 describes the NCO-tracking scheme for
run-to-run optimization. The problem of optimizing the production of propylene glycol
is formulated in Section 3, while Section 4 generates the corresponding solution model.
The optimization results via run-to-run adaptation are presented in Section 5, and
Section 6 concludes the paper.

2. Measurement-based Run-to-run Optimization

The following terminal-cost dynamic optimization problem is considered:
min  P(x(t,).1;) (1

u(l),tf
s.t. x=F(x,u) x(0) = x,

S(x,u)=0 T(x(tf)) <0

where ¢ is the scalar cost function, x the n-dimensional states with the initial conditions
x9, u the m-dimensional inputs, and # the final time. F are the equations describing the
system dynamics, S the {-dimensional path constraints, and 7 the 7-dimensional
terminal constraints. Without loss of generality, all terminal constraints are assumed to
be active in the optimal solution, the non-active ones being simply discarded.

Since optimality requires meeting the NCO, the optimization problem can be treated as
a control problem via NCO tracking. The NCO consist of several parts that deal with
both constraints and sensitivities. One way of enforcing the NCO is to parameterize the
inputs using time functions and scalars and assign them to the various NCO parts. This
assignment corresponds to choosing the solution model (Srinivasan et al., 2004).

In this work, the inputs are parameterized using the n_-dimensional parameter vector 7.
Note that n, = 7 so as to be able to meet all terminal constraints. Also, the path
constraints are assumed to be implicitly satisfied with the chosen parameterization.
Then, using the fact that x(z) = X(n), the dynamic optimization problem can be recast as
the following static optimization problem.

min  O(x) s.t. T(r)=0 2)

For the above static optimization problem, the constraint and the sensitivity parts of the

NCO are given by (Srinivasan et al., 2003):
T =0, Al +v! I =
on o

where v are the t-dimensional Lagrange multipliers for the terminal constraints.
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Since batch processes are intended to be run repeatedly, it is natural to exploit this
feature for process optimization. This way, optimal operation can be found iteratively
over several runs. Furthermore, since there is often more to gain by keeping the
constraints active compared to pushing the sensitivities to zero, this study will focus on
a run-to-run controller to keep the terminal constraints 7=0 active. A gain matrix
relating the input parameters to the terminal constraints (local sensitivities) is used for
this purpose. Consider the 7 x n, gain matrix G =9JT/dw with n, = T and rank(G) = 7.
The pseudo-inverse of this matrix can be used for decoupling (Frangois et al., 2002):

n(k+1)=m(k)-G*K T (k) @)

where £ is the batch index and K a diagonal gain matrix of dimension 7 x t, and the
superscript + is used for the pseudo-inverse.

3. Batch Production of Propylene Glycol

3.1 Reaction-distillation System

The production of propylene glycol (PG) by acid-catalyzed hydration of propylene
oxide (PO) is considered. In addition to the monoglycol, dipropylene glycol (DPG) and
tripropylene glycol (TPG) are obtained in smaller amounts as by-products, according to
the following reaction scheme:

PO+H,0 — PG, PO+ PG — DPG, PO+ DPG —TPG 5)

The three reactions are highly exothermic. A high H,O/PO initial molar ratio favors the
production of PG. Methanol is used as a solvent to break the partial solubility between
water and PO. The initial conditions described by Furusawa et al. (1969) are used. The
larger activation energies of the higher-order glycol reactions indicate that higher
temperatures will favor the production of DPG and TPG over PG.

The reaction is carried out in a jacketed stirred tank reactor. The reactor temperature is
controlled by a PID controller that adjusts the jacket inlet temperature. After the
reaction stage, water and methanol are removed from the glycol mixture by distillation.
The column is represented by six theoretical stages with constant volume hold up.
Thermodynamic properties and liquid-vapor equilibrium are rigorously calculated using
the software BibPhy32 of Prosim. The integration of the set of nonlinear differential
equations is carried out by DISCo (Sargousse et al., 1999), which can handle
discontinuities in the differential equations. A rigorous mathematical model of order
337 is used (see Elgue (2002) for detailed description).

3.2 Optimization Problem
Two manipulated variables are considered, the reactor temperature 7,, and the internal
reflux ratio 7. The objective is to minimize the operation time ¢ while meeting terminal
constraints on the reaction selectivity, and the yield and final mole fraction of PG:
min J=t 6
T, (00t f ©
s.t. DAE system O<sr(t)=1 T, #)=<170 °C

Ypg ()= 0.89 wy, (1) < 0.04 Xpg(t;) =038



Yoo = "pG W, = Wppc * WrpG
4 P
Npo WpG + WppG + WrpG

where xp¢ is the molar fraction of PG in the reactor, ypg the PG yield, npg the number of
moles of PG in the reactor, n,, the initial number of moles of PO in the reactor, w; the
mass fraction of glycol i in the reactor and T}, the jacket inlet temperature.

4. Formulation of the Solution Model

Generating the solution model consists of (i) identifying the input arcs and choosing an
appropriate parameterization, and (ii) linking the input parameters to the NCO (in this
case the active terminal constraints). It can be seen from the numerical solution
presented in Elgue (2002) that the optimal solution consists of three arcs: (A) the
reaction phase, (B) the start up phase of the distillation, and (C) the distillation phase.
All terminal constraints are active at the optimum. The reactor temperature exhibits a
sensitivity-seeking arc during phase (A), which expresses the compromise between
speeding up the main reaction and producing side products. In the other two phases, the
reactor temperature is determined from the maximum jacket inlet temperature. As far as
the internal reflux ratio is concerned, there is full reflux during phases (A) and (B) and a
sensitivity-seeking arc during the distillation phase, which represents a compromise
between quality and quantity in distillation.

Though different parameterizations are possible, the two sensitivity-seeking arcs are
approximated by exponential functions with two parameters:

.0 a, +e% O=<r=t, ® 1 O<t=<t, @)
- 1) = i
' T T th<ts<t; By +et ) t,<tst;

where the operator 7’(7},,»,,) represents the reactor temperature that results from a given

choice of Tj;,. The optimal solution, computed numerically, is presented in Fig. 1.
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Figure 1. Optimal profiles: Reactor temperature T, (solid), jacket inlet
temperature T, ;, (dashed) and internal reflux ratio r (dot-dashed)

Table 1.0ptimal input parameters, switching times and constraints.

7] o Bi B> fp[min] #[min] #min]  xpc  yec = Wap
324 1.04x10° 092 3.78x10° 4925 73.0 247.1 0.8043 0.890 0.040




The duration of the start-up phase can be fixed a priori. Furthermore, the final time ¢
can be determined on-line by stopping the distillation at a pre-determined reactor
temperature that is related to the desired final concentration of PG. This way, the
constraint regarding the final mole fraction of PG in the reactor is kept active in every
batch. The distillation is stopped when the boiling mixture in the reactor reaches 128°C.
Finally, if all PO has reacted when time ¢, is reached, any further increase of #, has no
effect on the reactor concentrations. Hence, instead of adapting #,, the reaction phase is
stopped when the reactor temperature reaches some heuristically-determined value. This
temperature can be chosen within a wide range with little effect on #. Here, it is chosen
as 54°C. With these simplifications, the only parameters that need to be adapted are o,
o, f; and ;. The numerical optimal solution is presented in Table 1. Had the switching
times #, t,, and f# been included in the parameterization, the gain in performance
(reduction of ;) would have been of only 0.5 min, i.e. 0.2%.

5. Optimization via Run-to-run Adaptation

5.1 Conservative Starting Points

The numerical optimization presented in the previous section uses a model, labeled
"simulated reality", that is normally unknown. Thus, one has to have initial guesses for
the parameters. Two starting points are considered to evaluate the run-to-run adaptation.
The first point (Case I) comes from the numerical optimization of a conservative
mechanistic model. In this model, conservatism with respect to the rate of reaction, the
heat transfer efficiency and the separation efficiency of the distillation column is
introduced. The second starting point (Case 1) considers a guess that can be considered
as an industrially-relevant solution due to low temperatures in the reaction phase and
high reflux during the distillation phase. The choices are summed up in Table 2.

Table 2. Initial input parameters, initial final times and adaptation
results. Improvement is computed with respect to the initial
guess and loss with respect to the ideal optimal solution.

Starting conditions Adaptation results
a; a B B t[min] t7[min] Improvement Loss
Casel 3295 9.4x10* -0.70 2.11x10° 298.5 255.0 14.6% 3.2%
Casell 27.0 8.6x10* -0.85 3.9x10° 3113 250.6 19.5% 1.4%
5.2 Adaptation Results

The measurements of the final mole fractions are considered to exhibit 0.5% zero-mean
Gaussian noise. The calculation of npg at final time requires the measurement of the
final product density, which is considered to have 0.2% zero-mean Gaussian noise. The
gain matrix G is determined at the starting point I and the adaptation law is determined
from (4). Fig. 2 shows the cost function obtained for 10 runs for Cases I and II.

In order not to violate the constraints, the margins of 0.2 and 0.01 were used for the PG
yield and the fraction of higher glycols, respectively. The region where the adaptation is
within the noise level is reached after 2-4 batches and the adaptation may be stopped at



this point. The column "improvement" is computed with respect to the initial guess and
the "loss" with respect to the ideal optimal solution. The adaptation starting from the
second point (Case II) performs better since the directions that are not adapted are closer
to the optimal ones in Case II than in Case 1.
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Figure 2. Evolution of final batch time. Case I. solid, Case II: dashed.

6. Conclusion

This work has considered a fairly complex reaction-separation process and showed that
a simple solution model with a few adjustable parameters can be used efficiently for
optimization purposes. The input parameters are adjusted using on-line and off-line
measurements to compensate uncertainty and process variations. Most performance
improvement can be done simply by keeping certain constraints active, in this case the
terminal constraints, using run-to-run adaptation. Also, the improvement in cost was
obtained in 2-4 batches, showing that the success of the method depends on a well-
designed adaptation law.
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