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It is known [1,2] that the sparse grid method for Particle-In-Cell (PIC) solvers acts as a filter to reduce the PIC 
noise. In this paper, a simple rule to discard or keep modes in Fourier space (a binary filter with values either 0 
or 1) is derived using the sparse grid combination formula. Its relation to the standard sparse grid filter, which is 
characterized quantitatively, is explained. The relations between the sparse grid filters on grids of arbitrary levels 
are also outlined. Namely, in two (resp. three) dimensions and for bi-linear (resp. tri-linear) moment deposition, 
it is proven rigorously that the sparse grid filter, for a grid of size equal to an arbitrary power of two, can be 
expressed in terms of two (resp. three) unique real valued functions. The advantage of the binary filter over the 
standard sparse grid filter is the reduction of signal deformation introduced by the latter, for the same noise 
reduction capability. By applying the filter to moments of a marker distribution coming from the XTOR-K code, 
it appears the noise could be significantly reduced, with a moderate overhead in the moment deposition part of 
the algorithm.
1. Introduction

The Particle-in-cell (PIC) method is one of the basic tools of com-
putational plasma physics. It is used in purely kinetic codes as well as 
hybrid kinetic/fluid codes. In a PIC code, markers representing chunks 
of the distribution function are evolved in continuous space-time ac-
cording to an electro-magnetic field known on a grid. The moments of 
the marker distribution are periodically deposited on the grid in order 
to evolve said fields according to some subset of Maxwell’s equations. 
The time evolution of charged particle in a magnetized plasma usually 
follows the Boris-Buneman algorithm [3,4]. PIC methods are robust, 
versatile and easily parallelized. In spite of this, the well known prob-
lem common to all PIC codes is the statistical noise associated with the 
limited number of markers per grid cell. The noise being inversely pro-
portional to the square root of the latter, reducing the PIC noise by brute 
force increasing the total number of markers often leads to a prohibitive 
increase of computational complexity.

In the past, different strategies have been deployed in PIC codes in 
order to address this noise issue, such as the 𝛿𝑓 technique [5,6], quiet 
start [7–9], and noise filtering, which can be spatial [2,6,10,11] or tem-
poral [9,12,13]. In ref. [1], noise reduction is achieved by applying the 
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sparse grid combination technique [14,15] to the PIC method. The idea 
is to collect moments of the marker distribution (e.g. the density) on 
several grids that are refined in only one direction at a time, and sparse 
in the other directions. The result is that the number of markers per cell 
is significantly increased. The different results on the different grids 
can finally be interpolated on the desired fine grid and combined with 
the so-called sparse grid combination technique [14]. The resulting nu-
merical solution is significantly denoised with a moderate increase in 
numerical complexity. Although the sparse grid combination technique 
had already been used in plasma physics [16–18], it was first suggested 
in reference [1] as a way to reduce the PIC noise. Following this seminal 
paper, the merits of the sparse grid PIC technique have been exploited in 
plasma applications pertaining to radio frequency discharges [19] and 
to the electron drift instability in Hall thrusters [20]. The mathematical 
properties of the sparse grid PIC technique and its parallel implementa-
tion have been extensively studied in refs. [21,22]. In these references, 
the numerical error in the sparse grid PIC method is rigorously esti-
mated in terms of grid based error on the one hand, and particle based 
error on the other hand.

The present article can be seen as an alternative way to explain the 
action of the sparse grid combination technique in the context of the PIC 
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method. Namely, we regard the sparse grid technique as a filter, and fo-
cus on the action of the filter in Fourier space. Before going any further, 
let us note that the sparse grid PIC technique can be applied in two 
distinct ways, as explained in ref. [1]. In the first, the electromagnetic 
(EM) field is evaluated on the subgrids using the velocity moments col-
lected on the subgrids. The sparse grid combination technique is then 
used on the EM field to reconstruct the fine grid field. In the second, 
the sparse grid combination technique is applied to the moment only 
to reconstruct the denoised moments on the fine grid, which is used to 
compute the fine grid EM field. The present paper is limited to the lat-
ter case. In this case, the sparse grid combination technique acts as a 
sort of filter, as has been fully realized in ref. [2]. Nonetheless, ref. [2]
does not precisely characterize the filter, although estimates for the er-
ror caused by different combination techniques are precisely computed. 
By characterizing the filter, we mean specifying how the filter acts in 
Fourier space, that is, by what coefficient each mode is multiplied. It 
turns out to be very simple. The essential idea is that the moment de-
position step convolutes the marker distribution with the deposition 
shape function. In Fourier space, the different modes of the signal are 
then multiplied by the Fourier transform of the shape function. The 
shape of the filter results from the combination of these factors using 
the sparse grid combination technique. In this paper, we prove that in 
two (resp. three) dimensions, the shape of the filter can be inferred from 
two (resp. three) single real-valued functions, that are independent of 
the size of the grid. Even the truncated combination formulæ of ref. [2]
are strongly connected with these functions. More importantly, we de-
rive a binary filter, consistent with the combination formula, which has 
almost the same action as the sparse grid filter, except that its values 
are either 0 (the mode is discarded) or 1 (the mode is kept). The merits 
of this filter over the standard one are emphasized.

An advantage of the point of view in terms of filters is that the very 
same denoising effect as the sparse grid combination technique can now 
be obtained by applying the filter to the fine grid moment. This means 
that the process of collecting the moment on 𝑁𝑔 different grids, with 
a numerical complexity scaling as 𝑁𝑔𝑁𝑃 , where 𝑁𝑃 is the number of 
markers, can be replaced with only one deposition step, followed by a 
forward and backward fast Fourier transform. The issue is that 𝑁𝑔 can 
be large, especially in three dimensions. Therefore, it can be expected 
that replacing the sparse grid combination technique with the sparse 
grid filter, which has exactly the same action, could be faster. Note that 
efficient parallel implementations of the fast Fourier transform, such as 
advertized in ref. [23], may be required to fully leverage the advantage 
of the point of view developed in the present article.

The rest of the manuscript is organized as follows. In section 2, the 
reduction factor of Fourier modes due to the convolution with the shape 
function is introduced after preliminary definitions. The tent function, 
corresponding to linear interpolation, is assumed. The filter is then de-
fined using the sparse grid combination technique. In section 3, the 
properties of the filter are detailed. Most mathematical proofs of these 
properties are confined in the appendices. In section 4, the action of the 
sparse grid combination technique is reinterpreted in the case where 
moment deposition is done directly in Fourier space. We obtain a binary 
filter that has qualitatively the same properties as the sparse grid filter, 
but is much simpler to compute and more intuitive to understand. In 
section 5, the different filters are applied to distributions coming from 
the hybrid kinetic/fluid magnetohydrodynamic code XTOR-K, in order 
to analyze how the PIC noise in the radial direction can be reduced. 
The different filters are compared. In section 6, the case of truncated 
schemes of ref. [2] is analyzed. In section 7, it is shown that the results 
of the paper for the standard sparse grid filter easily extend to any or-
der of the shape function, but with some restrictions, namely, the filter 
is positive definite only when the order of the shape function is odd. 
2

Finally, we conclude in section 8.
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2. Signal reduction and analytical expression of the sparse grid 
filter in two and three dimensions

2.1. Preliminary definitions and notations: grid level, degrees of freedom 
and moment deposition

We start by giving the framework of our work. We will only use 
grids with a number of intervals equal to a power of 2 in all directions. 
The obvious advantage of such grids is that they can easily be divided 
in coarser grids, which naturally combines well with the sparse grid 
formalism. A grid that has 2𝑝 intervals (hence, 2𝑝 + 1 points) will be 
said to be level 𝑝. In 𝑑 dimensions, the level is a 𝑑-tuple (𝑝1, … , 𝑝𝑑 ). 
If 𝑝1 = … = 𝑝𝑑 = 𝑝, then we will speak of the grid of level 𝑝 without 
further specification. The coarsest grid considered will be level 1. The 𝑑-
dimensional grid is always supposed to describe the [0, 1]𝑑 volume. The 
coordinates are denoted 𝑋1 to 𝑋𝑑 . To differentiate from this notation, 
the 𝑗th element of the grid for the coordinate 𝑋𝑖 is denoted 𝑋(𝑗)

𝑖
. The 

coordinates of the grid are sampled according to

𝑋
(𝑗)
𝑖

= 𝑗2−𝑝, 𝑗 ∈ �0,2𝑝� (1)

that is, the interval size is ℎ = 2−𝑝. We add the restriction that all sig-
nals considered have periodic boundary conditions. The restriction is 
not as stringent as it seems: in many applications of interest, one is in-
terested only in what happens in a region interior to the grid, so that 
the perturbations can be assumed to vanish at the boundaries, making 
periodic boundary conditions suitable. With periodic boundary condi-
tions, a one-dimensional grid of level 𝑝 has 2𝑝 degrees of freedom (dof). 
According to the Nyquist theorem, the fastest signal that can be repre-
sented with such a sampling has a mode number of 𝑘 = 𝑘max ≡ 2𝑝−1, cor-
responding to a signal 𝑠 = cos

(
2𝜋2𝑝−1(𝑋(𝑗))𝑗∈�0,2𝑝�

)
=
(
(−1)𝑗

)
𝑗∈�0,2𝑝�. 

The corresponding sine wave identically vanishes and, therefore, does 
not contribute any dof. The zero frequency mode also contains only one 
dof. Therefore, all modes between 𝑘 = 1 and 𝑘 = 𝑘max − 1 contribute 
two dof (cosine and sine), while 𝑘 = 0 and 𝑘 = 𝑘max contribute only one 
dof. The total number of dofs is 𝑁dof = 2(𝑘max − 1) + 1 + 1 = 2𝑝. With-
out surprise, it is found that the Fourier representation has exactly the 
same number of dofs as the underlying grid, and this statement is true 
in any dimension.

Finally, we assume the following for the moment deposition method 
of the PIC algorithm. Unless stated otherwise, it is assumed that the 
markers’ shape function is derived, in any dimension, from the so-called 
tent function:

𝜏1(𝑥) =
{

1 − |𝑥| if |𝑥| ≤ 1
0 if |𝑥| > 1 (2)

The tent function is the order one of a series of shape functions of any 
order, built by successive convolutions of the hat function, which is 
non zero and equal to one only for −0.5 < 𝑥 < 0.5. In the following, 
we will denote the order of the deposition function by the letter 𝑞. 
The hat function and tent function correspond respectively to 𝑞 = 0 and 
𝑞 = 1. The case of shape functions of arbitrary order 𝑞 is examined in 
section 7. For now, the tent function of equation (2) is assumed. The 
shape function is then defined by [1]

𝑆 (𝒙) =
𝑑∏
𝑖=1

𝜏1
(
𝑥𝑖∕ℎ𝑖

)
ℎ𝑖

, (3)

where ℎ𝑖 = 2−𝑝𝑖 is the interval size in direction 𝑖. Thus, a marker located 
in phase space at (𝒙𝓁 , 𝒗𝓁) contributes

𝑁

𝑁𝑃

𝑆
(
𝒙− 𝒙𝓁

)
𝒗
𝑚
𝓁 (4)

to the velocity moment of order 𝑚, where 𝑁𝑃 is the number of PIC 
markers and 𝑁 represents the total number of physical particles mod-
eled by the PIC algorithm. This is the moment deposition of the standard 

PIC method.
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With these notations, we can now investigate the fundamental mech-
anism behind the sparse grid PIC method.

2.2. Signal reduction at moment deposition in one dimension

The whole idea of the present paper comes from the following simple 
fact. When a sinusoidal signal with mode number 𝑘 (integer) is repre-
sented by a distribution of markers, if one collects the moments of that 
distribution on a grid of level 𝑝 by linear deposition (using shape func-
tion (3)), then the sinusoidal signal observed on the collected moment 
is reduced by the factor [10]

𝑓 (𝑘, 𝑝) = sinc2
(
𝑘

2𝑝
) ≡

[
sin(𝜋𝑘2−𝑝)
𝜋𝑘2−𝑝

]2
, (5)

which should come as no surprise to the reader familiar with signal pro-
cessing theory. Note that we incorporate the 𝜋 factor in the definition 
of the cardinal sine. The reason for equation (5) is that the grid den-
sity is obtained as the convolution between the shape factor and the 
marker density. Therefore, in Fourier space, the Fourier coefficients of 
the marker density are multiplied by the Fourier transform of the shape 
function [10]. As it turns out, the Fourier transform of the triangular 
shape function is the square of the cardinal sine function (see also sec-
tion 7 where other orders of the deposition method are considered).

A less mathematical argument explains qualitatively equation (5)
as follows. Assume a physical density given by 𝜌(𝑥) = 1 + 𝑎 cos (2𝜋𝑘𝑥), 
where 𝑘 ∈ ℕ and 𝑎 < 1 (this constraint is necessary only to obtain a 
non-negative density). Now, assume that this density is represented by 
a distribution of markers, and that one wishes to use the marker distri-
bution to obtain a numerical estimate of the density 𝜌 on a grid of level 
𝑝. With the deposition algorithm described in the preceding section, it 
is seen that the markers contributing to the reconstructed value of the 
density at grid point 𝑥(𝑗) are located in the interval 𝐼 = [𝑥(𝑗) −ℎ, 𝑥(𝑗) +ℎ], 
where ℎ = 2−𝑝. Therefore, since they are distributed according to 𝜌, the 
density of markers in the interval 𝐼 varies and is not uniformly equal to 
𝜌(𝑥(𝑗)). For instance, for the first grid point in 𝑥 = 0, the density of the 
markers closest to 𝑥 = 0 have a density equal to 1 +𝑎, but the density of 
the markers in 𝑥 = ℎ is lower. In particular, when 𝑘 = 𝑘max = 2𝑝−1, the 
density approaches 1 −𝑎 when 𝑥 approaches ℎ, which explains why the 
effect is strongest for fast varying modes.

On a grid of level 𝑝, the fastest mode is 𝑘max = 2𝑝−1, for which the 
reduction factor is equal to 𝑓 (2𝑝−1, 𝑝) = sinc2(1∕2) = 0.405. If 𝑘 is larger 
than 𝑘max, the reduction factor is still given by equation (5), tends to 
zero as 1∕𝑘2, and is exactly zero everytime 𝑘 is a multiple of 𝑘max.

2.3. Analytical definition of the filter in two and three dimensions

The signal reduction factor of the one dimensional case can be used 
in a straightforward manner to compute the signal reduction factor in 
two and three dimensions. Any periodic signal can be decomposed in 
products of sine or cosine of each coordinate 𝑥, 𝑦 and 𝑧. Therefore, 
the reduction factors simply accumulate multiplicatively, so that the 
reduction factors in two (resp. three) dimensions, for a grid of level 
(𝑝𝑥, 𝑝𝑦) (resp (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)) write

𝑓2D
(
𝑘𝑥, 𝑘𝑦;𝑝𝑥, 𝑝𝑦

)
= 𝑓 (𝑘𝑥, 𝑝𝑥)𝑓 (𝑘𝑦, 𝑝𝑦) (6)

𝑓3D
(
𝑘𝑥, 𝑘𝑦, 𝑘𝑧;𝑝𝑥, 𝑝𝑦, 𝑝𝑧

)
= 𝑓 (𝑘𝑥, 𝑝𝑥)𝑓 (𝑘𝑦, 𝑝𝑦)𝑓 (𝑘𝑧, 𝑝𝑧) (7)

Note that as a result, the standard PIC method already acts as a low-
pass filter, especially in higher dimensions. Indeed, on a grid of level 𝑝
in a 𝑑-dimensional code, the fastest modes (which combine fast spatial 
frequencies in all directions) are reduced by a factor of 

(
sinc2(1∕2)

)𝑑
. 

This factor is 0.164 in two dimensions and 0.067 in three dimensions.
Now, let us turn to the sparse grid PIC algorithm, in the case where 

the finest grid (that on which the evaluation of the moments is desired) 
3

is of level 𝑝. To evaluate a moment, such as, for example, the density, 
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the standard method is replaced with the following sparse grid combi-
nation formula:

𝜌
(𝑝)
sg,2𝐷 =

𝑝∑
𝑖=1

𝑖+𝑗=𝑝+1

𝜌
(𝑝)
(𝑖,𝑗) −

𝑝−1∑
𝑖=1
𝑖+𝑗=𝑝

𝜌
(𝑝)
(𝑖,𝑗) (8)

𝜌
(𝑝)
sg,3𝐷 =

𝑝∑
𝑖=1

𝑝+1−𝑖∑
𝑗=1

𝑖+𝑗+𝑘=𝑝+2

𝜌
(𝑝)
(𝑖,𝑗,𝑘) − 2

𝑝−1∑
𝑖=1

𝑝−𝑖∑
𝑗=1

𝑖+𝑗+𝑘=𝑝+1

𝜌
(𝑝)
(𝑖,𝑗,𝑘) +

𝑝−2∑
𝑖=1

𝑝−1−𝑖∑
𝑗=1

𝑖+𝑗+𝑘=𝑝

𝜌
(𝑝)
(𝑖,𝑗,𝑘)

(9)

In these expressions, 𝜌(𝑝)(𝑖,𝑗) is the density evaluated with a grid of level 
(𝑖, 𝑗), and then interpolated on the grid of level 𝑝 (and similarly in three 
dimensions). As explained in ref. [1], this estimate can reduce the PIC 
noise at a moderate cost in terms of numerical complexity. The increase 
of numerical complexity is due to the fact that each term of the sums 
in equations (8)-(9) requires a loop over all the markers of the grid. In 
two (resp. three) dimensions, the number of terms in the sum is 2𝑝 − 1
(resp. 1 + 3𝑝(𝑝 − 1)∕2). For instance, a 512 × 512 × 512 (𝑝 = 9) three-
dimensional grid requires 109 such loops over the marker distribution, 
which can represent a large computational overhead.

Here, we show an alternative way of understanding the reason for 
the reduction of the PIC noise, which has the advantage of explicitly 
characterizing the filter. Indeed, the fact that the sparse grid acts as a 
filter is explained in ref. [2], but the filter is not quantified in Fourier 
space. In addition to providing a more precise understanding of the 
sparse grid PIC method, this provides an alternative, much more effi-
cient way, of producing the same noise reduction effect. Namely, this 
can be done by applying the filter directly to the standard PIC estimate 
of the moments of the distribution function. Although Fourier trans-
forms are required, one avoids looping a large number of times over 
the marker distribution.

Using the linearity of the Fourier decomposition, we see that a con-
tribution to the total signal having mode numbers 𝑘𝑥, 𝑘𝑦 (resp. 𝑘𝑥, 𝑘𝑦, 𝑘𝑧
in three dimensions) will be reduced by the factors of equations (6)-(7), 
when computed on a grid of level (𝑝𝑥, 𝑝𝑦) (resp (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)). Also, there 
will be some signal deformation and spectrum broadening due to the 
interpolation step. Indeed, take for instance a cosine mode at frequency 
2𝑖 evaluated on the grid of level 𝑖 +1. This frequency is the fastest com-
patible with the Nyquist theorem, and it will appear as a triangle signal. 
Now, when this signal is interpolated (using linear interpolation) on a 
grid of level 𝑗 > 𝑖, it will still appear as a triangle signal. But, on this 
grid of level 𝑗, the triangle at frequency 2𝑖 Fourier decomposes into a 
spectrum of modes around the dominant frequency 2𝑖. However, in the 
following discussion, we completely neglect this spectrum broadening 
phenomenon. We will see with concrete examples that it does not play 
a dominant role.

Therefore, neglecting the spectrum broadening associated with in-
terpolation, in two (resp. three) dimensions, the mode with mode num-
bers 𝑘𝑥, 𝑘𝑦 (resp. 𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is filtered by the sparse grid algorithm 
according to the following rules:

𝐹
sg
2D(𝑘𝑥, 𝑘𝑦;𝑝) =

𝑝∑
𝑖=1

𝑖+𝑗=𝑝+1

𝑓2D
(
𝑘𝑥, 𝑘𝑦; 𝑖, 𝑗

)

−
𝑝−1∑
𝑖=1
𝑖+𝑗=𝑝

𝑓2D
(
𝑘𝑥, 𝑘𝑦; 𝑖, 𝑗

)
(10)

𝐹
sg
3D(𝑘𝑥, 𝑘𝑦, 𝑘𝑧;𝑝) =

∑
𝑖+𝑗+𝑘=𝑝+2

𝑓3D
(
𝑘𝑥, 𝑘𝑦, 𝑘𝑧; 𝑖, 𝑗, 𝑘

)
− 2

∑
𝑖+𝑗+𝑘=𝑝+1

𝑓3D
(
𝑘𝑥, 𝑘𝑦, 𝑘𝑧; 𝑖, 𝑗, 𝑘

)
+

∑
𝑓3D

(
𝑘𝑥, 𝑘𝑦, 𝑘𝑧; 𝑖, 𝑗, 𝑘

)
(11)
𝑖+𝑗+𝑘=𝑝
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Fig. 1. Sparse grid filter in two dimensions for 𝑝 = 6 (a) and 𝑝 = 7 (b). (For interpretation of the colors in the figure(s), the reader is referred to the web version of 

this article.)

On a given grid of level 𝑝, the 
(
2𝑝−1 + 1

)𝑑
different possible val-

ues for the mode numbers are reduced by the sparse grid algorithm, 
according to equations (10)-(11), which can be computed analytically 
using equations (5)-(7).

2.4. Examples in two dimensions

The two dimensional sparse grid filter is plotted in Fig. 1 for grids 
of level 𝑝 = 6 (a) and 𝑝 = 7 (b). It is seen clearly that the filter essen-
tially cancels all modes having moderate or high mode numbers in both 
directions. However, modes that vary rapidly in one direction, but are 
smooth in the other one, are kept. This property, which is well known 
to the users of the sparse grid PIC method, means that the algorithm can 
reduce a large fraction of the noise, while at the same time preserving 
sharp structures, with the condition that they are more or less aligned 
with the mesh.

At the same time, the quantitative characterization of the filter al-
lows one to immediately see the downside of the algorithm. One must 
be cautious not to have physically meaningful modes present in the 
blue regions of Fig. 1. These modes would disappear from the simula-
tion. This problem is heavily dependent on both the grid size and the 
geometry, as the following example shows.

Let us assume that a poloidal plane (small section of the torus) of a 
toroidal plasma is modeled using the sparse grid algorithm. The plasma 
density can exhibit structures that typically have a well defined angular 
mode number and a moderate radial extension. Therefore, let us assume 
that the density reads

𝜌(𝑥, 𝑦) = 1 + 𝑎𝑒−(𝑟(𝑥,𝑦)−𝑟0)2∕(2𝜎2) cos(𝑚𝜃(𝑥, 𝑦)) (12)

where 𝑚 = 10, 𝑟0 = 0.25, 𝜎 = 0.01, and

𝑥 = 1
2
+ 𝑟 cos𝜃 (13)

𝑦 = 1
2
+ 𝑟 sin𝜃 (14)

The spectrum of this density in (𝑟, 𝜃) variables is sharp. However, it 
is not the case when expressed in (𝑥, 𝑦) variables. Indeed, to produce 
one single mode with poloidal mode number 𝑚, a broad spectrum of 
(𝑘𝑥, 𝑘𝑦) modes has to be used. Therefore, when the density is collected 
according to the sparse grid algorithm, a large part of the signal can be 
significantly deformed, leading to artifacts. Fig. 2 shows these artifacts 
when the level of the grid is 𝑝 = 6. Fig. 2 a) shows equation (12), and 
Fig. 2 b) the expected result once the sparse grid algorithm is applied to 
4

collect the density. To obtain Fig. 2 b), the data of Fig. 2 a) is Fourier 
analyzed (with a value of 𝑘max = 2𝑝−1 = 32), then each mode is reduced 
by the factor given by equation (10), and the signal is reconstructed 
in real space using this modified spectrum. Fig. 2 c) shows the density 
collected on the grid of level 𝑝 = 6 with a sampling of 𝑁𝑃 = 4 × 107
markers. Note that in order to draw the markers from this distribution, 
the Fourier analysis of equation (12) is also used. Cumulative distribu-
tion functions can be obtained analytically from the Fourier spectrum 
in order to draw 𝑥 randomly from the distribution integrated in 𝑦, and 
for each value of 𝑥, the cumulative distribution function in 𝑦 is used 
to draw 𝑦 randomly. Finally, Fig. 2 d) displays the result of the sparse 
grid algorithm, equation (8), still with the same grid of level 𝑝 = 6. The 
artifacts predicted by the filter in Fig. 2 b) appear clearly. Note that 
this confirms our earlier statement that the spectrum broadening asso-
ciated with interpolation (not taken into account to produce Fig. 2 b)) 
has little influence on the final results.

In the case of Fig. 2, it is seen that the sparse grid algorithm signif-
icantly deforms the signal, instead of reducing its PIC noise. However, 
let us assume that when the structure of equation (12) appears, the grid 
actually used in the simulation is of level 10. With 𝑁𝑃 = 4 × 107, each 
cell contains roughly 40 markers only, which is not sufficient to obtain 
a sufficiently good signal to noise ratio with the standard PIC algorithm. 
However, the sparse grid algorithm is, in this case, very efficient at re-
ducing the noise while at the same time keeping the structure without 
creating artifacts. This is seen in Fig. 3. The absence of artifact gener-
ation in this case is due to the larger grid. In this case, very few mode 
numbers end up in the region of Fourier space where the modes are 
reduced to 0.

This illustrates how the sparse grid PIC algorithm can be put to use 
if one knows the kind of structure to expect in the problem considered. 
More precisely, one ought to know whether the structures are aligned, 
or not, with the axes of the grid, and what is their characteristic size. 
Note that some approaches based on a mathematical error estimate may 
be able to provide an automatic selection of the best parameters to use 
for the filter. For example, in ref. [2], which introduced the truncated 
filter discussed in section 6, the truncation parameter is determined 
automatically at runtime using the numerical properties of the Fourier 
transform of the signal at a given instant.

3. Properties of the sparse grid filter in two and three dimensions

In this section, we present and discuss the main mathematical prop-
erties of the filter in two and three dimensions. The proofs are carried 

out in the appendices.
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Fig. 2. Sparse grid deformation of an island structure. Analytical signal (a), sparse grid filtered analytical signal (b), density moment collected with 𝑁𝑃 = 4 × 107
markers using standard PIC method on a grid of level 𝑝 = 6 (c), and using the sparse grid combination technique with the same level for the finest grid (d).
Fig. 3. Sparse grid PIC sampling of the island structure with 𝑁𝑃 = 4 × 107
markers, on a grid of level 𝑝 = 10 (1024 × 1024).

First of all, ∀(𝑘𝑥, 𝑘𝑦, 𝑝) ∈ ℕ3 such that 𝑝 ≥ 2 and 𝑘𝑥, 𝑘𝑦 ≤ 2𝑝−1, we 
have 0 ≤ 𝐹 sg

2D(𝐤; 𝑝) ≤ 1, and similarly in three dimensions. This is proven 
in appendix A.1. The proof is not entirely trivial, and derives from the 
fact that ∀𝑥, sinc2(𝑥) > sinc2(2𝑥). As explained in section 7, the property 
does not hold for all orders of the shape function. The filters are low-
pass filters. In particular, we have the following remarkable values in 
two dimensions

𝐹
sg
2D(2

𝑝−1,2𝑝−1;𝑝) = 0 (15)

𝐹
sg
2D(𝑘𝑥,0;𝑝) = sinc2

(
𝑘𝑥2−𝑝

)
(16)

lim 𝐹
sg (𝐤;𝑝) = 1. (17)
5

𝑝→∞ 2D
In three dimensions, we have

𝐹
sg
3D(2

𝑝−1,2𝑝−1,2𝑝−1;𝑝) = 0 (18)

𝐹
sg
3D(𝑘𝑥, 𝑘𝑦,0;𝑝) = 𝐹

sg
2D(𝑘𝑥, 𝑘𝑦;𝑝) (19)

lim
𝑝→∞

𝐹
sg
3D(𝐤;𝑝) = 1. (20)

Note that properties (16) and (19) are evidently symmetric with respect 
to the dimension of the vanishing wave number. Property (15) (resp. 
property (18)) is true because then, all terms of the sum in equation (10)
(resp. equation (11)) vanish. Equation (16) comes from the observation 
that if 𝑘𝑦 = 0, then 𝑓2D(𝑘𝑥, 𝑘𝑦, 𝑖, 𝑗) = 𝑓 (𝑘𝑥, 𝑖). Equations (17) and (19)
are proven in appendices A.2 and B, respectively. Equation (20) follows 
from the same considerations as the two dimensional case.

At this point, the reader may point out that the formalism is cum-
bersome, because the filter depends on the level 𝑝 of the grid. In fact, 
we show that the filter can be expressed in terms of 𝑑 generic contin-
uous real functions, defined on ℝ⋆𝑑+ , where 𝑑 is the dimensionality of 
the problem.

Fig. 4 compares the filter for 𝑝 = 5 (a) and 𝑝 = 7 (b). One observes 
that the filters have a very similar aspect, although the mode resolution 
is four times coarser in the 𝑝 = 5 case compared to the 𝑝 = 7 case. In 
fact, when 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 are all non-vanishing integers, we have the 
following interesting property in two and three dimensions, ∀𝑚 ∈ ℕ:

𝐹
sg
2D(2

𝑚𝐤;𝑝+ 2𝑚) = 𝐹 sg
2D(𝐤;𝑝) (21)

𝐹
sg
3D(2

𝑚𝐤;𝑝+ 3𝑚) = 𝐹 sg
3D(𝐤;𝑝). (22)

This property is proven in appendix A.2 for the two dimensional case. 
The three dimensional case follows from identical considerations. Equa-
tion (21) explains why Figs. 4 a) and 4 b) look so similar. Using this 
property, in two (resp. three) dimensions, we can define two (resp. 
three) functions 𝐺(0)

2D and 𝐺(1)
2D (resp. 𝐺(0)

3D, 𝐺(1)
3D and 𝐺(2)

3D) in order to 
express the value of the filter for a wave vector 𝐤, on a grid of any level 

𝑝 ≥ 2. The functions are defined for 𝐤 ∈ℝ⋆𝑑+ as follows:
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Fig. 4. Comparison between the sparse grid filters for 𝑝 = 5 (a) and 𝑝 = 7 (b).
𝐺
(𝑖)
2D(𝐤) = lim

𝑝→∞
𝐹

sg
2D(2

𝑝𝐤; 2𝑝+ 𝑖), 𝑖 = 0,1 (23)

𝐺
(𝑖)
3D(𝐤) = lim

𝑝→∞
𝐹

sg
3D(2

𝑝𝐤; 3𝑝+ 𝑖), 𝑖 = 0,1,2. (24)

It is straightforward to see that the limits of equations (23) and (24)
exist when the components of 𝐤 are all base 2 decimals or dyadic num-
bers. Indeed, in such a case there exists a critical value 𝑝𝑐 such that the 
components of 2𝑝𝐤 are all integers if 𝑝 ≥ 𝑝𝑐 . Using property (21) (resp. 
(22) in three dimensions), we see that the limit is well defined, and 
𝐺

(𝑖)
2D(𝐤) = 𝐹

sg
2D(2

𝑝𝑐𝐤; 2𝑝𝑐 + 𝑖) (resp. 𝐺(𝑖)
3D(𝐤) = 𝐹

sg
2D(2

𝑝𝑐𝐤; 3𝑝𝑐 + 𝑖) in three 
dimensions). The continuity of the 𝐺 functions on ℝ2 is proven in ap-
pendix A.3 for the two dimensional case. The three dimensional case 
follows from identical considerations.

The advantage is that once the 𝐺 functions, which depend only on 
the dimension but not on the grid size, are known, the value of the re-
duction factor of any mode number on a grid of arbitrary level can be 
known. Namely, when 𝐤, 𝑝 are non-vanishing integers (with the compo-
nents of 𝐤 being less than 2𝑝−1), then we have

𝐹
sg
2D(𝐤; 2𝑝+ 𝑖) =𝐺

(𝑖)
2D(2

−𝑝𝐤), 𝑖 = 0,1 (25)

𝐹
sg
3D(𝐤; 3𝑝+ 𝑖) =𝐺

(𝑖)
3D(2

−𝑝𝐤), 𝑖 = 0,1,2. (26)

Therefore, it is sufficient to tabulate a small number of real valued 
functions in order to find the impact of the sparse grid algorithm on 
a grid of arbitrary level. This is one of the main results of this paper. 
In practice, suppose that the maximum level considered in the problem 
is 𝑝max, and one wants to be able to have the value of 𝐹 sg

2D for any 
even value of 𝑝 < 𝑝max. Then one must first compute 𝐺(0)

2D up to 𝑘𝑥, 𝑘𝑦 =
2𝑝max∕2−1 and with precision Δ𝑘 = 2−𝑝max∕2. This is done simply, once 
and for all, by using equation (25), which means the values of 𝐺(0)

2D at 
this precision are simply given by 𝐹 sg

2D(𝐤; 𝑝max), ∀𝐤 ∈
[
1,2𝑝max−1

]2
. Then, 

the values for another choice of 𝑝 < 𝑝max, with 𝑝 even, will be given 
by picking the right value in the already computed set of values for 
𝐺

(0)
2D, namely, 𝐹 sg

2D(𝐤; 𝑝) = 𝐺
(0)
2D(2

−𝑝∕2𝐤). This is already known since the 
components of 𝐤 are integers so the components of 2−𝑝∕2𝐤 are multiple 
of Δ𝑘.

In the next section, we show how a simpler and better performing 
filter can be constructed, based on the ideas of the sparse grid combi-
nation technique. When this new filter is used, the previous discussion 
about the 𝐺 functions becomes more of mathematical rather than prac-
6

tical interest.
4. The binary sparse grid filter

In this section, we see how it is possible to considerably simplify 
(and improve) the filters, by studying how the sparse grid combination 
formulæ, equations (8)-(9), work out in Fourier space directly. A filter, 
based on the combination formula and taking the values either 0 or 1 
in Fourier space (hence the name binary filter), will be defined.

So far, we have approached the problem by looking at the Fourier 
content of the moments collected using standard PIC techniques. Now, 
let us consider that it is actually possible to collect directly the Fourier 
coefficients of a signal represented by PIC markers. Namely, in one 
dimension for example, one can collect the mode 𝑘 cosine and sine coef-
ficients of the 𝑚th velocity moment of the distribution by the following 
two sums

𝑎c
𝑘
=𝑤𝑘

𝑁

𝑁𝑃

𝑁𝑃∑
𝓁=1

𝑣𝑚𝓁 cos
(
2𝜋𝑘𝑥𝓁

)
(27)

𝑎s
𝑘
=𝑤𝑘

𝑁

𝑁𝑃

𝑁𝑃∑
𝓁=1

𝑣𝑚𝓁 sin
(
2𝜋𝑘𝑥𝓁

)
, (28)

where

𝑤𝑘 =
{

1 if 𝑘 = 0 or 𝑘 = 2𝑝−1
2 if 0 < 𝑘 < 2𝑝−1 . (29)

Incidentally, the corresponding shape function, which can be com-
puted to be

𝑆 (𝑥) =
2𝑝−1∑
𝑘=0

𝑤𝑘 cos2𝜋𝑘𝑥, (30)

is delocalized on the entire grid, since all markers contribute to all 
modes, and a sinusoidal wave is by nature delocalized on the grid. In 
fact, in order to derive the binary filter, we don’t need to consider equa-
tions (27)-(30). We only need to consider the Nyquist theorem: if one 
wants to use the collected Fourier coefficients on a grid of level 𝑝, one 
needs to collect the modes up to 𝑘 = 2𝑝−1.

We will restrict ourselves to the two dimensional case (there is no 
difficulty with the extension to the three dimensional case). The first 
step is to examine the meaning of 𝜌(𝑝)(𝑖,𝑗) in the context of direct Fourier 
decomposition. This quantity is the density evaluated on a grid of level 
(𝑖, 𝑗) and then interpolated on the grid of level 𝑝. On a grid of level (𝑖, 𝑗), 
the fastest modes available in the 𝑥 and 𝑦 directions are respectively 
𝑘𝑥 = 2𝑖−1 and 𝑘𝑦 = 2𝑗−1. If the interpolation on the grid of level 𝑝 still 

uses the Fourier decomposition, rather than bilinear interpolations, 𝜌(𝑝)(𝑖,𝑗)
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Fig. 5. Selection of retained modes (nodes in contact with colored squares) in 
the Fourier sparse grid algorithm (𝑝 = 4).

is exactly the same as if one had collected all the modes up to 𝑘𝑥 = 𝑘𝑦 =
2𝑝−1, and subsequently set all the modes having 𝑘𝑥 > 2𝑖−1 or 𝑘𝑦 > 2𝑗−1
to zero.

From this simple observation, one can easily make sense of equa-
tion (8) by rearranging the terms as follows (omitting the (𝑝) exponent 
to make the notation lighter):

𝜌sg,2𝐷 = 𝜌(1,𝑝) − 𝜌(1,𝑝−1)

+ 𝜌(2,𝑝−1) − 𝜌(2,𝑝−2)

+…

+ 𝜌(𝑝−1,2) − 𝜌(𝑝−1,1)

+ 𝜌(𝑝,1). (31)

A term such as 𝜌(𝑖,𝑗) − 𝜌(𝑖,𝑗−1) is decomposed as follows. Both terms 
contain the same modes in the 𝑥 direction. However, in the 𝑦 direction, 
𝜌(𝑖,𝑗) contains the modes up to 𝑘𝑦 = 2𝑗−1, whereas 𝜌(𝑖,𝑗−1) contains the 
modes up to 𝑘𝑦 = 2𝑗−2, so that 𝜌(𝑖,𝑗) − 𝜌(𝑖,𝑗−1) contains all the 𝑘𝑥 modes 
up to 𝑘𝑥 = 2𝑖−1 and all the 𝑘𝑦 modes between 𝑘𝑦 = 2𝑗−2 + 1 and 𝑘𝑦 =
2𝑗−1. The result is seen graphically for 𝑝 = 4 in Fig. 5. In this figure, 
the nodes represent the modes 𝑘𝑥 ∈ �0, 23�, 𝑘𝑦 ∈ �0, 23�. All the nodes 
in contact with colored squares are kept, all the others are set to zero. 
The filtering rule can be expressed in terms of a maximum value of 𝑘𝑦
for each value of 𝑘𝑥. The algorithm to find 𝑘𝑦,max(𝑘𝑥) is as follows:

𝑘𝑦,max(𝑘𝑥 = 0) = 2𝑝−1

𝑘𝑦,max(𝑘𝑥 = 1) = 2𝑝−1

𝑘𝑦,max(𝑘𝑥 = 2) = 2𝑝−2

𝑘𝑦,max(𝑘𝑥 = 3–𝑘𝑥 = 4) = 2𝑝−3

𝑘𝑦,max(𝑘𝑥 = 5–𝑘𝑥 = 8) = 2𝑝−4 (32)

𝑘𝑦,max(𝑘𝑥 = 9–𝑘𝑥 = 16) = 2𝑝−5

𝑘𝑦,max(𝑘𝑥 = 17–𝑘𝑥 = 32) = 2𝑝−6

…

𝑘𝑦,max(𝑘𝑥 = (2𝑝−2 + 1)–𝑘𝑥 = 2𝑝−1) = 20

It is interesting to compare the filtering rule (32) with the sparse grid 
filter derived in the context of standard moment deposition, equa-
tion (10). In Fig. 6, the comparison is performed for 𝑝 = 6, where black 
squares represent the modes that are kept by the binary filter. One sees 
that the boundary between the modes that are set to zero and the ones 
that are kept, using rule (32), roughly coincides with the 𝐹 sg

2D = 0.3 con-
7

tour line. A short calculation shows that the fraction of retained degrees 
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Fig. 6. Pcolor of 𝐹 sg
2D together with the retained modes (black squares) in the 

Fourier formulation for the case 𝑛 = 6. The red contour line is the isocontour 
𝐹

sg
2D = 0.3.

of freedom, compared to the total number of degrees of freedom, 22𝑝 , 
on a two dimensional grid of level 𝑝, scales as 𝑝2−𝑝. As expected, most 
modes are set to zero, and increasingly so when 𝑝 increases. The gain 
in terms of PIC noise can become very large, at the expense of not de-
scribing a lot of modes. The question is, of course, whether these modes 
are physical and should actually be treated, or not.

In three dimensions, using the same rule for interpreting terms such 
as 𝜌(𝑝)(𝑖,𝑗,𝑘), we obtain similar conclusions. The filter derived from the 
three dimensional combination formula, equation (9) becomes a binary 
filter, with coefficients either 0 or 1, that is, some modes are retained, 
while others are simply discarded. This binary filter, which we shall 
denote 𝐹

sg
3D in the following, acts qualitatively in the same way as the 

sparse grid filter discussed in sections 2 and 3. Compared to the latter, it 
has two advantages. The normal sparse grid filter, 𝐹 sg

3D, is more difficult 
to compute as it requires numerous cardinal sine computations. The 
numerical cost is never quite prohibiting until the grid level exceeds 𝑝 =
10, which is usually sufficient, nonetheless, it can take a few minutes 
unless the task is parallelized (which is easy). Another, more important, 
advantage is that in the case of 𝐹 sg

3D, the only mode that is not affected 
has 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 0. Any other mode is reduced by a factor strictly less 
than one. This is not the case with the binary filter, 𝐹

sg
3D, where the 

retained modes do not undergo any deformation.
We now apply the ideas developed in this article to the PIC solver of 

the magnetohydrodynamic kinetic/fluid hybrid code XTOR-K.

5. Application to the XTOR-K hybrid magnetohydrodynamic code

5.1. Current moment collection strategy in XTOR-K

The XTOR-K code [24] solves a set of two-fluid visco-resistive mag-
netohydrodynamics (MHD) equations in interaction with a population 
of markers evolving in the fluid electromagnetic field. It is a hybrid ki-
netic/MHD extension of the two-fluid code XTOR-2F [25]. The coupling 
between the fluid and the marker distribution is carried out through the 
particle pressure tensor, which is injected in the momentum equation. 
The fluid grid of XTOR-K is based on the flux coordinates of the underly-
ing equilibrium, computed with the CHEASE code [26]. XTOR-K uses a 
spectral description in the poloidal (𝜃) and toroidal (𝜑) directions, and 
finite differences in the radial (𝑠 ∝

√
𝜓 , where 𝜓 is the initial equilib-

rium poloidal flux) direction. The moments of the marker distribution 
are collected on a specific grid, that is different from the fluid grid. 
The collection grid is Cartesian in the poloidal plane, which bypasses 

any issue associated with the singular jacobian at the toroidal grid axis 



Computer Physics Communications 299 (2024) 109151T. Nicolas, V. Dubois, Q. Fang et al.

Fig. 7. Radial structure of the 𝑚 = 1, 𝑛 = 1 mode. Filtering before the mapping and with 𝐹 sg
3D (a), after the mapping and with 𝐹 sg

3D (b), before the mapping and with 
𝐹

sg (c), after the mapping and with 𝐹 sg (d).
3D 3D

(which coincides with the magnetic axis at equilibrium). The spectral 
representation of the fluid code is partially used here, in that the repre-
sented toroidal modes are collected one by one on the two dimensional 
poloidal grid, applying equations (27)-(28). Jointly, the toroidal modes 
represent the full three dimensional signal. Once the moments (density, 
velocity and pressure tensor) are known on the collection grid, they are 
interpolated on the toroidal fluid grid, and finally projected on the set 
of represented modes. A typical resolution of the fluid grid in the radial, 
poloidal and toroidal direction is 𝓁max×𝑚max×𝑛max = 512 ×64 ×24. This 
typical resolution reflects the fact that the XTOR code (in its purely fluid 
or hybrid version) is used to study MHD or kinetic MHD instabilities 
such as the kink [27,28], the tearing [29] or the fishbone mode [24], 
which have well defined low order angular mode numbers, but have a 
radial structure exhibiting sharp features around the resonant surface 
of the instability.

The set of angular modes retained in the simulations is defined by a 
band of poloidal modes 𝑚 around each toroidal mode 𝑛 > 0, such that 
𝑛 − 𝑚inf < 𝑚 < 𝑛 + 𝑚sup. The 𝑛 = 0 case receives a separate treatment, 
where the poloidal modes are retained up to 𝑚 = 𝑚𝑛0. Due to aliasing 
constraints in the context of nonlinear equations, the largest toroidal 
mode number (resp. 𝑚𝑛0) is less than one third of the number of toroidal 
(resp. poloidal) grid points. For instance when the toroidal resolution is 
12 (resp. 24), then the largest toroidal mode is effectively 𝑛 = 3 (resp. 
𝑛 = 7). Therefore, the number of dofs in the angular dimensions is re-
duced by a factor of roughly three, down from the already moderate 
value of 𝑚max × 𝑛max. Since the moments are projected on this set of 
physical modes, the PIC noise is in part filtered. The problem resides 
in the radial direction, where the PIC noise is not filtered. The current 
filtering strategy is to apply a diffusion operator but its main purpose 
is to clean the noise only close to the axis. The presence of sharp fea-
8

tures of the modes at the instability resonant surface (which justifies 
the choice of the resolution) means that a strategy of noise reduction 
based on high frequency filtering (low-pass filter) of the radial profiles 
only is bound to fail. Indeed, consider what would happen if one would 
select the low order (𝑚, 𝑛) values corresponding to the mode of inter-
est (and its sidebands), and filter the high radial frequencies out. We 
would also significantly smooth any sharp behavior happening at the 
resonance, thus strongly modifying the physics. In section 5.3, we will 
see what strategy we suggest to limit this phenomenon. First, we will 
examine the issue of energy and momentum conservation in relation 
with the filtering.

5.2. Energy and momentum conservation in XTOR-K and the sparse grid 
filter

Rigorous conservation of energy and momentum is often less a con-
cern for MHD stability codes, in particular with implicit formulations, 
than it is for shock problems formulated with explicit schemes [30]. As a 
matter of fact, it is not easy to write, analytically, a conservative system 
of even purely fluid extended MHD equations. Naturally, this becomes 
even more difficult when kinetic physics is added. For example, in gen-
eral, the noise inherent to PIC codes affects the conserved quantities. A 
filter such as the one discussed in this paper may also have a detrimental 
effect on energy and momentum conservation. Consider a specific mode 
carrying some energy, for instance in the form of internal energy, that 
is, pressure. From the point of view of the fluid equations, this particle 
pressure is seen as a moment on a grid, that may be subject to filtering. 
Following the nonlinear evolution, this energy may be redistributed to 
different wave numbers, where the value of the filter differs from the 
original wave number, and some energy will unphysically escape from 
the system. However, notice that the moment collection step, whatever 

order it is, already acts as a wave number dependent filter (equation 
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Fig. 8. Radial structure of the 𝑚 = 1, 𝑛 = 0 mode. Filtering before the mapping and with 𝐹 sg
3D (a), after the mapping and with 𝐹 sg

3D (b), before the mapping and with 
𝐹

sg
3D (c), after the mapping and with 𝐹 sg

3D (d).
(5)), no matter whether a sparse grid algorithm is implemented or not. 
Thus, the situation is not necessarily worse off with the filter than it 
is without it. In XTOR-K, the strategy to avoid that non conservation 
leads to unphysical situations on the long run is to implement restoring 
terms. For example, the heat source is implemented as diffusion with 
respect to an equilibrium, so that any unphysical energy generated by 
the system always ends up escaping the simulated volume. In this con-
text, it is likely that the effect of an eventual filter on the conservation 
properties of the model exists, but is not of great concern.

We now explain how the ideas developed in this manuscript suggest 
filtering strategies to reduce the noise in the radial direction.

5.3. Filtering of an XTOR-K distribution

We use an actual marker distribution coming from XTOR-K, in order 
to evaluate under what conditions the sparse grid filter is able to reduce 
the PIC noise without deforming the signal. We consider a run where 
an 𝑚 = 1, 𝑛 = 1 internal kink is simulated in presence of a population of 
thermal 𝛼 particles of temperature 𝑇𝛼 = 2 MeV, while the electron and 
ion bulk temperature are 𝑇𝑒 = 30 keV. The 𝛼 density, 𝑛𝛼 = 4 × 1017 m−3

in the core is 2% of the bulk density, with similar profile. The 𝛽 of 
the 𝛼 particles, 𝛽𝛼 = 1.2% is close to the fluid 𝛽, 𝛽𝑓 = 1.7% (𝛽 is the 
ratio of kinetic to magnetic pressure). In this configuration, the effect 
of the particles on the kink is significant. The total number of markers 
is 𝑁𝑃 = 172 × 106. The question is whether the radial noise can be 
reduced on the modes. At 𝑡 = 5000𝜏𝐴, where 𝜏𝐴 is the Alfvén time, the 
mode has grown out of the PIC noise and the growth rate of the mode is 
clearly measurable on the integrated magnetic energies. At this time, we 
9

extract the global distribution of markers to compute its moments. We 
will be able to study the different poloidal and toroidal mode numbers 
separately.

The moments are first collected on a cartesian grid in (𝑅, 𝜑, 𝑍) coor-
dinates. As explained in section 5.1, this avoids the issue of the magnetic 
axis, where the volume of cells tends to zero, increasing the noise. Also, 
notice that the cartesian grids are slightly larger than the domain of 
physical interest, so at the boundary of the grids, the signals vanish, 
which makes periodic boundary conditions suitable. The level of the 
grid is 𝑝 ∈ {6,7,8}. Then, the moments are mapped by linear interpo-
lation to the toroidal coordinates (𝑠, 𝜃, 𝜑) used by the fluid part of the 
code. The toroidal grid has the same size as the deposition (𝑅, 𝜑, 𝑍)
grid (eventually the poloidal and toroidal modes are filtered to retain 
only the band of simulated modes). We call this step the mapping. The 
filter can be applied either before or after the mapping. The result will 
not be the same, because in the first case, the grid is not aligned with 
the modes present in the distribution, which typically have a well de-
fined periodicity in 𝜃 and 𝜑. Therefore, it would seem more natural 
to filter after the mapping step. However, the most important modes 
have low poloidal and toroidal mode numbers 𝑚 and 𝑛. Therefore, the 
fast radial frequencies, which contribute to the radial noise, will tend 
to be well preserved, while they will be cut down for the modes hav-
ing large 𝑚 and 𝑛. This is not what we hope to achieve, since we would 
like the fast frequencies corresponding to noise to be filtered even for 
low 𝑚 and 𝑛 modes. We see that the order between filtering and map-
ping matters much, and that it might be preferable to filter before the 
mapping, where the grid is, in a sense, agnostic regarding the nature of 
the structures. In particular, we can hope that the sharp features asso-
ciated with resonance layers will be preserved, at least in part, because 

they have a broad spectrum.
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Fig. 9. Radial structure of the 𝑚 = 2, 𝑛 = 1 mode. Filtering before the mapping and with 𝐹 sg
3D (a), after the mapping and with 𝐹 sg

3D (b), before the mapping and with 
𝐹

sg
3D (c), after the mapping and with 𝐹 sg

3D (d).
For each choice of the order between the filtering and mapping 
steps, we test both 𝐹 sg

3D and 𝐹
sg
3D, that is, the filter derived using for-

mula (11) or using the three dimensional counterpart of (32). Finally, 
the radial structure of any (𝑚, 𝑛) mode can be extracted from the fil-
tered signal. For each (𝑚, 𝑛) mode, we show how the filtered signal 
depends on 𝑝, the level of the grid; every time there are four plots, 
for each choice of the filter and the order between mapping and filter-
ing. All plots show in black the original signal in XTOR-K. The other 
curves show the cases 𝑝 = 6 (green), 𝑝 = 7 (red), 𝑝 = 8 (blue). In the top 
row (subfigures a) and b)) 𝐹

sg
3D is used, while in the bottom row, 𝐹 sg

3D
is used. In the left column (subfigures a) and c)), the filtering is done 
before the mapping, while it is done after the mapping in the right col-
umn. Figs. 7–10 show the radial structure of the (1, 1), (1, 0), (2, 1) and 
(2, 2) modes respectively. The other modes are drowned in the noise. 
Note that our analysis of the noise is qualitative only, because a quan-
titative study would require to know the underlying true signals, which 
we do not know.

The bottom rows of these two figures show an interesting behav-
ior. When 𝐹 sg

3D is used, a significant reduction of the signal is observed 
(Figs. 7, 8, 9 and 10 c)-d)). This reduction of the signal barely shows up 
for 𝐹

sg
3D (Figs. 7, 8, 9 and 10 a)-b)) even at 𝑝 = 6 (but we would start 

to see it for lower values of 𝑝). The fact that lower values of 𝑝 lead to 
stronger deformation of the signal is very natural in view of the prop-
erties of the sparse grid filters. The reason for the better robustness of 
the binary filter 𝐹

sg
3D is the following: although it has qualitatively sim-

ilar properties to 𝐹 sg
3D in terms of noise reduction, in the zone where 

𝐹
sg
3D takes up values significantly above zero, 𝐹

sg
3D is exactly equal to 
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one (Fig. 6). This means that the retained modes are well preserved for 
𝐹
sg
3D, whereas they are reduced by some factor in the case of 𝐹 sg

3D. This 
shows that it is largely preferable to use 𝐹

sg
3D instead of 𝐹 sg

3D.
Now, we compare the left and right columns of the figures (top row), 

that is, whether the filtering is done before or after the step of mapping 
to toroidal coordinates. Therefore, we compare the subfigures a) and b) 
in each figure. In the first case (filtering before the mapping), a good 
level of filtering is obtained for 𝑝 = 6 and 𝑝 = 7, even for 𝑝 = 8. How-
ever, the use of 𝑝 = 6 should be prohibited, because we see that the 
noise reduction comes with a diffusion of the sharp features. Indeed, 
the MHD modes should be allowed to vary rapidly, close to the resonant 
surface. The choices of 𝑝 = 7 or 𝑝 = 8 appear to be a good compromise 
between noise reduction and good representation of the structures. In 
other words, it reduces the particle based error without increasing too 
much the grid based error. In the case when the filter is applied after 
the mapping, we see that 𝑝 = 7 leads to almost no noise reduction, while 
𝑝 = 8 even seems to increase the noise (actually, this is due to the fact 
that the additional step of applying a radial diffusion operator, which 
is used for the XTOR-K data in black, was not used for the sparse grid 
filtered data). The case of 𝑝 = 6, when the filter is applied after the map-
ping, corresponds roughly to the same level of noise as the case of 𝑝 = 7
when the filter is applied before. However, it looks preferable to use 
the latter, because the noise increases much faster with 𝑝 in the former 
case (filter after mapping), so the likelihood of mistuning the algorithm 
is larger.

In conclusion, the choice of 𝑝 = 7 or 𝑝 = 8 and of filtering the mo-
ments before the mapping appears to be a reasonable choice in XTOR-K. 
It remains to be fully implemented in the code, in order to perform 
systematic comparisons. First, the linear growth rates will have to be 

compared, then, possible differences in the nonlinear physics will have 
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Fig. 10. Radial structure of the 𝑚 = 2, 𝑛 = 2 mode. Filtering before the mapping and with 𝐹 sg
3D (a), after the mapping and with 𝐹 sg

3D (b), before the mapping and with 
𝐹

sg (c), after the mapping and with 𝐹 sg (d).
3D 3D

to be tracked before it can be envisaged to routinely use sparse grid 
filtering.

6. Truncated combination schemes

In ref. [2], filtering strategies based on a modification of the com-
bination formulæ (8)-(9) are considered. Namely, an integer offset, or 
truncation, parameter 𝜏 is introduced such that the minimum level of 
the grids used in the combination becomes 𝜏 instead of 1. Namely, for-
mula (8) is replaced with

𝜌
(𝑝,𝜏)
sg,2𝐷 =

𝑝∑
𝑖=𝜏

𝑖+𝑗=𝑝+𝜏

𝜌
(𝑝)
(𝑖,𝑗) −

𝑝−1∑
𝑖=𝜏

𝑖+𝑗=𝑝+𝜏−1

𝜌
(𝑝)
(𝑖,𝑗) (33)

𝜌
(𝑝,𝜏)
sg,3𝐷 =

𝑝∑
𝑖=𝜏

𝑝+1−𝑖∑
𝑗=𝜏

𝑖+𝑗+𝑘=𝑝+𝜏+2

𝜌
(𝑝)
(𝑖,𝑗,𝑘)

− 2
𝑝−1∑
𝑖=𝜏

𝑝−𝑖∑
𝑗=𝜏

𝑖+𝑗+𝑘=𝑝+𝜏+1

𝜌
(𝑝)
(𝑖,𝑗,𝑘)

+
𝑝−2∑
𝑖=𝜏

𝑝−1−𝑖∑
𝑗=𝜏

𝑖+𝑗+𝑘=𝑝+𝜏

𝜌
(𝑝)
(𝑖,𝑗,𝑘). (34)

In ref. [2], 𝜏 is chosen dynamically at run time, depending on an es-
timation of the value of 𝜏 that minimizes the grid based error. This 𝜏
optimization step involves the Fourier transform of the signal obtained 
by moment deposition on the finest grid level. Then, it is suggested 
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to deposit the moments on all the sparse subgrids of the algorithm, 
and combine them with equation (33). Note that each deposition on 
a subgrid involves a loop through all the markers of the simulation. As 
emphasized above, in three dimensions the number of terms in the com-
bination formula scales with 𝑝2, where 𝑝 is the level of the finest grid, 
with for example 109 terms (109 loops over all markers) for 𝑝 = 9. We 
suggest that it would be much faster, especially if the Fourier transform 
of the signal has already been obtained, to simply apply the filter cor-
responding to equation (33) or its three dimensional counterpart (34). 
They can be obtained for any level and any value of 𝜏 , with the follow-
ing formula:

𝐹
sg
2D,tr (𝐤;𝑝, 𝜏) =

𝑝∑
𝑖=𝜏

𝑖+𝑗=𝑝+𝜏

sinc2
(
𝑘𝑥2−𝑖

)
sinc2

(
𝑘𝑦2−𝑗

)

−
𝑝−1∑
𝑖=𝜏

𝑖+𝑗=𝑝+𝜏−1

sinc2
(
𝑘𝑥2−𝑖

)
sinc2

(
𝑘𝑦2−𝑗

)
(35)

and similarly in three dimensions. Note that to distinguish this filter 
from that of equation (10), we have added the subscript tr to indicate 
that it uses the truncated combination formula. In particular we have 
𝐹

sg
2D,tr (∙; ∙, 1) = 𝐹

sg
2D. The maps of the filter for order 𝑞 = 1 and grid level 

𝑝 = 6, for the cases 𝜏 = 1 to 𝜏 = 4, are displayed in Fig. 11. In fact, 
once again the formalism of section 3 can be used to obtain a unified 
picture of the filters. Let 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 ∈ ℕ⋆ and 𝑝 ≥ 2, 1 ≤ 𝜏 ≤ 𝑝 − 1. Then, 
by rearranging the sum (35) (let 𝑖′ = 𝑖 + 𝜏 − 1, 𝑗′ = 𝑗 + 𝜏 − 1) we find

𝐹
sg
2D (𝐤;𝑝+ 1 − 𝜏) = 𝐹 sg

2D,tr
(
2𝜏−1𝐤;𝑝, 𝜏

)
(36)

Therefore, we have( )

𝐹

sg
2D,tr 2𝜏−1𝐤;𝑝, 𝜏 =𝐺(𝑖)

2D(2
−𝑟𝐤), (37)
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Fig. 11. Filters for order 𝑞 = 1 and grid level 𝑝 = 6, for 𝜏 = 1 (a), 𝜏 = 2 (b), 𝜏 = 3 (c) and 𝜏 = 4 (d).
Fig. 12. Selection of retained modes (nodes in contact with colored squares) in 
the Fourier sparse grid algorithm (𝑝 = 4, 𝜏 = 2).

where 𝑟, 𝑖 are the quotient and remainder of the euclidean division of 
𝑝 + 1 − 𝜏 by 2. Unfortunately, the equality does not hold when the 
arguments of 𝐹 sg

2D,tr are no longer a multiple of 2𝜏−1, that is, in general

𝐹
sg
2D,tr (𝐤;𝑝, 𝜏) ≠𝐺(𝑖)

2D(2
−(𝑟+𝜏−1)𝐤). (38)

Nonetheless, the preceding equality almost holds in practice, so that 
𝐺

(0)
2D and 𝐺(1)

2D give the general qualitative features of the truncated fil-
ters, owing to equation (36), as can be observed in Fig. 11.

Naturally, the truncated combination formula also allows to redefine 
the binary filter of section 4. For instance, for 𝑝 = 4 and 𝜏 = 2, the terms 
12

combine in the way represented in Fig. 12 (to be compared with Fig. 5).
7. Extension to higher order shape functions

So far, we have restricted the discussion to the case where the shape 
function is based on the tent function, eq. (2), because this is a very 
common choice in PIC algorithms. In fact, the tent function is but the 
order 1 of a series of shape functions built by successive convolutions 
of the hat function 𝜏0:

𝜏0(𝑥) =
{

1 if |𝑥| ≤ 1∕2
0 if |𝑥| > 1∕2.

(39)

First, the tent function 𝜏1 is the convolution product

𝜏1(𝑥) =

∞

∫
−∞

d𝑡𝜏0(𝑥− 𝑡)𝜏0(𝑡). (40)

More generally, the shape function of order 𝑞 is given recursively by

𝜏𝑞(𝑥) =

∞

∫
−∞

d𝑡𝜏0(𝑥− 𝑡)𝜏𝑞−1(𝑡). (41)

The Fourier transform of the hat function is the cardinal sine, which 
explains why that of the tent function is the square of the cardinal sine. 
More generally, formula (41) immediately leads by induction to the 
conclusion that the Fourier transform of 𝜏𝑞 is the cardinal sine to the 
power 𝑞 + 1. Therefore, the results of this paper can easily be extended 
to the case of shape functions of any order 𝑞, if one replaces equation (5)
with

𝑓 (𝑘, 𝑝) = sinc𝑞+1
(
𝑘

2𝑝
)
. (42)

This formula has an important consequence. We know that ∀𝑥, 
sinc2(𝑥) > sinc2(2𝑥), therefore ∀𝑞 ∈ ℕ⋆, ∀𝑥, sinc2𝑞(𝑥) > sinc2𝑞(2𝑥). This 
property is essential to prove the positivity of the filter when the 

shape function is built on the tent function, and so this property is 
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Fig. 13. Sparse grid filter for a grid level 𝑝 = 6 when the shape function is the 
hat function (order 0).

preserved for all other odd orders of the shape functions. However, 
sinc(𝑥) −sinc(2𝑥) = sinc(𝑥) (1 − cos𝜋𝑥), which is of the sign of sin𝜋𝑥 for 
𝑥 > 0. Therefore, the property that is essential to prove the positivity 
of the filter is lost for all even powers of the order of the shape func-
tion. As a matter of fact, one can check that the filters associated with 
the shape functions of even order have negative values. For example, 
the case of order 0 (deposition using the hat function, or, equivalently, 
deposition on the nearest neighboring grid point) for 𝑝 = 6 (𝑘max = 32) 
is plotted in Fig. 13. Fortunately, it looks like the minimum (negative) 
of the filter tends to be reduced in absolute value as 𝑝 increases. Hence 
this issue may not be very problematic in practice.

8. Summary

In this paper, we have interpreted the action of the sparse grid com-
bination technique on moments of markers distribution, in the context 
of the PIC Method, as a filter in Fourier space. The essential idea is to 
remember that the moment collection step is a convolution between the 
signal represented by the markers and the shape function. The Fourier 
transform of the shape function is the cardinal sine function elevated to 
some power, and the filter becomes a combination of sums and prod-
ucts of cardinal sines. We have shown that the filters can be expressed 
in terms of functions that are independent of the level of the grid. With 
the quantitative characterization of the filters, it becomes possible to 
replace the sparse grid combination formula, which involves numerous 
sums on the markers, with the sparse grid filter, involving only a for-
ward and backward fast Fourier transform. In addition, it is shown how 
any sparse grid combination formula, including truncated ones, can be 
translated into a filter with similar qualitative properties, but with val-
ues either 0 or 1. The advantage of this binary filter is that it is easier 
to compute and preserves the large scale structures with more fidelity 
than the filter derived from the cardinal sine factors. The application 
of these factors to the hybrid fluid/kinetic magnetohydrodynamic code 
XTOR-K yields encouraging results.
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Appendix A. General properties of the two dimensional filter

A.1. Proof that 0 ≤ 𝐹 sg
2D(𝐤; 𝑝) ≤ 1

Let us detail here general results about the two dimensional Filter 
𝐹
𝑠𝑔

2D defined in eq. (10). First of all, one can use Eqs. (5), (6) in order to 
rewrite eq. (10) into

𝐹
sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

)
=

∑
𝑖+𝑗=𝑝+1

sinc2
(
𝑘𝑥2−𝑖

)
sinc2

(
𝑘𝑦2−𝑗

)
−

∑
𝑖+𝑗=𝑝

sinc2
(
𝑘𝑥2−𝑖

)
sinc2

(
𝑘𝑦2−𝑗

)
.

(A.1)

Eq. (A.1) is very convenient because it makes it clear that:

• 𝐹 𝑠𝑔2D can be extended by identification to a function defined on 
ℝ2 × ℕ ⧵ {0, 1} → ℝ. Besides, for all 𝑝 ∈ ℕ ⧵ {0, 1}, 𝐹 𝑠𝑔2D(∙, ∙; 𝑝) ∈∞(ℝ2, ℝ). This comes from the fact that the sinc function is in-
finitely continuous over ℝ.

• ∀𝑝 ≥ 2, ∀𝑘1, 𝑘2 ∈ℝ, 𝐹 𝑠𝑔2D(𝑘1, 𝑘2; 𝑝) = 𝐹
𝑠𝑔

2D(𝑘2, 𝑘1; 𝑝).
• ∀𝑝 ≥ 2, ∀𝑘 ∈ℝ, 𝐹 𝑠𝑔2D(0, 𝑘; 𝑝) = sinc2 (𝑘2−𝑝).
• 𝐹 𝑠𝑔2D(0, 0; 𝑝) = 1.

Now, let us recombine the two sums of eq. (A.1) into one, with one 
additional term:

𝐹
sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

)
= sinc2

(
𝑘𝑥

2𝑝

)
sinc2

(
𝑘𝑦

2

)
+
𝑝−1∑
𝑖=1

[
sinc2

(
𝑘𝑥

2𝑖

)
×

(
sinc2

(
2𝑖𝑘𝑦
2𝑝+1

)
− sinc2

(
2𝑖𝑘𝑦
2𝑝

))]
.

The terms inside the big parentheses are of the form sinc2(𝑥) −
sinc2(2𝑥) = (𝜋𝑥)2 sinc4(𝑥). Consequently, the previous expression re-
duces to

𝐹
sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

)
=
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)(
2𝑖𝜋𝑘𝑦
2𝑝+1

)2

sinc4
(
2𝑖𝑘𝑦
2𝑝+1

)

+ sinc2
(
𝑘𝑥

2𝑝

)
sinc2

(
𝑘𝑦

2

)
. (A.2)

Eq. (A.2) immediately shows that

∀(𝑘𝑥, 𝑘𝑦, 𝑛) ∈ℝ ×ℕ ⧵ {0,1}, 𝐹 sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑛

) ≥ 0. (A.3)

It also implies that 𝐹 sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

)
= 0 ⟹ 𝑘𝑥∕2𝑝 ∈ℤ or 𝑘𝑦∕2𝑝 ∈ℤ.

The same trick used for eq. (A.2) can also be used to compute 
𝐻(𝑘𝑥, 𝑘𝑦; 𝑝) ≡ 𝐹 sg

2D
(
𝑘𝑥, 𝑘𝑦;𝑝

)
− 𝐹 sg

2D
(
2𝑘𝑥, 𝑘𝑦;𝑝

)
:

𝐻(𝑘𝑥, 𝑘𝑦;𝑝) =
𝑝−1∑
𝑖=1

[(
sinc2

(
𝑘𝑥

2𝑖

)
− sinc2

(
2𝑘𝑥
2𝑖

))

×

(
2𝑖𝜋𝑘𝑦
2𝑝+1

)2

sinc4
(
2𝑖𝑘𝑦
2𝑝+1

)⎤⎥⎥⎦(
2
(
𝑘𝑥

)
2
(
2𝑘𝑥

))
2
(
𝑘𝑦

)

+ sinc

2𝑝
− sinc

2𝑝
sinc

2
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=
𝑝−1∑
𝑖=1

(
𝜋2𝑘𝑥𝑘𝑦

2𝑝+1

)2

sinc4
(
𝑘𝑥

2𝑖

)
sinc4

(
2𝑖𝑘𝑦
2𝑝+1

)

+
(
𝜋𝑘𝑥

2𝑝

)2
sinc4

(
𝑘𝑥

2𝑝

)
sinc2

(
𝑘𝑦

2

)
.

Consequently, ∀(𝑘𝑥, 𝑘𝑦, 𝑝) ∈ℝ2 ×ℕ ⧵ {0, 1}, 𝐻(𝑘𝑥, 𝑘𝑦; 𝑝) ≥ 0. Hence, 
𝐹

sg
2D

(
𝑘𝑥∕2, 𝑘𝑦;𝑝

) ≥ 𝐹 sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

)
. Using the symmetry of the function 

and iterating it, one has the following result: ∀(𝑘𝑥, 𝑘𝑦, 𝑝, 𝑚1, 𝑚2) ∈ ℝ ×
ℕ ⧵ {0, 1} ×ℕ2,

0 ≤ 𝐹 sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

) ≤ 𝐹 sg
2D

(
𝑘𝑥

2𝑚1
,
𝑘𝑦

2𝑚2
;𝑝
)
. (A.4)

Thus, letting 𝑚1, 𝑚2 → +∞ and using the fact that 𝐹 sg
2D is continuous, 

one has ∀(𝑘𝑥, 𝑘𝑦, 𝑝) ∈ℝ ×ℕ ⧵ {0, 1},

0 ≤ 𝐹 sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

) ≤ 1. (A.5)

A.2. Proof of equations (17) and (21)

We start by proving equation (21), which gives a relation between 
the filters when the grid is refined. Property (17) will come as a con-
sequence. Let us assume that 𝑘𝑥, 𝑘𝑦 ∈ ℤ⋆ and 𝑚, 𝑛 ∈ ℕ. Then, one can 
develop

𝐹
sg
2D

(
2𝑚𝑘𝑥,2𝑛𝑘𝑦;𝑝+𝑚+ 𝑛

)
=

∑
𝑖+𝑗=𝑝+𝑚+𝑛+1

sinc2
(
𝑘𝑥2𝑚−𝑖

)
sinc2

(
𝑘𝑦2𝑛−𝑗

)
−

∑
𝑖+𝑗=𝑝+𝑚+𝑛

sinc2
(
𝑘𝑥2𝑚−𝑖

)
sinc2

(
𝑘𝑦2𝑛−𝑗

)
=

𝑚+𝑝∑
𝑖=𝑚+1

sinc2
(
𝑘𝑥2𝑚−𝑖

)
sinc2

(
𝑘𝑦2𝑖−𝑝−𝑚−1

)
−
𝑚+𝑝−1∑
𝑖=𝑚+1

sinc2
(
𝑘𝑥2𝑚−𝑖

)
sinc2

(
𝑘𝑦2𝑖−𝑝−𝑚

)
+

∑
𝑖∈�1,𝑚�×�𝑝+𝑚+1,𝑝+𝑚+𝑛�

sinc2
(
𝑘𝑥2𝑚−𝑖

)
sinc2

(
𝑘𝑦2𝑖−𝑝−𝑚−1

)
−

∑
𝑖∈�1,𝑚�×�𝑝+𝑚,𝑝+𝑚+𝑛−1�

sinc2
(
𝑘𝑥2𝑚−𝑖

)
sinc2

(
𝑘𝑦2𝑖−𝑝−𝑚

)
=

𝑝∑
𝑖=1

sinc2
(
𝑘𝑥2−𝑖

)
sinc2

(
𝑘𝑦2𝑖−𝑝−1

)
−
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥2−𝑖

)
sinc2

(
𝑘𝑦2𝑖−𝑝

)

+
𝑚−1∑
𝑙=0

sinc2
⎛⎜⎜⎜⎝ 𝑘𝑥2

𝑙

⏟⏟⏟
∈ℤ∗

⎞⎟⎟⎟⎠
[
sinc2

(
𝑘𝑦2−(𝑙+𝑝+1)

)
− sinc2

(
𝑘𝑦2−(𝑙+𝑝)

)]

+
𝑛−1∑
𝑡=0

sinc2
⎛⎜⎜⎜⎝ 𝑘𝑦2𝑡
⏟⏟⏟
∈ℤ∗

⎞⎟⎟⎟⎠
[
sinc2

(
𝑘𝑥2−(𝑡+𝑝+1)

)
− sinc2

(
𝑘𝑥2−(𝑡+𝑝)

)]
, (A.6)

with 𝑙 = 𝑚 − 𝑖 and 𝑡 = 𝑖 − 𝑝 − 𝑚 − 1 in (A.6). Since the sine function 
cancels out on 𝜋ℤ, sinc is equal to 0 on ℤ∗. Besides, the first term 
of (A.6) is precisely 𝐹 sg

2D
(
𝑘𝑥, 𝑘𝑦;𝑝

)
. This immediately leads us to the 

equality in 2D

∀𝑘𝑥, 𝑘𝑦 ∈ℤ∗, ∀𝑝 ≥ 2, ∀𝑚,𝑛 ≥ 0,

𝐹
sg
2D

(
2𝑚𝑘𝑥,2𝑛𝑘𝑦;𝑝+𝑚+ 𝑛

)
= 𝐹 sg

2D
(
𝑘𝑥, 𝑘𝑦;𝑝

)
. (A.7)

Equation (21) is a direct application of eq. (A.7) to the special case 
𝑚 = 𝑛.

Finally, let us use eq. (A.6) but for 𝑘𝑥, 𝑘𝑦 ∈ℝ instead of ℕ. It gives us 
14
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𝐹
sg
2D

(
2𝑚𝑘𝑥,2𝑚𝑘𝑦;𝑝+ 2𝑚

) ≥ 𝐹 sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

)
. (A.8)

Eq. (A.8) can be rewritten into 𝐹 sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝+ 2𝑚

) ≥ 𝐹
sg
2D
(
2−𝑚𝑘𝑥,

2−𝑚𝑘𝑦; 𝑝
)
. Using again the continuity of 𝐹 sg

2D, letting 𝑚 → +∞ and con-
sidering odd and even values of 𝑝, one has the result

∀(𝑘𝑥, 𝑘𝑦) ∈ℝ2, 𝐹
sg
2D

(
𝑘𝑥, 𝑘𝑦;𝑝

)
⟶
𝑝→+∞

1, (A.9)

which proves eq. (17).

A.3. Continuity of 𝐺(𝑖)
2D

Let us define for all 𝑘𝑥, 𝑘𝑦 ∈ ℝ and for all 𝑝 ≥ 1, 𝐺𝑝(𝑘𝑥, 𝑘𝑦) ≡
𝐹

sg
2D(2

𝑝𝑘𝑥, 2𝑝𝑘𝑦; 2𝑝). According to eq. (A.7), 𝑘𝑥, 𝑘𝑦 ∈ 2−𝑚ℤ∗ ⟹ ∀𝑝 ≥
1, 𝐺𝑝+𝑚(𝑘𝑥, 𝑘𝑦) =𝐺𝑚(𝑘𝑥, 𝑘𝑦). Thus, it becomes natural to consider, pro-
vided it exists, the limit of the sequence (𝐺𝑝):

𝐺
(0)
2D(𝑘𝑥, 𝑘𝑦) = lim

𝑝→∞
𝐹

sg
2D(2

𝑝𝑘𝑥,2𝑝𝑘𝑦; 2𝑝). (A.10)

The convergence of (𝐺𝑝) can be proven as follows. Let us consider 
the sequence 𝐶𝑝,𝑛 ≡𝐺𝑝+𝑛 −𝐺𝑝. Using again eq. (A.6), one has

𝐶𝑝,𝑛(𝑘𝑥, 𝑘𝑦) =
𝑛−1∑
𝑙=0

[
sinc2

(
𝑘𝑥2𝑝+𝑙

)( 𝜋𝑘𝑦

2𝑝+𝑙+1

)2
sinc4

(
𝑘𝑦

2𝑝+𝑙+1

)

+ sinc2
(
𝑘𝑦2𝑝+𝑙

)( 𝜋𝑘𝑥

2𝑝+𝑙+1

)2
sinc4

(
𝑘𝑥

2𝑝+𝑙+1

)]
.

(A.11)

One can immediately see that this series normally converges on ℝ2

at fixed 𝑝 and when 𝑛 →∞ since both terms inside the brackets behave 
like 𝑂(2−2𝑙). Thus, let us define its limit 𝐶𝑝 = lim𝑛→∞𝐶𝑝,𝑛. It is con-
tinuous thanks to the normal convergence and satisfies the relationship 
∀𝑝 ≥ 1, 𝐺(0)

2D = 𝐶𝑝 +𝐺𝑝. As a consequence, 𝐺(0)
2D is a continuous function 

that can be expressed as the following series:

𝐺
(0)
2D(𝑘𝑥, 𝑘𝑦) = sinc2

(
𝑘𝑥

)
sinc2

(
𝑘𝑦
)

+
∞∑
𝑙=0

[
sinc2

(
𝑘𝑥2𝑙

)( 𝜋𝑘𝑦
2𝑙+1

)2
sinc4

(
𝑘𝑦

2𝑙+1

)

+sinc2
(
𝑘𝑦2𝑙

)( 𝜋𝑘𝑥
2𝑙+1

)2
sinc4

(
𝑘𝑥

2𝑙+1

)]
, (A.12)

where we used 𝐺1(𝑘𝑥, 𝑘𝑦) = sinc2
(
𝑘𝑥

)( 𝜋𝑘𝑦
2

)2
sinc4

(
𝑘𝑦

2

)
+

sinc2
(
𝑘𝑥
2

)
sinc2

(
𝑘𝑦
)

and sinc2(𝑥) = sinc2(2𝑥) + (𝜋𝑥)2 sinc4(𝑥).

Finally, 𝐺(0)
2D satisfies the following properties:

• 𝐺(0)
2D is solution of eq. (A.10) by construction.

• 𝐺(0)
2D ∈ (ℝ2, ℝ) thanks to uniform convergence (it is even infinitely 

continuous).
• 0 ≤𝐺(0)

2D ≤ 1 thanks to the properties of 𝐹 sg
2D.

• ∀𝑚 ∈ ℕ, 𝑘𝑥, 𝑘𝑦 ∈ 2−𝑚ℤ∗ ⟹ ∀𝑝 ≥ 2, 𝐺(0)
2D(𝑘𝑥, 𝑘𝑦) = 𝐹

sg
2D(2

𝑝+𝑚𝑘𝑥,
2𝑝+𝑚𝑘𝑦; 2(𝑝 +𝑚)).

• In the particular case 𝑘𝑥𝑘𝑦 = 0 (let us take 𝑘𝑦 = 0), one has

𝐶𝑝,𝑛(𝑘𝑥,0) = sinc2
(
𝑘𝑥

2𝑝+𝑛

)
− sinc2

(
𝑘𝑥

2𝑝

)
⟶
𝑛→∞

1 − sinc2
(
𝑘𝑥

2𝑝

)
.

(A.13)

Thus, 𝐺(0)
2D(𝑘𝑥, 0) =𝐺

(0)
2D(0, 𝑘𝑦) = 1.

Appendix B. General results on the 3D filter

The three dimensional filter 𝐹 sg
3D defined in (11) verifies the same 
properties as its two dimensional counterpart. The proofs are more cum-
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bersome but use the same methods. As in appendix A, let us rewrite 
eq. (11) with the help of eqs. (5) and (7):

𝐹
sg
3D(𝒌, 𝑝) =

∑
𝑖+𝑗+𝑙=𝑝+2

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
sinc2

(
𝑘𝑧

2𝑙

)
− 2

∑
𝑖+𝑗+𝑙=𝑝+1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
sinc2

(
𝑘𝑧

2𝑙

)
+

∑
𝑖+𝑗+𝑙=𝑝

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
sinc2

(
𝑘𝑧

2𝑙

)
,

(B.1)

with 𝒌 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). Eq. (B.1) makes it clear that:

• 𝐹 𝑠𝑔3D(∙, ∙, ∙; 𝑝) can be identified as an infinitely continuous function 
defined on ℝ3 (with 𝑝 ≥ 3).

• 𝐹 𝑠𝑔3D(∙, ∙, ∙; 𝑝) is a symmetric operator.

• 𝐹 𝑠𝑔3D(𝟎; 𝑝) = 1.

In order to retrieve the three dimensional counterpart of the results 
found in appendix A, one needs to define

𝑃𝑝(𝒌) ≡
∑

𝑖+𝑗+𝑙=𝑝+1
sinc2

(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
sinc2

(
𝑘𝑧

2𝑙

)
−

∑
𝑖+𝑗+𝑙=𝑝

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
sinc2

(
𝑘𝑧

2𝑙

)
.

(B.2)

Now, let us develop eq. (B.2):

𝑃𝑝(𝒌) =
𝑝−1∑
𝑖=1

𝑝−𝑖∑
𝑗=1

sinc2
(
𝑘𝑥

2𝑖

)2
sinc2

(
𝑘𝑦

2𝑗

)
sinc2

(
𝑘𝑧2𝑖+𝑗

2𝑝+1

)

−
𝑝−2∑
𝑖=1

𝑝−1−𝑖∑
𝑗=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
sinc2

(
𝑘𝑧2𝑖+𝑗

2𝑝

)

=
𝑝−2∑
𝑖=1

𝑝−1−𝑖∑
𝑗=1

[
sinc2

(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
(
sinc2

(
𝑘𝑧2𝑖+𝑗

2𝑝+1

)
− sinc2

(
𝑘𝑧2𝑖+𝑗

2𝑝

))]
+
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦2𝑖

2𝑝

)
sinc2

(
𝑘𝑧

2

)
.

Using again the sinc2(𝑥) − sinc2(2𝑥) = (𝜋𝑥)2 sinc4(𝑥) identity, one 
has

𝑃𝑝(𝒌) =
∑

2≤𝑖+𝑗≤𝑝−1

[
sinc2

(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)
(
𝜋𝑘𝑧2𝑖+𝑗

2𝑝+1

)2

sinc4
(
𝑘𝑧2𝑖+𝑗

2𝑝+1

)]

+
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦2𝑖

2𝑝

)
sinc2

(
𝑘𝑧

2

)
.

(B.3)

Now, remarking that 𝐹 𝑠𝑔3D(𝒌; 𝑝) = 𝑃𝑝+1(𝒌) − 𝑃𝑝(𝒌), we expand 
𝐹
𝑠𝑔

3D(𝒌; 𝑝) using eq. (B.3):

𝐹
𝑠𝑔

3D(𝒌;𝑝) =
𝑝−1∑
𝑖=1

𝑝−𝑖∑
𝑗=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2𝑗

)(
𝜋𝑘𝑧2𝑖+𝑗

2𝑝+2

)2

sinc4
(
𝑘𝑧2𝑖+𝑗

2𝑝+2

)

+
𝑝∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
2𝑖𝑘𝑦
2𝑝+1

)
sinc2

(
𝑘𝑧

2

)

−
𝑝−2∑ 𝑝−1−𝑖∑

sinc2
(
𝑘𝑥

)
sinc2

(
𝑘𝑦

)(
𝜋𝑘𝑧2𝑖+𝑗

)2

∑𝑝−
𝑖=

lette

sion
has 

∀𝒌 ∈

sion

𝐹
𝑠𝑔

3D

Ref

[1]
[2]

[3]
[4]
[5]
[6]

[7]
[8]
[9]

[10]
15

𝑖=1 𝑗=1 2𝑖 2𝑗 2𝑝+1
Computer Physics Communications 299 (2024) 109151

× sinc4
(
𝑘𝑧2𝑖+𝑗

2𝑝+1

)
−
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
2𝑖𝑘𝑦
2𝑝

)
sinc2

(
𝑘𝑧

2

)

=
𝑝−2∑
𝑖=1

𝑝−1−𝑖∑
𝑗=1

sinc2
(
𝑘𝑥

2𝑖

)(
sinc2

(
𝑘𝑦

2𝑗+1

)
− sinc2

(
𝑘𝑦

2𝑗

))

×
(
𝜋𝑘𝑧2𝑖+𝑗

2𝑝+1

)2

sinc4
(
𝑘𝑧2𝑖+𝑗

2𝑝+1

)
+
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2

)(
2𝑖𝜋𝑘𝑧
2𝑝+1

)2

sinc4
(
2𝑖𝑘𝑧
2𝑝+1

)
+ sinc2

(
𝑘𝑥

2𝑝

)
sinc2

(
𝑘𝑦

2

)
sinc2

(
𝑘𝑧

2

)
+
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)(
sinc2

(
2𝑖𝑘𝑦
2𝑝+1

)
− sinc2

(
2𝑖𝑘𝑦
2𝑝

))

× sinc2
(
𝑘𝑧

2

)
=

∑
𝑖+𝑗≤𝑝−1

sinc2
(
𝑘𝑥

2𝑖

)(
2𝑖𝜋2𝑘𝑦𝑘𝑧
2𝑝+2

)2

sinc4
(
𝑘𝑦

2𝑗+1

)
× sinc4

(
𝑘𝑧2𝑖+𝑗

2𝑝+1

)
+
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)
sinc2

(
𝑘𝑦

2

)(
2𝑖𝜋𝑘𝑧
2𝑝+1

)2

sinc4
(
2𝑖𝑘𝑧
2𝑝+1

)
+ sinc2

(
𝑘𝑥

2𝑝

)
sinc2

(
𝑘𝑦

2

)
sinc2

(
𝑘𝑧

2

)
+
𝑝−1∑
𝑖=1

sinc2
(
𝑘𝑥

2𝑖

)(
2𝑖𝜋𝑘𝑦
2𝑝+1

)2

sinc4
(
2𝑖𝑘𝑦
2𝑝+1

)
sinc2

(
𝑘𝑧

2

)
.

(B.4)

To obtain the first equality in equation (B.4), we have rewritten 
1
1
∑𝑝−𝑖
𝑗=1 as 

∑𝑝−1
𝑖=1

∑𝑝−1−𝑖
𝑙=0 with 𝑙 = 𝑗 − 1, and then renamed 𝑙 with the 

r 𝑗. Eq. (B.4) shows that 𝐹 𝑠𝑔3D ≥ 0 and that, as for the two dimen-

al filter, one has 𝐹 𝑠𝑔3D(𝑘𝑥, 𝑘𝑦, 𝑘𝑧; 𝑛) ≥ 𝐹 𝑠𝑔3D(2𝑘𝑥, 𝑘𝑦, 𝑘𝑧; 𝑛). Thus, one 
the three dimensional counterpart of eqs. (A.5) and (A.9):

ℝ3, ∀𝑛 ≥ 3, 0 ≤ 𝐹 𝑠𝑔3D(𝒌;𝑛) ≤ 1 (B.5)

∀𝒌 ∈ℝ3, 𝐹 𝑠𝑔3D(𝒌;𝑛) ⟶
𝑛→+∞

1. (B.6)

In addition, by setting 𝑘𝑧 to 0 in eq. (B.4), we find directly expres-
(A.2), which shows that

(𝑘𝑥, 𝑘𝑦,0;𝑝) = 𝐹
𝑠𝑔

2D(𝑘𝑥, 𝑘𝑦;𝑝). (B.7)
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