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ABSTRACT

This work introduces a novel spectral-based framework
for quantitative acoustic microscopy (QAM) applications.
The proposed approach leverages Hankel (HK) matrix theory
and an adaptive least squares method with an alternating
direction method of multipliers. Simulation results and
real-world experiments conducted with a 500-MHz QAM
system demonstrate the robustness and efficiency of the
proposed method. Comparative analysis with traditional
autoregressive-based method shows a better accuracy in
spectral and acoustic parameter estimation. Additionally,
the HK-based method exhibits reduced variance in the pre-
sence of data corruptions, highlighting its potential for more
reliable estimation.

Index Terms— Quantitative acoustic microscopy, spec-
tral analysis, Hankel matrix, ADMM

1. INTRODUCTION

Quantitative acoustic microscopy (QAM) is an advanced
imaging modality that leverages very high-frequency ultra-
sound, typically exceeding 200 MHz, to form high-resolution
quantitative two-dimensional (2D) images of acoustical and
mechanical properties of thin sections of soft biological tis-
sues affixed to microscopy slides. These images offer reso-
lutions finer than 8 pm, providing detailed information on
properties such as the speed of sound, acoustic impedance,
and acoustic attenuation [1]. This cutting-edge technology
has been successfully employed in the examination of various
soft biological tissues, including liver samples, lymph nodes,
retina, and even living cells (see e.g., [2, 3]).

In the QAM data acquisition process, consisting of a 2D
raster scan of the ex vivo sample with a high-frequency trans-
ducer, the received radio-frequency (RF) signal is typically
composed of two leading reflections, originating from the
interfaces between water (used as a coupling fluid between
the transducer and the sample) and tissue, and tissue and
glass slide. These reflections are time-shifted, frequency-
attenuated, and amplitude-decayed versions of a reference re-
flection obtained from a water-glass interface. The challenge

in QAM image formation lies in accurately decomposing the
acquired RF signals into these two main reflections.

Time-domain methods have been proposed in QAM ap-
plications (e.g. [4]) and work well when the two signals are
well-separated in time. In contrast, frequency-domain me-
thods have proven valuable in scenarios where the reflections
overlap in time, as demonstrated by the influential work of
Hozumi et al. [5]. The current state of the art in QAM, as
proposed by Rohrbach et al. [1], relies on an autoregres-
sive (AR) frequency model and a spectral-based algorithm
inspired by the classical Prony’s method [6] and the anni-
hilating filter [7]. This AR-based method has demonstrated
clear superiority over previous approaches. However, its effi-
cacy is constrained in situations involving thin tissue samples,
high tissue speed of sound, small impedance contrast, or high
tissue attenuation, thereby limiting the full potential of QAM.

Spectral analysis [8] is a broad field with numerous well-
established methods, including popular algorithms like MU-
SIC [9] and ESPRIT [10]. In the spirit of [11], this paper in-
troduces and investigates a novel spectral method within the
QAM framework. Unlike AR modeling, this new algorithm
addresses the spectral problem using the Hankel (HK) matrix
theory and employs an alternating direction method of multi-
pliers (ADMM). Our main goal is to enhance estimation ac-
curacy and noise robustness in spectral estimation, leading to
improved estimates of acoustic parameters and a reduction in
the number of outliers produced by the aforementioned me-
thods.

2. THEORETICAL BACKGROUND

2.1. Signal Model in Quantitative Acoustic Microscopy

In QAM applications, for a given spatial position of the trans-
ducer, the RF echo signal h(t) is modeled as the sum of P
weighted and delayed versions h,, of a reference signal 1

h(t) = th(t) = ZaphS(t —tp), (1)

where * indicates an additional effect of frequency-dependent
attenuation and h(t — to) is obtained in practice from a re-
gion devoid of sample [1]. The parameters a, and ,, in (1)



represent the amplitude decay and the shift in time of the pth
signal h,. Upon performing the discrete Fourier transform
of an M -sized time-sampled version of (1) and dividing the
Fourier coefficients of i by those of kg, it is obtained a nor-
malized spectrum

yk = Y aplexp(2mAf[-B,

p=1

P
—iAL)F = "N, (2
Ap p=t

where the frequencies are given by kA f, with Af = f,/2M
representing the step size for a sampling frequency fs. The
parameters 3, and At, = t, — to are the frequency atte-
nuation coefficient and the time delay of the pth signal. The
normalization in (2) is well-defined where the Fourier coef-
ficients of hg are nonzero. This is guaranteed in practice by
restring frequencies between kpin A f and koA f, which are
determined by the -20-dB bandwidth of the transducer [1].

QAM principle consists of estimating a = (a1, ...,ap)
and A = (A1,...,\p) using the truncated spectrum y =
(Yhosrs - - > Yk ) € CPNFL, considering 2N = kpax — Kmin
without loss of generality. This involves solving a classi-
cal problem in spectral analysis [8]. Subsequently, the goal
is to determine the spectral parameters associated with the
two main signals in (1), which represent the echoes from the
water-tissue and tissue-glass interfaces. The remaining P —2
signals account for potential multiple reflections, scattering,
or noise. Without loss of generality, the two main reflections
are denoted as hp, and h,,, with p; # pa and At, < At,,.
Finally, quantitative tissue properties can be directly com-
puted using the estimates Gy, , ap,, )‘m’ and )\pz along with
the equations in (4).

In the following section, the approach for acoustic para-
meter estimation presented in [1] is recalled. It is based on an
AR inverse model, and represents the state of the art, serving
as a baseline for the new method proposed in this work.

2.2. AR-based Parameter Estimation

Preprocessing. Before applying the AR-based spectral de-
composition method, in [1], a Cadzow filter [12] is used for
denoising y. This process involves iteratively reducing the
rank of the Hankel matrix! H(y). To do this, the singular
value decomposition (SVD) H(y) = U >viis computed,
where T denotes the conjugate transpose, X is a diagonal ma-
trix containing singular values in descending order, and U
and V are complex unitary matrices. Then, Hp(y) is recon-
structed by keeping only the P largest singular values of X,
ie., Hp(y) = UXpV' where [Zpl;; = [X];; fori,j < P
and [¥ p];; =0 otherwise. The denoised version y” of y can
be reconstructed by taking the average of all anti-diagonals
of Hp(y), ie., yP = ,mean ([Hp(y)]ij). This procedure is
J

repeated iteratively five times.

'Hankel matrix A = H(z) generated element-wise from a vector z =
(#1,...,22N+1), is defined as a matrix with constant anti-diagonals, such
that [ALJ =Zitj—1-

The model order P must be predetermined, either set as
a constant (e.g., P > 2), or during the first iteration of the
Cadzow filter, P can be determined based on the number of
singular values contributing more than 10% to the overall sig-
nal. The latter approach results in a more tailored representa-
tion of the underlying signal and is the strategy adopted in the
present work.
AR-based estimation of a and XA. The AR model assumes
that y;, can be estimated using a linear combination of the P-
previous Fourier coefficients

Yirp.ont1 = —Rs+e, 3)

where s is the P x 1 vector that gathers the AR coefficients
and € is a (2N + 1— P) x 1 error vector. The matrix R has
a size of (2N + 1— P) x P with entries defined as [R];; =
Ykwn+P—i+j—1. The vector s is estimated from (3) using a
least-squares (LS) approach, and A is determined by the roots
of polynomials formed by the elements of s. The parameter
a is obtained via an LS approach for solving Ila =y, where
IT is a Vandermond-like matrix of size (2N + 1) x P, with
entries defined as [IT];; = A}, with j = 1,..., P and i =
kmina sy kmax-

Acoustic parameter estimation. The P pulses are recon-
structed using the estimates of A and a, and the amplitude
of their envelopes (maximum of the Hilbert transform of the
RF signals) is computed. The pulses corresponding to the
two largest amplitudes are the desired components p; and
p2. The pulse p; from the water-tissue interface is the one
with the shortest time of flight, since it occurs before the
sample-glass-side interface. Finally, the speed of sound (c),
the acoustic impedance (Z), the attenuation («) and tissue
thickness (d) can be computed as follows

B cwimag(In Xy, ) _ —real(ln),,)
~ imag(ln \,,) — imag(In \,,)’ AmdAf
ap 4
Z:Zw(1+ R_ng) d:c_wimag(ln)\p]) @
T TR 2 2rAf
we

where ¢y, and Z,, are the known speed of sound and acoustic
impedance of water, and R, is the known pressure reflection
coefficient between water and glass. In the context of QAM,
estimates are considered outliers if they fall outside physically
admissible ranges, specifically ¢ < 1500, ¢ > 2200, Z < 1.48,
or Z>2.21[1].

3. PROPOSED HK-BASED PARAMETER
ESTIMATION

The estimation accuracy of the acoustic parameters is affected
by the estimation of the spectral parameters in (2). This can
be particularly challenging in specific scenarios, e.g., for low
signal-to-noise ratios, small values of d and small contrast
between Z and Z,,. In this section, we introduce a novel
approach for QAM image formation, considering that the
Fourier coefficients in (2) are corrupted by additive Gaussian



noise. Our approach is inspired by the spectral method pro-
posed in [11], which has not been adapted and tested within
this context before, making it one of the key contributions of
this work.

HK-based estimation of a and A. In our applications, k is
equally spaced in [Kmpin, kmax] and y is uniformly sampled.
Consequently, the Kronecker’s theorem[13, 14] for Hankel
operators holds, implying that rank(H (y)) = P if and only if
y coincides at the sample points with g whose element corres-
ponding to the kth frequency is defined as g5 = 25:1 ap/\llj.
Unlike the AR model, the spectral problem is not resolved
directly in the parameter a, A space but in the space of the
vectors that generate Hankel matrices of rank P. The corres-
ponding optimization problem to find the best approximation
of y in the 5 sense read as

L 1
minimize ~||y — g||3 + Rp(A)
A,g 2

subject to: A = H(g),

®)

where R p(A) is an indicator function, such that Rp(A) =0
if rank(A) < P and infinity otherwise, and |[.||2 stands for
lo vector norm. The augmented Lagrangian associated with
(5)is

1
L(A.g.A)=Rp(A) + 5ly - gll5 ©
+ (A A= H(g)ke + 5|4 - H(g)lI},

where A is the Lagrange multiplier matrix, p is a penalty
coefficient to be chosen, (A, B)ge =real(tr(AB')) denotes
the scalar product between matrices A and B and ||A||% =
(A, A)g. denotes the Frobenius norm.
Problem (5)-(6) can be solved using a suitable ADMM
method [15] with iterate steps A9T! =argmin£(A, g9, A7),
A

gt =argmin £( AT g, A?) and ATT =AY 4 p(ATT! —
g

H(g%*1)). Introducing the weights w,, =n if n < N +1 and
w,, =N + 2 — n otherwise, and following the derivations in
[11], the ADMM procedure is summarized in Algorithm 1.

Due to the term 5||A — H(g)||% in (6), one usually does

not have A = H(g), where A and g are the estimates resul-
ting from the ADMM algorithm. In other words, neither g

aprox

nor y obtained by averaging the anti-diagonals terms of
Aie,yd™ =L 3 [A];, will be equal to a sum of

"idj=n+1

exponential functions. Finally, it was observed that y*™* is a
more suitable solution than §. Assuming rank(H (y*™*)) =
P, X can be obtained from the singular value decomposition
H(y* ) =UXVT. Specifically, A is the vector of eigenva-
lues of the matrix (U")TU 7, where U (resp. U') denoted the
matrix U of con-eigenvectors whose first row (resp. last row)
has been dropped. Finally, the estimation of a and the acous-
tic parameter estimation remain as described in Section 2.2.

Algorithm 1: ADMM procedure

g%=y.A"=0
forg=1:Qdo
UiVl =svd(H(g™") — AT
a1 ) I1Zly, ifi i< P
Bplii= 0, otherwise
A(‘I:qu;lg(‘/qyr updating A
forn=1:2N +1do
| St T A+ AL
i+j=n+1
end
A=A 4 p(A? - H(g9)) updating A

end
Result: A = A9 g = g?

4. EXPERIMENTS AND RESULTS

The performances of the AR-based (‘AR’) and the proposed
HK-based (‘HK’) algorithms are compared on simulated
and experimental 500-MHz QAM data. We also investi-
gate the benefits of using the Cadzow filter in the proposed
framework, considering an HK-based method (‘HKw/oC’)
which processes the original spectrum, thus avoiding the pre-
processing denoising step. For all algorithms, P was set using
the criterion presented in Section 2.2. Additionally, for HK-
based algorithms, we set the number of ADMM iterations to
=200 and the penalty coefficient to p=0.025.

4.1. Simulations

To mimic a real-world scenario, we used a measured refe-
rence signal hg from our 500-MHz QAM system and set the
acoustic parameters to experimentally relevant values based
on [1]. Specifically, we used d = 8um, ¢ = 1600 m/s, Z =
1.63 MRayl and o« = 10 dB/MHz/cm, implying that a,, =
0.0546, ap, = 0.9745, A,, = 0.9112+0.4119i and A,, =
0.9895 4 0.0315i. We simulated RF signals following the
model (1) for P = 2, M = 300 and perturbed them by a
white Gaussian noise with a variance equal to o2, for o =
10201010 ((€(h0) =SNR)/20)) corresponding to a given signal-
to-noise ratio (SNR). The symbol £(hg) represents the ma-
ximum of the Hilbert transform of hg. In our study, we in-
vestigated the performance of AR, HK and HKw/oC methods
on the estimation of spectral parameters (ap,, Gp,, Apys Apy)
and acoustic parameters (d, ¢, Z, ) for SNR ranging from 40
to 100 dB, the typical SNR range in QAM. To assess perfor-
mances, we calculated the mean error and standard deviation
(STD) across 200 realizations after the outliers were removed.

Fig. 1 shows the performance results of the AR, HK and
HKw/oC algorithms for the estimation of the spectral parame-
ters in columns 1-3 and the acoustic parameters in columns 4-
5. These results only considered the realizations where none
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Fig. 1. Mean error and standard deviation results for AR (red), HK (black), and HKw/oC (blue) algorithms for different SNR
values. Columns 1-3: Error in the estimated spectral parameters. Columns 4-5: Error in the estimated acoustic impedance
(Z = 1.63 MRayl), speed of sound (¢ = 1600 m/s), attenuation coefficient (a¢=10 dB/MHz/cm), and thickness (d = 8um).

of the algorithms returned outliers, which were only observed
in the noisiest scenario (SNR =40 dB). Specifically, at 40 dB,
HK reported an 11% rate of outliers, lower than 13% and 31%
obtained for AR and HKw/oC. Overall, all algorithms yield a
mean error close to zero and small STD for high SNR values
(i.e., SNR > 50 dB). Notably, at SNR = 40 dB, HK yielded
a lower STD for the spectral parameters corresponding with
the p; signal, implying the same behavior for Z and d.

4.2. Ex vivo experiments

The AR-based and HK-based algorithms were tested using
experimental data obtained using the 500-MHz QAM sys-
tem described in [16]. The data were collected from a 6-
pm human lymph node section using a sampling frequency
of 10 GHz. A 300-point RF signal was acquired at each spa-
tial location using a 1-pum step size in both directions. A
0.140 x 0.135 micrometers (mm) spatial region of interest
(ROI) was selected for analysis.

Fig. 2 (top) shows the estimated speed of sound maps
from the analyzed ROI using the different algorithms: AR
(left), HK (center), and HKw/oC (right). The outliers are
marked in white. Notably, AR reported a larger rate of out-
liers (~27.8%) compared to HK (~19.6%) and HKw/oC (~
20.3%). To mitigate outliers, standard QAM post-processing
techniques were used; resulting images are shown in Fig. 2
(bottom), reporting ~ 1.4%, ~ 0.87% and ~ 0.89% rate of
outliers for AR, HK and HKw/oC, respectively. We can ob-
serve, mainly in the post-processing results, estimation differ-
ences between AR and HK-based algorithms. Finally, similar
results were obtained for the remaining acoustic parameters
of interest, although they are not presented here due to space
limitations. Overall, the results of the HK-based methods are
quite similar, implying that the use of the filter in the pro-
posed approach might have a minimal impact on experiments
and warrants further investigation.

Fig. 2. Top: estimated c-maps, using AR (left), HK (center),
and HKw/oC (right) algorithms. Bottom: post-processed es-
timated c-maps. A region illustrating the differences between
the different estimators is shown in red.

5. CONCLUSIONS

We proposed a novel spectral method within the QAM frame-
work. We conducted simulations to compare the performance
of our approach with the traditional AR-based method. The
results demonstrated that our method exhibits better perfor-
mance in estimating both spectral and acoustic parameters
in noisy scenarios. Furthermore, the proposed approach was
tested in ex vivo experiments using our 500-MHz QAM sys-
tem. It was found a lower percentage of outliers with our ap-
proach, emphasizing its robustness and reliability in practical
applications.
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