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In this paper, we present a Lagrangian method for searching initial disturbances which

maximise their total energy growth after a certain time horizon for linearized fluid–structure

interaction problems. We illustrate this approach for the channel flow case with compli-

ant walls. The walls are represented as thin spring-backed plates, the so-called Kramer-type

walls. For nearly critical values of the control parameters (reduced velocity VR and Reynolds

number Re), analyses for sinuous or varicose perturbations show that the fluid–structure

system can sustain two types of oscillatory motions of large amplitude. The first motion is

associated with two-dimensional perturbations that are invariant in the spanwise direction.

For that case and a certain range of streamwise wavenumbers, the short-time dynamics of sin-

uous perturbations is driven by the nonmodal interaction between the Tollmien–Schlichting

(TS) and the travelling-wave flutter (TWF) modes. The amplitude of the oscillation is found

to increase with the reduced velocity, and the optimal gain exhibits larger values than its

counterpart computed for a channel flow between rigid walls. For perturbations of varicose

symmetry, the transient energy is rapidly governed by the unstable TWF mode without

a clear low frequency oscillation. The second type of motion concerns streamwise invari-

ant and spanwise periodic perturbations. In that situation, it is found that perturbations

of sinuous symmetry exhibit the largest amplification factors. For moderate values of the

reduced velocity, VR = O(1), the dynamics is the result of a simple superposition of a stand-

ing wave, due to traveling-wave flutter modes propagating downstream and upstream, and

the rolls/streaks dynamics. The variations of these oscillations with the reduced velocity,

spanwise wavenumber and Reynolds number are then investigated in detail for the sinuous

case.

Keywords: Fluid–structure interaction; optimal transient growth; Lagrangian formulation; oscilla-

tory dynamics.
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1. INTRODUCTION

The interaction between fluid flow and compliant walls has a wide variety of applications in both

biological and engineering systems. For instance, after the seminal experiments of Kramer1, many

researchers have illustrated the performance of compliant coatings by altering the flow favourably

to extend the laminar region (see review2 and the recent work of Nagy et al.3). In the biological

context, wall deformability plays an important role in blood flow as well as peristaltic transport,

for example through the intestines and the urogenital tract (see references4,5 for a review).

In that respect, many efforts have been made to design a representative compliant wall model

and to study the asymptotic linear stability due to the coupling between the fluid flow and the solid

structure (see the recent review of Kumaran6). Among them, the surface-based model consisting

of an infinitely thin plate mounted on springs and dampers (the so-called Kramer wall) which

interacts with a shear flow received considerable attention over the last few decades. Carpenter

and Garrad7,8 focused on the stability of boundary-layer flows over Kramer-type compliant walls.

They provided some confirmation of the transition-delaying potential of compliant coatings. For

this model, Carpenter and Garrad7,8 identified two categories of instability modes: the fluid-based

Tollmien–Schlichting (TS) mode and solid-based fluid–structure instabilities, referenced as FSI

modes hereafter. The last category includes both the traveling-wave flutter (TWF) modes and the

(almost static) divergence (DIV) modes.

The mechanism responsible for the growth of TWF modes is similar to that governing water

surface waves generated by wind9,10. The DIV mode is either interpreted as an absolute instability11

or a modal instability with a nearly vanishing phase velocity for high values of the wall dissipation12.

While a wide number of investigations has been devoted to study the long-time regime of these

instabilities13–16, only a few have focused on the short-time dynamics. Among them, Hœpffner

et al.17 studied the transient energy growth mechanisms for perturbations developing in a channel

flow with Kramer-type compliant walls. Their analysis was restricted to streamwise invariant

perturbations (i.e. varying the spanwise wavenumbers β at fixed streamwise wavenumber α = 0).

The solution is obtained by summing over the eigenmodes that collectively exhibit nonmodal

growth. The authors have shown that, for large wall elasticity, the flow can sustain standing

waves with large oscillations in time. The most amplified perturbations exhibit sinuous symmetry

and are well described by an added-mass effect. The flow behaviour is then essentially driven

by the standing-wave dynamics rather than by the lift-up effect. However, the authors failed to

obtain convergence when increasing the number of modes used in the summation. Thus, a complete
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overview of the wall flexibility effects onto transient energy growth is still missing. More specifically,

the significant case where streaks interact with the standing wave for moderate wall flexibility has

not been explored by the previous authors.

For the same flow case, Zengl and Rist18 computed the optimal gain map in the streamwise–

spanwise wave number plane with a similar numerical method. These authors showed that the

optimal gain does not significantly depend on the wall flexibility. They have also observed that

the flow can sustain strong oscillations for oblique waves due to wall compliance. However, the

underlying mechanisms are not fully discussed in that study. In addition, this analysis has been

carried out for only a single set of compliant wall parameters.

More recently, for pulsatile plane Poiseuille flow bounded by compliant walls, Tsigklifis and

Lucey19 investigated mainly the intracyclic growth features, i.e., the modulation amplitude of a

given Floquet mode. Nevertheless, a complete study of nonmodal growth mechanisms associated

with the steady case is not given by these authors.

While the analyses discussed above have provided significant insight into some nonmodal mech-

anisms of a flow interacting with compliant boundaries, they only focus on specific parameter

ranges and do not fully capture the complete transient growth scenarios due to the entire set of

eigenmodes. Then the above-mentioned studies have some limitations. First, for the streamwise-

invariant case (α = 0), some essential questions like the influence of the wall flexibility on the

amplification of streaks, for instance, has not yet been sufficiently discussed; how does the stand-

ing wave interact with the streaks and at what characteristic spanwise scale? Second, how does the

amplitude of standing-wave oscillations scale with wall parameters and spanwise wavenumbers β

for moderate wall flexibility, and what is the spanwise wavenumber exhibiting oscillatory behaviour

with highest modulation amplitudes? Third, for the spanwise-invariant case (β = 0), what are the

specific roles of Tollmien–Schlichting waves and travelling-wave flutter modes onto the transient

energy growth for short times?

To fill these gaps, we will thus reconsider the transient energy growth problem for fluid flows

interacting with a compliant channel, using a Lagrangian approach. It will allow us to overcome

the difficulties that arise when summing over the whole spectrum of eigenmodes. The chosen

wall model is of Kramer type. We will also adopt the framework described in Lebbal et al.15

where we considered the reduced velocity VR as the main control parameter for fluid–structure

interaction problems20. Then, we will discuss the optimal transient energy growth mechanisms

for both streamwise invariant perturbations and disturbances developing in the streamwise-wall

normal plane for a range of reduced velocities and Reynolds numbers.
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The paper is organized as follows. Section 2 presents the model and governing equations. In

particular, the constrained optimization problem is presented within a Lagrangian framework.

The adjoint system of equations, adjoint kinematic conditions and temporal terminal and initial

conditions are given for the linearized fluid–structure interaction system. After having presented

the control parameters and the numerical methods in sections 3 and 4, respectively, section 5

is devoted to give some physical insight into the influence of the reduced velocity and Reynolds

number onto the short-time dynamics of the perturbation for a range of streamwise and spanwise

wavenumbers. Finally, conclusions and prospects are given in the last section.

2. PROBLEM DEFINITION AND SYSTEM OF EQUATIONS

2.1. Fluid–structure interaction problem

We introduce the Cartesian coordinate system (x, y, z) and unit vectors (ex, ey, ez) associated

with streamwise, wall-normal and spanwise directions, respectively. Hereafter, the study will fo-

cus on an incompressible Newtonian fluid, with dynamic viscosity µ and density ρ, between two

spring-backed deformable plates, which are allowed to move only in the y direction. As shown

in previous theoretical analyses5,19 for a similar case, the wall motion in x and z directions only

plays a minor role in the dynamics and is therefore not considered in the present investigation

for simplicity of the model. The instantaneous flow velocity and pressure fields are given by

u(x, t) = (u(x, t), v(x, t), w(x, t)) and p(x, t), at position x = (x, y, z) and time t.

Denoting the lower and upper wall positions as ζ±(x, z, t), the fluid domain corresponds to

ζ−(x, z, t) < y < ζ+(x, z, t) (see figure 1), and the flow between the walls follows the incompressible

Navier–Stokes equations

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u, (1)

0 = ∇ · u, (2)

where ν = µ/ρ denotes the kinematic viscosity. The displacement of the walls is governed by

m
∂2ζ±

∂t2
+ d

∂ζ±

∂t
+
(
B∆2 − T∆+K

)
ζ± = f±, (3)

where m denotes the mass per unit area of the plates, d their damping coefficient, B the flexural

rigidity, T the wall tension, K the spring stiffness and f± represents the y-component of the

hydrodynamic forces acting on the plates. Note that in the above equations ∆u = (∂xx+∂yy+∂zz)u
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FIG. 1: Channel flow with infinite spring-backed flexible walls. (a) Schematic diagram showing

the equilibrium state configuration and (b) wall deformation and coordinate system.

while ∆ζ = (∂xx+ ∂zz)ζ and ∆2ζ = (∂x4 +2∂x2z2 + ∂z4)ζ. The fluid–structure interaction problem

is completed with the kinematic conditions

u = 0, v =
∂ζ±

∂t
and w = 0 for y = ζ±, (4)

associated with no-slip conditions prevailing along the compliant walls.

The unperturbed base configuration corresponds to Poiseuille flow due to a constant pressure

gradient within a straight rectangular channel (figure 1). It is associated with a steady parabolic

streamwise velocity profile U(x) = (U(y), 0, 0), with U(y) = 3
2Um(1 − (y/h)2), between the un-

deformed walls at y = ±h. Here Um = 1
3
h2

ν G is the mean velocity resulting from a constant

streamwise pressure gradient −G. Note that we assume a pressure outside the channel walls always

equal to the unperturbed pressure −Gx prevailing inside. The same hypothesis is made by Davies

and Carpenter13,21, Tsigklifis and Lucey19, and few others since then.

2.2. Linear governing equations

In the next sections, we will investigate the short-time dynamics of a small perturbation super-

imposed to the equilibrium state. Therefore the total flow fields are decomposed as

u(x, t) = U(y)ex + u′ (x, t) , (5)

p(x, t) = −Gx+ p′ (x, t) , (6)
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where u′ and p′ represent the deviations from the base flow fields. Similarly, the positions of both

walls are written as

ζ± (x, z, t) = ±h+ η± (x, z, t) ,

where η± measures the displacement of the walls from their equilibrium positions at y = ±h.

The assumption of small-amplitude perturbations leads to the linear version of the the Navier–

Stokes equations:

∂u′

∂t
+ (U · ∇)u′ + Uyv

′ex = −1

ρ
∇p′ + ν∆u′, (7)

0 = ∇ · u′. (8)

After linearization of the hydrodynamic forces f± (see22 for details), the wall equations are recast

as

∂η±

∂t
= γ±, (9)

m
∂γ±

∂t
= −dγ± −

(
B∆2 − T∆+K

)
η± ±

(
p′ − µ

∂v′

∂y

)∣∣∣∣
y=±h

, (10)

where the wall velocity γ± = ∂tη
± has been introduced in order to obtain a system of first-order

differential equations in time. This system of linear partial differential equations is completed with

the associated linearized kinematic conditions:

u′ = −η±
dU

dy
, v′ = γ±, w′ = 0 at y = ±h. (11)

See our previous paper15 for further details about the derivation of the governing equations for

small-amplitude perturbations.

2.3. Optimization framework

For the sake of conciseness, we henceforth omit ′ for the small-amplitude perturbations. We

first introduce a measure of the total energy of the perturbation in a computational box of size

Lx × 2h× Lz:

E (u) = ⟨⟨ρu2⟩⟩︸ ︷︷ ︸
Fluid kinetic energy

+
∑
i=±

⟨B
(
∆ηi

)2
+ T∇ηi · ∇ηi +K

(
ηi
)2⟩︸ ︷︷ ︸

Wall potential energy

+
∑
i=±

⟨m
(
γi
)2⟩︸ ︷︷ ︸

Wall kinetic energy

, (12)

where ⟨⟨ · ⟩⟩ =
∫ Lx

0

∫ h

−h

∫ Lz

0
· dxdydz and ⟨·⟩ =

∫ Lx

0

∫ Lz

0
· dxdz, which represent the integral

values either over the whole domain D or along the walls ∂D. Here, E may be written as a function
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of u only since η± and γ± can be expressed in terms of the velocity components at the walls using

kinematic conditions (11). In (12), we separate the energy contributions from the walls (i.e. wall

potential energy and wall kinetic energy) from the one associated with the fluid (i.e. fluid kinetic

energy). This decomposition is also used by Hœpffner et al.17 and Malik et al.12 for transient

growth analysis of flows interacting with compliant walls.

The largest total transient energy growth E that a small perturbation can experience over a

fixed target time τ is obtained by maximising the following constrained Lagrangian:

L = E (u (t = τ))− ρ

∫ τ

0
⟨⟨a ·

(
ut +U · ∇u+

1

ρ
∇p− ν∆u+ vUyex

)
⟩⟩dt−

∫ τ

0
⟨⟨Π∇ · u⟩⟩dt

−
∫ τ

0
⟨g+

[
mγ+t + dγ+ +

(
B∆2 − T∆+K

)
η+ − p+ + µv+y

]
⟩dt

−
∫ τ

0
⟨g−

[
mγ−t + dγ− +

(
B∆2 − T∆+K

)
η− + p− − µv−y

]
⟩dt

−
∫ τ

0
⟨e+

[
η+t − γ+

]
⟩dt−

∫ τ

0
⟨e−

[
η−t − γ−

]
⟩dt− ⟨⟨a0 · [u (t = 0)− u0]⟩⟩ − λ [E (u0)− 1] ,

(13)

where the control is u0 = (u0, v0, w0) and u±0 = −η±0 Uy|±=h, v±0 = γ±0 , w±
0 = 0. In (13),

λ, a0, Π, a, g+, g−, e+, e− are the Lagrange multiplier fields imposing the constraints that

the initial total perturbation energy equals 1, the perturbation is incompressible, and that the

fluid–structure interaction system (10) is satisfied.

Taking variations with respect to all the degrees of freedom, where the boundary conditions

are included implicitly when integrating by parts the momentum equations leads to the adjoint

evolution equations for the fields:

−at −U · ∇u+ 1
ρ∇Π− ν∆u+ aUyey = 0,

∇ · a = 0,

−mg+t − e+ + g+d−Π+ + µb+y = 0,

−mg−t − e− + g−d+Π− − µb−y = 0,

−e+t +
(
B∆2 − T∆+K

)
e+ − µa+y U

+
y = 0,

−e−t +
(
B∆2 − T∆+K

)
e− + µa−y U

−
y = 0.

(14)

together with the adjoint kinematic conditions: g− = b−, g+ = b+,

a+ = 0, a− = 0,
(15)



8

the temporal terminal conditions:

for D \ ∂D : a (t = τ) = 2u (t = τ) ,

and for ∂D : g± (t = τ) = 2γ± (t = τ) , e± (t = τ) = 2
[
2ρhUy|2±h + (B∆2 − T∆+K)

]
η± (t = τ) ,

(16)

and the initial conditions:

for D \ ∂D : a (t = 0) = 2λu (t = 0) ,

and for ∂D : g± (t = 0) = 2λγ± (t = 0) , e± (t = 0) = 2λ
[
2ρhUy|2±h + (B∆2 − T∆+K)

]
η± (t = 0) ,

(17)

where the Lagrange multiplier λ is fixed to verify unit total energy at t = 0. Here, the integration

along the wall normal direction is computed with spectral accuracy. A direct and adjoint looping

method23, where the direct system is integrated forward in time and the adjoint problem is advanced

backward in time, is hence used to compute the optimal initial perturbation for a given target time

τ . A similar technique has already been used for a Couette flow by our team with the same code26.

In the next sections, the corresponding maximum energy growth is referenced as G(τ). Since the

nonlinear terms are removed from the equations, both direct and adjoint systems can be solved in

Fourier space, without any coupling between spatial Fourier modes. In this context, we introduce

the following waveform for the different fields:

u (x, y, z, t) = ũ (y, t) ej(αx+βz)+c.c., a (x, y, z, t) = ã (y, t) ej(αx+βz)+c.c.,

γ± (x, z, t) = γ̃± (t) ej(αx+βz)+c.c., η± (x, z, t) = η̃± (t) ej(αx+βz)+c.c.,

g± (x, z, t) = g̃± (t) ej(αx+βz)+c.c., e± (x, z, t) = ẽ± (t) ej(αx+βz)+c.c.,

with
√
j = −1 and α, β the streamwise and spanwise wavenumbers, respectively. Again, for

simplicity, we omit ·̃ in the following.

3. CONTROL PARAMETERS

In the present study, the compliant-channel flow system is characterized by 9 dimensional pa-

rameters: the volumetric flow rate [Q] = m2s−1, the half height [h] = m of the channel, the fluid

density [ρ] = kgm−3, the kinematic viscosity [ν] = m2s−1, the mass of the plate per unit area

[m] = kgm−2, the damping coefficient of the wall [d] = kgm−2s−1, the bending stiffness of the

plate [B] = kgm2s−2, the wall tension [T ] = kg s−2 and the spring stiffness [K] = kgm−2s−2.
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Hence, the system may be described by 6 dimensionless parameters:
Re =

Q

ν
, VR =

Q

4h2

√
m

K
, Γ =

m

ρh
,

d∗ =
d√
mK

, B∗ =
B

Kh4
, T∗ =

T

Kh2
.

(18)

Here Re is the Reynolds number based on channel diameter and average flow velocity. The nondi-

mensional wall parameters d∗, B∗ and T∗ are relative to the spring stiffness K. Finally, two

non-dimensional parameters account for the coupling between the fluid and the compliant walls:

the mass ratio between the walls and the fluid Γ; the reduced velocity VR that represents the ratio

of the wall characteristic time scale
√
m/K to the characteristic flow advection time scale 4h2/Q

(see15,20). In order to reduce the dimensionality of the control parameter space, and without much

loss of generality, we only use T = 0 and Γ = 2 hereafter; and also set three dimensional parameters

at ρ = 1, h = 1 and Q = 1.

4. NUMERICAL METHODS

The numerical method is here described for the direct system only, since time marching of the

adjoint system proceeds in a similar fashion. The approach closely matches the Uzawa algorithm

described in Peyret24. Spatial directions are approximated with spectral accuracy and a semi-

implicit second-order time-marching scheme is used.

As usually done in the incompressible regime, a PN/PN−2 Chebyshev collocation method is

used for the spatial discretization. We rewrite the system of equations in vector form with complex

components, using u = (u1, u2, .., uN ), v = (v1, v2, ..., vN ) and w = (w1, w2, ..., wN ) for velocity

components and p = (p2, ..., pN−1) for the pressure. We also introduce ũ = (u2, ..., uN−1) and

ṽ = (v2, ..., vN−1), where only the interior points are included. After spatial discretization, with N

Chebyshev collocation points, the first and second y-derivative operators acting on velocity fields

are recast as D and D2 matrices, respectively. The y-derivative operator on the N − 2 grid points

for the pressure is represented by matrix Dp. Finally, we note hereafter the time step ∆t and n

the number of the time iteration.

The discrete system of the momentum equations for the fluid is then rewritten in matrix form
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to yield 
Mũn+1 − jαpn+1 = S̃n+1,n,n−1

u ,

Mṽn+1 −Dpp
n+1 = S̃n+1,n,n−1

v ,

Mw̃n+1 − jβpn+1 = Sn,n−1
w ,

(19)

and the divergence-free constraint expressed at the interior points reads:

D̃ṽn + jαũn + jβw̃n = Sn
d , (20)

where M = νD̃2 − σI with σ = 3/ (2∆t) + ν
(
α2 + β2

)
. Here D̃ and D̃2 represent the first and

second derivative operator on N grid points, where the first/last rows and first/last columns are

removed. In (19) and (20), boundary conditions for u and v are included on the right hand side of

the equations. The boundary conditions are time dependent. As a consequence, in (20) we have:

Sn
d = − (D11v

n
1 +D1NvnN , D21v

n
1 +D2NvnN , ..., DN1v

n
1 +DNNvnN ) .

For (19), we use the following decomposition:

S̃n+1,n,n−1
u = Sn,n−1

u +Cn+1
u , S̃n+1,n,n−1

v = Sn,n−1
v +Cn+1

v ,

with

Sn,n−1
u = −

(
4ũn − ũn−1

)
/2∆t+ 2fnu − fn−1

u ,

Sn,n−1
v = −

(
4ṽn − ṽn−1

)
/2∆t+ 2fnv − fn−1

v ,

Sn,n−1
w = −

(
4w̃n − w̃n−1

)
/2∆t+ 2fnw − fn−1

w ,

where

fnu = jαŨũn + ṽnŨy, fnv = jαŨṽn, fnw = jβŨw̃n,

and the contribution of the boundary conditions for the second derivatives are included into:

Cn
u = −

(
D2

11u
n
1 +D2

1NunN , D2
21u

n
1 +D2

2NunN , ..., D2
N1u

n
1 +D2

NNunN
)
,

Cn
v = −

(
D2

11v
n
1 +D2

1NvnN , D2
21v

n
1 +D2

2NvnN , ..., D2
N1v

n
1 +D2

NNvnN
)
.

Applying the divergence operator (20) onto the momentum equations (19), an equation for the

pressure is obtained:

Qpn+1 = Gn,n−1 +Hn+1, (21)
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with Q = α2M−1 − D̃M−1Dp + β2M−1 and

Gn,n−1 = jαM−1Sn,n−1
u + D̃M−1Sn,n−1

v + jβM−1Sn,n−1
w ,

Hn+1 = −Sn+1
d + jαM−1Cn+1

u + D̃M−1Cn+1
v .

Following Davies & Carpenter21, a three-point implicit time discretization for the wall equations

is used to ensure numerical stability: m
(
3γn+1

± − 4γn± + γn−1
±

)
= 2∆t

[
−dγ±

n+1 −
(
B∆2 +K

)
η±

n+1 ± pn+1
1/N ∓ µ(Dv)1/N

n+1
]
,(

3ηn+1
± − 4ηn± + ηn−1

±
)
= 2∆tγn+1

± ,

(22)

with ∆2 = α4 + β4 + 2α2β2 and where p1 and pN are computed using spectral extrapolation. The

following system is then solved iteratively at each time-step:

pn+1,k+1 = Q−1
[
Gn,n−1 +Hn+1,k

]
,

ũn+1,k+1 = M−1jαpn+1,k+1 +M−1
[
Sn,n−1
u +Cn+1,k

u

]
,

ṽn+1,k+1 = M−1Dpp
n+1,k+1 +M−1

[
Sn,n−1
v +Cn+1,k

v

]
,

wn+1,k+1 = M−1jβpn+1,k+1 +M−1Sn,n−1
w ,

γn+1,k+1
±

[
1 +

2∆t

3m
d

]
+ ηn+1,k+1

±

[
2∆t

3m

(
B∆2 +K

)]
=

2∆t

3m

[
±pn+1,k+1

1/N ∓ µ (Dv)n+1,k+1
1/N

]
+

4

3
γn± − 1

3
γn−1
±

ηn+1,k+1
± − 2

3
∆tγn+1,k+1

± =
4

3
ηn± − 1

3
ηn−1
± .

(23)

In (23), the wall part is easily solved by inverting a 2× 2 system and the boundary conditions for

the velocity components are updated using kinematic conditions. Between 20 and 50 iterations are

needed at each time step to converge.

Finally, the numerical method is further improved by considering separately perturbations of

sinuous or varicose symmetries and using only half of the channel together with derivative opera-

tors appropriate for the symmetry of each component of the different flow fields25. The separation

between varicose and sinuous cases facilitates the analysis of the driving mechanisms of the dy-

namics and also allows to run the different symmetries simultaneously on two processors. The

present code is an extension of a DNS code developed by our team which has been well validated

for channel and Couette flow simulations with rigid walls26,27.
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FIG. 2: Validation of the time-marching linear solver for both direct and adjoint formulations for

Re = 10000, α = 1, B∗ = 4, Γ = 2, d∗ = 0 and VR = 1. Numerical parameters are set to N = 60

and ∆t = 0.01. The time evolution of the modulus of the wall vertical displacement for a given

random initial perturbation is shown on a logarithmic scale. A linear regression provides a

temporal growth rate σ = 0.031894 for both direct and adjoint solvers. The temporal evolution of

the most amplified linear eigenvalues obtained with the eigenvalue matrix solver gives

σ = 0.031887.

5. NUMERICAL VALIDATION

5.1. Asymptotic case

In this section, we validate the numerical method for time marching the linearized Navier–Stokes

equations that include the wall deformation (referenced as LDNS hereafter). Both the direct and

adjoint systems are considered. For that purpose, we focus on a case described in a previous paper

of our team. The control parameters are fixed to VR = 1 , B∗ = 4, d∗ = 0, α = 1, Re = 10000. For

this case, the long-time dynamics is driven by the varicose travelling wave flutter mode. The linear

stability problem has been solved using an algebraic eigenvalue solver. The LDNS is initialized

with a random noise. The numerical parameters are fixed to N = 60 and ∆t = 0.01. Results are

shown in figure 2, where we have reported the time evolution of the modulus of the wall vertical

displacement for both the direct (η) and adjoint systems (e).

The figure shows a perfect agreement between the temporal amplification rate obtained with

the algebraic eigenvalue solver and the one derived from the linearized Navier–Stokes solver for

both the direct and adjoint problems.
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FIG. 3: Same flow case as in figure 2. The envelope of the eigenfunctions computed either with

the LDNS (in full lines) or the eigenvalue solver (dot symbols) are shown.

In figure 3, we also compare the spatial structure of the eigenmodes computed with the eigen-

value solver and the LDNS for the direct system, which again perfectly agree.

5.2. Transient growth

The coupling between the direct and adjoint solvers and the choice of the energy norm are

discussed using results given by Hœpffner et al.17. For that purpose, we convert the dimensionless

values provided by Hœpffner et al.17 to those used in the present manuscript. Hence, for this case,

the reduced velocity is fixed to VR = 23.57, the flexural rigidity is set to B∗ = 4, the wall dissipation

d∗ = 0.0071, the Reynolds number Re = 6667. The spanwise and streamwise wavenumbers are

fixed to 0.2 and 0, respectively. Two different energy norms are used: the total energy norm (12)

and another one based only on the flow kinetic energy inside the domain. The envelopes of the

optimal gain G over the target time τ computed using the direct–adjoint looping method for both

energy norms are shown in figure 4. The number of collocation points used is N = 60 and the

time step is fixed to ∆t = 0.01. Published results of Hœpffner et al.17 are also reported. The

envelope G is either associated with the sinuous or varicose symmetry depending on the chosen

time horizon used for the optimization. Figure 4 shows an almost perfect agreement between
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FIG. 4: G as a function of the target time τ for VR = 23.57, B∗ = 4, d∗ = 0.0071, Re = 6667,

β = 0.2 and α = 0. Results extracted from Hœpffner et al.17 are also reported. Computations

associated with the total energy norm and the fluid kinetic energy norm inside the domain are

shown in black and blue, respectively.

our time-stepping algorithm and the matrix solver used by Hœpffner et al.17. Hœpffner et al.17

have used an eigenfunctions basis for the computation of G. The authors have been unable to

obtain a true convergence towards the optimal solution when including too many modes in the

projection. Especially, when considering the whole spectrum, the authors show that the optimal

gain tends to blow up. Within the present time-stepping framework, we do not observe any problem

for the convergence even when doubling the number of collocation points. It seems therefore more

appropriate to use the present method in order to draw definite conclusions about transient growth

scenarios investigated hereafter. The figure also shows that while a similar beating phenomenon is

recovered for both inner products, the amplitude of the perturbation is clearly decreased by using

the fluid kinetic energy norm only. Therefore, it seems inappropriate to restrict the analysis to

the fluid kinetic energy only because it fails to take into account a significant level of amplification

associated with the wall dynamics. Hereafter, all computations are carried out using the total

energy norm. In the next section, the wall dissipation is set to zero and the flexural rigidity is fixed

to B∗ = 1 for illustration purposes.



15

6. RESULTS

6.1. Optimal growth for β = 0

In this section, the analysis is restricted to two-dimensional perturbations with vanishing span-

wise wavenumber, β = 0. In figure 5, time evolutions of G for various streamwise wave numbers are

shown at different reduced velocity for both the sinuous and varicose symmetries. The figure shows

that for VR varying from VR = 0.006 to VR = 0.45, a weak effect of the wall flexibility is observed

for all α that are investigated. When the reduced velocity is increased up to 0.53, the varicose

configuration is driven by the asymptotically unstable TWF mode for short times for α = 0.8 and

1. One may recall that the varicose case is the most unstable one when considering the asymptotic

regime (i.e. the critical reduced velocity is lower than the one associated with the sinuous case15).

For α = 1.2, 1.4 and 1.6, a distinct short time growth is observed with the emergence of a distinct

peak in G. For these cases, the sinuous configuration is always the most amplified for short times.

For VR = 0.65 and the varicose symmetry, the system is mainly governed by the unstable mode

for α = 0.8, 1.2 and 1.4. A distinct peak of G is only observed for α = 1.6. Once again, for this

streamwise wave number, the sinuous symmetry is the most amplified symmetry for short times.

Especially, its energy peak in G is seen to increase with the reduced velocity. Hence, focusing our

attention on transient growth mechanism, the sinuous configuration seems to be the most inter-

esting case to investigate. In addition, the sinuous case also exhibits a clear distinct low frequency

beating, not observed for the varicose symmetry (see figure 5(d) and α = 1). As a consequence,

for the sake of conciseness, we will focus on the sinuous symmetry hereafter.

The influence of the reduced velocity onto the optimal gain G is further illustrated in figure 6

for α = 1.2, Re = 6666 and target times varying from 0 to 100. We recall that for this Reynolds

number, the TS modes are temporally damped for the rigid wall case. For VR = 0.4, G exhibits a

growth for short times and relaxes to zero in the asymptotic regime. For VR = 0.8, G peaks during

short times before being damped until τ = 25 and then increases for long times. For this reduced

velocity value, the TWF mode is temporally amplified. To further characterize the energy growth

for short times, we note Gs, the optimal gain associated with the first peak (see figure 6). In the

figure 6, it is clear that Gs depends on VR. The knowledge of the impact of VR onto Gs is also of

strong interest even in the slightly supercritical regime since it provides some information on the

receptivity of the system to external disturbances.

Let us now introduce the quantity GM
s (Re, VR) = maxαGs (Re, VR, α) that measures the max-
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(d) VR = 065

FIG. 5: G as a function of the target time τ for Re = 6666 and VR = 0.006, 0.45, 0.53 and 0.65

(panels a,b,c and d, respectively). For all panels, the streamwise wavenumbers are

α = 0.8, 1, 1.2, 1.4 and 1.6 (from the left to the right). In red: sinuous symmetry, in black:

varicose symmetry.

imum gain reached by Gs over α for a given configuration (Re, VR). The distribution of GM
s with

Re and VR is shown in figure 7(a) and the associated optimal wavenumber αM
s in figure 7(b).

The figure 7 shows that while the TS wave is slightly damped temporally13 for small values of

VR, the transient growth is enhanced with the wall compliance. In addition, close to the critical
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FIG. 6: G as a function of the target time τ for Re = 6666, α = 1.2 and VR = 0.4, 0.8.
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FIG. 7: Isocontours of (a) GM
s and (b) αM

s in the (Re, VR) plane. In dashed line, the evolution of

the critical Reynolds number with respect to the TS mode is displayed. In dash-dotted line, the

evolution of the critical reduced velocity with respect to the TWF mode is represented.

value of VR for the onset of the TWF mode, the transient growth for short times has considerably

increased.

Let us now focus on some representative cases. In figure 8, the time evolutions of the total

energy associated with the optimal initial perturbation for VR = 0.6, Re = 8300 and some target

times τ and streamwise wavenumbers α are displayed. For comparison purposes, the envelope G

for the rigid case is also reported (in red). The case is represented by a black dot in the maps of
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(d) α = 1.4

FIG. 8: Time evolutions of the total energy for the optimal initial perturbation for

τ = 26, 66, 133, 200, 266 (from the left to the right) and α = 0.8, 1, 1.2, 1.4. The Reynolds

number is fixed to Re = 8300 and the reduced velocity is set to VR = 0.6. In red, the envelope G

for the rigid case is represented.

figure 7. The figure shows that the distribution of the total energy gain for short times is in strong

contrast with the rigid walls counterpart. The compliant walls can either stabilize or enhance the

energy growth. One may also notice that energy growth exhibits beating oscillations for some

parameters.

The same analysis is conducted for VR = 0.7 and results are shown in figure 9 (the case is also
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(c) α = 1.2
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(d) α = 1.4

FIG. 9: Time evolution of the total energy for the optimal initial perturbation for

τ = 26, 66, 133, 200, 266 (from the left to the right) and α = 0.8, 1, 1.2, 1.4. The Reynolds

number is fixed to Re = 8300 and the reduced velocity is set to VR = 0.7. In red, the envelope G

for the rigid case is represented.

reported in the maps of figure 7). The figure shows a similar behaviour as the one observed for

VR = 0.6 with the exception that the amplitude of the oscillations and the total energy peak GM
s

are enhanced by the wall compliance. Interestingly, the figure also shows that the onset of the

exponential instability for the TWF mode occurs at different streamwise wave numbers as those



20

-0.4 0 0.4 0.8
-0.1

-0.05

0

∆ω

ωr

ω
i

TWF
TS

FIG. 10: Spectrum for Re = 8300, VR = 0.7 and α = 1.

where the largest oscillations are observed. In an effort to explain the underlying mechanism we

show in figure 10 a subset of the eigenvalue spectrum for VR = 0.7 and α = 1. The complex circular

frequency is noted ω = ωr + jωi with the frequency ωr/2π and the temporal amplification rate ωi.

In addition to the TS mode, the spectrum exhibits also two distinct modes, the so-called travelling

wave flutter (TWF) modes (see Lebbal15 for further results). One TWF mode is travelling along

the downstream direction in x. The other one is travelling in the opposite direction. In figure 10,

we have also reported the distance between circular frequency of the TWF mode travelling in the

downstream direction and the one associated with the TS mode, labelled ∆ω. The difference ∆ω

is seen to be correlated with the time period of the beating process ∆T observed in figure 9: ∆T

is nearly equal to 2π/∆ω. This behaviour has also been observed by Davies & Carpenter21. It is

a consequence of constructive interference between the TS and TWF waves. This interpretation is

further illustrated in figure 11, where the distributions of ωr and ωi with α are shown for both TWF

and TS modes. The figure shows that for the range in α where the oscillating behaviour is observed

in figure 9, circular frequencies associated with TS and TWF waves are closely approaching each

other. In this region, the two modes have very similar eigenfunctions (i.e. they are non-orthogonal)

and their superposition generates an energy growth and a low-frequency beating.

To gain insight into the role of the different modes on the time evolution of E(t), the optimal

initial perturbation is expanded onto the basis of eigenvectors. Let us note the initial perturba-

tion qi = Vâ with V = (q̂1, q̂2, ..., q̂m) the m columns containing the discrete eigenvectors (the

corresponding eigenvalues are noted −jωi, hereafter) and â the vector containing the coefficients

of the expansion of qi. To find â, we use an orthogonal projection based on a Gram–Schmidt

orthonormalization process. It is equivalent to require that the projection error is orthogonal to

the set of eigenmodes for the chosen subspace of dimension m. The procedure is further detailed

in28. The time evolution of qi expanded into an eigenmodes basis reads: qi (t) = Va(t) with
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FIG. 11: (a) Circular frequency ωr versus the streamwise wave number α, (b) temporal

amplification rate ωi versus α for TS and TWF modes and Re = 8300, VR = 0.7.
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FIG. 12: Total energy evolution for the optimal initial perturbation projected onto different

subsets of eigenmodes for Re = 8300, α = 1, τ = 26 and VR = 0.6, 0.7. The envelope G for the

rigid case is also reported.

a(t) = (â1e
−jω1t, â2e

−jω2t, ..., âme−jωmt).

We now consider two representative cases for Re = 8300, α = 1 and τ = 26. The reduced

velocity is fixed either to VR = 0.6 or VR = 0.7. Three subsets of modes are investigated and their

dimensions are fixed to m = 16. A first subset includes the least damped modes. A second subset

includes also the least damped modes but the TWF mode propagating downstream is removed. For

the last subset, the TS mode is removed. Time evolutions of the reduced order models are compared

to LDNS results in figure 12. The time evolution of the kinetic energy associated with the optimal

initial perturbation for the rigid wall case is also reported in the figure for the same parameters
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for comparison purposes. For both reduced velocities, the figure shows an almost perfect match

between E(t) extracted from the LDNS and E(t) obtained by using the first subspace of modes (i.e.

including both TWF and TS modes). It validates the orthogonal projection used in the present

study. When the reduced order model excludes the TWF mode propagating downstream it has for

consequence that the oscillations disappear, as expected. The total energy peak for short time is

also reduced. For VR = 0.6, and for large times, the dynamics is mainly driven by the TS mode.

For this value of the reduced velocity, the total energy associated with the full system is seen to

oscillate with a damping rate close to the TS mode. When considering the subspace where the

TS mode is removed, the total energy peak damping is quite important which indicates the strong

influence of the TS mode in the dynamics. For VR = 0.7, the dynamics is modified. For this value

of reduced velocity and chosen parameters, the TWF mode is temporally amplified for long times,

while the TS mode is damped temporally. It is consistent with the time evolution of E (t) for the

subsets of modes excluding either the TS mode or the TWF mode. It has for consequence that the

oscillations observed for the full system are not driven anymore by the temporal amplification rate

of the TS wave. One may also note that while the dynamics for the subspace excluding the TS

mode exhibits an exponential growth for t > 50, the inclusion of the TS mode leads to delay the

onset of the total energy growth of the TWF mode. Finally, figure 12 shows that an increase of

the wall complicance enhances the total energy peak for short times and amplifies the amplitude

of the oscillations.

6.2. Optimal growth for α = 0

In this section, we focus on the behaviour of perturbations which are infinitely elongated in

the streamwise direction x. The transient energy developments are shown in figures 13 and 14 for

β = 0.5 and Re = 6666 for the sinuous and varicose symmetries, respectively. The reduced velocity

ranges from VR = 0.4 to VR = 1.2 and the target time is varying from τ = 14 to τ = 1820. For

comparison purposes, the envelope G is also represented for the rigid wall case only. For all VR

that are considered, the energy curves exhibit a lower growth than the rigid wall case and their

time evolution features fast oscillations for both symmetries. As discussed by17,18, the frequency

beating correlates the frequency of the TWF eigenmodes. As also observed for the 2D case, the

transient energy growth exhibits a larger amplification for the sinuous symmetry than the varicose

one. For this reason, we restrict our analysis to the sinuous configuration hereafter.

For illustration purposes, we show in figure 15(a) the spectrum for the same flow case and
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FIG. 13: Time evolution of the total energy for Re = 6666, β = 0.5 and VR = 0.4, 0.8 and 1.2

and sinuous initial optimal perturbations computed for τ varying from 14 to 1820. The envelope

G for the rigid case is also reported.

VR = 1.2. The figure shows that in addition to the rigid flow case, there are two eigenmodes that

arise from the fluid–structure interaction as observed in the previous section for β = 0, i.e., two

TWF modes propagating in opposite directions. The absolute value of their corresponding circular

frequency is noted ωTWF below. For very large VR, Hœpffner et al.17 (see discussion in section

5.2) have shown that the transient growth is mainly due to the interaction between the two TWF

modes where their superposition generates a standing wave that exhibits a low-frequency process.

The latter is characterized by a beating period equal to 2π/ωTWF .

In figure 15(b), the total energy time development associated with the initial optimal perturba-

tion obtained for τ = 14 is reported. For a purely standing wave, the regular pattern is oscillating

up and down, as a consequence the beating period associated with its total energy corresponds
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FIG. 14: Time evolution of the total energy for Re = 6666, β = 0.5 and VR = 0.4, 0.8 and 1.2

and varicose initial optimal perturbations computed for τ varying from 14 to 1820. The envelope

G for the rigid case is also reported.

to π/ωTWF . For short times, this is precisely what is observed in figure 15(b) (noted ∆T0). As

the perturbation evolves in time, its total energy exhibits a characteristic oscillation of period

∆T = 2π/ωTWF . It seems to indicate that for these values of VR, the mechanism is more complex

than a simple superposition of the two TWF modes.

To further investigate the origin of the beating and the impact of the TWF modes onto the

transient energy growth, we project the initial perturbation on a subspace spanned by a reduced

number of eigenmodes, as in the previous section. In Figure 16(a), E(t) is shown for both the

complete LDNS and the reduced order model (ROM) based on 50 eigenmodes for validation pur-

poses. One may observe a perfect agreement between the two simulations. In the figure, the time

evolution of the total energy is also represented for a subset including only the two TWF modes.
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FIG. 15: (a) Spectrum at β = 0.5, VR = 1.2 and Re = 6666. (b) Time evolution of the total

energy growth for the initial optimal perturbation computed for τ = 14.

It generates a standing wave with a characteristic frequency ωTWF . However its growth in time is

far from matching the one given by the LDNS.

In figure 16(b), E(t) is plotted form = 50 excluding the TWFmodes. The total energy evolution

for the rigid wall case is also reported. This total energy curve does not show any beating process

and it displays a transient amplification comparable to the situation prevailing for rigid walls (i.e.

associated with a pair of streamwise vortices which generates streaks). Especially, the growth for

large times is much higher than the one including TWF modes. It indicates that the inclusion

of TWF modes yields to destructive interferences that tend to damp the transient energy growth

associated with streaks amplification.

Let us now consider an initial perturbation resulting from the superposition of the two previous

subsets of modes (i.e. the standing wave and the pair of streamwise vortices). The time evolution

of its total energy is shown in figure 17. The figure shows that the curve almost matches the one

associated with the optimal initial perturbation. It shows that the subsets of modes associated

with TWF modes and the discrete branch are nearly orthogonal. Hence, the mechanism seems to

be linked to a standing wave oscillating in a streaky developing flow.

The modification of the transient growth mechanism due to the TWF modes is also illustrated

through cross-sections of velocity components extracted at various times in figures 18–20.

In figure 18, the time evolution of the optimal perturbation obtained by LDNS is represented

for a time interval equal to ∆T . The figure shows that TWF modes lead to damp the intensity of
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FIG. 16: Time evolutions for the total energy growth for β = 0.5, VR = 1.2 and Re = 6666 and

τ = 14. (a) LDNS are compared with ROMs for m = 50 eigenmodes and the two TWF modes

(referenced as m = 2). (b) Total energy curves computed with ROM for m = 50 excluding the

TWF modes are compared to the rigid walls case.

the pair of streamwise vortices during one cycle of the standing wave. It has for consequence to

annihilate the generation of streaks which is consistent with results given in figure 16.

A similar simulation is shown in figure 19, where the optimal initial perturbation is projected

onto the two TWF modes. A purely standing wave behaviour is observed, where the perturbation

is mainly concentrated near the walls and oscillates around 0. Finally, the last configuration where

the TWF modes are removed from the subset of modes is depicted in figure 20. The evolution of the

initial perturbation exhibits the fundamental bricks of the lift-up effect, i.e. a pair of streamwise

vortices that generate low- and high-speed streaks.

Then, for this value of VR where the coupling between the fluid and compliant walls is more
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FIG. 17: Time evolutions for the total energy growth for β = 0.5, VR = 1.2 and Re = 6666 and

τ = 14. The evolution of E(t) for the initial perturbation restricted to the summation of the pair

of streamwise vortices and the standing waves is compared to E(t) associated with the optimal

perturbation.

effective, the importance of the interactions between TWF modes and the discrete branch is crucial

to fully describe the phenomenon instead of what is observed for very large values of VR when the

system is governed only by the standing wave (i.e. mainly an effect of the walls17).

Let us now characterize the influence of some parameters onto these oscillations. We introduce

the quantity ∆E (τ,Re, VR, β) which measures the amplitude of the oscillations (see figure 15(b)).

Especially, we consider hereafter, ∆EM (Re, VR, β) = maxτ ∆E (τ,Re, VR, β). The distribution of

∆EM as a function of VR and β for Re = 6666 is shown in figure 21. The figure shows that

∆EM (VR) exhibits an almost linear behaviour for all spanwise wavenumbers that are investigated.

The behaviour of the amplitude of the standing wave oscillation is then further outlined with the

parameter A obtained by using the linear approximation ∆EM (Re, VR, β) ≈ A (Re, β)VR. The

distribution of A with β for three Reynolds numbers is shown in figure 21(b). The figure shows that

A peaks for spanwise wavenumbers much smaller than the optimal value of β for streaks and rigid

walls (i.e. β = 2). Besides, the amplitude of the oscillations increases with the Reynolds number

and the peak in A is reached for a spanwise wavenumber around β ≈ 0.7–0.8 independently of

Re. It may confirm the strong interplay between the streaks and the standing wave to dictate the

amplitude of the oscillations for this range of VR, since the TWF modes are mainly independent

of the Reynolds number15.

As discussed above, the frequency of the standing wave is associated with the circular frequency

of the TWF mode. In figure 22, the distribution of the circular frequency of TWF mode is shown
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FIG. 18: Cross-sections of the optimal perturbation for β = 0.5, Re = 6666, Vr = 1.2 and τ = 14

in the (z, y) plane for tk = ti + k/8∆T with k varying from 0 to 7 and ti = 8.7. Vectors for the

cross-stream components and isocontours of the streamwise velocity fields are shown.

as a function of VR and β. Some computations at various Reynolds numbers confirmed that the

circular frequency is not dependent of Re (not shown here). The figure shows that the standing

wave frequency is decreasing with an increase of VR and a decrease in β. In the figure, we also

report the added-mass model derived by Hœpffner et al.17. In this model, the authors approximate

the wall-normal flow velocity profiles with an exponential curve. Hence, by using an integration

along the wall-normal direction of the momentum equation, the action of the pressure force can be

associated with an added-mass effect. The equation of the circular frequency is then:

ω2 =
1

m+ma

(
Bβ4 +K

)
,

with ma = ρh(1 − e−β)/β. The corresponding values are reported in dashed lines in figure 22

where an almost perfect match is observed with the full computation. It validates this model also

for moderate values of the reduced velocity.
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FIG. 19: Cross-sections of the optimal perturbation projected onto the 2 TWF modes for

β = 0.5, Re = 6666, Vr = 1.2 and τ = 14 in the (z, y) plane for tk = ti + k/8∆T with k varying

from 0 to 7 and ti = 8.7. Vectors for the cross-stream components and isocontours of the

streamwise velocity fields are shown.

7. DISCUSSION AND CONCLUSIONS

In this paper, the temporal nonmodal growth of two- and three-dimensional perturbations

in channel flow over infinite compliant walls has been investigated. From the formalism point

of view, we have developped a Lagrangian framework for the constrained optimization problem

associated with the linearized fluid–structure interaction system. In comparison with methods

used by Hœpffner et al.17 and Zengl & Rist18 for the same case which are based on the summation

of eigenmodes, the present technique is free of numerical spurious oscillations. The short time

dynamics for either the 2D case or infinitely elongated structures in the streamwise direction is

mostly amplified for the sinuous configuration. As a consequence, a large part of the study concerns
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FIG. 20: Cross-sections of the optimal perturbation projected onto 50 eigenmodes excluding the

2 TWF modes for β = 0.5, Re = 6666, Vr = 1.2 and τ = 14 in the (z, y) plane tk = ti + k/8∆T

with k varying from 0 to 7 and ti = 256. Vectors for the cross-stream components and

isocontours of the streamwise velocity fields are shown.

the sinuous symmetry of the system.

Besides this point, the two key findings from this work are the following. First, for a perturba-

tion developing in the streamwise-wall normal plane, the short time dynamics is seen to be strongly

modified by the flexibility of the wall. More specifically, a close inspection of the projection of the

dynamics onto a subset of modes shows that the coupling between the Tollmien–Schlichting (TS)

and travelling-wave flutter (TWF) modes generates strong oscillations. For some range of param-

eters, when the frequencies of TS and TWF modes are similar, the amplitude of the modulation

reaches higher levels than the optimal gain associated with the rigid wall case. Hence, while the

wall compliance contributes to reduce the amplification of TS modes, the total energy growth for

short times is enhanced, however. We hope that the present study clearly shows the important
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FIG. 21: Amplitude of the oscillations. (a) Distribution of ∆EM with VR for various β and

Re = 16000; (b) Distribution of A as a function of β for Re = 2000, 6666 and 16000.

roles, in the short-time dynamics, of TS and TWF modes as well as some ot the other branches

of discrete modes, and could therefore be useful to design a simplified model describing the full

dynamics as has been done for the asymptotic regime by Davies & Carpenter13.

Secondly, it has been found that the transient dynamics for streamwise invariant perturbations

and O (1) values of the reduced of velocity VR is driven by the superposition of a standing wave

(due to the interaction between two oppositely propagating TWF modes) and the rolls/streaks

dynamics. Especially, the two corresponding subsets appear nearly orthogonal to each other. The

dynamics of the standing wave was clearly highlighted by Hœpffner et al.17. However, the case

studied by these authors was associated with a very high value of the reduced velocity (VR ≈ 23.5)

and for this specific case, the rolls/streaks dynamics was totally overwhelmed by the large temporal

oscillations of the standing wave. Especially, as underlined in a recent study by Lebbal et al.22,

typical values of VR for blood flow rate and arterial diameters, are in the range 0.1 − 0.2. For

aerodynamics applications, the boundary-layer flow interacting with a Kramer-type compliant wall

detailed in Wiplier & Ehrenstein11 gives a reduced velocity of approximately VR = 0.4. Hence, the

value used in17 is clearly out of range of these applications.

Finally, we provide scaling laws for the amplitude of the oscillations with the Reynolds number,

spanwise wave numbers and critical reduced velocity. The variation of its characteristic frequency

is also investigated. For this last point, the added-mass model derived by Hœpffner et al.17 is
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seen to describe perfectly well the period of the oscillations but not the amplitude of the standing

wave oscillation. As discussed above, the case considered by Hœpffner et al.17 is only associated

with large VR where the dynamics of the full system is mainly driven by the traveling-wave flutter

modes. However, as it is shown in the present study, for moderate values of VR, where there is a

stronger interaction between streaks and the standing wave, the model fails to reproduce the full

dynamics because it does not include the time evolution of streaks.

Using a range of computations, we show that the amplitude of the oscillation increases linearly

with the reduced velocity VR for a given spanwise wavenumber and Reynolds number. In addition,

the optimal spanwise wavenumber leading to the maximum wave oscillation is around β = 0.7

which can be compared with β = 2 associated with the spanwise scale that maximizes the streaks

amplification. In particular, for β around 0.7, the amplification of streaks is seen to be damped by
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the standing wave dynamics. We then hope that these new results could be a first step to extend

the model derived by Hœpffner et al.17 to moderate values of VR.

The study could now be adapted without any numerical complications to time periodic flows

which are more representative of artery blood flow, in the same fashion as Pier & Schmid29 have

recently done for the rigid wall case. The extension of the present analysis to the pipe flow case is

also under current intensive scrutiny.
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