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Long run convergence of discrete-time interacting particle

systems of the McKean-Vlasov type

Pascal Bianchi, Walid Hachem and Victor Priser

March 20, 2024

Abstract

We consider a discrete time system of n coupled random vectors, a.k.a. interacting parti-

cles. The dynamics involves a vanishing step size, some random centered perturbations, and

a mean vector field which induces the coupling between the particles. We study the doubly

asymptotic regime where both the number of iterations and the number n of particles tend to

infinity, without any constraint on the relative rates of convergence of these two parameters.

We establish that the empirical measure of the interpolated trajectories of the particles con-

verges in probability, in an ergodic sense, to the set of recurrent Mc-Kean-Vlasov distributions.

A first application example is the granular media equation, where the particles are shown to

converge to a critical point of the Helmholtz energy. A second example is the convergence

of stochastic gradient descent to the global minimizer of the risk, in a wide two-layer neural

networks using random features.
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1 Introduction

Given two integers n, d > 0, consider the iterative algorithm defined as follows. Starting with the
n–uple (X1,n

0 , . . . , Xn,n
0 ) of random variables X i,n

0 ∈ R
d, the algorithm generates at the iteration

k + 1 for k ∈ N the n–uple of Rd–valued random variables (X1,n
k , . . . , Xn,n

k ), referred to as the
particles, according to the dynamics:

X i,n
k+1 = X i,n

k +
γk+1

n

n
∑

j=1

b(X i,n
k , Xj,n

k ) +
√

2γk+1ξ
i,n
k+1 + γk+1ζ

i,n
k+1 , (1)

for each i ∈ [n] where [n] := {1, . . . , n}. In this equation, the function b : R
d × R

d → R
d is

a continuous vector field, (γk)k is a vanishing sequence of deterministic positive step sizes, and
((ξi,nk )i∈[n])k∈N∗ and ((ζi,nk )i∈[n])k∈N∗ are Rd×n–valued random noise sequences in the time param-

eter k. We assume that for each n, the n–uple (X1,n
0 , . . . , Xn,n

0 ) is exchangeable, and that the same
holds for the n–uple of sequences ((ξ1,nk )k∈N∗ , . . . , (ξn,nk )k∈N∗) and ((ζ1,nk )k∈N∗ , . . . , (ζn,nk )k∈N∗).
Defining, for each n > 0, the filtration (Fn

k )k∈N as

Fn
k := σ((X i,n

0 )i∈[n], ((ξ
i,n
ℓ )i∈[n])ℓ≤k, ((ζ

i,n
ℓ )i∈[n])ℓ≤k), (2)

we furthermore assume that for each n, the sequence ((ξi,nk )i∈[n])k is a (Fn
k )k–martingale increment

sequence i.e., E(ξi,nk+1|Fn
k ) = 0. Finally, we assume that E(ξi,nk+1(ξ

j,n
k+1)

T |Fn
k ) = σ2

1i=jId for some
σ2 ≥ 0.

The aim of the paper is to characterize the asymptotic behavior of the empirical measure of
the particles

µn
k :=

1

n

n
∑

i=1

δXi,n

k

(3)

in the regime where both the time index k and the number of particles n tend to infinity (denoted
hereinafter as (k, n) → (∞,∞)), without any constraint on the relative rates of convergence of
these two parameters. To this end, we consider for each i ∈ [n] the random continuous process
X̄ i,n : [0,∞) → R

d, t 7→ X̄ i,n
t defined as the piecewise linear interpolation of the particles (X i,n

k )k.
Specifically, writing

τk :=

k
∑

j=1

γj (4)

for each k ∈ N, we define:

∀t ∈ [τk, τk+1), X̄ i,n
t := X i,n

k +
t− τk
γk+1

(

X i,n
k+1 −X i,n

k

)

. (5)

The interpolated processes X̄ i,n, for i ∈ [n], are elements of the set C of the [0,∞) → R
d continuous

functions, equipped with the topology of uniform convergence on compact intervals. This paper
studies the empirical measure of these processes:

mn :=
1

n

n
∑

i=1

δX̄i,n . (6)

For each n and each p ≥ 1, mn is a random variable on P2(C), where P2(C) is the set of Borel
probability measures on C, such that their restrictions to compactly supported functions admit
a finite second order moment. The space P2(C) is naturally equipped with the metric W2 of
Wasserstein convergence over functions of compact intervals. Our aim is to analyse the convergence
in probability, of the shifted random measures

Φt(m
n) =

1

n

n
∑

i=1

δX̄i,n

t+ ·

,
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when both n and t converge to infinity with arbitrary relative rates, where for every m ∈ P2(C),
Φt(m) ∈ P2(C) is defined by Φt(m)(f) =

∫

f(x(t+ · ))dm(x) for every bounded continuous function
f on C. Under mild assumptions on the vector field b, and some moment assumptions on the iterates
and on the noise sequence ((ζi,nk )i∈[n])k, ensuring that the effect of the latter becomes negligible in
our asymptotic regime, we establish the following result, which we explain hereafter.

Main theorem (informal). The sequence (Φt(m
n)) ergodically converges in probability as

(t, n) → (∞,∞) to the set of recurrent McKean-Vlasov distributions.

Let us explain what the terms McKean-Vlasov distribution, recurrent, and ergodic convergence
mean in this paper. Here, a McKean-Vlasov distribution ρ is defined as the law of a R

d-valued
process (Xt : t ∈ R) satisfying the following condition: for every smooth function φ, the process

φ(Xt)−
∫ t

0

L(ρs)(φ)(Xs)ds

is a martingale, where ρt the marginal law of Xt, and where the linear operator L(ρt) associates
to φ the function L(ρt)(φ) given by:

x 7→ 〈b(x, ρt),∇φ(x)〉 + σ2∆φ(x) ,

where ∆ is the Laplacian, and where we use the slightly abusive notation b(x, ρt) :=
∫

b(x, y)dρt(y).
A McKean-Vlasov distribution ρ is said recurrent if, for some sequence (tk) → ∞, ρ =

limk→∞ Φtk(ρ). The W2-closure of the set of recurrent McKean-Vlasov distributions will be refered
to as the Birkhoff center, and denoted by BC, following the terminology used for general dynamical
systems.

Finally, by ergodic convergence, we refer to the fact that the time-averagedWasserstein distance
between the measures Φt(m

n) and the Birkhoff center converges to zero. Our main theorem can
thus be written more precisely:

1

t

∫ t

0

W2(Φs(m
n),BC)ds −−−−−−−−−→

(n,t)→(∞,∞)
0 , in probability.

The Birkhoff center can be characterized in a useful way, provided that one is able to show the
existence of a Lyapunov function, namely a function F on P2(C) such that, for every McKean-
Vlasov distribution ρ, F (Φt(ρ)) is non-increasing in the variable t. Indeed, in such a situation,
the Birkhoff center is included in the subset Λ of McKean-Vlasov distributions which satisfy the
property that t 7→ F (Φt(ρ)) is constant whenever ρ ∈ Λ. We provide two important examples of
McKean-Vlasov distribution admitting useful Lyapunov functions.

Granular media. Our first example corresponds to the scenario where the vector field b takes
the form:

b(x, y) = −∇V (x)−∇U(x− y) ,

where V and U denote two real differentiable functions on R
d, whose gradients satisfy some

linear growth condition. In this case, a Lyapunov function exists, which can be expressed
as a function of the so-called Helmholtz energy. As a consequence of our main result, we
establish that, when σ > 0, the empirical measures (µn

k ) converge ergodically in probability
as (k, n) → (∞,∞) to the set S of critical points of the Helmholtz energy, namely:

∑k
l=1 γlW2(µ

n
k ,S)

∑k
l=1 γl

−−−−−−−−−→
(n,k)→(∞,∞)

0 , in probability.

where, this time, W2 represents the classical Wasserstein distance, and where S is the set of
probability measures µ on R

d which admit a second order moment and a density dµ/dL d

w.r.t. the Lebesgue measure, and such that:

∇V (x) +

∫

∇U(x− y)dµ(y) + σ2∇ log
dµ

dL d
(x) = 0 ,

for µ-almost every x. Our result hold under mild assumptions, and does not require the
rather classical strong convexity or doubling conditions on U and/or V .
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Stochastic gradient descent (SGD) in two layer neural networks. An other archetypal ex-
ample where a useful Lyapunov function exists is encountered in the field of Machine Learn-
ing, when studying the convergence of the popular SGD algorithm. As an illustration, we
consider the problem of optimizing the coefficients of the output layer of a two layer network,
assuming that the coefficients of the first/hidden layer are sampled, once for all, from a given
iid distribution. This scenario is known as the random features setting. It captures the
asymptotic regime of networks where the width n of the hidden layer goes to infinity, and
the ability of the network to reach near perfect reconstruction of a target function, under
some hypotheses. More specifically, the output of the neural network for an arbitrary input
x of dimension q is assumed to have the form:

h(x;a,wn
0 ) :=

1

n

n
∑

i=1

aiϕ(x,wi,n
0 ) ,

where n is the number of neurons at the output of the hidden layer, a = (a1, . . . , an) are the
coefficients of the output layer, w0 = (w1,n

0 , . . . , wn,n
0 ) are (random but fixed) Rd−1-vectors

of the hidden layer, and ϕ is a real bounded continuous function. We consider the regularized
risk minimization problem:

min
a∈Rn

∫

(h(x;a,wn
0 )− y)2dν(x, y) +

λ

n
‖a‖2 , (7)

where ν is a probability measure on R
q × R, and where λ > 0 is a regularization parameter.

We assume that the distribution ν is unknown by the observer, but that iid random samples
(xnk+1, y

n
k+1)k∈N with distribution ν are revealed during the iterations of the algorithm. For a

fixed n and a learning rate set to nγk, the SGD iterations generate a sequence (a1,nk , . . . , an,nk )

of random variables. Defining the particles as X i,n
k := (ai,nk , wi,n

0 ) for each i ∈ [n], it turns
out that the SGD iterations can casted into the form of Eq. (1), for a well chosen vector field
b. In this case, the variables (ζ1,nk+1, . . . , ζ

n,n
k ) of Eq. (1) are centered random perturbations

whose first components represent the difference between the stochastic gradient derived from
the new sample (xnk+1, y

n
k+1) and the true gradient of the objective (7). Potentially, we also

include the case where a random additive noise of variance σ2, scaled by
√
2γk, is artificially

added at each iteration to each of the variables (a1,nk , . . . , an,nk ), in the flavor of a Langevin
algorithm. We establish that a Lyapunov function exists, which is built upon the map Rσ

given by:

Rσ(µ) :=
1

2

∫ (∫

aϕ(x,w)dµ(a, w) − y

)2

dν(x, y) +
λ

2

∫

a2dµ(a, w)

+ σ2

∫

log

(

dµ( · |w)
dL 1

(a)

)

dµ(a, w) ,

for every probability µ on R × R
d−1 which admits second order moments. Here, µ(da|w)

is the conditional distribution obtained from the disintegration of µ w.r.t. its marginal

in the variable w, and dµ( · |w)
dL 1 represents its density w.r.t. the Lebesgue measure on R

(setting Rσ(µ) = +∞ when no such density exist). Specifically, a Lyapunov function can
be expressed as the function which, to every McKean-Vlasov distribution, associates the
value Rσ(ρǫ) for an arbitrary ǫ > 0. By further studying the subset Λ of McKean-Vlasov
distributions on which this Lyapunov function is constant, we obtain our main corollary.
Given some prescribed distribution ̟ for the fixed parameters wi,n

0 , the empirical measure

µn
k of the points (ai,nk , wi,n

0 ) for i ∈ [n], converges ergodically in probability to the unique
minimizer of the risk Rσ(µ) among all probability measures µ with the prescribed marginal
µ(· × R

d−1) = ̟.

Contributions. Compared to existing works, our contributions are threefolds. First, our
results hold under mild assumptions on the vector field b aside from continuity and linear growth,
whereas most of the existing works (see below) rely on stronger conditions, such as Lipschitz,
doubling or even global boundedness conditions. Second, we address the case of discrete time
systems, whereas the continuous time model is more often considered in the literature. Discrete
time algorithms are important in applications, such as neural networks, transformers, MonteCarlo
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simulations or numerical solvers. In particular, stability results are more difficult to establish in
this setting. Finally, our result focus on a double limit (k, n) → (∞,∞). At the exception of
some papers listed below, the results of the same kind generally consider the case, where the time
window is fixed, while the number of particles growth to infinity, ignoring long time convergence,
or assume certain constraints on the relative rate of convergence of the two variables.

About the literature. The first results addressing the limiting behavior of a finite system
of particles, are provided in the setting of the propagation of chaos. These results are reviewed in
[CD22]. Such results can be applied to a large class of particle systems, where the interacting term
b can take various forms [MRC87, Oel84, Szn84, ELL21]. In our case, if we disregard the transition
from continuous to discrete time, such results typically establish the convergence to zero of the
expectation of the squared Wassertein distance between the empirical measure of the particles, on
some fixed time interval [0, T ], and a McKean-Vlasov distribution with the same initial measure.
Under classical assumptions, the convergence holds at rate 1/n, where n is the number of particles,
but with a constant that is growing exponentially with T . This type of result behaves poorly in
the long run, and achieving the double limit in both the time and the number of particles, becomes
unattainable. By imposing additional assumptions, [Mal01, BGM10, CGM08, BRTV98, DEGZ20]
obtain a bound which is uniform in time, and thus make the double asymptotic regime explicit.
However, these works require strong assumptions on the vector field b. For instance, as pointed
out in [DMT19], uniform propagation of chaos over time can only be achieved when a unique
McKean-Vlasov stationary distribution exists, which [Tug13] has shown is not always the case.
In that sense, our assumptions are weaker, as they allow for the existence of multiple stationary
distributions for the McKean-Vlasov distribution.

Few works address discrete-time particle systems. The paper [Mal03] uses an implicit Euler
scheme for the granular media case, assuming that the potential function is zero and the interaction
is strongly convex. The contribution of the paper [Ver06] is the closest to the present one, as
it consider an equation very close to Eq. (1). However, this paper assumes that b is globally
bounded. Moreover, it does not address the convergence in probability of the empirical measure
of the particles, but rather the convergence of its expectation. Lastly, an other paper which is
close to our work is [BS00]. This paper is not specific to the case of McKean-Vlasov processes. In
particular, it does not consider a system of particles, and does not consider double limits. However,
it establishes, in the same spirit as ours, the ergodic convergence of the empirical measure of a
so-called weak asymptotic pseudotrajectory, to the Birkhoff center of a flow on a metric space.

Finally, let us review some applications of our model. Particle systems are historically motivated
by statistical physics. However, in the last decades, particle systems have found utility in many
models: neural networks, Markov Chain Monte Carlo theory, mathematical biology, mean fields
game, etc. A well-known model in statistical physics is the granular media [Vil06]. This model
is widely studied as it has the nice property of being a gradient system, and uniform in time
propagation of chaos works well in this model. This model can also be described by a gradient flow
[AGS08]. In Markov Chain Monte Carlo theory, the Stein Variational Gradient Descent estimates
a target distribution with a particle system [LW16, SSR22], and the convergence of this algorithm
remains an open question. Wide Neural Networks can also be represented by particle systems.
We can obtain a convergence result to the minimizers of the risk when the time and the number
of particles grow to infinity [CB18]. Here, the authors establish the convergence to the gradient
descent in continuous time and in the double asymptotic regime. The paper [MMN18] establishes
the convergence of a noisy stochastic gradient descent when the number of iterations depends on
the number of particles, see also [RVE22, SS20]. The case where the parameters of the hidden
layer are random but fixed along the optimization process, is also known as the random features
model [RR07, CRR18].

2 The setting

We begin by introducing some notations and by recalling some definitions.

2.1 Notations

General notations. We denote by 〈·, ·〉 and ‖ · ‖ the inner product and the corresponding norm
in a Euclidean space. We use the same notation in an infinite dimensional space, to denote the
standard dual pairing and the operator norm.
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For k ∈ N ∪ {∞}, we denote by Ck(Rd,Rq) the set of functions which are continuously differ-
entiable up to the order k. We denote by Cc(R

d,R) the set of Rd → R continuous functions with
compact support. Given p ∈ N

∗ ∪ {∞}, we denote as Cp
c (R

d,R) the set of compactly supported
R

d → R functions which are continuously differentiable up to the order p.
We denote by C the set of the [0,∞) → R

d continuous functions. It is well-known that the
space C endowed with the topology of the uniform convergence on the compact intervals of [0,∞)
is a Polish space.

Random variables. The notation f#µ stands for the pushforward of the measure µ by the map
f , that is, f#µ = µ ◦ f−1.

For t ≥ 0, we define the projections πt and π[0,t] as πt : (Rd)[0,∞) → R
d, x 7→ xt and π[0,t] :

(Rd)[0,∞) → (Rd)[0,t], x 7→ (xu : u ∈ [0, t]).
Let p ≥ 1. For ρ ∈ Pp(C), we denote

ρt := (πt)#ρ .

Let (Ω,F ,P) be a probability space. We say that a collection A of random variables on Ω → E
is tight in E, if the family {X#P : X ∈ A} is weak⋆-relatively compact in P(E) i.e., has a weak⋆
compact closure in P(E).

We say that a n–uple of random variables (X1, . . . , Xn) is exchangeable, if its distribution is
invariant by any permutation on [n].

Let T represent either N or [0,+∞). Let (Un
t : t ∈ T, n ∈ N) be a collection of random variables

on a metric space (E, d). We say that (Un
t ) converges in probability to U as (t, n) → (∞,∞)

if, for every ǫ > 0, the net (P(d(Un
t , U) > ǫ) : t ∈ T, n ∈ N) converges to zero as t and n both

converge to ∞. We denote this by Un
t

P−−−−−−−−−→
(t,n)→(∞,∞)

U . Moreover, assuming that the collection of

random variables (Un
t : t ∈ T, n ∈ N) are real valued, we say that the latter collection is uniformly

integrable if:
lim
a→∞

sup
t∈T,n∈N∗

E
[

|Un
t |1|Un

t |>a

]

= 0 .

Finally, for any d ∈ N
∗, L d stands for the Lebesgue measure on R

d.

2.2 Spaces of probability measures

Let (E, d) denote a Polish space. If A ⊂ E is a subset, we define d(x,A) := inf{d(x, y) : y ∈ A},
with inf ∅ = ∞. We say that a net (µα) converges to A if d(xα,A) →α 0.

We denote by P(E) the set of probability measures on the Borel σ-algebra B(E). We equip
P(E) with the weak⋆ topology. Note that P(E) is a Polish space. We denote by dL the Levy-
Prokhorov distance on P(E), which is compatible with the weak⋆ topology. We define the intensity
of a random variable ρ : Ω → P(E), as the measure I(ρ) ∈ P(E) that satisfies

∀A ∈ F , I(ρ)(A) := E (ρ(A)) .

Lemma 1 ([MRC87]). A sequence (ρn) of random variables on P(E) is tight if and only if the
sequence (I(ρn)) is weak⋆-relatively compact.

Let p ≥ 1. If E is a Banach space, we define

Pp(E) := {µ ∈ P(E) :

∫

‖x‖pdµ(x) <∞} .

We define the Wasserstein distance of order p on Pp(E) by

Wp(µ, ν) :=

(

inf
ς∈Π(µ,ν)

∫

‖x− y‖pdς(x, y)
)1/p

, (8)

where Π(µ, ν) is the set of measures ς ∈ P(E ×E), such that ς( · ×E) = µ and ς(E × · ) = ν. We
denote by Π0

p(µ, ν) the set of optimal transport maps i.e., the set of measures ς ∈ Π(µ, ν) achieving
the infemum in Eq. (8). The set Pp(E) is endowed with the distance Wp. Define:

Pp(C) = {ρ ∈ P(C) : ∀T > 0,

∫

sup
t∈[0,T ]

‖xt‖pdρ(x) <∞} .

6



For every ρ, ρ′ ∈ Pp(C), we define:

Wp(ρ, ρ
′) =

∞
∑

n=1

2−n(1 ∧Wp((π[0,n])#ρ, (π[0,n])#ρ
′)) .

We equip Pp(C) with the distance Wp. We say that a subset A ⊂ Pp(C) has uniformly integrable
p-moments if the following condition holds:

∀T > 0, lim
a→∞

sup
ρ∈A

∫

1 sup
t∈[0,T ]

‖xt‖>a

(

sup
t∈[0,T ]

‖xt‖p
)

dρ(x) = 0 . (p-UI)

In the same way, a sequence (ρn) has uniformly integrable p-moments if the condition (p-UI) holds
for the sequence (ρn) in place of A. Following the same lines as [Vil09, Th. 6.18] and [AGS08,
Prop. 7.1.5], we obtain the following lemma. The proof is provided in Appendix A.1.

Proposition 1. i) The space Pp(C) is Polish.

ii) A subset A ⊂ Pp(C) is relatively compact if and only if, it is weak⋆-relatively compact in P(C),
and if A has uniformly integrable p-moments.

Finally, we will also consider Pp(C)-valued sequences of random variables. Therefore, the
following extension of Lemma 1, will be useful. It is established in Appendix A.2.

Lemma 2. Let (ρn) be a sequence of random variables valued in Pp(C). Assume that (I(ρn)) is
relatively compact in Pp(C). Then, (ρn) is tight in Pp(C).

2.3 Spaces of McKean-Vlasov measures

Consider a non-negative number σ2 and a vector field b : Rd × R
d → R

d satisfying the following
assumption:

Assumption 1. The vector field b : Rd × R
d → R

d is continuous. Moreover, there exists C > 0
such that for all x, y ∈ R

d,
‖b(x, y)‖ ≤ C(1 + ‖x‖+ ‖y‖) .

For every µ ∈ P1(R
d), we define b(x, µ) :=

∫

b(x, y)dµ(y), with a slight abuse of notations. We
define L(µ) which, to every test function φ ∈ C2

c (R
d,R), associates the function L(µ)(φ) given by

L(µ)(φ)(x) = 〈b(x, µ),∇φ(x)〉 + σ2∆φ(x) . (9)

Let (Xt : t ∈ [0,∞)) be the canonical process on C. Denote by (FX
t )t≥0 the natural filtration (i.e.,

the filtration generated by {Xs : 0 ≤ s ≤ t}).

Definition 1. Let p ≥ 1. We say that a measure ρ ∈ Pp(C) belongs to the class Vp if, for every
φ ∈ C2

c (R
d,R),

φ(Xt)−
∫ t

0

L(ρs)(φ)(Xs)ds

is a (FX
t )t≥0-martingale on the probability space (C,B(C), ρ). We denote by Vp the set of such

measures.

In the sequel, it will be convenient to work with the following equivalent characterization. The
martingale property implies that every measure ρ ∈ Vp satisfies G(ρ) = 0, for every function
G : Pp(C) → R of the form:

G(ρ) :=

∫ (

φ(xt)− φ(xs)−
∫ t

s

L(ρu)(φ)(xu)du

) r
∏

j=1

hj(xvj )dρ(x) , (10)

where r ∈ N, φ ∈ C2
c (R

d,R), h1, . . . , hr ∈ Cc(R
d,R)r, 0 ≤ v1 ≤ · · · ≤ vr ≤ s ≤ t, are arbitrary.

We denote by Gp the set of such mappings G. Assumption 1 ensures that these mappings are well
defined. By Def. 1, every ρ ∈ Vp is a root of all G ∈ Gp. As a matter of fact, a measure ρ ∈ Pp(C)
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belongs to the set Vp, if and only if G(ρ) = 0 for every G of the form (10). In other words, Def. 1
is equivalent to the following identity:

Vp =
⋂

G∈Gp

G−1({0}) . (11)

The following lemma is proved in Appendix A.3.

Lemma 3. Let Assumption 1 hold true. Every G ∈ Gp is a continuous function on Pp(C) → R.

The following result is a consequence of Lemma 3 and Prop. 1.

Proposition 2. Under Assumption 1, Vp is a closed subset of Pp(C). Moreover, equipped with the
trace topology of Pp(C), Vp is a Polish space.

Proof. For all ρn ∈ Vp → ρ∞ in Pp(C), it holds by Lemma 3 that G(ρ∞) = 0 for all G ∈ Gp, which
shows that ρ∞ ∈ Vp by (11). Hence, Vp is closed. A closed subset of a Polish space is also Polish.
By Prop. 1, Vp is Polish.

2.4 Dynamical systems

Recall the definition of the shift Θt(x) = xt+· defined on C. Let us equip the space Vp assumed
nonempty with the trace topology of Pp(C), making it a Polish space (see Prop. 2). With this at
hand, one can readily check that the function Φ : [0,∞) × Vp → Vp defined as (t, ρ) 7→ Φt(ρ) =
(Θt)#ρ is a semi-flow on the space (Vp,Wp), in the sense that Φ is continuous, Φ0(·) coincides with
the identity, and Φt+s = Φt ◦ Φs for all t, s ≥ 0, see [Ben99] for a nice exposition of the concepts
related to semi-flows. The omega limit set of ρ ∈ Vp for this semi-flow is the set ω(ρ) defined by:

ω(ρ) :=
⋂

t>0

{Φs(ρ) : s > t} .

Equivalently, ω(ρ) is the set of Wp-limits of sequences of the form (Φtn(ρ)) where tn → ∞. A point
ρ ∈ Vp is called recurrent if ρ ∈ ω(ρ). The Birkhoff center BCp is defined as the closure of the set
of recurrent points:

BCp := {ρ ∈ Vp : ρ ∈ ω(ρ)} .
We say that a nonempty set Ap ⊂ Vp is invariant for Φ if Φt(Ap) = Ap for each t ≥ 0.

Consider a non-empty set Λ ⊂ Vp.

Definition 2. Consider the semi-flow Φ. A lower semi-continuous function F : Vp → R is called
a Lyapunov function for the set Λ if, for every ρ ∈ Vp and every t > 0, F (Φt(ρ)) ≤ F (ρ), and
F (Φt(ρ)) < F (ρ) whenever ρ /∈ Λ.

The following result is standard.

Proposition 3. Let p > 0. If F is a Lyapunov function for the set Λ, then BCp ⊂ Λ .

Proof. The limit ℓ := limt→∞ F (Φt(ρ)) is well-defined because F (Φt(ρ)) is non increasing. Consider
a recurrent point ρ ∈ Vp, say ρ = limn Φtn(ρ). Clearly F (ρ) ≥ F (Φtn(ρ)) ≥ ℓ. Moreover, by lower
semicontinuity of F , ℓ = limn F (Φtn(ρ)) ≥ F (ρ). Therefore, ℓ is finite, and F (ρ) = ℓ. This implies
that t 7→ F (Φt(ρ)) is constant. By definition, this in turn implies ρ ∈ Λ, which concludes the
proof.

3 Main results

3.1 Interpolated process and weak⋆ limits

Let (Ω,F ,P) be a probability space. Let d > 0 be an integer. For each n ∈ N
∗, consider the

random sequence (1) starting with the n–uple (X1,n
0 , . . . , Xn,n

0 ) of random variables X i,n
0 ∈ R

d,

with ((ξi,nk )i∈[n])k∈N∗ and ((ζi,nk )i∈[n])k∈N∗ being R
d×n–valued random noise sequences. For each

of integer n > 0, define the filtration (Fn
k )k∈N as in Eq. (2) or, more generally, as any filtration

such that the following random variables

(X i,n
0 )i∈[n], ((ξ

i,n
ℓ )i∈[n])ℓ≤k, ((ζ

i,n
ℓ )i∈[n])ℓ≤k)

belong to Fn
k . Consider the following assumptions:
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Assumption 2. The sequence (γk) is a non-negative deterministic sequence satisfying

lim
k→∞

γk = 0, and
∑

k

γk = +∞.

Assumption 3. The following hold true.

i) For each n, the n triplets ((X i,n
0 , (ζi,nk )k∈N, (ξ

i,n
k )k∈N))i∈[n] is exchangeable as a n–uple of

R
d × (Rd)N × (Rd)N–valued random variables.

ii) It holds that sup
k,n

E‖ξ1,nk ‖4 <∞. Furthermore, for each n > 0, and each i,j,

E

[

ξ1,nk+1

∣

∣

∣Fn
k

]

and E

[

ξi,nk+1

(

ξj,nk+1

)T

| Fn
k

]

= σ2
1i=jId ,

for some number σ2 ≥ 0.

iii) For each k, and each n, it holds that E‖ζ1,nk ‖ <∞, and

lim
(k,n)→(∞,∞)

E

∥

∥

∥E

[

ζ1,nk+1 | Fn
k

]∥

∥

∥ = 0 .

Remark 1. Assumption 3–(i) holds under the stronger assumption that the n-uple (X1,n
0 , . . . , Xn,n

0 )

is exchangeable, (ξi,nk )i∈[n],k∈N is an i.i.d. sequence independent of (X i,n
0 )i∈[n], and ζ

1,n
k = 0 for

every k.

Assumption 4. We assume either:

i) supk,nE[‖X1,n
k ‖2 + ‖ζ1,nk ‖2] <∞,

or the stronger condition:

ii) The collections of r.v. (‖X1,n
k ‖2 : k ∈ N, n ∈ N

∗), and (‖ζ1,nk ‖2 : k ∈ N, n ∈ N
∗) are

uniformly integrable.

Recalling the definitions of the interpolated processes X̄ i,n in (5), and the definition of the
occupation measure mn in (6), we shall consider the shifted occupation measure

Φt(m
n) =

1

n

n
∑

i=1

δΘt(X̄i,n) ,

for each n ∈ N
∗ and each t ∈ (0,+∞). Note that Φt(m

n) is a r.v. on Pp(C). We refer to the set

M := acc
(t,n)→(∞,∞)

({(Φt(m
n))#P}) (12)

as the set of accumulation points of the probability distributions of Φt(m
n) as (t, n) → (∞,∞).

In other words, M is the set of measures M ∈ P(Pp(C)) for which there is a sequence (tn, ϕn)n
on (0,∞) × N

∗, such that tn →n ∞, ϕn →n ∞, and and (Φtn(#m
ϕn)) converges in distribution

to M .
The following two results show that the collection (Φt(m

n)) of random variables is tight (proven
in Section 5.1), and that their limits in distribution are supported by the set of McKean-Vlasov
distributions (proven in Section 5.2 ):

Proposition 4. Let 1 ≤ p < 2, and let Assumptions 1, 2, 3, and 4–(i) hold true. Then, the collec-
tion of shifted occupation measures {Φt(m

n) : t ≥ 0, n ∈ N
∗} is tight in Pp(C). If Assumption 4–(ii)

additionally holds, the result remains valid when p = 2.

Proposition 5. Let 1 ≤ p < 2, and let Assumptions 1, 2, 3, and 4–(i) hold true. Then, Vp is
a nonempty closed set, and for every M ∈ M, it holds that M(Vp) = 1. If Assumption 4–(ii)
additionally holds, the result remains valid when p = 2.
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3.2 Ergodic convergence

We provide the proof of the following theorem in Section 5.3.

Theorem 1. Let 1 ≤ p < 2, and let Assumptions 1, 2, 3, and 4–(i) hold true. Then,

1

t

∫ t

0

Wp(Φs(m
n),BCp) ds

P−−−−−−−−−→
(t,n)→(∞,∞)

0 .

If Assumption 4–(ii) additionally holds, the result remains valid when p = 2.

Recall the definition µn
k := 1

n

∑n
i=1 δXi,n

k

. The proof of the following corollary is provided in

Section 5.4.

Corollary 1. Let 1 ≤ p < 2, and let Assumptions 1, 2, 3, and 4–(i) hold true. Assumptions 1, 3,
and 4–(i) hold true. Then,

∑k
l=1 γlWp(µ

n
l , (π0)#(BCp))

∑k
l=1 γl

P−−−−−−−−−→
(k,n)→(∞,∞)

0 .

If Assumption 4–(ii) additionally holds, the statements remains valid also when p = 2.

4 Examples

4.1 Granular media

The proofs of the results relative to this section are provided in Section 6.
In this paragraph, we review some properties of the set V2 of McKean-Vlasov processes, in the

case where
b(x, y) := −∇V (x) −∇U(x− y) , (13)

where V, U : Rd → R are two functions satisfying the following assumption.

Assumption 5 (Granular media). The functions V, U belong to C1(Rd,R). Moreover, there exists
λ,C, β > 0, such that for every x ∈ R

d, the following hold:

i) 〈x,∇V (x)〉 ≥ λ ‖x‖2 − C,

ii) U(x) = U(−x), and 〈x,∇U(x)〉 ≥ −C,

iii) ‖∇V (x)‖ + ‖∇U(x)‖ ≤ C(1 + ‖x‖),

iv) ‖∇V (x)−∇V (y)‖ + ‖∇U(x) −∇U(y)‖ ≤ C(‖x− y‖β ∨ ‖x− y‖), for every (x, y) ∈ (Rd)2.

Under Assumptions 5, the vector field b satisfies Assumption 1. We will see later, as a byproduct
of Th. 2, that the set V2 of McKean-Vlasov distributions associated to the field b in Eq. (13), is
non empty. The following central result provides a central properties of the elements of V2.

Proposition 6. Let Assumption 5 hold true, and let b be defined by (13). Assume σ > 0. Consider
ρ ∈ V2. Then, for every t > 0, ρt admits a density x 7→ ̺(t, x) in C1(Rd,R) w.r.t. the Lebesgue
measure. For every t > 0, the functional

H(ρt) := σ2

∫

log ̺(t, x)̺(t, x)dx +

∫

V dρt +
1

2

∫∫

U(x− y)dρt(y)dρt(x) (14)

is finite, and satisfies for every t2 > t1 > 0,

H(ρt2)−H(ρt1) = −
∫ t2

t1

∫

‖vt(x)‖2̺(t, x)dxdt , (15)

where vt is the vector field defined for every x ∈ R
d by:

vt(x) := −∇V (x)−
∫

∇U(x, y)dρt(y)− σ2∇ log ̺(t, x) . (16)
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Define Pr
2 (R

d) as the set of measures µ ∈ P2(R
d) which admits a continuously differentiable

density w.r.t. the Lebesgue measure L d, which we denote by dµ/dL d. Define:

S := {µ ∈ Pr
2 (R

d) : ∇V +

∫

∇U( · − y)dµ(y) + σ2∇ log
dµ

dL d
= 0µ-a.e.} . (17)

Finally, for every ǫ ≥ 0, define:

Λǫ := {ρ ∈ V2 : ∃µ ∈ S, ∀t ≥ ǫ, ρt = µ} . (18)

Proposition 7. We posit the assumptions of Prop. 6. For every ǫ > 0, the function ρ 7→ H(ρǫ)
is real valued on V2, lower semicontinuous, and is a Lyapunov function for the set Λǫ. Moreover,

BC2 ⊂ Λ0 .

We consider the iterations:

X i,n
k+1 = X i,n

k − γk+1

n

∑

j∈[n]

∇U(X i,n
k −Xj,n

k )− γk+1∇V (X i,n
k ) +

√

2γk+1ξ
i,n
k , (19)

for each i ∈ [n]. This is a special case of Eq. (1) with b(x, y) given by Eq. (13) and ζi,nk = 0 for all
k. For simplicity, Assumption 3 will be replaced by the following stronger assumption:

Assumption 6. The n-tuple (X1,n
0 , . . . , Xn,n

0 ) is exchangeable and satisfies supn E(‖X1,n
0 ‖4) <∞.

Moreover, (ξi,nk )i∈[n],k∈N are i.i.d. centered random variables, with variance σ2Id, and such that

E(‖ξ1,11 ‖4) <∞.

The next proposition implies that the condition ii) in Assumption 4 holds.

Proposition 8. Let Assumptions 2, 5 and 6 be satisfied. Then,

sup
n∈N∗,k∈N

E

[

‖X1,n
k ‖4

]

<∞.

Putting Assumptions 2, 5 and 6 together, the hypotheses of Th. 1 are satisfied for p = 2.

Theorem 2. Let Assumptions 2, 5 and 6 be satisfied. Assume σ > 0. Then, the set S given by
Eq. (17) is non empty, and furthermore,

∑k
l=1 γlW2(µ

n
l ,S)

∑k
l=1 γl

P−−−−−−−−−→
(k,n)→(∞,∞)

0 .

Proof. Use Cor. 1 with p = 2, together with Prop. 7.

4.2 Random features

Consider two integers q ≥ 1, d ≥ 2. For any fixed n-uple w = (w1, · · · , wn) of Rd−1-valued vectors,
we consider the following regularized risk minimization problem:

min
a∈Rn

R(a,w) :=
1

2

∫

(h(x;a,w)− y)2dν(x, y) +
λ

2n
‖a‖2 , (20)

where ν ∈ P2(R
q × R), λ > 0 is a regularization parameter, and where for every x ∈ R

q, every
a = (a1, . . . , an) in R

n,

h(x;a,w) =
1

n

n
∑

i=1

aiϕ(x,wi) ,

where ϕ : Rq×R
d−1 → R is a function, refered to as the feature map. In the sequel, we consider the

process of searching for a minimizer of (20), when the coefficients w are set to an iid sample wn
0 :=

(w1,n
0 , . . . , wn,n

0 ) of n random variables on R
d−1, following a prescribed distribution. We consider

the stochastic gradient descent (SGD) on the a-parameter, obtained by randomly selecting, at
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time k, a sample (xnk+1, y
n
k+1) according to the distribution ν. Denoting by an

k = (a1,nk , · · · , an,nk )
the updated parameters, we consider the iterations:

an
k+1 = an

k − γk+1n∇a

[

1

2
(h(xnk+1;a

n
k ,w

n
0 )− ynk+1)

2 +
λ‖an

k‖2
2n

]

+
√

2γk+1ξ̃
n

k+1 , (21)

where ξ̃
n

k+1 = (ξ̃1,nk+1, . . . , ξ̃
n,n
k+1) are centered iid random variables with variance σ2 ≥ 0, where

γk+1n is the learning rate, and ∇a stands for the gradient w.r.t. variable a. In the algorithm given
by Eq. (21), only the parameter a is updated, while the parameter w is set once for all, at the
initialization step. In this setting, the values (ϕ(x,wi,n

0 ))i∈[n] are refered to as the random features
associated with an input x. Note that the learning rate γk+1n is chosen in order to vanish with k,

but also to scale with parameter n. Due to the presence of the term
√
2γk+1ξ̃

n

k+1, the iterations (21)
should be considered as a noisy version of the classical SGD, in the flavor of a Langevin algorithm.
The standard SGD case is obtained by setting σ = 0. The following assumption summarizes the
stated conditions on the above random variables.

Assumption 7. The following holds.

i) The r.v. (ξ̃i,nk : k ∈ N
∗, i ∈ [n], n ∈ N

∗) are real iid, centered, random variables with variance

σ2 ≥ 0, and satisfy E((ξ̃1,11 )4) <∞.

ii) The r.v. ((xi,nk , yi,nk ) : k ∈ N
∗, i ∈ [n], n ∈ N

∗) are iid, with distribution ν ∈ P(Rq × R).

iii) The r.v. (ai,n0 : i ∈ [n], n ∈ N
∗) are iid real r.v., and satisfy E((a1,10 )4) <∞.

iv) The r.v. (wi,n
0 : i ∈ [n], n ∈ N

∗) are iid, and satisfy E((w1,1
0 )2) <∞.

v) The families of r.v. respectively mentioned in the four above points i–iv are independent.

Eq. (21) can be expanded, for every i ∈ [n], as:

ai,nk+1 = (1− λγk+1

n
)ai,nk +

γk+1

n

n
∑

j=1

(ynk+1 − aj,nk ϕ(xnk+1, w
j,n
0 ))ϕ(xnk+1, w

i,n
0 ) +

√

2γk+1ξ̃
i,n
k+1 .

We introduce the following vector field for every (a, w), (a′, w′) ∈ R× R
d−1:

b̃((a, w), (a′, w′)) :=

∫

(y − a′ϕ(x,w′))ϕ(x,w)dν(x, y) − λa

= Q(w)− a′K(w,w′)− λa ,

where we set:

K(w,w′) :=

∫

ϕ(x,w)ϕ(x,w′)dν(x, y)

Q(w) :=

∫

yϕ(x,w)dν(x, y) .

Then, the SGD iterations can be written as:

ai,nk+1 = ai,nk + γk+1
1

n

n
∑

j=1

b̃((ai,nk , wi,n
0 ), (aj,nk , wj,n

0 )) + γk+1ζ̃
i,n
k+1 +

√

2γk+1ξ̃
i,n
k+1 ,

where ζ̃i,nk+1 is the random perturbation given by:

ζ̃i,nk+1 :=
1

n

n
∑

j=1

[

(ynk+1 − aj,nk ϕ(xnk+1, w
j,n
0 ))ϕ(xnk+1 , w

i,n
0 )− b̃((ai,nk , wi,n

0 ), (aj,nk , wj,n
0 ))

]

.

The above iterations can be casted into the general form (1), by setting X i,n
k := (ai,nk , wi,n

0 ),

along with b((a, w), (a′, w′)) := (b̃((a, w), (a′, w′)), 0), ζi,nk+1 := (ζ̃i,nk+1, 0) and ξi,nk+1 := (ξ̃i,nk+1, 0).
Consequently, Th. 1 can be used in order to characterize the long run convergence of the occupation
measure of the updated parameters. We define Fn

k as the σ-field generated by the r.v. ai,n0 , wi,n
0

and (xnl , y
n
l , ξ

1,n
l , . . . , ξn,nl ) for l ∈ [k]. Note that (ζ1,nk , . . . , ζn,nk ) is Fn

k -measurable.
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Remark 2. Although the particles X i,n
k = (ai,nk , wi,n

0 ) satisfy Eq. (1), the notable difference with

the model considered in Section 3 lies in the fact that the variables ξ1,nk+1 here satisfy:

E(ξ1,nk+1(ξ
1,n
k+1)

T |Fn
k ) = σ2diag(1, 0, . . . , 0) ,

whereas our results have been proven under the assumption that E(ξ1,nk+1(ξ
1,n
k+1)

T |Fn
k ) = σ2Id. This

difference is minor, and our results can be extended without any difficulty to the former case. The
most important modification lies in the definition of the McKean-Vlasov distribution Vp in Def. (1),
where one should replace the Laplacian term ∆φ(x) in the definition (9) of L by the second order
partial derivative w.r.t. the first component. This gives rise to the definition:

L(σ2,0)(µ)(φ)(a, w) = 〈b(a, w), µ),∇φ(x)〉 + σ2∂2aφ(a, w) . (22)

To avoid any confusion, we now denote by V
(σ2,0)
p the set of McKean-Vlasov distributions defined

as in Def. (1), replacing L by L(σ2,0), and we denote by BC(σ2,0)
p the corresponding Birkhoff center.

Assumption 8. The following holds.

i) The function ϕ is bounded and continuous.

ii)
∫

y4dν(x, y) <∞.

Proposition 9. Let Assumptions 2, 7 and 8 hold true. Then, supn,k E((a
1,n
k )4 + (ζ̃i,nk )4) <∞.

Proof. The proof is provided in Section 7.1.

We denote by π̃ : (a, w) 7→ w the projection R× R
d−1 → R

d−1 on the last d − 1 components.
Due to Prop. 9, the conditions of application of Th. 1 are satisfied. As a consequence of Th. 1,

the set BC
(σ2,0)
2 is non empty. Moreover, as the marginal distribution of the particles w.r.t. the

w-variable is a constant, fixed once for all to the distribution of w1,1
0 , we obtain the following result.

As long as Assumptions 2 and 8 hold true, for every ̟ ∈ P2(R
d−1), there exists ρ ∈ BC

(σ2,0)
2 such

that π̃#ρt = ̟ for all t ≥ 0.
For every µ ∈ P2(R× R

d−1), define:

R0(µ) :=
1

2

∫ (∫

aϕ(x,w)dµ(a, w) − y

)2

dν(x, y) +
λ

2

∫

a2dµ(a, w) .

The functional R0 is related to the initial minimization problem through the identity:

R(a,w) = R0

(

1

n

n
∑

i=1

δ(ai,wi)

)

,

for every a = (a1, · · · , an) and w = (w1, · · · , wn). For any µ ∈ P(R × R
d−1), we write the

disintegration of the measure µ as:

µ(da, dw) = µ(da|w)π̃#µ(dw) .

For every σ > 0, we define the functional Rσ as follows, for every µ ∈ P2(R× R
d−1):

Rσ(µ) := R0(µ) + σ2

∫

log

(

dµ( · |w)
dL 1

(a)

)

dµ(a, w) , (23)

whenever µ( · |w) is absolutely continuous w.r.t. the Lebesgue measure L 1, and Rσ(µ) = +∞
otherwise. For every µ ∈ P2(R

d), we define:

ṽµ(a, w) := b̃((a, w), µ) + σ2∂a log

(

dµ( · |w)
dL 1

(a)

)

,

whenever µ( · |w) ≪ L 1, or σ = 0.
If µ, µ∗ ∈ P2(R

d), by [AGS08, Lem. 12.4.7], there exists a Borel map on R
d−1 → P2(R × R)

which, to every w ∈ R
d−1, associated a probability measure γ(·|w) ∈ Π0

2(µ∗(·|w), µ(·|w)), where we
recall that Π0

2(µ
∗(·|w), µ(·|w)) is the set of 2-Wasserstein optimal transport maps between µ∗(·|w)

and µ(·|w), as introduced after Eq. (8).
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Lemma 4. Let Assumptions 2 and 8 hold true. Consider ̟ ∈ P2(R
d−1) and µ, µ∗ ∈ P2(R

d) such
that π̃#µ = π̃#µ

∗ = ̟. Assume that either σ = 0, or that the following holds for ̟-almost all w:
µ∗( · |w) ≪ L 1 and

∫ (

∂a log
dµ( · |w)
dL 1

(a)

)2

dµ(a|w) <∞ .

Let w 7→ γ(·|w) be a measurable selection of the correspondence w 7→ Π0
2(µ∗(·|w), µ(·|w)). Then,

Rσ(µ)−Rσ(µ
∗) ≥ −

∫ ∫

ṽµ∗(a∗, w)(a−a∗)dγ(a∗, a|w)d̟(w)+
λ

2

∫

W
2
2(µ( · |w), µ∗( · |w))d̟(w) .

Proof. The proof is provided in Section 7.2.

Lemma 5. Let Assumptions 2 and 8 hold true. Consider ̟ ∈ P2(R
d), and ρ ∈ V

(σ2,0)
2 such that

π̃#ρ0 = ̟. In that case, π̃#ρt = ̟ for all t. If σ > 0, then, for every t > 0, ρt( · |w) ≪ L 1 for
̟-almost every w. Morever, for every t > 0 and ̟-almost every w,

∫ (

∂a log
dρt( · |w)
dL 1

(a)

)2

dρt(a|w) <∞ . (24)

Finally, Rσ(ρt) is finite for all t > 0, and for all t2 > t1 > 0,

Rσ(ρt2)−Rσ(ρt1) ≤ −
∫ t2

t1

∫

ṽρt
(a, w)2dρt(a, w)dt . (25)

Proof. The proof is provided in Section 7.3.

For every ̟ ∈ P2(R
d−1), define the set

S(̟) := {µ ∈ P2(R
d) : π̃#µ = ̟ and ṽµ = 0, µ-a.e.} .

Corollary 2. Let Assumptions 2 and 8 hold true. For every ǫ > 0, the map ρ 7→ Rσ(ρǫ) is well

defined on V
(σ2,0)
2 → R, lower semicontinuous, and is a Lyapunov function for the set:

Λǫ := {ρ ∈ V
(σ2,0)
2 : ∃̟ ∈ P2(R

d−1), ∃µ ∈ S(̟), ∀t ≥ ǫ, ρt = µ} .

Moreover, BC
(σ2,0)
2 ⊂ Λ0.

Proof. It is an immediate consequence of Lem. 5.

Proposition 10. Let Assumption 8 hold true. Then, for every ̟ ∈ P2(R
d−1), there exists a

unique minimizer, denoted by µ∗(̟), of Rσ among all µ ∈ P2(R
d) such that π̃#µ = ̟. Moreover,

µ∗(̟) is the unique measure µ satisfying vµ = 0 µ-a.e., and π̃#µ = ̟.

Proof. As discussed after the statement of Prop. 9, there exists a recurrent point ρ such that
π̃#ρ0 = ̟. By Cor. 2, ρ ∈ Λ0, which implies that ρ0 ∈ S(̟). This shows that, for every
̟ ∈ P2(R

d−1), S(̟) is non empty.
Consider an arbitrary µ∗ ∈ S(̟). By Lem. 4, µ∗ is a minimizer of Rσ, among the set of

measures with marginal ̟. This shows existence. Let µ be another such minimizer. By Lem. 4,
W2(µ

∗(·|w), µ(·|w)) = 0 for ̟-almost every w. Thus, µ = µ∗.

We are now able to state the main result of this paragraph. Define:

µn
k :=

1

n

n
∑

i=1

δ(ai,n

k
,wi,n

0 ) .

Theorem 3. Let Assumptions 2, 7 and 8 hold true. Assume that w1,1
0 has the distribution ̟ ∈

P2(R
d−1). Then,

∑k
l=1 γlW2 (µ

n
l , µ

∗(̟))
∑k

l=1 γl

P−−−−−−−−−→
(k,n)→(∞,∞)

0 .

Proof. Put together Prop. 9, Cor.1, Cor. 2 and Prop. 10.
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5 Proofs of Section 3

5.1 Proof of Proposition 4

In this paragraph, consider 1 ≤ p ≤ 2. Note that (Φt(m
n)) belongs to Pp(C). In the light of

Lemma 2 and Prop 1, we should establish two points: first, the weak⋆-relatively compactness of
the family of intensities {I(Φt(m

n))}t,n; second, a uniform integrability condition of the pth order
moments of the measures I(Φt(m

n)(x)). These results are respectively stated in Lemmas 6 and 7
below.

Lemma 6. We posit the assumptions of Prop. 4. The family of intensities {I(Φt(m
n))}t,n is

weak⋆-relatively compact in P(C).
Proof. Let us establish the first point. For every bounded continuous function φ : C → R, we have

I(Φt(m
n)))(φ) := E

[∫

φ(x)d (Φt(m
n)(x))

]

=
1

n

∑

i∈[n]

Eφ(X̄ i,n
t+·) = E

[

φ(X̄1,n
t+· )

]

,

where we used the exchangeability stated in Assumption 3-(i). Let us define the measure Î
n
t ∈

P(Rd) as

Î
n
t (φ) := E

[

ψ(X̄1,n
t )

]

,

for each measurable function ψ : Rd → R+. According to Theorem 7.3 in [Bil99], the weak⋆-
relative compactness of the sequence (Int )t,n in P(C) is guaranteed if and only if the weak⋆-relative

compactness of (̂Int )t,n in P(Rd) is ensured, and if the following equicontinuity condition

lim
δ→0

lim sup
t,n

P

(

wT
X̄1,n

t+·

(δ) ≥ ε
)

= 0 (26)

is met for every ε, T > 0, where wT
x (δ) is the modulus of continuity of a function x on the interval

[0, T ]. The weak⋆-relative compactness of (̂Int )t,n in P(Rd), follows directly from Assumption 4.

Using the notation kt := inf{k :
∑k

i=1 γi ≥ t}, and using the definition in Eq. (1), we obtain the
decomposition:

X̄1,n
t − X̄1,n

s = Pn
s,t +Nn

s,t + Un
s,t , (27)

Pn
s,t :=

1

n

n
∑

j=1

(

kt−2
∑

k=ks

γk+1b(X
1,n
k , Xj,n

k ) + (τks
− s) b(X1,n

ks−1, X
j,n
ks−1) + (τkt

− t) b(X1,n
kt−1, X

j,n
kt−1)

)

Nn
s,t :=

kt−2
∑

k=ks

√
γk+1ξ

1,n
k+1 +

τks
− s

γks

√
γks

ξ1,nks
+
τkt

− t

γkt

√
γkt

ξ1,nkt

Un
s,t :=

1

n

n
∑

i=1

(

kt−2
∑

k=ks

γk+1ζ
i,n
k+1 + (τks

− s) ζi,nks
+ (τkt

− t) ζi,nkt

)

.

Let the sequence (γ̃k) be defined by: γ̃ks
:= τks

− s, γ̃kt
:= τkt

− t and γ̃k := γk for all k 6= kts , ktt .
Note that:

kt−1
∑

k=ks−1

γ̃k+1 = t− s . (28)

Moreover, we have:

τks
− s

γks

√
γks

≤
√

γ̃ks
, and

τkt
− t

γkt

√
γkt

≤
√

γ̃kt
. (29)

The term Nn
s,t is expressed as a sum of martingale increments, with respect to the filtration Fn

k .

Let ‖ · ‖α denote the α-norm in R
d. We apply Burkholder’s inequality stated in Theorem 1.1

of [BDG72] to the components of the vector Nn
s,t in R

d. As Eq. (28) and (29) hold:

E

(

∥

∥Nn
s,t

∥

∥

4

4

)

≤ C(t− s)E

[

kt−1
∑

k=ks−1

γ̃k+1

∥

∥

∥ξ
1,n
k+1

∥

∥

∥

4

4

]

,
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where C is a constant independent s, t and n. As Assumption 3-(ii) holds, there exists a constant
C > 0 independent of s, t, and n, such that

sup
n∈N

E

(

∥

∥Nn
s,t

∥

∥

4
)

≤ C(t− s)2 . (30)

Furthermore, using Jensen’s inequality along with Eq. (28), we obtain

∥

∥Pn
s,t

∥

∥

2 ≤ (t− s)

n

∑

j∈[n]

kt−1
∑

k=ks−1

γ̃k+1

∥

∥

∥b(X
1,n
k , Xj,n

k )
∥

∥

∥

2

.

Using Assumptions 1 and 3, there exists a constant C, independent of s, t, n, such that

sup
n∈N

E

(

∥

∥Pn
s,t

∥

∥

2
)

≤ C(t− s)2 . (31)

Also, by Jensen’s inequality, we have

∥

∥Un
s,t

∥

∥

2 ≤ (t− s)

n

∑

i∈[n]

kt−1
∑

k=ks−1

γ̃k+1

∥

∥

∥ζ
i,n
k+1

∥

∥

∥

2

.

Since, by Assumption 3, we have supk,n E[‖ζ1,nk ‖2] <∞, there exists a constant C independent of
n, s, and t, such that:

sup
n∈N

E

(

∥

∥Un
s,t

∥

∥

2
)

≤ C(t− s)2 . (32)

Combining Equations (31), (30) and (32), we have shown:

sup
n∈N

E

[

∥

∥Pn
s,t

∥

∥

2
+
∥

∥Nn
s,t

∥

∥

4
+
∥

∥Un
s,t

∥

∥

2
]

≤ C(t− s)
2
, (33)

where 0 ≤ s < t < ∞, and C is a positive constant, independent of s, t, n. Using [Leo23, Th. 2.8]
and Markov’s inequality, Eq. (26) hold.

Lemma 7. We posit the assumptions of Prop. 4. For every T > 0,

lim
a→∞

sup
t∈R+, n∈N∗

E

[

∫

sup
s∈[0,T ]

‖xs‖p 1sups∈[0,T ]‖xs‖≥adΦt(m
n)(x)

]

= 0.

Proof. By the exchangeability stated in Assumption 3-(i), we obtain:

E

[

∫

sup
u∈[0,T ]

‖xu‖p 1 sup
u∈[0,T ]

‖xu‖>adΦt(m
n)(x)

]

= E

[

sup
u∈[0,T ]

∥

∥

∥
X̄1,n

t+u

∥

∥

∥

p

1 sup
u∈[0,T ]

‖X̄1,n
t+u‖>a

]

,

for every k, t, n. Recalling the decomposition introduced in Eq. (27), for every u ∈ [0, T ]:

∥

∥

∥X̄
1,n
t+u

∥

∥

∥

p

≤ 4p−1
(∥

∥

∥X̄
1,n
t

∥

∥

∥

p

+
∥

∥Nn
t,t+u

∥

∥

p
+
∥

∥Pn
t,t+u

∥

∥

p
+
∥

∥Un
t,t+u

∥

∥

p
)

.

Hence,

∥

∥

∥X̄
1,n
t+u

∥

∥

∥

p

1 sup
u∈[0,T ]

‖X̄1,n
t+u‖>a ≤ 4p

(

∥

∥

∥X̄
1,n
t

∥

∥

∥

p

1‖X̄1,n
t ‖>a/4 +

∥

∥Nn
t,t+u

∥

∥

p
1 sup

u∈[0,T ]
‖Nn

t,t+u‖>a/4

+
∥

∥Pn
t,t+u

∥

∥

p
1 sup

u∈[0,T ]
‖Pn

t,t+u‖>a/4 +
∥

∥Un
t,t+u

∥

∥

p
1 sup

u∈[0,T ]
‖Un

t,t+u‖>a/4

)

.

Therefore, for each T > 0, it suffices to obtain the uniform integrability of the four collections
of random variables: (‖X̄1,n

t ‖p : t ∈ R+, n ∈ N
∗), (supu∈[0,T ] ‖Nn

t,t+u‖p : t ∈ R+, n ∈ N
∗),

(supu∈[0,T ] ‖Pn
t,t+u‖p : t ∈ R+, n ∈ N

∗), and (supu∈[0,T ] ‖Un
t,t+u‖p : t ∈ R+, n ∈ N

∗).
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(‖X̄1,n
t ‖p : t ∈ R+, n ∈ N

∗) is uniformly integrable by Assumption 4–(i) when p < 2, and by
Assumption 4–(ii) when p = 2. As obtained in Eq. (30), Burkholder inequality stated in Theorem
1.1 of [BDG72] yields:

E

[

sup
u∈[0,T ]

∥

∥Nn
t,t+u

∥

∥

4

]

≤ CT 2 ,

where C is a constant independent of n, t, and T . Hence, since p < 4, we obtain the uniform
integrability of {supu∈[0,T ] ‖Nn

t,t+u‖p : t ∈ R+, n ∈ N
∗}. As obtained in Eq. (31) and Eq. (32), we

derive:

sup
u∈[0,T ]

∥

∥Pn
t,t+u

∥

∥

p ≤ CT p−1

n

∑

j∈[n]

kt+T−1
∑

k=kt−1

γ̃k+1

(

1 +
∥

∥

∥X
j,n
k

∥

∥

∥

p

+
∥

∥

∥X
1,n
k

∥

∥

∥

p)

,

and

sup
u∈[0,T ]

∥

∥Un
t,t+u

∥

∥

2 ≤ CT

n

∑

j∈[n]

kt+T−1
∑

k=kt−1

γ̃k+1

∥

∥

∥ζ
j,n
k

∥

∥

∥

2

,

where C remains a constant independent of n and t. Using Assumption 4–(i) when p < 2, and
Assumption 4–(ii) when p = 2, by de la Vallée Poussin theorem, there exists a non-decreasing,
convex, and non-negative function F : R∗

+ → R such that

lim
h→∞

F (h)

h
= ∞, and sup

k∈N,n∈N∗

E

[

F
(∥

∥

∥X
1,n
k

∥

∥

∥

p)]

<∞.

Hence, by Jensen’s inequality, and the exchangeability stated in Assumption 3,

E

[

F

(

sup
u∈[0,T ]

∥

∥Pn
t,t+u

∥

∥

p

)]

≤ 1

T

kt+T−1
∑

k=kt−1

γ̃k+1E

[

F
(

CT p
(

1 +
∥

∥

∥X
1,n
k

∥

∥

∥

)p)]

.

Consequently,

sup
t∈R+,n∈N∗

E

[

F

(

sup
u∈[0,T ]

∥

∥Pn
t,t+u

∥

∥

p

)]

≤ sup
k∈N,n∈N∗

E

[

F
(

CT p
(

1 +
∥

∥

∥X
1,n
k

∥

∥

∥

)p)]

<∞ .

Therefore, de la Vallée Poussin theorem yields the uniform integrability of the collection

( sup
u∈[0,T ]

‖Pn
t,t+u‖p : t ∈ R+, n ∈ N

∗) .

The uniform integrability of the collection (supu∈[0,T ] ‖Un
t,t+u‖p : t ∈ R+, n ∈ N

∗) is obtained, by
the same arguments. This completes the proof.

To conclude the proof of Prop. 4, it is sufficient to remark that the tighntess conditions provided
in Lemma 2 are satisfied, thanks to Lemmas 6 and 7, with Prop. 1.

5.2 Proof of Proposition 5

The core of the proof is provided by the following proposition.

Proposition 11. Let Assumptions 1, 2, 3 and 4–(i) hold,

lim
(t,n)→(∞,∞)

E |G(Φt(m
n))| = 0 ,

for each function G ∈ Gp.

Proof. We need to show that for each R+ ×N–valued sequence (tn, ϕn) → (∞,∞) as n→ ∞, the
convergence E |G(Φtn(m

ϕn))| → 0 holds true, where G = Gr,φ,h1,...,hr,t,s,v1,...,vr has the form of
Eq. (10), with 0 ≤ v1 ≤ · · · ≤ vr ≤ s ≤ t. We take ϕn = n for notational simplicity, and we write
mn := Φtn(m

n) ∈ Pp(C). We have

G(mn) =
1

n

∑

i∈[n]



φ(X̄ i,n
tn+t)− φ(X̄ i,n

tn+s)−
∫ tn+t

tn+s

1

n

∑

j∈[n]

ψ(X̄ i,n
u , X̄j,n

u )du



Qi,n , (34)
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where se set ψ(x, y) := 〈∇φ(x), b(x, y)〉 + σ2∆φ(x), and

Qi,n :=

r
∏

j=1

hj(X
i,n
tn+vj ).

We note right away that |Qi,n| ≤ C where C depends on the functions hj only, and furthermore,
the random variables {Qi,n}i∈[n] are Fn

ktn+s
–measurable, where we recall that the integer kt is

defined by kt := inf{k :
∑k

i=1 γi ≥ t}.
In the remainder, we suppress the superscript (n) from most of our notations for clarity. To

deal with the right hand side of (34), we begin by expressing φ(X̄ i
tn+t)−φ(X̄ i

tn+s) as a telescoping
sum in the discrete random variables X i

k:

φ(X̄ i
tn+t)− φ(X̄ i

tn+s) =

ktn+t−2
∑

k=ktn+s

(

φ(X i
k+1)− φ(X i

k)
)

+ φ(X̄ i
tn+t)− φ(X i

ktn+t−1) + φ(X i
ktn+s

)− φ(X̄ i
tn+s).

The summands at the right hand side of this expression can be decomposed as follows. Remember
the form (1) of our algorithm. Denoting as Hφ(x) the Hessian matrix of φ at x, we know by the
Taylor-Lagrange formula that there exists θk+1 ∈ [τk, τk+1] such that

φ(X i
k+1)− φ(X i

k) = 〈∇φ(X i
k), X

i
k+1 −X i

k〉+
1

2

(

X i
k+1 −X i

k

)T
Hφ(X̄

i
θk+1

)
(

X i
k+1 −X i

k

)

= γk+1
1

n

∑

j∈[n]

〈∇φ(X i,n
k ), b(X i

k, X
j
k)〉 + γk+1σ

2∆φ(X i
k)

+
√

2γk+1〈∇φ(X i
k), ξ

i
k+1〉+ γk+1〈∇φ(X i

k), ζ
i
k+1〉

+
1

2

(

X i
k+1 −X i

k

)T
Hφ(X̄

i
θk+1

)
(

X i
k+1 −X i

k

)

− γk+1σ
2∆φ(X i

k)

=
1

n

∑

j∈[n]

ψ(X i
k, X

j
k) +

√

2γk+1〈∇φ(X i
k), ξ

i
k+1〉+ γk+1〈∇φ(X i

k), ζ
i
k+1〉

+
1

2

(

X i
k+1 −X i

k

)T
Hφ(X̄

i
θk+1

)
(

X i
k+1 −X i

k

)

− γk+1σ
2∆φ(X i

k)

=
1

n

∑

j∈[n]

ψ(X i
k, X

j
k) + γk+1〈∇φ(X i

k), ζ
i
k+1〉

+
1

2

(

X i
k+1 −X i

k

)T
Hφ(X̄

i
θk+1

)
(

X i
k+1 −X i

k

)

− γk+1(ξ
i
k+1)

THφ(X
i
k)ξ

i
k+1

+
√

2γk+1〈∇φ(X i
k), ξ

i
k+1〉+ γk+1(ξ

i
k+1)

THφ(X
i
k)ξ

i
k+1 − γk+1σ

2∆φ(X i
k).

In this last expression, the terms n−1
∑

j∈[n] ψ(X
i
k, X

j
k) will be played against the integral term at

the right hand side of (34), and the other terms will be proven to have negligible effects. Notice
that since tr(Hφ(X̄

i
k)) = ∆φ(X i

k), the term

ηik+1 :=
√

2γk+1〈∇φ(X i
k), ξ

i
k+1〉+ γk+1(ξ

i
k+1)

THφ(X
i
k)ξ

i
k+1 − γk+1σ

2∆φ(X i
k)

in the expression above is a martingale increment term with respect to the filtration (Fn
k )k, thanks

to Assumption 3–(ii).
To proceed, considering the integral at the right hand side of (34), we can write

∫ tn+t

tn+s

ψ(X̄ i
u, X̄

j
u)du =

∫ τktn+t−1

τktn+s

ψ(X̄ i
u, X̄

j
u)du+

∫ τktn+s

tn+s

ψ(X̄ i
u, X̄

j
u)du+

∫ tn+t

τktn+t−1

ψ(X̄ i
u, X̄

j
u)du,

18



and with these decompositions, we obtain G(mn) =
∑8

l=1 χ
n
l , where:

χn
1 :=

1

n

∑

i∈[n]

{

ktn+t−2
∑

k=ktn+s

1

n

∑

j∈[n]

γk+1ψ(X
i
k, X

j
k)−

∫ τktn+t−1

τktn+s

1

n

∑

j∈[n]

ψ(X̄ i
u, X̄

j
u)du

}

Qi,

χn
2 :=

1

n

∑

i∈[n]

{

φ(X̄ i
tn+t)− φ(X i

ktn+t−1) + φ(X i
ktn+s

)− φ(X̄ i
tn+s)

}

Qi,

χn
3 := − 1

n

∑

i∈[n]

{

∫ τktn+s

tn+s

1

n

∑

j∈[n]

ψ(X̄ i
u, X̄

j
u)du +

∫ tn+t

τktn+t−1

1

n

∑

j∈[n]

ψ(X̄ i
u, X̄

j
u)du

}

Qi,

χn
4 :=

1

n

∑

i∈[n]

Qi

ktn+t−2
∑

k=ktn+s

γk+1〈∇φ
(

X i
k

)

, ζik+1〉,

χn
5 :=

1

n

∑

i∈[n]

ktn+t−2
∑

k=ktn+s

γk+1

(

ξik+1

)T
(

Hφ(X̄
i
θk+1

)−Hφ(X
i
k)
)

(

ξik+1

)

Qi,

χn
6 :=

1

n2

∑

i,j∈[n]

ktn+t−2
∑

k=ktn+s

(√
2γ

3/2
k+1b(X

i
k, X

j
k)

THφ(X̄
i
θk+1

)ξik+1

)

Qi

+
1

n3

∑

i,p,q∈[n]

ktn+t−2
∑

k=ktn+s

(

1

2
γ2k+1b

(

X i
k, X

p
k

)T
Hφ(X̄

i
θk+1

)b
(

X i
k, X

q
k

)

)

Qi,

χn
7 :=

1

n2

∑

i,j∈[n]

ktn+t−2
∑

k=ktn+s

γ
3/2
k+1





(

√
γk+1

(

b(X i
k, X

j
k) +

ζik+1

2

)

+
√
2ξik+1

)T

Hφ(X̄
i
θk+1

)ζik+1

)

Qi, and

χn
8 :=

1

n

∑

i∈[n]

ktn+t−2
∑

k=ktn+s

ηik+1Q
i.

To prove our proposition, we show that E|χn
l | → 0 for all l ∈ [8]. The notation E×

× will be
generically used to refer to error terms.

Let us start with E|χn
1 |. For i, j ∈ [n], writing

En
i,j :=

ktn+t−2
∑

k=ktn+s

γk+1ψ(X
i
k, X

j
k)−

∫ τktn+t−1

τktn+s

ψ(X̄ i
u, X̄

j
u)du

and using the boundedness of Qi and the exchangeability as stated by Assumption 3-(i), we obtain
that

E|χn
1 | ≤ C

(

E|En
1,2|+ E|En

1,1|/n
)

.

We begin by providing a bound on the second moments of En
1,1 and En

1,2. Recalling the definition
of ψ, and using the compactness of the support of φ along with Assumption 1, we obtain that

E(En
i,j)

2 ≤ 2(t− s)2 max
u∈[tn+s,tn+t]

E‖ψ(X̄ i
u, X̄

j
u)‖2

≤ C(t− s)2
(

1 + sup
u≥0

E(X̄1
u)

2

)

≤ C(t− s)2

thanks to Assumption 4–(i). To obtain that E|χn
1 | → 0, we thus need to show that E|En

1,2| → 0.
By Prop. 4 above, the sequence (mn) of P(C)–valued random variables is tight. By Lemma

1, this is equivalent to the weak⋆-relative compactness of the sequence of intensities (I(mn)). For
each Borel set A ∈ B(C), we furthermore have that

I(mn)(A) =
1

n

∑

i∈[n]

P

[

X̄ i,n
tn+· ∈ A

]

= P

[

X̄1,n
tn+· ∈ A

]
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by the exchangeability, thus, the sequence of random variables (X̄1,n
tn+·)n is tight. Let us work

on the random variables U1
n := π[0,t−s]#X̄

1
tn+s+· and U2

n := π[0,t−s]#X̄
2
tn+s+· defined on the set

C([0, t − s]) of continuous functions on the interval [0, t − s]. Since (X̄1,n
tn+·)n is tight, given an

arbitrary ε > 0, there is a compact set Kε ⊂ C([0, t− s]) such that

∀n ∈ N
∗, P

[

U1
n 6∈ Kε

]

≤ ε.

Writing γ̄l = supk≥l γk, we now have

∣

∣En
1,2

∣

∣ ≤
ktn+t−2
∑

k=ktn+s

γk+1 max
δ∈[0,γk+1]

∣

∣ψ(X̄1
τk+δ, X̄

2
τk+δ)− ψ(X̄1

τk
, X̄2

τk
)
∣

∣

≤ (t− s) max
u,v∈[0,t−s]

|u−v|≤γ̄ktn+s

∣

∣ψ(U1
n(u), U

2
n(u))− ψ(U1

n(v), U
2
n(v))

∣

∣ .

We thus can write

E
∣

∣En
1,2

∣

∣ = E
∣

∣En
1,2

∣

∣1(U1
n,U

2
n)∈K2

ε
+ E

∣

∣En
1,2

∣

∣1(U1
n,U

2
n) 6∈K2

ε

≤ (t− s) sup
f,g∈Kε

max
u,v∈[0,t−s]

|u−v|≤γ̄ktn+s

|ψ(f(u), g(u))− ψ(f(v), g(v))|+
√

E(En
1,2)

2
√

2P [U1
n 6∈ Kε].

(35)

By the Arzelà-Ascoli theorem, the functions in Kε are uniformly equicontinuous and bounded.
Since ψ is a continuous function, one can easily check that the set of functions S on [0, t − s]
defined as

S := {u 7→ ψ(f(u), g(u)) : f, g ∈ Kε}
is a set of uniformly equicontinuous functions. As a consequence, the first term at the right hand
side of the inequality in (35) converges to zero as n → ∞, since γ̄ktn+s

→ 0. The second term is
bounded by C

√
ε thanks to the bound we obtained on E(En

1,2)
2. Since ε is arbitrary, we obtain

that E|En
1,2| → 0, thus, E|χn

1 | → 0.
The terms χ2

n, χ
3
n, and χ5

n are dealt with similarly to χ1
n. Considering χ2

n, we have by the
exchangeability that E|χ2

n| ≤ CE|En
1 |, with

En
1 = φ(X̄1

tn+t)− φ(X1
ktn+t−1) + φ(X1

ktn+s
)− φ(X̄1

tn+s)

= φ(X̄1
tn+t)− φ(X̄1

τktn+t−1
) + φ(X̄1

τktn+s
)− φ(X̄1

tn+s).

Keeping the notations U1
n := π[0,t−s]#X̄

1
tn+s+· and γ̄l introduced above, we have

|En
1 | ≤ 2 max

u,v∈[0,t−s]
|u−v|≤γ̄ktn+s

∣

∣φ(U1
n(u))− φ(U1

n(v))
∣

∣ .

Taking ε > 0, selecting the compact Kε ⊂ C([0, t − s]) as we did for χn
1 , and recalling that the

function φ is bounded, we have

E |En
1 | ≤ 2 sup

f∈Kε

max
u,v∈[0,t−s]

|u−v|≤γ̄ktn+s

‖φ(f(u))− φ(f(v))‖ + CP
[

U1
n 6∈ Kε

]

,

and we obtain the E|χ2
n| → 0 by the same argument as for χ1

n.
The treatment of χ3

n is very similar to χ2
n and is omitted. Let us provide some details for χ5

n.
Here we have by exchangeability that

E|χn
5 | ≤

ktn+t−2
∑

k=ktn+s

γk+1E|E1,n
k |,

where
E1,n

k :=
(

ξ1k+1

)T
(

Hφ(X̄
1
θk+1

)−Hφ(X
1
k)
)

(

ξ1k+1

)

Q1.

20



satisfies
|E1,n

k | ≤ C‖ξ1k+1‖2 max
u,v∈[0,t−s]

|u−v|≤γ̄ktn+s

∥

∥Hφ(U
1
n(u))−Hφ(U

1
n(v))

∥

∥ .

Therefore,

E

∣

∣

∣
E1,n

k

∣

∣

∣
= E

∣

∣

∣
E1,n

k

∣

∣

∣
1U1

n∈Kε
+ E

∣

∣

∣
E1,n

k

∣

∣

∣
1U1

n 6∈Kε

≤ CE‖ξk+1‖2 sup
f∈Kε

max
u,v∈[0,t−s]

|u−v|≤γ̄ktn+s

‖Hφ(f(u))−Hφ(f(v))‖ +
√

E(E1,n
k )2

√

P [U1
n 6∈ Kε].

Since E‖ξk+1‖2 and E(E1,n
k )2 are bounded, we obtain that E|χn

5 | → 0.
Considering the term χ4

n, we have by exchangeability

E|χn
4 | ≤ CE

∣

∣

∣

∣

∣

∣

ktn+t−2
∑

k=ktn+s

γk+1〈∇φ
(

X1
k

)

, ζ1k+1〉

∣

∣

∣

∣

∣

∣

≤ CE

∣

∣

∣

∣

∣

∣

ktn+t−2
∑

k=ktn+s

γk+1〈∇φ
(

X1
k

)

,E[ζ1k+1 | Fn
k ]〉

∣

∣

∣

∣

∣

∣

+ CE

∣

∣

∣

∣

∣

∣

ktn+t−2
∑

k=ktn+s

γk+1〈∇φ
(

X1
k

)

, ζ̊1k+1〉

∣

∣

∣

∣

∣

∣

:= E|χn
4,1|+ E|χn

4,2|,

where ζ̊1k = ζ1k − E[ζ1k | Fn
k−1] is a martingale increment with respect to the filtration (Fn

k )k. We
have

E|χn
4,1| ≤ C(t− s) sup

l≥ktn+s

E
∥

∥E[ζ1l+1 | Fn
l ]
∥

∥ ,

which converges to zero by Assumption 3–(iii). By the martingale property, we furthermore have

E(χn
4,2)

2 ≤ C

ktn+t−2
∑

k=ktn+s

γ2k+1 ≤ Cγ̄ktn+s
(t− s),

which also converges to zero. Thus, E|χn
4 | → 0.

We now turn to χn
6 . Here we write

χn
6 =

1

n

∑

i∈[n]

ktn+t−2
∑

k=ktn+s

γ
3/2
k+1E

i
k,

where

Ei
k :=

1

n

∑

j∈[n]

√
2b(X i

k, X
j
k)

THφ(X̄
i
θk+1

)ξik+1Q
i

+
1

n2

∑

p,q∈[n]

1

2

√
γk+1b(X

i
k, X

p
k )

THφ(X̄
i
θk+1

)b(X i
k, X

q
k)Q

i

satisfies

|Ei
k| ≤

C

n

∑

j∈[n]

(1 + ‖Xj
k‖)‖ξik+1‖+

C

n2

√
γk+1

∑

p,q∈[n]

(1 + ‖Xp
k‖)(1 + ‖Xq

k‖).

We readily obtain from Assumptions 3, and 4–(i) that E|Ei
k| ≤ C, which leads to E|χn

6 | → 0.
The treatment of the term χn

7 is similar and is omitted.
We finally deal with χn

8 that involves the martingale increments ηik. We decompose this term
by writing

χn
8 =

ktn+t−2
∑

k=ktn+s

1

n

∑

i∈[n]

√

2γk+1〈∇φ(X i
k), ξ

i
k+1〉Qi

+

ktn+t−2
∑

k=ktn+s

1

n

∑

i∈[n]

γk+1

(

(ξik+1)
THφ(X

i
k)ξ

i
k+1 − σ2∆φ(X i

k)
)

Qi

:= χn
8,1 + χn

8,2.
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Since the random vectors ξk+1
1 , . . . , ξk+1

n are decorrelated conditionally to Fn
k by Assumption 3-(ii),

we obtain that

E





( 1

n

∑

i∈[n]

√

2γk+1〈∇φ(X i
k), ξ

i
k+1〉Qi

)2

∣

∣

∣

∣

∣

∣

Fn
k



 ≤ C
γk+1

n
,

and by the martingale property,

E(χn
8,1)

2 ≤
ktn+t−2
∑

k=ktn+s

C
γk+1

n
≤ C(t− s)

n
.

Using the martingale property again along with the inequality (
∑n

1 ai)
2 ≤ n

∑n
1 a

2
i , we also have

E(χn
8,2)

2 ≤
ktn+t−2
∑

k=ktn+s

γ2k+1E





1

n

∑

i∈[n]

(

(ξik+1)
THφ(X

i
k)ξ

i
k+1 − σ2∆φ(X i

k)
)

Qi





2

≤ C

ktn+t−2
∑

k=ktn+s

γ2k+1

≤ γ̄ktn+s
C(t− s).

It results that E(χn
8 )

2 → 0. The proof of Prop. 11 is completed.

Proof of Proposition 5. Let (tn, ϕn)n be a R+ × N
∗–valued sequence such that the distribution of

(Φtn(m
ϕn))n converges to a measureM ∈ M, which exists thanks to the tightness of (Φtn(m

ϕn))n
as established by Prop. 4. Let G ∈ Gp. By the continuity of G as established by Lemma 3,
G(Φtn(m

ϕn)) converges in distribution to G#M ∈ P(R). On the other hand, we know by the
previous proposition that G(Φtn(m

ϕn)) converges in probability to zero. Therefore, G#M = δ0.
Let supp(M) ⊂ Pp(C) be the support ofM , and let ρ ∈ supp(M). By definition of the support,

M(N ) > 0 for each neighborhood N of ρ. Therefore, since G#M = δ0, there exists a sequence
(ρl)l∈N such that ρl ∈ supp(M), G(ρl) = 0, and ρl →l ρ in Pp(C). By the continuity of G, we
obtain that G(ρ) = 0, which shows that supp(M) ⊂ G−1({0}). Since G is arbitrary, we obtain
that supp(M) ⊂ Vp =

⋂

G∈Gp
G−1({0}), and the theorem is proven.

5.3 Proof of Theorem 1

Throughout this paragraph, we assume that 1 ≤ p ≤ 2.
We define the following collection (Mn

t : t ≥ 0, n ∈ N
∗) of r.v. on P(Pp(C)):

Mn
t :=

1

t

∫ t

0

δΦs(mn)ds . (36)

Lemma 8. The collection of r.v. (Mn
t , t ≥ 0, n ∈ N

∗) is tight in P(Pp(C)).

Proof. Based on Lemma 1, we just need to establish that the family of measures (I(Mn
t )) is

relatively compact in the space P(Pp(C)). Recall that I(Mn
t ) is the probability measure which, to

every Borel subset A ⊂ Pp(C), associates:

I(Mn
t )(A) =

1

t

∫ t

0

P(Φs(m
n) ∈ A)ds

Consider ε > 0. By Prop. 4, there exists a compact set K ∈ Pp(C) such that P(Φs(m
n) ∈ K) > 1−ε,

for all s, n. As a consequence, I(Mn
t )(K) > 1− ε. The proof is completed.

Let us denote by M the set of weak⋆ accumulation points of the net ((Mn
t )#P : t ≥ 0, n ∈ N

∗),
as (t, n) → (∞,∞). By Lemma 8, M is a non empty subset of P(P(Pp(C))). Define:

Vp = {M ∈ P(Pp(C)) : M(Vp) = 1} .

Lemma 9. For every Υ ∈ M , Υ(Vp) = 1.
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Proof. Consider Υ ∈ M . Without restriction, we write Υ as the weak⋆ limit of some sequence
of the form (Mn

tn)#P. The distance Wp( . ,Vp) to the set Vp (which is non empty by Prop. 5)
is a continuous function on Pp(C). Denoting by 〈 . , . 〉 the natural dual pairing on Cb(Pp(C)) ×
P(Pp(C)), the function 〈Wp( . ,Vp), · 〉 is a continuous on P(Pp(C)). Thus, the sequence of real r.v.
〈Wp( . ,Vp),M

n
tn〉 converges in distribution to 〈Wp( . ,Vp), · 〉#Υ. These variables being bounded,

we obtain by taking the limits in expectation:
∫ ∫

Wp(m,Vp)dM(m)dΥ(M) = lim
n→∞

E(〈Wp( . ,Vp),M
n
tn〉)

= lim
n→∞

1

tn

∫ tn

0

E(Wp(Φs(m
n),Vp))ds

≤ lim sup
(n,t)→(∞,∞)

E(Wp(Φt(m
n),Vp)) = 0 ,

where the last equality is due to Prop. 5. As Vp is closed by Prop. 2, this concludes the proof.

For every t ≥ 0, define (Θt)## = ((Θt)#)#. Define:

I := {M ∈ P(Pp(C)) : ∀t > 0,M = (Θt)##M} .
In other words, for every M ∈ I and for every t > 0, (Θt)# preserves M .

Lemma 10. For every Υ ∈ M , Υ(I) = 1.

Proof. Similarly to the proof of Lemma 9, assume without restriction that Υ = limn→∞(Mn
tn)#P

in the weak⋆ sense. Set t > 0. The map M 7→ dL(M, (Θt)##M) is continuous on P(Pp(C)), where
we recall that dL stands for the Lévy-Prokhorov distance. Thus, by Fatou’s lemma,

∫

dL(M, (Θt)##M)dΥ(M) ≤ lim sup
n→∞

E(dL(M
n
tn , (Θt)##M

n
tn)) . (37)

Note that:

(Θt)##M
n
tn =

1

tn

∫ t+tn

t

δ(Θs)#mnds .

In particular, for every Borel set A ⊂ Pp(C), |(Θt)##M
n
tn(A) − Mn

tn(A)| ≤ 2t/tn. The Lévy-
Prokhorov distance being bounded by the total variation distance, dL(M

n
tn , (Θt)##M

n
tn) ≤ 2t/tn

which tends to zero. The l.h.s. of Eq. (37) is zero, which proves the statement for a fixed value of
t. The proof of the statement for all t, is easily concluded by a using dense denumerable subset
argument.

Define: Bp = {M ∈ P(Pp(C)) : M(BCp) = 1} .
Proposition 12. For every Υ ∈ M , Υ(Bp) = 1.

Proof. Consider an arbitrary sequence of the form ((Mn
tn)#P) where tn → ∞, converging in dis-

tribution to some measure Υ ∈ M as n → ∞. By Lemma 10, the map (Θt)# : Pp(C) → Pp(C)
preserves the measure M , for all M Υ-a.e., and for all t. By Lemma 9, M(Vp) = 1. Thus, the
restriction of the map (Θt)# to Vp, still denoted by (Θt)# : Vp → Vp preserves the measure M as
well, for all M Υ-a.e.. By the Poincaré recurrence theorem, stated in Theorem 2.3 of [Mañ87], it
follows that M(BCp) = 1 for all M Υ-a.e.

Proof of Theorem 1. To conclude, assume by contradiction that the conclusion of Theorem 1 does
not hold. Then, there exists ε > 0 and a sequence, which, without restriction, we may assume to
have the form ((Mn

tn)#P), such that for all n large enough,

E(〈Wp( . ,BCp),M
n
tn〉) > ε , (38)

where 〈 . , . 〉 is the natural dual pairing on Cb(Pp(C))×P(Pp(C)). By Lemma 8, one can extract an
other subsequence, which we still denote by ((Mn

tn)#P), converging to Υ ∈ M . As a consequence,

lim
n→∞

E((Wp( . ,BCp),M
n
tn)) =

∫ ∫

Wp(m,BCp)dM(m)dΥ(M) = 0 ,

where we used the fact that, due to Prop. 12,
∫

Wp(m,BCp)dM(m) = 0 for Υ-amost all M . This
contradicts Eq. (38).
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5.4 Proof of Corollary 1

Throughout this paragraph, we assume that 1 ≤ p ≤ 2. Consider the r.v.

Yn(s) :=Wp

(

1

n

n
∑

i=1

δX̄i,n
s
, (π0)# BCp

)

.

Lemma 11. The r.v. (Yn(s)
p : s > 0, n ∈ N) are uniformly integrable.

Proof. Note that Yn(s)
p ≤ C(1 + 1

n

∑

i ‖X̄ i,n
s ‖p). Hence, for each a > 0, Yn(s)

p
1Yn(s)>a ≤

1
n

∑

i∈n C(1 + ‖X̄ i,n
s ‖p)1C(1+‖X̄i,n

s ‖p)>a. By the exchangeability stated in Assumption 3, the ran-

dom variables (Yn(s) : s > 0, n ∈ N) are uniformly integrable if the random variables (‖X̄1,n
s ‖p :

s > 0, n ∈ N) are uniformly integrable. We conclude using Assumption 4–(i) if p < 2, or Assump-
tion 4–(ii) if p = 2.

Recall the definition of Mn
t in Eq. (36), and recall that M is the set of cluster points of

((Mn
t )#P : t ≥ 0, n ∈ N

∗) as (n, t) → (∞,∞). Consider an arbitrary sequence tn → ∞, such that
(Mn

tn)#P converges to some measure Υ ∈ M . Consider ε > 0. By Lemma 11; there exists a > 0
such that supn,s E(Yn(s)1Yn(s)>a) < ε. Using the inequality y ≤ a ∧ y + y1y>a, we obtain:

E

(

1

tn

∫ tn

0

Yn(s)ds

)

≤ E

(

1

tn

∫ tn

0

a ∧ Yn(s)ds
)

+ ε

= E

(∫

a ∧Wp((π0)#m, (π0)# BCp)dM
n
tn(m)

)

+ ε (39)

The restriction of π0 to Pp(C), which we still denote by π0, is continuous on (Pp(C),Wp) →
(Pp(R

d),Wp), where Wp represents the p-th order Wasserstein distance on P(Rd). As a con-
sequence, the pushforward map (π0)# : P(Pp(C)) → P(Pp(R

d)) is continuous. Therefore, as
(π0)#BCp is non empty by Prop. 3, the function M 7→

∫

a ∧Wp((π0)#m, (π0)#BCp)dM(m) is
bounded and continuous on P(Pp(C)). Recall that Mn

tn converges in distribution to Υ, and noting
that, by Prop. 3,

∫ ∫

Wp((π0)#m, (π0)# BCp)dM(m)dΥ(M) = 0 .

Therefore, by letting n → ∞ in Eq. (39), we obtain lim supn E(
1
tn

∫ tn
0
Yn(s)ds) ≤ ε. As ε is

arbitrary,

lim
n→∞

E

(

1

tn

∫ tn

0

Yn(s)ds

)

= 0 . (40)

In order to establish the statement of Corollary 1, we now should consider replacing the integral in
Eq. (40) by a sum. This last part is only technical. Recall the definition of kt := inf{k :

∑k
i=1 γi ≥

t}, and τk in Eq. (4). Let (αn) be a sequence of integers tending to infinity. By the triangular
inequality,

E

(∑αn

l=1 γlWp(µ
n
l , (π0)# BCp)

∑αn

l=1 γl

)

= E

(

1

ταn

∫ ταn

0

Wp(µ
n
ks
, (π0)# BCp)ds

)

≤ E





1

ταn

∫ ταn

0

Wp(µ
n
ks
,
1

n

∑

i∈[n]

δX̄i,n
s

)ds





+ E

(

1

ταn

∫ ταn

0

Yn(s)ds

)

.

The second term in the righthand side of the above inequality tends to zero by Eq. (40) with
tn = ταn

. We should therefore establish that the first term vanishes. For an arbitrary integer l
and s ∈ [τl, τl+1],

E



Wp



µn
l ,

1

n

∑

i∈[n]

δX̄i,n
s







 ≤ E











1

n

∑

i∈[n]

‖X i,n
l − X̄ i,n

s ‖p




1/p





≤ (E(‖X1,n

l − X̄1,n
s ‖p))1/p .
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where the last inequality uses Jensen’s inequality and the exchangeability assumption. Continuing
the estimation,

E(‖X1,n
l − X̄1,n

s ‖p) ≤ E(‖X1,n
l+1 −X1,n

l ‖p)

≤ E



3p−1γpl+1

1

n

∑

j∈[n]

∥

∥

∥b(X
1,n
l , Xj,n

l )
∥

∥

∥

p



+ E

[

3p−1γl+1
p/2
∥

∥

∥ξ
1,n
l+1

∥

∥

∥

p]

+ E

[

3p−1γpl+1

∥

∥

∥ζ
1,n
l+1

∥

∥

∥

p]

.

≤ C(γ
p/2
l+1 + γpl+1),

where we used Assumptions 1, and 3. Consequently,

E





1

ταn

∫ ταn

0

Wp(µ
n
ks
,
1

n

∑

i∈[n]

δX̄i,n
s

)ds



 ≤
∑αn

i=1 γl

(

C(γ
p/2
l+1 + γpl+1)

)1/p

∑αn

i=1 γl
.

As Assumption 2 holds, C(γ
p/2
l+1 + γpl+1) →l→∞ 0, and

∑

l≥1 γl = ∞. Therefore, by Stolz-Cesàro
theorem, the r.h.s. of the above inequality converges to 0 when n→ ∞. Hence,

lim
n→0

E

(∑αn

l=1 γlWp(µ
n
l , (π0)# BCp)

∑αn

l=1 γl

)

= 0 ,

for an arbitrary sequence (αn) diverging to ∞. By Markov’s inequality, Corollary 1 is proven.

6 Proofs of Section 4.1

The Assumptions 5 and σ > 0 are standing in this section.

6.1 Proof of Prop. 6

Lemma 12. Let ρ ∈ V2. For every t > 0, ρt admits a density x 7→ ̺(t, x) ∈ C1(Rd,R). For every
R > 0, t2 > t1 > 0, there exists a constant CR,t1,t2 > 0 such that:

inf
t∈[t1,t2],‖x‖≤R

̺(t, x) ≥ CR,t1,t2 , (41)

and there exist a constant Ct1,t2 > 0, such that

sup
x∈Rd,t∈[t1,t2]

‖∇̺(t, x)‖ + ̺(t, x) ≤ Ct1,t2 . (42)

Finally,

sup
t∈[t1,t2]

∫

(1 + ‖x‖2) ‖∇̺(t, x)‖ dx <∞ . (43)

Proof. The result is an application of Th.1.2 in [MPZ21] with the non homogeneous vector field
b̃(t, x) :=

∫

b(x, y)dρt(y). The proof consists in verifying the conditions of the latter theorem. By
Assumption 5, for every (x, y, T ) ∈ (Rd)2 × R+,

sup
t∈[0,T ]

∥

∥

∥
b̃(t, x)− b̃(t, y)

∥

∥

∥
≤ ‖∇V (x) −∇V (y)‖+ sup

t∈[0,T ]

∫

‖∇U(x− z)−∇U(y − z)‖ dρt(x)

≤ C(‖x− y‖β ∨ ‖x− y‖) ,

Moreover,

sup
t∈[0,T ]

b̃(t, x) ≤ C(1 + ‖x‖ +
∫

sup
t∈[0,T ]

‖yt‖ dρ(y)) ≤ C(1 + ‖x‖) . (44)
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As σ > 0, [MPZ21, Th. 1.2] applies: ρ admits a density x 7→ ̺(t, x) ∈ C1(Rd), for 0 < t ≤ T , and
there exists four constants (Ci,T , λi,T )i∈[2], such that:

1

C1,T td/2

∫

exp

(

−‖x− θt(y)‖2
λ1,T t

)

dρ0(y) ≤ ̺(t, x) ≤ C1,T

td/2

∫

exp

(

−λ1,T
t

‖x− θt(y)‖2
)

dρ0(y)

‖∇̺(t, x)‖ ≤ C2,T

t(d+1)/2

∫

exp

(

−λ2,T
t

‖x− θt(y)‖2
)

dρ0(y) ,

where the map t 7→ θt(y) is a solution to the ordinary differential equation: dθt(y)
dt = b̃(t, θt(y))

with initial condition θ0(y) = y. By Grönwall’s lemma and Eq. (44), there exists a constant CT

such that ‖θt(y)‖ ≤ CT ‖y‖, for every n, y, and t ≤ T . For every t1 ≤ t ≤ t2, and every x, we
obtain using a change of variables:

(C1,t2t1
d/2)−1 ≥ ̺(t, x) ≥ C1,t2t

−d/2
2 exp

(

− 2

λ1,t2t1
‖x‖2

)∫

exp

(

− 2Ct2

λ1,t2t1
‖y‖2

)

dρ0(y)

∫

(1 + ‖x‖2) ‖∇̺(t, x)‖ dx ≤ C2,t2t
−(d+1)/2
1

∫

(1 + 2‖x‖2 + 2C2
t2

∫

‖y‖2dρ0(y))e−λ2,t2 t
−1
2 ‖x‖2

dx ,

and ‖∇̺(t, x)‖ ≤ C2,t2t
−(d+1)/2
1 . Consequently, ρ satisfies Eq. (41), Eq. (42) and Eq. (43).

For every ρ ∈ V2 and every t > 0, recall the definition of the velocity field vt in Eq. (16):
vt(x) := −∇V (x)−

∫

∇U(x, y)dρt(y)− σ2∇ log ̺(t, x), where ̺(t, x) is the density of ρt defined in
Lem. 12.

Lemma 13. For every ρ ∈ V2, and every t2 > t1 > 0,

∫ t2

t1

∫

‖vt(x)‖dρt(x)dt <∞ . (45)

Moreover, for every ψ ∈ C∞
c (R+ × R

d,R),

∫

ψ(t2, x)dρt2(x) −
∫

ψ(t1, x)dρt1 (x) =

∫ t2

t1

∫

(∂tψ(t, x) + 〈∇xψ(t, x), vt(x)〉)ρt(dx)dt . (46)

Proof. The first point is a consequence of Lemma 12. Consider φ ∈ C∞
c (Rd,R) and η ∈ C∞

c (R+,R).
Using Eq. (10) and (11) with h1 = · · · = hr = 1, we obtain that for each ψ ∈ C∞

c (R+ × R
d,R) of

the form ψ(t, x) = g(t)φ(x),

∫

ψ(t2, x)dρt2(x) −
∫

ψ(t1, x)dρt1 (x) =

∫ t2

t1

∫

(∂tψ(t, x) + 〈∇ψ(s, x), b(x, ρt)〉+ σ2∆ψ(t, x))ρt(dx)dt . (47)

As the functions of the form (t, x) 7→ g(t)φ(x) are dense in C∞
c (R+ × R

d,R), Eq (47) holds in
fact for any smooth compactly supported ψ. Using Lemma 12 and an integration by parts of the
Laplacian term, Eq. (46) follows.

The goal now is to establish that the functionalH given by Eq. (14) is a Lyapunov function. This
claim will follow from the application of Eq. (46) to the functional (t, x) 7→ σ2 log(̺(t, x))+V (x)+
∫

U(x− y)̺(t, y)dy. However, this function is not necessarily smooth nor compactly supported. In
order to be able to apply Lem. 13, mollification should be used. In the sequel, consider two fixed
positive numbers t2 > t1.

Consider a smooth, compactly supported, even function η : Rd → R+ such that
∫

η(x)dx = 1,
and define ηε(x) := ε−dη(x/ε) for every ε > 0. For every t > 0, we introduce the density
̺ǫ(t, ·) := ηε ∗ρǫ(t, ·), and we denote by ρεt (dx) = ̺ǫ(t, x)dx the corresponding probability measure.
Finally, we define:

vεt :=
ηε ∗ (vt̺(t, ·))

̺ǫ(t, ·)
.
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With these definitions at hand, it is straightforward to check that the statements of Lem. 13 hold
when ρt, vt are replaced by ρεt , v

ε
t . More specifically, we shall apply Eq. (46) using a specific smooth

function ψ = ψε,δ,R, which we will define hereafter for fixed values of δ, R > 0, yealding our main
equation:

∫

ψε,δ,R(t2, x)̺ε(t2, x)dx−
∫

ψε,δ,R(t1, x)̺ε(t1, x)dx =

∫ t2

t1

∫

(∂tψε,δ,R(t, x) + 〈∇ψε,δ,R(t, x), v
ε
t (x)〉)̺ε(t, x)dxdt . (48)

We now provide the definition of the function ψε,δ,R ∈ C∞
c (R+×R

d,R) used in the above equality.
Let θ ∈ C∞

c (R,R) be a nonnegative function supported by the interval [−t1, t1] and satisfying
∫

θ(t)dt = 1. For every δ ∈ (0, 1), define θδ(t) = θ(t/δ)/δ. We define ̺ε,δ(·, x) := θδ ∗ ̺ε(·, x). The
map t 7→ ̺ε,δ(t, )̇ is well defined on [t1, t2], non negative, and smooth in both variables t, x. In
addition, we define Vε := ηε∗V , Uε := ηε∗U . Finally, we introduce a smooth function χ on R

d equal
to one on the unit ball and to zero outside the ball of radius 2, and we define χR(x) := χ(x/R).
For every (t, x) ∈ [t1, t2]× R, we define:

ψε,δ,R(t, x) := (σ2 log ̺ε,δ(t, x) + Vε(x) +

∫

Uε(x− y)χR(y)̺
ε,δ(t, y)dy)χR(x) . (49)

We extend ψε,δ,R to a smooth compactly supported function on R+ × R
d, and we apply Eq. (48)

to the latter. We now investigate the limit of both sides of the equality (48) as δ, ε, R successively
tend to 0, 0,∞. First consider the lefthand side. Note that for all t ∈ [t1, t2],

lim
ε→0

lim
δ→0

ψε,δ,R(t, x)̺ε(t, x) :=

(

σ2 log ̺(t, x) + V (x) +

∫

U(x− y)χR(y)̺(t, y)dy

)

̺(t, x)χR(x) .

The domination argument that allows to interchange limits and integrals is provided by Lem 12.
Indeed, for a fixed R > 0, there exists a constant CR such that ̺ǫ,δ(t, x) ≤ CR and ψε,δ,R(t, x) ≤ CR

for all ‖x‖ ≤ R and all t ∈ [t1, t2]. As a consequence,

lim
ε→0

lim
δ→0

∫

ψε,δ,R(t, x)̺ε(t, x) = σ2

∫

χR(x)̺(t, x) log ̺(t, x)dx+

∫

V (x)χR(x)dρt(x) +

∫

U(x− y)χR(y)χR(x)̺(t, x)̺(t, y)dxdy .

By Eq. (42), the first term in the l.h.d. of the above equation converges to σ2
∫

̺(t, x) log ̺(t, x)dx
as R → ∞. Similarly,

∫

V (x)χR(x)dρt(x) tends to
∫

V dρt as R → ∞, by use of the linear growth
condition on ∇V in Assumption 5, along with the fact that ρt admits a second order moment. The
same holds for the last term. Finally, we have shown that, for every t ∈ [t1, t2],

lim
R→∞

lim
ε→0

lim
δ→0

∫

ψε,δ,R(t, x)̺ε(t, x)dx = H(ρt) +
1

2

∫∫

U(x− y)dρt(y)dρt(x) ,

where we recall the definition (14) asH(ρt) := σ2
∫

log ̺(t, ·)dρt+
∫

V dρt+
1
2

∫∫

U(x−y)dρt(y)dρt(x) .
As δ, ε, R successively tend to 0, 0,∞, we have shown that the l.h.s. of Eq (48) converges to:

H(ρt2)−H(ρt1) +
1

2

∫∫

U(x− y)dρt2(y)dρt2(x)−
1

2

∫∫

U(x− y)dρt1(y)dρt1(x) . (50)

We should now identify the above term with the limit of the r.h.s. of Eq. (48) in the same regime.
The latter is composed of two terms. First consider the second term:

∫ t2

t1

∫

〈∇ψε,δ,R(t, x), v
ε
t (x)〉ρεt (dx)dt =

∫ t2

t1

∫

〈∇ψε,δ,R(t, x), ηε ∗ (vt(x)̺(t, x))〉dxdt .

We can let δ → 0 in this equation and interchange the limit and the integral. This is justified by
Lem. 12, which implies that for every R > 0, there exists a constant CR such that for every ε > 0,
δ ∈ (0, 1), t ∈ [t1, t2], x ∈ R

d,
‖∇ψε,δ,R(t, x)‖ ≤ CR . (51)
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Using Eq. (51) along with Eq. (45), the dominated convergence applies. Letting ε→ 0 in a second
step, the exact same argument applies, and we obtain:

lim
ε→0

lim
δ→0

∫ t2

t1

∫

〈∇ψε,δ,R(t, x), v
ε
t (x)〉̺ε(t, x)dxdt

=

∫ t2

t1

∫

lim
ε→0

lim
δ→0

〈∇ψε,δ,R(t, x), ηε ∗ (vt(x)̺(t, x))〉dxdt

=

∫ t2

t1

∫

〈∇(lim
ε→0

lim
δ→0

ψε,δ,R(t, x)), vt(x)〉̺(t, x)dxdt ,

where the interchange between ∇ and the limits is again a consequence of Lem. 12. We now write
the gradient in the above inner product. Note that:

lim
ε→0

lim
δ→0

ψε,δ,R(t, x) = (σ2 log ̺(t, x) + V (x) +

∫

U(x− y)χR(y)̺(t, y)dy)χR(x) .

We obtain:

lim
ε→0

lim
δ→0

∫ t2

t1

∫

〈∇ψε,δ,R(t, x), v
ε
t (x)〉̺ε(t, x)dxdt = −

∫ t2

t1

∫

‖vt(x)‖2χR(x)̺(t, x)dxdt

−
∫ t2

t1

∫

〈vt(x),
∫

(1− χR(y))∇U(x − y)dρt(y)〉χR(x)dρt(x)

−
∫ t2

t1

∫

〈vt(x),∇χR(x)(V (x) +

∫

U(x− y)χR(y)dρt(y))〉dρt(x) . (52)

By the dominated convergence theorem, Assumption 5 and Eq. (43), the last two terms in the r.h.s.
of Eq.(52) tend to zero as R → ∞, while the first term is handled by the monotone convergence
theorem. We thus obtain:

lim
R→∞

lim
ε→0

lim
δ→0

∫ t2

t1

∫

〈∇ψε,δ,R(t, x), v
ε
t (x)〉̺ε(t, x)dxdt = −

∫ t2

t1

∫

‖vt(x)‖2̺(t, x)dxdt . (53)

As a last step, we should evaluate the limit of the first term in the r.h.s. of Eq. (48), which writes:
∫ t2
t1

∫

∂tψε,δ,R(t, x)̺ε(t, x)dxdt . Here the domination argument allowing to interchange limits and
integrals requires more attention, and is justified by the following lemma, whose proof is provided
at the end of the section.

Lemma 14. Let t2 > t1 > 0 be fixed. For every R, ε > 0, there exists a constant CR,ε such that
for every δ ∈ (0, 1), t ∈ [t1, t2], x ∈ R

d,

|∂tψε,δ,R(t, x)| ≤ CR,ε , (54)

for every t ≤ T , δ > 0, and every x ∈ R
d.

By Eq. (54) and by the continuity of the map t 7→ ∂t̺
ε (see the proof of Lemma 14), we can

expand the first term in the r.h.s. of Eq. (48) as:

∫ t2

t1

∫

∂tψε,δ,R(t, x)dρ
ε
t (x)dt =

∫ t2

t1

∫

∂tψε,δ,R(t, x)̺
ε,δ(t, x)dxdt + oε,R(δ) , (55)

where oε,R(δ) represents a term which tends to zero as δ → 0, for fixed values of ε,R. Note that:

∂tψε,δ,R(t, x) = σ2 ∂t̺
ε,δ(t, x)

̺ε,δ(t, x)
χR(x) +

∫

Uε(x− y)χR(y)χR(x)∂t̺
ε,δ(t, y)dy . (56)
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Plugging this equality into (55) and noting that Uε is even (because U and ηε are), we obtain:

∫ t2

t1

∫

∂tψε,δ,R(t, x)̺
ε,δ(t, x)dxdt

= σ2

∫ t2

t1

∫

∂t̺
ε(t, x)χR(x)dxdt +

1

2

∫ t2

t1

∫ ∫

Uε(x− y)∂t(̺
ε,δ(t, y)̺ε,δ(t, x))χR(x)χR(y)dxdydt

= σ2

∫

̺ε,δ(t2, x)χR(x)dx − σ2

∫

̺ε,δ(t1, x)χR(x)dx

+
1

2

∫ ∫

Uε(x− y)χR(x)χR(y)̺
ε,δ(t2, x)̺

ε,δ(t2, y)dxdy

− 1

2

∫ ∫

Uε(x− y)χR(x)χR(x)̺
ε,δ(t1, x)̺

ε,δ(t1, y)dxdy .

By the dominated convergence theorem, we finally obtain:

lim
R→∞

lim
ε→0

lim
δ→0

∫ t2

t1

∫

∂tψε,δ,R(t, x)dρ
ε
t (x)dt =

1

2

∫ ∫

U(x− y)̺(t2, x)̺(t2, y)dxdy −
1

2

∫ ∫

U(x− y)̺(t1, x)̺(t1, y)dxdy . (57)

Putting together Eq. (50), (53) and (57), and passing to the limit in the continuity equation (48),
the statement of Prop. 6 follows.

Proof of Lem. 14. Using Eq. (48) and integration by parts,

̺ε(t2, x)− ̺ε(t1, x) =

∫ t2

t1

∫

〈∇ηε(x− y), b(y, ρs)〉dρs(y)ds+ σ2

∫ t2

t1

∫

∆ηε(x− y)dρs(y)ds .

Since ρ ∈ P2(C), supt∈[1,T ] ‖b(y, ρt)‖ ≤ C(1 + ‖y‖) + C
∫

supt∈[1,T ] ‖xt‖ dρ(x). As a consequence,
supt∈[1,T ] ‖b(y, ρt)‖ ≤ C(1 + ‖y‖) . Along with the observation that, for any fixed ε, ∇ηε and ∆ηε
are bounded, it follows that t 7→ ̺ε(t, x) is Lipschitz continuous on [t1, t2], and that its derivative
almost everywhere is given by: ∂t̺

ε(t, x) =
∫

(〈∇ηε(x − y), b(y, ρt)〉 + ∆ηε(x − y))dρt(y). Thus,
there exists a constant Cε > 0, such that:

sup
t∈[t1,t2],x∈Rd

∂t̺
ε(t, x) ≤ Cε .

Considering the second term in the r.h.s. of Eq. (56), the presence of the product of the compactly
supported functions χR(x)χR(y) implies that the former is bounded in absolute value:

∣

∣

∣

∣

∫

Uε(x− y)χR(y)χR(x)∂t̺
ε,δ(t, y)dy

∣

∣

∣

∣

≤ CR,ε .

On the otherhand, using the lower bound (41), the first term in the r.h.s. of Eq. (56), is also
bounded, and finally, Eq. (54) follows.

6.2 Proof of Prop. 7

The map H̄ : ρ 7→ H(ρǫ) is real valued and lower semicontinuous by Prop. 6 and Fatou’s lemma.

Moreover, for every ρ ∈ V2, H̄(Φt(ρ))−H̄(ρ) = H(ρt+ǫ)−H(ρǫ) = −
∫ t+ǫ

ǫ

∫

‖vs‖2dρsds. Therefore,
H̄(Φt(ρ)) is decreasing w.r.t. t, and, as such, H̄ is a Lyapunov function. In addition, the identity
H̄(Φt(ρ)) = H̄(ρ) for all t, is equivalent to: vt = 0 ρt-a.e., for every t ≥ ǫ. By Lem. 13, this implies
that ρt = ρǫ for all t ≥ ǫ. Thus, H̄(Φt(ρ)) = H̄(ρ) for all t, if and only if vǫ = 0 and ρt = ρǫ for all
t. This means that H is a Lyapunov function for the set Λǫ. The first point is proven.

Consider a recurrent point ρ ∈ V2, say ρ = limΦtn(ρ). By Prop. 3, ρ ∈ Λǫ, for any ǫ > 0. This
means that there exists µ ∈ S such that ρt = µ for all t > 0. By continuity of the map (π0)#,
ρ0 = lim ρtn . Thus, ρ0 = µ. This means that ρt = µ for all t ≥ 0, which writes ρ ∈ Λ0. The proof
is complete.
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6.3 Proof of Prop. 8

In this paragraph, Assumptions 2 and 5 hold. Therefore, Assumptions 1 and 3 also hold. Let
k ∈ N, n ∈ N

∗. We recall Eq.(1)

X i,n
k+1 = X i,n

k − γk+1∇V (X i,n
k )− γk+1

n

∑

j∈[n]

∇U(X i,n
k −Xj,n

k ) +
√

2γk+1ξ
i,n
k+1 .

Let us momentarily drop the upperscript n to simplify the notations, and we write γ as a shorthand
notation for γk+1. Note that ∇U(−x) = −∇U(x). We expand:

‖X i
k+1‖2 = ‖X i

k‖2 − 2γ〈∇V (X i
k), X

i
k〉 − 2

γ

n

∑

j

〈∇U(X i
k −Xj

k), X
i
k〉+ 2γ‖ξik+1‖2

+
√

2γT i
k+1 + γ2‖∇V (X i

k) +
γ

n

∑

j

∇U(X i
k −Xj

k)‖2 .

where we defined:

T i
k+1 := 〈ξik+1, X

i
k − γ∇V (X i

k)−
γ

n

∑

j

∇U(X i
k −Xj

k)〉 .

Using Assumption 5 and Cauchy-Schwartz inequality, there exists constants C, λ > 0 such that:

‖X i
k+1‖2 ≤ (1 − λγ + Cγ2)‖X i

k‖2 −
2γ

n

∑

j

〈∇U(X i
k −Xj

k), X
i
k〉+ 2γ‖ξik+1‖2

+
√

2γT i
k+1 + Cγ2(1 + n−1

∑

j

‖Xj
k‖2) . (58)

Note that E(T i
k+1|Fn

k ) = 0. As a preliminar, we first establish the bound:

sup
k,n

(

E(‖X1,n
k ‖2‖X2,n

k ‖2) + 1

n
E(‖X1,n

k ‖4)
)

<∞ . (59)

To that end, compute the average w.r.t. i ∈ [n] of both sides of Eq. (58). Setting Sk := 1
n

∑

i ‖X i
k‖2,

and

χU
k :=

1

n2

∑

i

∑

j

〈∇U(X i
k −Xj

k), X
i
k〉

χξ
k+1 :=

1

n

∑

i

‖ξik+1‖2

χT
k+1 :=

1

n

∑

i

T i
k+1 .

Eq. (58) leads to, for every k larger than some fixed constant,

Sk+1 ≤ (1− λγ)Sk − 2γχU
k + 2γχξ

k+1 +
√

2γχT
k+1 + Cγ2 .

Moreover, using that ∇U(Xj
k −X i

k) = −∇U(X i
k −Xj

k), we obtain:

χU
k =

1

2n2

∑

i

∑

j

〈∇U(Xj
k −X i

k), X
i
k −Xj

k〉 ≥ −C .

Therefore, Sk+1 ≤ (1− λγ)Sk + 2γχξ
k+1 +

√
2γχT

k+1 + Cγ, for large k. Raising to the square,

S2
k+1 ≤ (1 − λγ)2S2

k + (2γχξ
k+1 +

√

2γχT
k+1 + Cγ)2 + CSk(2γχ

ξ
k+1 +

√

2γχT
k+1 + Cγ) .

Thus, for large k,

ES2
k+1 ≤ (1 − λγ)ES2

k + Cγ2E((χξ
k+1)

2) + CγE((χT
k+1)

2) + Cγ2 + CγE(Skχ
ξ
k+1) + CγESk .
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Note that E((χξ
k+1)

2) is bounded uniformly in k, n. Moreover, by Jensen inequality, E(Sk) ≤
√

E(S2
k). Finally, using that E(Skχ

ξ
k+1) = dσ2

E(Sk), we obtain:

ES2
k+1 ≤ (1− λγ)ES2

k + Cγ2 + CγE((χT
k+1)

2) + Cγ2 + Cγ
√

E(S2
k) .

We inspect the term E((χT
k+1)

2):

E((χT
k+1)

2) =
σ2

n2

∑

i

E‖X i
k − γ∇V (X i

k)−
γ

n

∑

j

∇U(X i
k −Xj

k)‖2

≤ C

n2

∑

i

E‖X i
k‖2 + γ2

C

n2

∑

i

(
1

n

∑

j

‖∇U(X i
k −Xj

k)‖)2

≤ C

n2

∑

i

E‖X i
k‖2 + γ2

C

n2

∑

i

1

n

∑

j

(1 + ‖X i
k‖2 + ‖Xj

k‖2)

≤ C

n
Sk + γ2

C

n2
.

We finally obtain: ES2
k+1 ≤ (1 − λγ)ES2

k + Cγ2 + Cγ
√

E(S2
k). This proves that ES2

k is bounded
uniformly in k, n. By exchangeability, ES2

k = n−1
E(‖X1

k‖4) + (1 − 1/n)E(‖X1
k‖2‖X2

k‖2). This
proves Eq. (59).

We now expand ‖X i
k+1‖2 starting from (58). We use the notation∇U i := n−1

∑

j ∇U(X i
k−Xj

k).
For all k large enough,

‖X i
k+1‖4 ≤ (1 − γλ)‖X i

k‖4 + (−γ〈∇U i, X i
k〉+ 2γ‖ξik+1‖2 +

√

2γT i
k+1 + Cγ2(1 + Sk))

2

− 2γ〈∇U i, X i
k〉‖X i

k‖2 + 2γ‖ξik+1‖2‖X i
k‖2 +

√

2γT i
k+1‖X i

k‖2 + Cγ2‖X i
k‖2(1 + Sk)

We take expectations. Note that E‖ξik+1‖4 ≤ C, ES2
k ≤ C and E(‖ξik+1‖2‖X i

k‖2) ≤ CE‖X i
k‖2 =

CE(Sk) ≤ C (where as usual, C changes at each inequality). Thus

E‖X i
k+1‖4 ≤ (1− γλ)E‖X i

k‖4 + Cγ2E〈∇U i, X i
k〉2 + CγE((T i

k+1)
2) + Cγ

− 2γE〈∇U i, X i
k〉‖X i

k‖2 + Cγ2E(‖X i
k‖2Sk).

It is straightforward to show that E((T i
k+1)

2) ≤ C(1+γ2E(‖∇U i‖2)) and that, in turn, E(‖∇U i‖2 ≤
C(1+ESk) ≤ C. Thus, E((T i

k+1)
2 ≤ C. Moreover, by Cauchy-Schwartz inequality followed by the

triangular inequality,

E〈∇U i, X i
k〉2 ≤ E(

1

n

∑

j

‖∇U(X i
k −Xj

k)‖2‖X i
k‖2)

≤ CE(
1

n

∑

j

(1 + ‖X i
k‖2 + ‖Xj

k‖2)‖X i
k‖2)

≤ C + CE‖X1
k‖4 + CE‖X1

k‖2‖X2
k‖2 .

Note that the last term in the above inequality is bounded uniformly in k, n, by Eq. (59). Changing
again the constants C, λ, we obtain that for large k,

E‖X i
k+1‖4 ≤ (1 − γλ)E‖X i

k‖4 − 2γE〈∇U i, X i
k〉‖X i

k‖2 + Cγ.

The crux is to estimate the term −2γE〈∇U i, X i
k〉‖X i

k‖2. By exchangeability, and using that
∇U(0) = 0,

E〈∇U i, X i
k〉‖X i

k‖2 =
1

n

∑

j 6=i

E〈∇U(X i
k −Xj

k), X
i
k〉‖X i

k‖2 = (1− 1

n
)E〈∇U(X1

k −X2
k), X

1
k〉‖X1

k‖2 .

Moreover, using that 〈∇U(X1
k −X2

k), X
1
k −X2

k〉 ≥ −C,
E〈∇U(X1

k −X2
k), X

1
k〉‖X1

k‖2 ≥ −CE‖X1
k‖2 + E[〈∇U(X1

k −X2
k), X

2
k〉‖X1

k‖2]
≥ −CE‖X1

k‖2 − E[‖∇U(X1
k −X2

k)‖X2
k‖‖X1

k‖2]
≥ −CE‖X1

k‖2 − CE[(1 + ‖X1
k‖+ ‖X2

k‖)‖X2
k‖‖X1

k‖2]
≥ −CE‖X1

k‖2 − CE[‖X2
k‖‖X1

k‖3]− CE[‖X2
k‖2‖X1

k‖2]− C

≥ −CE[‖X2
k‖‖X1

k‖3]− C ,

31



where we used the fact, proven above, that E‖X1
k‖2 and E[‖X2

k‖2‖X1
k‖2] are bounded, uniformly

in n, k. The term E[‖X2
k‖‖X1

k‖3] can be handled by Cauchy-Schwartz inequality:

E[‖X2
k‖‖X1

k‖3] ≤ E(‖X2
k‖2‖X1

k‖2)
1
2E(‖X1

k‖4)
1
2 ≤ CE(‖X1

k‖4)
1
2 .

We have shown that:
E〈∇U i, X i

k〉‖X i
k‖2 ≥ −CE(‖X1

k‖4)
1
2 − C .

Putting all pieces together,

E‖X1
k+1‖4 ≤ (1− γλ)E‖X1

k‖4 + Cγ
√

E(‖X1
k‖4) + Cγ.

This proves that E‖X1
k‖4 is bounded, uniformly in k, n. The proof is complete.

7 Proofs of Section 4.2

7.1 Proof of Prop. 9

We recall the iterations:

ai,nk+1 = ai,nk (1 − λγk+1) +
γk+1

n

∑

j∈[n]

(K(wi,n
0 , wj,n

0 )aj,nk −Q(wi,n
0 ) + γk+1ζ̃

i,n
k+1 +

√

2γk+1ξ̃
i,n
k+1 .

We denote Ik,n := 1
n

∑

i∈[n](a
i,n
k )2. The proof will be done in two steps. First, we will obtain a

bound on E(I2k,n). Then, we can bound E(ai,nk,n)
4 and the bound on E(ζ̃i,nk )4 follows easily. Observe

that:

(ai,nk+1)
2 = (ai,nk )2(1− λγk+1)

2 − 2
γk+1(1− λγk+1)

n

∑

j∈[n]

ai,nk (K(wi,n
0 , wj,n

0 )aj,nk −Q(wi,n
0 ))

+
√

2γk+1(1− γk+1λ)ξ̃
i,n
k+1a

i,n
k + (1− λγk+1)a

i,n
k γk+1ζ̃

i,n
k+1

+





γk+1

n

∑

j∈[n]

K(wi,n
0 , wj,n

0 )aj,nk + γk+1ζ̃
i,n
k+1 +

√

2γk+1ξ̃
i,n
k+1





2

. (60)

Since K is a bounded positive semi-definite kernel,
∑

i,j∈[n] a
i,n
k K(wi,n

0 , wj,n
0 )aj,nk ≥ 0. Hence, we

obtain:

1

n

∑

i∈[n]

(ai,nk+1)
2 ≤ 1

n

∑

i∈[n]

(ai,nk )2(1− λγk+1 + Cγ2k+1)
2 +

2γk+1

n

∑

i∈[n]

ai,nk Q(wi,n
0 )

+
(1− λγk+1)

n

∑

i∈[n]

(γk+1ζ̃
i,n
k+1 +

√

2γk+1ξ̃
i,n
k+1)a

i,n
k +Cγ2k+1

1

n

∑

i∈[n]

(ζ̃i,nk+1)
2 +Cγk+1

1

n

∑

i∈[n]

(ξ̃i,nk+1)
2 .

Since ϕ is bounded, (ζ̃i,nk+1)
2 ≤ C(1 + y2k+1 + Ik,n), and

Ik+1,n ≤ Ik,n(1− 2λγk+1 + Cγ2k+1) + Cγk+1

√

Ik,n

+
(1− λγk+1)

n

∑

i∈[n]

(γk+1 ζ̃
i,n
k+1 +

√

2γk+1ξ̃
i,n
k+1)a

i,n
k + Cγ2k+1(1 + y2k+1) + Cγk+1(ξ̃

i,n
k+1)

2 .

We have E(ξ̃i,nk+1|Fn
k ) = E(ζi,nk+1|Fn

k ) = 0 and E(y2k+1 + (ξ̃i,nk+1)
2|Fn

k ) < C. Raising to the square,

taking the expectation of the above inequality, for k large enough, there exists λ̃ such that:

E
[

I2k+1,n

]

≤ E
[

I2k,n
]

(1− λ̃γk+1) + Cγk+1E

[

I
3/2
k,n

]

+ Cγk+1E [Ik,n] + Cγ2k+1 .
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The latter guarantees, supk,n E

[

I2k,n

]

≤ C. We will keep this in mind and now, going back to

Eq. (60), we obtain for k large enough:

E





1

n

∑

i∈[n]

(ai,nk )4



 ≤ E





1

n

∑

i∈[n]

(ai,nk+1)
4



 (1− λ̃γk+1) +
Cγk+1

n2
E





∑

i,j∈[n]

|ai,nk |3(|aj,nk |+ 1)





+
Cγk+1

n
E





∑

i∈[n]

(ai,nk )2



+ Cγ2k+1E
[

I2k,n
]

+ Cγ2k+1 . (61)

The larger term is controlled by Cauchy-Schwartz inequality

∑

i,j∈[n]

E

[

|ai,nk |3|aj,nk |
]

≤
∑

i,j∈[n]

√

E

[

(ai,nk aj,nk )2
]

√

E

[

(ai,nk )4
]

.

Using the exchangeability, E(I2k,n) =
1
nE(a

1,n
k )4 + n−1

n E(a1,nk a2,nk )2 and:

1

n2

∑

i,j∈[n]

√

E

[

(ai,nk aj,nk )2
]

√

E

[

(ai,nk )4
]

=
1

n
E

[

(a1,nk )4
]

+
n− 1

n

√

E

[

(a1,nk a2,nk )2
]

√

E

[

(a1,nk )4
]

≤
√

E

[

(a1,nk )4
]

√

1

n
E

[

(a1,nk )4
]

+
n− 1

n
E

[

(a1,nk a2,nk )2
]

≤
√

E

[

(a1,nk )4
]

√

E

[

I2k,n

]

.

Finally, from Eq. (61), the bound on E(I2k,n), and for k large enough, we obtain

E

[

(a1,nk+1)
4
]

≤ E

[

(a1,nk+1)
4
]

(1− λ̃γk+1) + Cγk+1E

[

(a1,nk+1)
4
]1/2

+ Cγk+1E

[

(a1,nk+1)
4
]3/4

+ Cγ2k+1 .

Consequently, supk,n E
[

E

[

(a1,nk+1)
4
]]

. Remarking E(ζi,nk )4 ≤ CE(ai,nk )4 <∞, Prop. 9 is proven.

7.2 Proof of Lem.4

Define Aµ : w 7→
∫

adµ(a|w) and Bµ : w 7→
∫

a2dµ(a|w). We use the notation K̟f(w) :=
∫

K(w,w′)f(w′)d̟(w). We also denote by 〈f, g〉̟ :=
∫

f(w)g(w)d̟(w) the inner product in
L2(̟). Define the constant c :=

∫

y2dν(x, y). Expanding R0(µ), we obtain after some straight-
forward algebra:

R0(µ) = 〈Aµ,K̟Aµ −Q〉̟ + c+
λ

2

∫

Bµd̟ .

Therefore,

R0(µ)−R0(µ
∗) = 〈Aµ,K̟Aµ〉 − 〈Aµ∗ ,K̟Aµ∗〉̟ − 〈Q,Aµ −Aµ∗〉̟ + λ

∫

Bµ −Bµ∗

2
d̟

≥ 〈K̟Aµ∗ −Q,Aµ −Aµ∗〉̟ + λ

∫

Bµ −Bµ∗

2
d̟ , (62)

where we use the fact that 〈Aµ − Aµ∗ ,K̟(Aµ − Aµ∗)〉̟ ≥ 0 to obtain the last inequality.
By [AGS08, Lem. 12.4.7], there exists a Borel map on R

d−1 → P2(R × R) which, to every
w ∈ R

d−1, associated a probability measure γ(·|w) ∈ Π0
2(µ∗(·|w), µ(·|w)), where we recall that

Π0
2(µ

∗(·|w), µ(·|w)) is the set of 2-Wasserstein optimal transport maps between µ∗(·|w) and µ(·|w),
as introduced after Eq. (8). We obtain:

Bµ(w) −Bµ∗(w)

2
=

∫

a2 − a2∗
2

dγ(a∗, a|w) =
∫

a∗(a− a∗)dγ(a∗, a|w) +
∫

(a− a∗)
2

2
dγ(a∗, a|w) .

Substituting this inequality in Eq. (62), and expanding the first term in the r.h.s. of Eq. (62) as a
function of γ( · |w), we obtain:

R0(µ)−R0(µ
∗) ≥

∫ ∫

(K̟Aµ∗(w)−Q(w) + λa∗)(a− a∗)dγ(a∗, a|w)d̟(w)

+

∫ ∫

(a− a∗)
2

2
dγ(a∗, a|w)d̟(w) .
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Note that K̟Aµ∗(w) −Q(w) + λa∗ = −b̃((a∗, w), µ∗). We obtain:

R0(µ)−R0(µ
∗) ≥ −

∫ ∫

b̃((a∗, w), µ
∗)(a−a∗)dγ(a∗, a|w)d̟(w)+

∫ ∫

(a− a∗)
2

2
dγ(a∗, a|w)d̟(w) .

(63)
We now study Rσ(µ)−Rσ(µ

∗) for σ > 0. We make the assumption that µ( · |w) admit a density
for ̟-almost every w, which we denote by µ(a|w) (in the opposite case, Rσ(µ) = +∞ and there is
nothing prove). Then, Rσ(µ) = R0(µ) + σ2

∫

Cµ(w)d̟(w), where Cµ(w) :=
∫

logµ(a|w)µ(da|w).
Since

∫

∂a(logµ
∗(a|w))2dµ(a|w) < ∞ for µ∗-a.e. w, one is able to apply [AGS08, 10.1.1.B, Prop.

9.3.9, Th. 10.4.6], which yields:

Cµ(w)− Cµ∗(w) ≥
∫

(a− a∗)∂a logµ
∗(a|w)dγ(a∗, a|w) .

Putting all pieces together, the result is complete.

7.3 Proof of Lem. 5

The proof is provided in the case where σ2 > 0 (the arguments are simpler when σ2 = 0). By
Remark 2, the first point is immediate: π̃#ρt = ̟ for all t.

In order to establish the result, one has two options. The first alternative is to follow step
by step the proof of Prop. 6. In the case σ2 > 0 (the case σ2 = 0 being easier), we establish
using [MPZ21], that ρt( . |w) admits a density w.r.t. L 1, which satisfies regularity conditions. In

particular, one can prove
∫ t2
t1

∫

‖vρt
‖dρtdt < ∞ for all t2 > t1 > 0. Then, by integration by part,

it is easy to establish the following continuity equation:

∂tρt +∇ · vρt
ρt = 0 ,

in the sense of distributions on C∞
c ([t1, t2] × R

d). Using the continuity equation along with the
molification technique used in the proof of Prop. 7, Eq. (25) follows. Now, Eq. (25) proves, as a

byproduct, that
∫ t2
t1

∫

‖vρt
‖2dρtdt <∞, which implies Eq. (24). The proof is concluded.

An alternative proof consists in using the concept of gradient flows on P2(R
d). Consider the

functional F̟(µ) which coincides with Rσ(µ) if π̃#µ = ̟, and F̟(µ) = +∞ otherwise. By
[AGS08, Th.11.2.1], there exists a locally Lipschitz curve, say (µt), defined on any interval of the
form [0, T ], such that µt → ρ0 as t → 0, and whose velocity field (vt) satisfies −vt ∈ ∂F̟(µt). It

holds that
∫ T

0 ‖vt‖2dρtdt < ∞ by definition of the velocity. Also using the same result [AGS08,

Th.11.2.1], Rσ(µt2) − Rσ(µt1) ≤ −
∫ t2
t1

∫

‖vt‖2dµtdt for all t2 > t1 ≥ 0, since F̟ = Rσ along

the curve (µt). Using [AGS08, Th. 10.4.6] and the same derivations as in the proof of Prop. 4,
we establish that vt = (ṽµt

, 0). Moreover, by [AGS08, Th. 8.2.1], there exists a measure on
µ ∈ P(C([0, T ]) such that µt = µt for all t, and such that ẋt = vµt

(xt) for µ-almost every x,
and almost every t. Thus, on [0, T ], µ satisfies the martingale problem given in Def. 1. As, by
[CD22, Prop. 1], this problem has a unique solution, we obtain that µ coincides with (π[0,T ])#ρ.
In particular, ρt = µt.

A Technical proofs

A.1 Proof of Proposition 1

Let I ⊂ R, we denote by C(I,Rd) the set of continuous function from I to R
d. One can show,

that (ρn) is a Cauchy sequence in the complete space (Pp(C([0, k],R
d)),Wp). Thus, there exists a

sequence of compact sets (Kk) in C([0, k],R
d) such that:

(π[0,k])#ρn(Kk) > 1− ε

2k
,

for all k ∈ N
∗. Let K :=

⋂

k≥1 π
−1
[0,k](Kk) ⊂ C. The union bound yields ρn(K) > 1 − ε. Referring

to [Bou89, Theorem 2, Section X, Chapter 5], K has a compact closure in C. Hence, there exists
a converging subsequence (ρϕn

) converging to ρ ∈ P(C). Following the proof of [Vil09, Theorem
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6.18], one can readily check that limn→∞Wp((π[0,k])#ρn, (π[0,k])#ρ) = 0, for every k. Conse-
quently, limn→∞ Wp(ρn, ρ) = 0, which means the completeness of Pp(C). It remains to obtain its
separability.

As C is Polish, there exists a dense sequence (xn) in C. Following the proof of [Vil09, Theorem
6.18], one can construct a sequence (ρn) in Pp(C) from (xn), such that ((π[0,k])#ρn) is dense in

C([0, k],Rd) for every k. With this result, it can be verified that (ρn) is dense in Pp(C).

A.2 Proof of Lemma 2

Since Prop. 1 holds, (I(ρn)) is a weak⋆-relatively compact sequence in P(C), and there exists a
sequence of compact sets (Kk) in C, such that

I(ρn)(Kk) > 1− k

2k
,

for every k ∈ N
∗ and every n ∈ N

∗. Let ε > 0. We define the relatively compact set in P(C):

Kε :=

{

ρ ∈ P(C) : ρ(Kk) > 1− 1

kε
, for every k ∈ N

∗, such that kε > 1

}

.

The union bound and Markov’s inequality yields:

P (ρn ∈ Kε) > 1− ε (64)

for every n ∈ N
∗.

In order to be relatively compact in Pp(C), the set Kε must satisfy Eq. (p-UI). Since the
sequence (I(ρn)) has uniformly integrable p–moments, there exists a sequence (ak,l)(k,l)∈(N∗)2 , such
that for every l ∈ N

∗, limk→∞ ak,l = ∞ , and

∀(k, l) ∈ (N∗)2, sup
n∈N∗

E

[

∫

sup
t∈[0,l]

‖xt‖p 1 sup
t∈[0,l]

‖xt‖>ak,l
dρn(x)

]

≤ kl

2k+l
.

For ε > 0, we define a set that satisfies Eq. (p-UI):

Uε :=

{

ρ ∈ Pp(C) :

∫

sup
t∈[0,l]

‖xt‖p 1 sup
t∈[0,l]

‖xt‖>ak,l
dρ(x) ≤ 1

εkl
, for every k, l ∈ N

∗

}

.

Using Markov’s inequality and the union bound, we obtain

P (ρn ∈ Uε) > 1− ε . (65)

Putting together Eq. (64) and Eq. (65),

P (ρn ∈ Kε ∩ Uε) > 1− 2ε .

Kε ∩ Uε is a relatively compact set in Pp(C). Thus, (ρn) is tight in Pp(C).

A.3 Proof of Lemma 3

Given G = Gr,φ,h1,...,hr,t,s,v1,...,vr ∈ Gp, we first want to show that G(ρn) → G(ρ∞) as ρn → ρ∞
in Pp(C). This last convergence is characterized by the fact that ρn → ρ∞ in P(C), and that the
sequence (ρn) has uniformly integrable p–moments as shown by (p-UI), which is written here as

∀T > 0, lim
a→∞

sup
n∈N

∫

1 sup
u∈[0,T ]

‖yu‖>a

(

sup
u∈[0,T ]

‖yu‖p
)

dρn(y) = 0.

We write G(ρn) =
∫

g(x, y)d(ρn ⊗ ρn)(x, y), where for x, y in C:

g(x, y) :=

(

φ(xt)− φ(xs)−
∫ t

s

(

〈∇φ(xu), b(xu, yu)〉+ σ2∆φ(xu)
)

du

)

h(x) ,
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and h(x) :=
∏r

j=1 hj(xtj ). Using Cauchy-Schwartz inequality, we state a useful inequality:

|g(x, y)| ≤ C

(

1 +

∫ t

s

‖b(xu, yu)‖ du
)

, (66)

where C = ‖h‖∞ max
(

2 ‖φ‖∞ + σ2(t− s) ‖∆φ‖∞ , ‖∇φ‖∞
)

. Note that ρn ⊗ ρn → ρ∞ ⊗ ρ∞ in
P(C × C). Furthermore, using the bound (66) for our function g, and observing that t is the
maximum of the time snapshots intervening in the definition of g, we have for each a > 0

sup
n∈N

∫

1|g(x,y)|>a|g(x, y)|d(ρn ⊗ ρn)(x, y)

≤ sup
n∈N

∫

1

C

(

1+t sup
u∈[0,t]

‖yu‖

)

>a

Cp

(

1 + t sup
u∈[0,t]

‖yu‖
)p

dρn(y),

therefore,

lim
a→∞

sup
n∈N

∫

1|g(x,y)|>a|g(x, y)|d(ρn ⊗ ρn)(x, y) = 0,

which shows that G(ρn) → G(ρ) by uniform integrability, and the first result of the lemma is
established.
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[Ben99] M. Benäım. Dynamics of stochastic approximation algorithms. In Séminaire de Prob-
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