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Modern computing has enhanced our understanding of how social interactions
shape collective behaviour in animal societies. Although analytical models
dominate in studying collective behaviour, this study introduces a deep
learning model to assess social interactions in the fish species Hemigrammus
rhodostomus. We compare the results of our deep learning approach to
experiments and to the results of a state-of-the-art analytical model. To that
end, we propose a systematic methodology to assess the faithfulness of a
collective motion model, exploiting a set of stringent individual and collective
spatio-temporal observables. We demonstrate that machine learning models of
social interactions can directly compete with their analytical counterparts in
reproducing subtle experimental observables. Moreover, this work emphasises
the need for consistent validation across different timescales, and identifies key
design aspects that enable our deep learning approach to capture both short-
and long-term dynamics. We also show that our approach can be extended to
larger groups without any retraining, and to other fish species, while retaining
the same architecture of the deep learning network. Finally, we discuss the
added value of machine learning in the context of the study of collective motion
in animal groups and its potential as a complementary approach to analytical
models.

1. Introduction

Collective behaviour in animal groups is a very active field of research, studying
the fundamental mechanisms by which individuals coordinate their actions [1-3]
and self-organise [4, 5]. One of the most common forms of collective behaviour
can be observed in schools of fish and flocks of birds that have the ability to
coordinate their movements to collectively escape predator attacks or improve
their foraging efficiency [6, 7]. This coordination at the group level mainly results
from the social interactions between individuals. Important steps to understand
these collective phenomena consist in characterising these interactions and
understanding the way individuals integrate interactions with other group
members [8-12].

© The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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New tracking techniques and tools for behavioural
analysis have been developed that have greatly improved
the quality of collective motion data [13-19]. In particular,
advances in computing have allowed the development
of computationally demanding data-oriented model
generation techniques [12, 20-24] and the subsequent
simulation of biological models [25]. This has resulted in
more realistic models that attempt to recover the social
interactions that govern collective behaviours. Yet, the
bottleneck with most of these approaches is that they rely
on demanding and laborious mathematical work to obtain
the interactions from experimental data.

An alternative to such analytical models is to exploit
machine learning (ML) techniques and let an algorithm
learn the interactions directly from data. The know-how
required to use these techniques is different from the
one needed to design analytical models. Nevertheless, the
structure of ML algorithms, here a neural network, has an
impact on the modelling performance, and requires specific
expertise [26]. Once the architecture of an ML algorithm is
set, ML can often process data for different species without
structural adaptation, and generate new models quickly.
This is very different from analytical models, where each
new species requires redefining the model nearly from
scratch. The downside of this flexibility is that ML models
are usually less explainable (“black box”). Yet, recent ML
algorithms provide higher-level information mappable to
more tangible formats, such as force maps, which show the
strength and direction of behavioural changes experienced
by an individual when interacting with other individuals in
a moving group [23, 24]. Despite their limited explainability,
ML algorithms require only a few biological assumptions.
They offer an almost hypothesis-free procedure [27] that
can even outperform human experts in detecting subtle
patterns [28], making ML a very appealing complementary
approach to analytical models.

For both analytical and ML models, several studies
evaluate models over short timescales and through
instantaneous quantities such as speed, acceleration,
distance and angle to objects [22, 29], or by measuring
the error between predictions and ground truth [23,
30, 31]. Only more recently, long timescales have also
been considered [21]. However, a model that performs
well at short timescales compared to experiment does
not necessarily perform well at long timescales. This is
especially true for models that try to reproduce complex
collective phenomena in living systems. To our knowledge,
the predictive capacity of ML models in this context has
not been evaluated over both short and long timescales, that
is, their ability to generate synthetic data that replicate the
outcomes of social interactions over both timescales.

Here, we demonstrate that ML models can generate
realistic ~ synthetic data biological
assumptions, and that they allow to accelerate and

with  minimal

generalise the process of collective behaviour modelling.
More specifically, we present a social interaction model
using a deep neural network that captures both the

short- and long-term dynamics observed in schooling fish.
We apply our approach to pairs of rummy-nose tetra
(Hemigrammus rhodostomus) swimming in a circular tank,
and show that it can also be applied to fish species with
similar burst-and-coast swimming (zebrafish; Danio rerio).
Our ML model is benchmarked against the state-of-the-
art analytical model for this species [32], showing that it
performs as well as the latter, even for very subtle quantities
measured in the experiments. Moreover, we also introduce
a systematic methodology to stringently test the results of
an analytical or ML model against experiment, at different
timescales, and in the context of animal collective motion.

2. Methods

(a) Experimental data

The trajectory data used in this study were originally
published in [12] for Hemigrammus rhodostomus swimming
either alone or in pairs in a circular tank of radius 25cm.
This species is characterised by a burst-and-coast swimming
mode, where the fish perform a succession of sudden and
short acceleration periods (of typical duration 0.1s), each
followed by a longer gliding period almost in a straight line,
resulting in a mean total duration of the kicks of 0.6s. The
instant of the kicks, when heading changes take place, are
assimilated to decision instants [12].

The dataset corresponds to 15 hours of video recordings
at 25Hz. Fish are tracked with idTracker [17], an image
analysis software which extracts the 2D trajectories of
all individuals. Occasionally, the tracking algorithm is
temporarily unable to report positions accurately. This
can be due to small fluctuations in lighting conditions,
fish standing still or moving at very low speed, fish
swimming very close to the surface, to the border, or to each
other. These instances are corrected using several filtering
processes. Since our analyses focus on social interactions,
we remove the periods during which fish are inactive. Fish
body length (BL) is of about 3.5 cm, and the intervals of time
during which fish velocity is less than 1 BL/s are removed.
Large leaps in fish trajectories during which fish move
by more than 1.5BL ~5.25cm between two consecutive
frames, meaning that fish move at almost 65cm/s, are also
identified and removed, as they result from tracking errors.
Finally, missing points are filled by linear interpolation. The
final dataset used in this work represents approximately 4
hours of trajectory data for pairs of H. rhodostomus.

Moreover, trajectories of the original dataset have been
resampled with a timestep of At=0.12s instead of the
original 0.04s provided by the camera, and data points
have been converted from pixel space to a normalised
[—1, 1] range to facilitate the training of the networks. This
subsampling helps to reduce the random noise between
subsequent camera frames at the very short timescale of
0.04s (especially for measuring fish headings and speeds),
while maintaining a sufficiently small timestep to study and
model the social interactions. The new timestep At =0.12s
is of the same order as the sudden acceleration period of
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a kick and approximately one fifth of the average total
kick duration [12]. In addition to reducing the noise, the
subsampling also reduces the dimension of the input vector
and of the effective size of the training dataset and, as a
result, of the training time for the ANN models presented
in this work.

(b) Quantification of individual and collective
behaviour in pairs of fish

We use a set of observables to quantify how close the
results of the models are from the measures obtained in
the experiments [12, 20, 21]. These observables constitute
a stringent benchmarking and validation when designing
and testing a model. In the case of deep learning techniques,
those observables also serve as means to partially explain
what the algorithm has learned.

Let us first define the temporal variables characterising
the individual and collective behaviour of the fish. Fig. 1A
shows two fish swimming in a circular tank of radius
R=25cm. The position vector of a fish ¢ at time ¢ is
given by its Cartesian coordinates @;(t) = (z'(t),y'(t)) in
the system of reference, centred at the centre of the tank
C(0,0). The components of the velocity vector 7;(t)=
(vi(t),v§ (1)) are given by vk (t) = (ul(t) — uk(t — At))/At
(similar expression for v%) The heading angle of the fish is
assumed to indicate its direction of motion and is therefore
given by the angle that the velocity vector forms with the
horizontal, ¢;(t) = ATAN2(v§(t), vi(t)).

The motion of a given fish i is then described using
the three following instantaneous variables: the speed,
V;(t) = ||7; ()|, the distance of the fish to the wall, 7%, (t) =
R —||@;(t)||, and the angle of incidence of the fish to
the wall, 6%(t), defined by the angle formed by the
velocity vector and the normal to the wall: 6%, (t) = ¢;(t) —
ATAN2(y (1), z°(t)), see Fig. 1A.

When there are two fish ¢ and j in the tank, their
relative motion is characterised by means of three variables:
the distance between fish, d;;(t)=||u;(t) — @;(¢)|, the
difference between their heading angles, ¢;;(t) =¢;(t) —
¢;(t), which measures the degree of alignment between
both fish, and the angle of view, v;;(t), which is the angle
with which fish i perceives fish j, and which is generally
independent of 1;;(t). See Fig. 1A for the graphical
representation of these quantities. The angle of perception
of the fish also allows us to define the notion of geometrical
leadership for two fish: fish i is the geometrical leader (and
therefore, j is the geometrical follower), if |1;;(t)| > |2bjs (2)],
meaning that 4 has to turn by a larger angle to face j than
the angle that j has to turn to face i. In practice, these
definitions of the geometrical leader and follower provide
a precise and intuitive characterisation of a fish being ahead
of the other. Note that being the leader or the follower is
an instantaneous state that can change from one kick to the
other.

These 6 quantities V;(t), 7% (t), 0%(t), di; (1), (1),
and 1;;(t) being defined, the measure of their probability

distribution functions (PDF) constitutes a set of observables
probing the individual and collective instantaneous fish
dynamics in a fine-grained and precise manner. The PDF
of V;(t), ri(t), 6%(t) probe the behaviour of a focal
fish sampled over the observed dynamics, and are hence
called instantaneous individual observables. The PDF of d;;(t),
¢;5(t), and 1;;(t) characterise the correlations between 2
fish at the same time ¢t and are hence called instantaneous
collective observables. These 3 collective observables can be
easily generalised to a group of arbitrary size N > 2, by
considering ¢ and j as pairs of nearest neighbours, or pairs
of second-nearest neighbours (or even farther neighbours),
or even averaging them over all pairs in the group (then
probing the size, the polarisation, and the anisotropy of
the group). Ultimately, comparing experimental results
and model predictions for these individual and collective
observables constitutes a stringent test of a model.

Moreover, to characterise the temporal correlations arising
in the dynamics, we make use of 3 additional observables
involving quantities measured at two different times, for
a given focal fish [21]: the mean-squared displacement
Cx (t), the velocity autocorrelation C'y/(t), and, especially
challenging, the autocorrelation of the angle of incidence to
the wall Cy_ (t), defined respectively by

Cx () = ([a(t+t) - @(t)])"), (2.1)
Cy (t) = (i (t+ ) - T(t)), (22)
Co, (t) = <Cos [Gév(t +t) - eév(t’)] > , 2.3)

where (w(t)) is the average of a variable w(t) over all
reference times ¢’ (assumption of a stationary dynamics,
where correlations between two times depend solely
on their time separation), over all focal fish, and over
all experimental runs. In principle, these correlation
observables can also be generalised to probe the (collective)
time correlations between the two different fish (or between
nearest neighbours in a group of N > 2 individuals). For
instance, one could consider Cy, () = (v;(t +t') - 7;(t")),
where the average is now over nearest neighbour pairs.
However, in the present study, we will limit ourselves to
the study of the 3 (individual) correlation functions listed
in Egs. (2.1-2.3).

(c) Analytical and deep learning models of
fish behaviour

Many species of fish like H. rhodostomus or Danio rerio move
in a burst-and-coast manner, meaning that their swimming
pattern consists of a sequence of abrupt accelerations each
followed by a longer gliding period (Fig. 1B), during which
a fish moves more or less in a straight line (Fig. 1C). The
kicking instants observed in the curve of the speed can
be interpreted as decision times when the fish potentially
initiates a change of direction. In H. rhodostomus, the mean
time interval between kicks and the typical kick length
were experimentally found to be close to 0.5s and 7cm,
respectively [12]. When confined in circular tanks, fish tend
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Wall

X

Speed

Wall

Figure 1. A. Individual and collective variables characterising the instantaneous state of an individual (focal fish in red) and its pairwise relation with a

neighbour (blue): distance to the wall 7, (¢), angle of incidence to the wall 62, (¢), heading angle ¢; (t), distance between individuals d;; (t), difference

of heading angles ¢;;(t), and angle of perception v;;(t). Positive angles (curved arrows) are defined in the anti-clockwise direction, starting from

the positive semi-axis of abscissas. The radius of the circular setup is R =

25 cm. For visualisation purposes, the size of fish is not to scale with the

tank. B. Typical profile of the fish speed, V' (t), showing the typical sequence of kicks (abrupt accelerations followed by longer gliding phases). C.

Trajectories of two fish close to the wall due to their burst-and-coast swimming mode. The dots in the trajectories denote the instants of the kicks, where

fish decision-making is assumed to take place.

to swim close to the curved wall because their trajectory
is made of quasi straight segments with limited variance
of the heading angle between kicks, hence preventing the
fish to escape from the tank wall (unless when a rare large
heading angle change occurs) [12, 33]. When swimming in
groups, H. rhodostomus tend to remain close to each other,
especially when the number of fish in the tank is small. In
fact, the social interactions between fish reflect the combined
tendency to align with and follow their neighbours while at
the same time maintaining a safe distance with the wall. At
a given kicking instant, only a few neighbours (one or two)
have a relevant influence on the behaviour of a fish [34].
The decision-making of fish displaying a burst-and-coast
swimming mode can thus be reproduced by considering
only pairwise interactions. Obviously, if one only considers
pairs of fish, like here, it therefore suffices to consider the
relative state of the neighbouring fish (relative position and
velocity) and the effect of the distance and the relative
orientation to the wall [12, 20].

(i) Analytical Burst-and-Coast model

The Analytical Burst-and-Coast model (hereafter called
ABC model) quantitatively reproduces the dynamics of
H. rhodostomus swimming alone or in pairs under the
hypothesis that fish decision-making times correspond

exactly to their kicking times, that is, the new direction
of movement, the duration, and the length of the kick are
decided precisely at the end of the previous kick [12].

Given a pair of agents i and j at a respective state
(@], ¢}) and (4;", ¢;') at time ", the state of agent i at the
next instant of time t?"'l is given by

it = 47, (24)
oi =} + o907, (2.5)
it =al 17 e (opth), 2.6)

where € (qﬁ?"'l) is the unitary vector pointing in the heading
direction ¢'*!, 7/ and I7* are the duration and length of
the n-th kick of agent i, and d¢; is the heading change
of agent i. The heading angle change 6¢; is the result
of three effects: the interaction with the wall, the social
interactions with the other fish (repulsion/attraction and
alignment), and the natural spontaneous fluctuations of
fish headings (cognitive noise) [12]. The term “cognitive
noise” encapsulates the fact that fish (or humans) would
not generally replicate the exact same motion when placed
under identical initial conditions, namely starting at the
same positions and with the same initial velocities. Hence,
a behavioural model must not only describe the social
interactions between individuals, but also the properties
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Figure 2. Structure of the Artificial Neural Network (ANN) used in the Deep Learning Interaction (DLI) model. From left to right: Input of the ANN: the 5 last

states, (S(t — 4),. ..

,S(t)) attime ¢. Where S(t) = (si(t),s;(t), di;(£)) € R!! and each state is parametrised as s; (t) = (u@; (t), Ti(t), 75, (t)) €

R?; the 7 layers (two Long-short Term Memory, also known as LSTM, layers and 5 Dense Layers) capturing the social dynamics; Output: the two pairs

of values (pa, o) and (uy, oy) corresponding respectively to the mean and standard deviation of the probability distribution function (assumed to be

Gaussian) of each component a; and ay of the instantaneous acceleration vector @ at time ¢ + 1, constituting the prediction of the DLI model.

of their spontaneous fluctuations. The social interactions
depend only on the relative state of both agents, determined
by the triplet (d;j,i;,¢;j). The derivation of the shape
and intensity of the functions involved in 6¢; is based on
physical principles of symmetry of angular functions and
a data-driven reconstruction procedure detailed in [12] for
the case of H. rhodostomus and in [20] for the general case of
animal groups.

Starting from the initial condition (@0, ¢?) of fish i,
the length and the duration of its next kick, I and 77,
are sampled from the experimental distributions obtained
in [12]. Then, the timeline t% of fish i is updated with
Eq. (2.4), the heading angle of the next kick #1 is calculated
with Eq. (2.5), and the position of the fish at the end of the
kick 11’11 is obtained with Eq. (2.6). As kicks of different fish
are asynchronous, the next kick can be performed by any
of the two fish. Each fish has thus it own timeline, but is
subject, at each of its kicks, to the evolution of the other fish
along its own kicks.

The ABC model is therefore a discrete model that
generates kick events instead of continuous time positions.
To directly compare with the DLI model presented in the
next section, which is a continuous time model, we re-
sampled the trajectories made of kick events produced by
the ABC model and build continuous time trajectories with
a timestep of size At =0.12s. We produced trajectories that
add up to a total of 500,000 timesteps, corresponding to
approximately 16.7 hours.

(if) Deep Learning Interaction model

The Deep Learning Interaction model (hereafter called DLI
model) consists of an Artificial Neural Network (ANN)
which is fed with a set of variables characterising the
motion of H. rhodostomus and which provides the necessary
information to reproduce the social interactions of these
fish by estimating their motion along timestep of length
At =0.12s. At time ¢, the DLI model is designed to take
sequences of states as input to capture the short- and
long-term dynamics. Then, it generates predictions for
the acceleration components of the fish at the following
timestep ¢ + At.

For the DLI model, the state of an agent i at time ¢ is
defined by

si(t) = (@ (t), 7 (t), r (1)) € R, (2.7)

The state of an agent includes redundant information: in a
fixed geometry, %, can be deduced from ;, and 7 from the
input sequence ﬁi"_4, ..., 4;". This redundancy is intended
to facilitate the training process of the neural network.
Furthermore, these redundancies are shown to significantly
boost the performance of the network compared to similar
ANN structures (see Text S1).

The system’s state S(t) is then defined as the combination
of both agent states, in addition to their inter-individual
distance d;;(t) (also a redundant variable):

S(t) = (si(t),s;(t),di; (1)) R (2.8)
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Fig. 2 shows the structure of the ANN, consisting of
7 layers: two Long-Short Term Memory (LSTM) layers [35],
and 5 fully connected (Dense) layers.

The first LSTM layer consists of 256 neurons and is
located at the input of the ANN, where it receives the
sequence of the 5 last states of the system, i.c., a matrix of
dimension 5 x 11: (S(t — 4),...,S(¢)). This history length
of 4 timesteps (0.48s) is borrowed from the biology of
the fish: as already mentioned, the time it takes for a fish
to display its characteristic behaviour, a kick, is 0.5s [12],
therefore, we input the current state plus the states that
correspond to the average duration of a kick. The output
of the first LSTM is then gradually reduced in dimension
by two successive dense layers, and then scaled up again
with a second LSTM, whose configuration is also based on a
history of 5 states. Then, two other dense layers are used to
reduce the dimension of the output of the second LSTM, and
alast dense layer is applied to provide the final output of the
ANN. More details about the configuration of the ANN are
given in Table S7 in Text S1.

The output of the ANN consists of two pairs of values,
(pz, 0z) and (py, oy), corresponding to the expected value
and standard deviation of the z and y components of the
predicted acceleration, which are assumed to be Gaussian
distributed [36], as actually found for H. rhodostomus [12].
Hence, the predicted acceleration of the agent, @ = (az, ay),
can be written

Gg = [tz + Oxgz, Qy =y + Ozy, (2.9)

where g, and gy are independent standard Gaussian
random variables drawn from AN(0,1). Then, the velocity
vector of the agent i at the time t"*lis given by

gt =5 + Atal, (2.10)
and the position of the agent is updated according to
@t =@ + Arg (2.11)

Note that in the DLI model, the predicted variance of
the acceleration accounts for the fish intrinsic spontaneous
behaviour exhibited during their decision process (cognitive
noise), and hence translates the fact that 2 real (or modelled)
fish will not act the same if put twice in the same given state
characterised by Eq. (2.8).

In some rare instances, the prediction of the DLI model
would move one or both fish outside the limits of the tank.
To account for that, we introduce a rejection procedure: the
invalid move is rejected, and we resample the Gaussian
random variables drawn in Eq. (2.9) until a valid move is
produced. Note that a similar rejection procedure is also
implemented in the ABC model of [12], to strictly enforce
the presence of the wall. Indeed, in the ABC model, the
ABC agents would systematically escape the tank after a
few seconds or very few minutes without this rejection
procedure. In section 3(d) and Fig. S1 and S2 in Text S1,
we show that the DLI model has, in fact, implicitly learned
the presence of the wall, and that DLI agents can remain
within or in the close vicinity of the tank for several dozen

of minutes without implementing this rejection procedure
(60 % chance not to escape the tank during 100 minutes of
simulation).

The prediction of the ANN for at time t" ! is thus a vector

: : : -n+1l -n+l
of dimension 1 x 4 that can be written as (,upre 4> pred ),
where

ﬂn+1_( n+1 n+1) and

n+1l _ n+1 n+1
fiprea = (a5 f1y ( ).

Upred =%z Oy
(2.12)

The ANN is then trained to approach the real/observed
values ﬁfé;ﬁl by means of the Adaptive Moment Estimation
Optimiser (Adam) with a time-decaying learning rate

A=10"* and a negative log-likelihood loss function /
-n+l

defined in terms of the prediction error €,41 = Fprea

/IrZ:ll and the standard deviations as follows [37]:

UEpt1, 6"t

1 ok N
5 D )" €7 @ Gy + S loglle@ )
n=1
(2.13)

where N}, is the number of timesteps in the history of
the input of the ANN (here N, =5) and C is a diagonal
covariance matrix with the values of &g’rté in the diagonal
and zeroes elsewhere.

The training of the ANN is carried out with a subset
of the experimental dataset. More specifically, the training
process is given a budget of 45 epochs with a batch size of
512 samples on a dataset that was split 80%, 15%, and 5%
for training, validation, and test, respectively. Then, the DLI
model is used to produce trajectories of 500,000 timesteps
of size At =0.12s, as done with the ABC model. At the
beginning of the simulation, each agent is given a copy of
the DLImodel and both agents are initialised with a random
5-timestep-long trajectory sampled from the fish dataset.
At each timestep ¢", the state vector S(¢") is built and
introduced in the network, which provides the estimated
instantaneous acceleration distributions at time " 1. Then,
the acceleration is evaluated according to Eq. (2.9), and the
next positions and velocities of the agents are obtained from
the equations of motion, Egs. (2.10, 2.11).

Designing the DLI model Designing and selecting an
appropriate ANN structure to model a system is for the
most part non-trivial and requires either an extensive search
through automatic methods (e.g., neuro-evolution [38-40])
or an exhaustive number of empirical attempts for very
specific applications [22-24]. Here, we followed a hybrid
approach consisting in empirically designing an ANN based
on biological insight and automatically searching for its
optimal structure by bootstrapping the search. Once we
established this initial model, we performed an automated
search for similar neural networks using the same input and
output for different combinations of ) the number of layers,
i1) the size of the layers, and 4i:) the activation functions
(i.e., transfer functions tasked with mapping the inputs of
a neuron to a single weighted output value passed to the
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Figure 3. Probability density functions (PDF) of observables characterising individual behaviour: A Speed V', B distance to the wall ry,, and C angle of
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next layer). The search included a total of 82 neural network
structures, trained with the same budget of iterations and
stopping criteria, and out of which the ANN shown above
is the best performing. The best performing ANN is selected
according to the metrics presented in the following section.

Three notable categories of networks were considered: 7)
non-probabilistic networks that only generate (uf ™, uj )
(and hence, not explicitly including the cognitive noise),
i1) probabilistic networks that do not have memory cells
(hence, missing the fact that fish are gliding passively on
a timescale of order 0.5s), and i) probabilistic networks
that implement memory thanks to LSTM layers. Non-
probabilistic networks (i) provide the mean value of the
components of the acceleration for the next timestep with
high accuracy, but miss the essential variability that is
intrinsic to the spontaneous behaviour of fish and which
allows for the emergence of social interactions. Probabilistic
networks without memory (i¢) are able to partly capture
this intrinsic variability, but do not fully capture the non-
linear nature of the problem (see Fig. S6 in Text S1 and
Video 54). Finally, probabilistic networks with memory (4i)
performed generally well, and we found that the structure
used in the DLI model consistently provides the best results
for the number of epochs set for training and for the ANNs
considered by the automatic search.

Our search approach revealed the existence of two
crucial ingredients that must be considered in the
model, both accounting for biological characteristics of
fish behaviour observed experimentally. First, the neural
network must be fed with information covering the typical
timescale along which relevant changes take place in the
behaviour of the fish. Since real fish kicks last 0.5-0.6s on
average, the NN needs information about the fish behaviour
over time intervals of at least this duration (that is, 4
to 5 timesteps of 0.12s). However, we found that using
longer vector lengths (up to 10 timesteps) for the case of
H. rhodostomus does not lead to any significant improvement
in the results, while considerably increasing the training

time. Second, the output of the network must contain a
sufficiently wide diversity of predictions so that the agents
reproduce the high variability of responses that fish display
when behaving spontaneously and reacting to external
stimuli.

ANNs without memory tend to make too similar
predictions, and agents do not initiate the typical direction
changes that are observed in the experiments. A possible
solution could be to add some phenomenological noise to
the predictions of the NN. However, this would result in
an unrealistic behaviour, albeit an improvement over not
adding noise at all. For example, when a fish swims close
to the wall, it does not have the same liberty to turn toward
or away from the wall, which would not be captured by a
too crude implementation of the fish cognitive noise. Our
approach accounts for this behavioural uncertainty for each
state (position, velocity, distance to the neighbour and to the
wall) and for both degrees of freedom during the training
phase of the ANN, being therefore able to capture these
complex behavioural patterns. The performance of the two
variants is depicted in Fig. 54 in Text S1.

3. Results

When fish swim in a circular tank (here, of radius R =
25cm), they interact with each other and with the tank
wall. The resulting collective dynamics can be finely
characterised by exploiting the 9 observables introduced
and described in the Methods section. As explained there,
these observables probe 1) the instantaneous individual
behaviour, 2) the instantaneous collective behaviour, and
3) the temporal correlations of the dynamics.

Hereafter, we analyse three trajectory datasets: the
first one corresponds to pairs of H. rhodostomus in our
experiment (4 hours of data), the second one to the
Analytical Burst-and-Coast model (ABC; 16.7 hours), and
the third one to the Deep Learning Interaction model (DLL;
16.7 hours). Video S1 shows typical trajectories for these
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three conditions. The aim of this section is to quantitatively
validate the qualitative agreement observed in this video.

(a) Quantification of the instantaneous

individual behaviour

The individual fish behaviour is characterised by three
observables: the probability distribution function (PDF) of
the speed V, of the distance to the wall 7, and of the angle
of incidence to the wall 6. When swimming in pairs, fish
tend to adopt a typical speed of about 7 cm/s (see the peak
of the PDF in Fig. 3A), but can also produce high speeds
up to 25-30m/s. In fact, we observe that both the leader
and follower fish produce very similar speed profiles (thus
omitted in Fig. 3A). Both fish remain close to the wall of the
tank (a consequence of the fish burst-and-coast swimming
mode [12]), the leader being closer to the wall (typically, at
about 0.5 BL) than the follower (at about 1.2 BL; see Fig. 3B).
This feature is due to the follower fish trying to catch up
with the leader fish by taking a shortcut while taking the
turn. Moreover, fish spend most of the time almost parallel
to the wall: see the peaks of both PDFs at 6w =~ £90° in
Fig. 3C. A slight asymmetry is observed in the PDF of 0y,
showing that, in the experiments, fish have turned more
frequently in the counter-clockwise direction. Values of the
mean and the standard deviation of the PDFs presented in
this section are given in Tables S1, S2, and S3 in Text S1.
Both ABC and DLI models produce agents that move at
the same mean speed as fish in the experiments, and Fig. 3A
shows that the speed PDF for both models are in excellent
agreement with the one observed in real fish. Moreover,
the agents of the ABC model are as close to the wall and
as parallel to it as fish are. The PDF of the ABC leader is
in good agreement with that of the fish leader (Fig. 3B).
However, the PDF for the ABC follower has a peak at about
the same distance to the wall as that of the leader, while

the corresponding peaks are more separated for real fish.
Yet, the PDF for the ABC follower is broader than for the
leader, showing that the ABC follower tends to be farther
from the wall than the leader, as observed for real fish. For
the DLI model, the peaks of both leader and follower PDFs
are at about the same position as for real fish, although their
height is smaller than for fish, meaning that DLI-agents tend
to explore more frequently the interior of the tank (observe
the thicker tails of the PDF of 7w for the DLI model in
Fig. 3B). Alignment with the wall is also well reproduced
by both models (Fig. 3C), including the asymmetry in the
direction of rotation around the tank: their peak at 6y > 0 is
higher than the one at 6y < 0. As already seen in the PDF
of rw, DLI-agents visit more often the interior of the tank,
and are hence less aligned with the wall than the real fish
and ABC agents. Note that the tendency of DLI-agents to
rotate more frequently in the counterclockwise direction is
learned from the training set, while this asymmetry has to
be explicitly implemented in the ABC model, by introducing
an asymmetric term in the analytical expression of the wall
repulsion function. A closer look at Fig. 3C shows that fish
actually follow the wall with a most likely angle of incidence
|6w| that is slightly smaller than 90°, a feature resulting from
the burst-and-coast swimming mode inside a tank with
positive curvature: fish are found more often going toward
the wall than escaping it.

We have also computed the Hellinger distance (HD)
between the experimental PDF probing the individual
behaviour and the corresponding PDF produced by the
DLI and ABC models. The Hellinger distance (see the
caption of Tables 510-511, for more details) quantifies the
(dis)agreement between two PDF for the same variable. The
results of Tables S10-S11 for both models confirm their good
performance: the DLI model HD is slightly better than that
of the ABC model for the speed PDEF, as good for the PDF of
rw, and not quite as good for the PDF of 6.
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(b) Quantification of the instantaneous

collective behaviour

H. rhodostomus is a social species, and Fig. 4A shows that
the two fish remain most of the time close to each other,
with the PDF of their distance d;; presenting a peak around
d;; = 7cm ~ 2 BL (mean and standard deviation of the PDFs
presented in this section are given in Tables S1, S2, and
S3 in Text S1. The PDF of d;; produced by the DLI model
is slightly wider than for the experiment and the ABC
model, and in particular, presents too much weight at small
distances.

The fish have a strong tendency to align with each other,
as shown in Fig. 4B, with the PDF of their relative heading
¢i; being sharply peaked at 0°. In addition, the PDF of the
viewing angle v;; reveals that the fish are swimming one
behind the other rather than side-by-side. This is illustrated
in Fig. 4C by the sharp difference in the PDF of the viewing
angle for the leader and the follower. The PDF of v1cader
is peaked around +160°, meaning that the follower fish is
almost right behind the leader fish, but slightly shifted to
the right or left. A slight left-right asymmetry in the PDF of
the viewing angles is also visible, the follower being more
frequently on the left side of the leader, a consequence of the
fact that the fish in the experiment follow the wall by turning
more often counterclockwise (Fig. 3C), with the follower
swimming farther from the wall than the leader (Fig. 3B).

All these features are well reproduced by both models,
with only some small quantitative deviations. The ABC
model reproduces almost perfectly the experimental PDF
of the distance between fish, whereas the PDF for the
DLI model is only slightly wider and presents slightly
more weight at very small distance than found for real
fish or in the ABC model (Fig. 4A). The DLI model is in
turn better than the ABC model at reproducing the PDF
quantifying the alignment of the fish, the latter producing
more weight near 0° than for real fish (Fig. 4B). Both models

fail at reproducing the small weight in the PDF at ¢;; ~
+180°, which corresponds to sudden U-turns that real fish
sometime perform. The PDF of the viewing angles for the
leader and the follower (Fig. 4C) are also fairly reproduced
by both models, including the slight left-right asymmetry
observed in real fish, although the peak in the PDF at
Yeollower = 0° (and to a lesser extent at Ycaqer &~ —160°) is
not quite as sharp as in the experiment.

Again, we have computed the Hellinger distance
between the experimental PDF probing the collective
behaviour and the corresponding PDF produced by the
DLI and ABC models. The results of Tables S10-S11 for
both models confirm their good performance: as anticipated
above, the DLI model HD for the PDF of the distance
between agents is higher than for the ABC model (and is the
highest found for all 6 PDF presented here, with HDdij =
0.13). However, Tables S10-S11 also confirm that the DLI
model reproduces quantitatively the PDF of ¢;; and 1;;.

(c) Quantification of temporal correlations

Fig. 5 shows the 3 observables defined in Egs. (2.1-2.3)
and probing the emerging temporal correlations in the
system: the mean squared displacement C'x (), the velocity
autocorrelation Cy(t), and the autocorrelation of the angle
of incidence to the wall Cy_(t), as function of the time
difference ¢t between observations. The figure reveals that
both models fail to fully reproduce quantitatively these
very non-trivial observables, which indeed constitute the
most challenging benchmark characterising the correlations
emerging from the fish behaviour.

Fish data present 3 distinct regimes: a quasi-ballistic
regime at short timescale (¢ < 1.5s) where Cx (t) ~ (v?)t?,
followed by a second short diffusive regime (1.55 St S55s)
where C'x (t) = Dt, which is limited by the finite size of the
tank, ultimately leading to a third regime of saturation (¢ >
5s) characterised by slowly damped oscillations since fish
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are guided by the wall (Fig. 5A). Accordingly, the velocity
correlation function starts from Cy (¢t =0) = (v?) at short
time and also presents damped oscillations (Fig. 5B). The
negative minima of the oscillations in Cy (t) correspond
to times when the focal fish is essentially at a position
diametrically opposite to its position at the reference time
t =0, its velocity then being almost opposite to that at t =0.
Similarly, positive maxima correspond to times when the
fish returns to almost the same position it had at t = 0, with
a similar velocity, guided by the tank wall. Of course, these
oscillations are damped as correlations are progressively
lost, and the velocity correlation function Cy(t) ultimately
vanishes at large time ¢ > 20s, due to the actual stochastic
nature of the trajectories at this timescale (possible U-turns,
or the fish randomly crossing the tank). Note that C'x () is
markedly different for the leader and follower fish, with a
higher saturation value for the leader, which swims closer
to the wall, as mentioned above.

The ABC model is able to fairly reproduce the short and
intermediate regimes for Cx (t) (Fig. 5A), as well as the
position of its first peak, reached only 1s later than for fish.
The ABC model also reproduces the experimental saturation
value of Cx (t) averaged over the two fish. As for the DLI
model, its predictions are only slightly worse than that of
the ABC model, since the DLI agents are moving a bit farther
to the wall compared to ABC agents and real fish. Yet, both
models equally fail at producing more than one oscillation,
and the correlations are damped faster compared to the
experiment.

As for the velocity autocorrelation Cy (¢) (Fig. 5B),
the ABC model reproduces almost perfectly the short
and intermediate regimes and the position of the first
negative minimum (hence, up to t=6s), while the DLI
model underestimates the depth of this first minimum.
But again, both models fail at reproducing the persistence
of the correlations, producing a too fast damping of the
oscillations (an effect slightly stronger in the DLI model).

Both models struggle at reproducing the correlation
function Cjy_(t) of the angle of incidence to the wall
(Fig. 5C), where the fish curve first sharply decreases up to
t =65 and then remains close to Cp_ ~ 0.2. The ABC model
is clearly unable to reproduce both the decreasing range
(clearly diverging before ¢t =2s) and the correct saturation
value (never falling below Cjy_ ~ 0.6). As for the DLI model,
it produces a slightly sharper decay of Cy_ (t) than for real
fish, up to t = 6's, but fails to reproduce the non-negligible
remaining persistence of the correlation observed in fish for
t>7s, with Cp_ (t) in the DLI model decaying rapidly to
zero. In fact, both models fail to reproduce the experimental
Cy,, (t) for opposite reasons. The ABC model exhibits a too
high persistence of the correlations of fy compared to real
fish, presumably because real fish indeed often follow the
wall but can also produce sharp U-turns, as observed in
Fig. 3C. On the other hand, the failure of the DLI model
in reproducing Cy_ (t) stems from the fact that DLI agents
move farther from the wall and cross through the tank more
often than real fish and ABC agents (see the discussion of

Fig. 3B above), hence leading to a too fast, and ultimately
total, loss of correlation for Os.

(d) Complementary analyses

In order to test whether the DLI model has correctly learned
the presence of the wall, we have run 30 simulations of
duration 6000s to check whether the DLI agents would
stay within the area of the tank, even without enforcing its
presence by the rejection procedure mentioned in the second
paragraph below Eq. (2.11). We found that the DLI agents
indeed remain in or very near the tank during the entire
time of the simulation in 60 % of runs. In the other 40 % of
runs, the DLI agents would ultimately escape the tank after
a mean time of order 3000s. These results are summarised
in Fig. S1 of Text S1, where we present the time series of the
distance to the wall r(t) for the 10 first runs, and in Fig. S2
of Text S1, where we report the survival probability (i.e., the
probability that the DLI agents remain within the tank up to
a given time). These results indicate that the DLI model has
convincingly learned the presence of the wall, and is able
to maintain the agents within the wall for several dozen of
minutes without the need of an explicit rejection procedure.

We have also conducted several other complementary
tests of our approach. First, the DLI model yields better
results in generating social interactions than a similarly
purposed ANN for human trajectory forecasting [30, 31] (D-
LSTM model; see Fig. S3 and 54 in Text S1, Tables S4, S5,
56, 512 in Text S1, and Video S2). In particular, the results
for the Hellinger distance (HD;,, =0.30 and HDgy_ = 0.40)
show that this D-LSTM model completely fails at capturing
the interaction of the fish with the tank wall. While this
is expected due to the missing inputs (compared to the
DLI; see Text S1), these results confirm that there exist
models that do indeed capture the short-term dynamics
without being able to reproduce the long-term dynamics,
presumably due to non-Markovian effects. In addition, we
also trained a Multi-layered Perceptron Interaction (MLI)
model without any memory cells, and found that it fails to
reproduce all 6 PDF (see Text S1, Fig. S6), resulting in high
values of the corresponding Hellinger distances (see Text S1,
Table S13).

Moreover, we have analysed the performance of the DLI
model when varying the fraction of the dataset used in
its training. The performance is quantified by using the
Hellinger distance (HD) between the experimental PDF and
that produced by the DLI model, and Text S1, Table S15
reports the resulting HD values. When only using 75%,
50%, or even 37.5% of the dataset, the DLI model has a
similar performance as when trained with the full dataset
(4 hours of pair trajectories). However, the performance
sharply drops when only using 25%, 12.5%, and 5% of the
dataset. In fact, using 25% or less of the dataset, we also
found that the performance significantly depends on the
training sample (we ran 4 training sessions in each case).
Finally, we also found that without enforcing the presence
of the wall with our rejection procedure, the median escape
time of the fish computed over 30 runs of 6000 s when using
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25%, 12.5%, and 5% of the dataset are of order 500s, 75s,
50s, compared to 3000s when using 100% or even 50% of
the dataset. These results show that our DLI network (and
its size) is coherent with the size of the training dataset, and
that its predictions remain robust when restricting the data
at least down to half of the original dataset.

Finally, we have trained the DLI model with data
for pairs of zebrafish (D. rerio), and found that it yields
fair results for this species too, without any structural
modification in its architecture (see Fig. S5 and Tables S8,
S9, and S14 in Text S1). While acquiring a functional model
of a new species’ interactions proved straightforward with
the DLI, the same would not be generally true for analytical
models.

Following the completion of the present work, we have
exploited the DLI model to study groups with more than
two fish, without any retraining. Indeed, H. rhodostomus [34],
like many other group-living species [7], effectively only
interact with a few influential neighbours, at a given
time. Thus, for a given agent in a group of N >2
agents, the DLI for H. rhodostomus should only retain
the influence of typically the two agents leading to the
highest acceleration [34, 41], as predicted by the DLI
model. Video S3 illustrates this procedure for N =5 agents,
resulting in a cohesive and aligned group, in qualitative
agreement with experimental observation [34]. In addition,
the present DLI model has also been recently exploited in
[42] to command a robot fish initially introduced in [43]
(where it was commanded by the ABC model), and moving
alone in the tank, or reacting in a closed-loop to 1 or 4 real
fish.

4. Conclusions & Discussion

Studying social interactions in animal groups is crucial
to understand how complex collective behaviours emerge
from individuals” decision-making processes. Very recently,
such interactions have been extensively investigated in
the context of collective motion by exploiting classical
computational modelling [12, 20, 21] and automated
machine learning-based methods [23, 24]. Although ML
algorithms have been shown to provide insight into
the interactions of hundreds of individuals at short
timescales [23, 24], their ability to reproduce the complex
dynamics in animal groups at long timescales has not yet
been assessed.

Here, we have presented a deep learning interaction
model (DLI) which reproduces the behaviour of fish
swimming in pairs. The DLI model good performance
can be primarily ascribed to its memory related to a
biologically relevant timescale (fish kicks of typical duration
0.5-0.6s), and to a carefully crafted input/feature vector.
Indeed, the MLI model without memory cells performs
very poorly, while the D-LSTM model, characterised by
a different input/feature vector, demonstrates markedly
lower performance than the DLI model.

We have also introduced the appropriate tools for
the validation of an ANN model, when compared to

experimental results and confronted with an analytical
behavioural model (ABC). In fact, our study establishes a
systematic methodology to assess the long-term predictive
power of a model (analytical or ML), by introducing a set
of fine observables probing the individual and collective
behaviour of model agents, as well as the subtle correlations
emerging in the system. These observables, which can
be straightforwardly extended to groups of N > 2 agents,
provide an extremely stringent test for any model aimed
at producing realistic long-term trajectories mimicking that
of actual animal groups. In particular, we consider that
the usual validation of an ML model at a short timescale
should be complemented by the type of long timescale
analysis that we propose here, in order to fully assess its
performance. Indeed, we have shown that a model (like
the D-LSTM model) can have a good performance at very
short timescales, while presenting a degraded performance
at large timescales, presumably due to non-trivial non-
Markovian effects.

The DLI model closely reproduces the dynamics of real
fish at both the individual (speed, distance to the wall, angle
of incidence to the wall) and collective (distance between
individuals, relative heading angle, angle of perception)
levels during long simulations corresponding to more than
16 hours of fish swimming in a tank, hence successfully
generating life-like interactions between agents. When
compared to experiment, the ABC model and the DLI
model essentially performs equally well. Notably, the DLI
model better captures the most likely distance of the leader
and follower from the wall. However, the DLI model
is less accurate in reproducing the temporal correlations
quantified by the mean-squared displacement and the
velocity autocorrelation. Yet, both ABC and DLI models
fail at capturing the temporal correlations of the angle of
incidence to the wall, but for very different reasons. More
importantly, the DLI model convincingly infers the presence
of the tank wall, and is able to keep the DLI agents within
the wall boundaries for several dozen minutes, even when
the rejection procedure is not enforced. In addition, we
have shown that the performance of the DLI model remains
robust even when only using half of the experimental
training dataset, while its accuracy sharply drops when only
using a quarter of the training dataset.

Our study demonstrates two advantages of ML
techniques: 1) they can drastically accelerate the generation
of new models (as illustrated here for zebrafish), and
2) with minimal expertise in biology or modelling. This
is especially useful in robotics, where models often act
as behavioural controllers (i.e., trajectory generators) that
guide the robot(s). Although there already exist many bio-
hybrid experiments in the literature, most of them rely on
simplified models for behavioural modulation [44—46], few
of them exploit realistic models (analytical or ML) [29, 47],
and, to our knowledge, none of them are tested in the long
term in simulations or real-life. In this context, ML has the
potential to benefit multidisciplinary studies, provided such
techniques are thoroughly validated in simulations.
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However, accelerating the production of collective
behaviour models with ML comes at a cost. Indeed, the
DLI is a black-box model, and although it captures the
subtle impact of social interactions between individuals, it is
impossible to retrieve the interaction functions themselves.
Some approaches partially address this issue by providing
insight into how the network operates for specific sets of
inputs [23, 24]. Yet, they still do not offer explicit interaction
functions. Instead, they provide insights in the form of force
maps that can, to some extent, be used to interpret the
underlying mechanisms of the interactions, or in the form of
input/output correlation graphs, that showcase the manner
in which an input state typically affects the output [48].
On the other hand, analytical models supplemented by a
procedure to reconstruct social interactions [12, 20] provide
a concise and explicit description of the system in question.
Moreover, varying the parameters of such models allows
for investigating their relative impact on the dynamics,
in the form of phase diagrams representing the collective
observables (and the corresponding collective state of the
group) as a function of the model parameters [32, 41]. This
is not feasible with ML models, unless they are retrained or
specifically structured to allow it.

In summary, this work shows that DLI-like models may
now be considered as firm candidates to shed light on
groundbreaking problems such as how social interactions
take place and affect collective behaviour in living groups.
Yet, we have emphasised that social interaction models
should be precisely tested at both short and long timescales.
Future work includes the design of ANNSs that provide
additional information about the learned dynamics (e.g.,
using the framework of [48] and/or attention layers, like
in [23, 24]), or possibly, by exploiting symbolic regression
algorithms [49, 50]. We also plan to study the extension
of the DLI model to larger groups, in particular, in
connection with our robotic platform [42-46]. It would
also be interesting to apply the DLI model in different
environmental conditions, such as light intensity, as recently
done for the ABC model [33]. Ultimately, a more generalised
and unified version of the DLI model or similar algorithms
requires extensive testing with additional social animal
species (e.g., humans). We believe that these approaches
could improve our understanding of the mechanisms
arising in collective behaviour and allow for more precisely
exploring and modulating them.
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Supporting information
S| Text

Text S1 This PDF file presents simulations of the DLI model without enforcing the presence of the tank wall, a comparison
of the DLI to a similarly purposed neural network, and simulation results with neural networks that do not have
memory cells. It also presents the validation of the DLI’s scalability to another fish species. Furthermore, it addresses
the performance of the DLI model with respect to the fraction of the data considered in its training. Finally, this file reports
tables for the Hellinger distance associated with these different conditions. This document includes 6 figures and 15 tables.

Sl Videos

Video S1. Examples of trajectories obtained in experiments with H. rhodostomus (left), for the Analytical burst-and-coast
(ABC) model (centre), and for the Deep Learning Interaction (DLI) model (right). This video illustrates the qualitative
agreement between trajectories generated by the ABC and DLI models and experimental trajectories, while the quantitative
agreement between the models and experiments is studied in detail in the Result section. The video can be downloaded at
https://github.com/epfl-mobots/preddl_2023/tree/v1.0.5/Videos/S1_Video.mp4.

Video S2. Example of a generated trajectory simulation for the D-LSTM model. Already at the qualitative level, the D-
LSTM model fails at reproducing realistic trajectories (compare with Video S1). The video can be downloaded at https:
//github.com/epfl-mobots/preddl_2023/tree/v1.0.5/Videos/S2_Video.mp4.

Video S3. Example of collective behaviour in a group of 5 DLI agents, without any retraining. For a given focal agent, we
compute the predicted acceleration and noise which would be produced by each of the 4 other agents. Following [34], we
define the two most influential neighbours as the neighbours leading to the two highest predicted accelerations. Ultimately,
the focal fish speed and position are updated according to Egs. (9-11), using the sum of these two highest accelerations
and the average predicted noise. This video illustrates the fact that, although the DLI was only trained to mimic the
social interactions between pairs of fish, it produces cohesive and aligned trajectories for 5 agents, in good qualitative
agreement with corresponding trajectories for 5 rummy-nose tetra [34]. In the future, we will address the quantitative
comparison between long-term trajectories for groups of DLI agents and real fish, in particular, in connection to our robotic
platform [43]. The video can be downloaded at https://github.com/epfl-mobots/preddl_2023/tree/v1.0.5/
Videos/S3_Video.mp4.
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Video S4. Example of a generated trajectory simulation for the Multi-layered Perceptron Interaction (MLI) model.
Already at the qualitative level, the MLI model fails at reproducing realistic trajectories (compare with Video S1).
The video can be downloaded at https://github.com/epfl-mobots/preddl_2023/tree/v1.0.5/Videos/S4_
Video.mp4.
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