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Abstract. In this paper, a new approach to design ultralight structures is developed based on a previous work
called Efficient Multiscale Topology Optimization. A parameterized (or explicit) truss-based cell is introduced
to generate intrinsically well-connected microstructures and to get clear interpretable optimal multiscale
structures. The method uses a pre-computed database of optimal micro-cells to be computational efficient
without losing in structural performances. The parameterization allows to generate a lightweight database just
storing the set of parameters, that define the optimal cells, and the cells properties, that are obtained through
inverse homogenization. The method has been successfully tested on two-dimensional compliance problems.
Several examples demonstrate its versatility and give quantitative results. Moreover, it allows to obtain
structures compatible with additive manufacturing processes, to naturally solve concurrent multi-scale
problems, as well as controlled porosity and optimal fiber orientation problems.

Keywords: Structural optimization / multi-scale design / architectured material design /
additive manufacturing / homogenization
1 Introduction

1.1 Context

Topology optimization is a mathematical method to find
the optimal distribution of material or structural elements
within a design space, for given loads and boundary
conditions with the objective to maximize the perfor-
mances of the structure while respecting constraints. The
first general theory of topology optimization was formu-
lated by Prager and Rozvany [1] and lots of different
methods have been developed starting from this point: the
homogenization method [2], the Solid Isotropic Material
with Penalization (SIMP) [3], the inverse homogenization
method [4], the evolutionary structural optimization
(ESO) [5], level set method (LSM) [6] and others.

The structures resulting from a topology optimization
have better performances but higher geometry complexity.
Therefore, due to manufacturing difficulties, in the late
1990s, the so called “mono-scale” approaches are mainly
developed, optimizing the distribution of a homogeneous
isotropic material (SIMP) [7,8]. However, the latest
advancements in additive manufacturing (AM also known
as 3D printing) led to a new interest in the design of
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multi-scale structures, where each macro point can be
represented as a local “microscopic” structure. Therefore,
the design of architectured materials or meta-materials is
having a great development since materials with excep-
tional properties, that cannot be found in nature, can be
obtained, such as maximized bulk or shear modulus
[4,9,10], negative Poisson’s ratio [11], negative thermal
expansion [12]. The previous approaches studied periodi-
cally repeated micro-structures but in the industrial field
the assemblies of optimized micro-structure, with spatial-
ly-varying properties, are of great interest since they allow
to achieve structures with optimized characteristics. The
issue is how to get optimized micro-structures that are
compatible with their neighbours.

The design of architectured materials can be achieved
by a multi-scale topology optimization (MTO), which
consists in optimizing both the macro-scale and the micro-
one. An exhaustive review of several methods about MTO
was done byWu et al. [13]. The MTO faces two main issues
that are:

–

m
in
Connecting neighbouring micro-structures without
reducing too much the solution space. A bad connection
(or compatibility) does not allow the load to be transferred
correctly and therefore the properties of the micro-
structures obtained through homogenization are not
representative of how the whole structure will react.
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–
 Optimizing simultaneously the two scales has a high
computational cost.

Various approaches and methods in literature have
been developed by considering these two issues. For
instance, Wang et al. [14] presented a framework that uses
a multi-scale isogeometric topology optimization to
optimize the relative density of lattice materials. In that
last work, four unit-cells with well-defined topologies are
predefined and their properties are expressed as functions
of the relative density and directly used in the optimization
loop, improving the computational efficiency. A similar
approach is the one of Watts et al. [15] that considered
three open truss unit cells, compatible with many additive
manufacturing techniques, for which accurate surrogate
models of the properties as function of the relative density
are obtained through homogenization. Once selected one of
the three possible topologies of the unit cell, it is kept
constant over the design domain with the possibility to
vary its geometry through the domain within defined
bounds.

To improve the connectivity between cells Zhou and Li
[16] presented three methods namely connective con-
straint, pseudo load and unified formulation with nonlinear
diffusion. In the first two methods, the unit cells are
optimized individually imposing constraints to connect
them with predefined common regions. In the third
method, the unit cells are optimized all together and a
nonlinear diffusion term is introduced in the objective
function suppressing checkerboard patterns and blurred
boundaries, thereby ensuring proper topological intercon-
nections. Also Garner et al. [17] presented a method to
assure connectivity between adjacent cells, optimizing
simultaneously the physical properties of the individual
cells as well as those of neighbouring pairs. Therefore, they
ensure material connectivity and the smooth variation of
the physical properties.

Xia and Breitkopf [18] proposed a finite element square
nonlinear multi-scale analysis framework for concurrent
design of the materials and structures. However, the
computational cost is quite massive due to a large number
of instant local material optimizations. Therefore, Xia and
Breitkopf [19] introduced a reduced database model to
approximate the material behaviour. The approximate
constitutive model for locally optimized material is built
off-line and the structural optimization using the precom-
puted constitutive model is performed on-line, improving
the computational efficiency. Precomputed databases have
also been proposed for parametrized lattice cells, obtaining
a polynomial model to access cells in between database
points [20–23].

It is also worth mentioning lately some works such like
Pantz and Trabelsi [24], Allaire et al. [25], Goeffroy-
Donders et al. [26], or Groen and Sigmund [27], which also
combine topology optimization and periodic homogeniza-
tion theory in a different way. Indeed, they rather
considered some post-processing de-homogenization (or
“inverse homogenization”) treatments that consist in
replacing an optimized homogenized design by a periodic
lattice. The process involves notably as well an orientation
regularization and a projection algorithm onto a specific
family of parametrized micro-cells (with cubic or square
symmetry). Their inverse homogenization strategies differ
from the one presented hereafter and that intends to use a
pre-computed database of micro-cells (defined as clusters of
beams) in order to be computational efficient without
losing in structural performances.

The remaining part of this paper is organized as follows.
Section 2 of this article briefly describes the main
contributions of the Efficient Multiscale Topology Opti-
mization (EMTO) method and provides the objective of
this work. In Section 3 a new explicit approach
(Ex-EMTO) is developed by defining a parametrized
truss-based unit cell, describing the micro-scale and macro-
scale optimization problems and explaining the database
construction with a first comparison with the original
EMTO. Section 4 provides some comparison with the
original EMTO and with other strategies on classical
problems and shows clear interpretable structures obtained
with the new approach. In Section 5, the versatility of the
method is demonstrated by solving different types of
problems. Finally, Section 6 concludes the paper with final
remarks and with suggested future work.
2 Efficient multiscale topology optimization

We extend here previous works of the authors of EMTO for
the 2D problems [28]. The EMTO consists in optimizing
the micro and the macro scales separately. The micro-scale
topology optimization is used to create off-line a database
of micro-structures to use in the macro-scale topology
optimization to obtain competitive structure reducing the
computational cost. The EMTO method tries to answer to
the previous issues of multi-scale approach (connectivity
and computational cost) while assuring micro-structures to
follow local stress or strain. The main contributions are:

–
 The definition of the so-called “adaptive transmission
zones” in the 2D micro-structure. In order to ensure well
connected micro-structure, a number of connection
points is set along the border of the unit cell. Depending
on these connection points, the transmission zones are
defined as portions of the borders of the unit cell where
the material eventually is enforced to be. In this way
stresses can only be transmitted through those zones
from a unit cell to the neighbour cells. The transmission
zones are adaptive because depending on the conditions
they can change their sizes, resulting in very low design
constraint.
–
 The introduction of well-chosen variables to bridge the
macro-scale and the micro-scale. In the simplest forms of
MTO, only the density variable is used. In the EMTO,
the orientation of the cell (that corresponds to a rotation
of the cell with respect to the out-of-plane direction) and
a variable called cubicity (that quantifies the relative
importance of the two principal directions in 2D case) are
added as variables too. This allows to follow better the
principal stresses and to consider their relative intensity
difference. Therefore, density, orientation and cubicity
are called macro-variables. So, at the end of the macro-
scale optimization a set of these three variables is given



Fig. 2. Original EMTO half MBB beam solution. In red some
cells are highlighted to show the apparent truss structure.

Fig. 1. Influence of the 3 macro-variables on a micro-structure Boxed in green the unit cell having density 0.5, orientation p/4 and
cubicity 0. In each subfigure, two of these variables are fixed, while the third varies.

Fig. 3. The unit test strain fields imposed on a 2D unit cell.

A. Di Rienzo et al.: Mechanics & Industry 25, 7 (2024) 3
for each macro element. Examples of how the micro-
structure changes depending on the macro-variables are
shown in Figure 1.
–
 A database containing both the structural architecture
and the properties of the unit cells, to have a faster
computation in the macro-scale optimization. The
database is built on a regularly spaced 3-dimensional
grid of the three macro variables in order to have micro-
structures close to any point of the design space. This
means that, for any given set of macro-variables assumed
by a macro-element, during and at the end of the macro-
optimization, is possible to find inside the database a
micro-structure with relative properties that satisfy quite
well the conditions given by the set of macro-variables.

The objective of this paper is a further validation of the
original EMTO method and also a demonstration of its
flexibility. Original EMTO shows that the full-scale
structure tends to be truss-like as shown in Figure 2 with
lot of internal forces redistribution. Therefore, a new
explicit approach, called Ex- EMTO, to build the database
of the unit cells (parametrized with a manufacturable
assembly of beams) is developed and the existing EMTO
macro-codes are adapted to the new obtained database,
with the aim at obtaining clear interpretable micro-
structures too. The framework is open-source and available
on GitHub for reproducible research purpose (https://
github.com/mid2SUPAERO/Ex-EMTO).

Following the original EMTO, the micro-scale optimi-
zation gives as results optimal micro-structures depending
on the values assumed by the macro-variables. The
stiffness tensors of the micro-structures are then used in
the macro-scale optimization to assemble the global
stiffness matrix K of the macro-structure. Subsequently,
this matrix is inverted to solve the equilibrium problem
u=K–1f and compute the global compliance c. The macro-
design variables are iteratively updated until reaching the
optimal values from which obtain the optimal macro-
structure.

In the new developed approach, the mechanical
properties of the cell can be determined through the
classical solution of the strain and equilibrium problems
following either Euler-Bernoulli’s or Timoshenko’s
theory. However, since the relative density of the unit
cell can also assume values approaching to one, the beam
theory loses accuracy. Consequently, the behaviour of
the unit cell is obtained by projecting it on a Finite
Elements mesh and solving the equilibrium equations as
Xia and Breitkopf [29] where an energy-based homoge-
nization approach is adopted. The stiffness tensor is
obtained in terms of element mutual energies by
imposing three unit-strain tests to the unit cell as shown
in Figure 3. They correspond to two normal strain fields
and one shear strain field. The nodal displacements for
each unit-strain test are computed applying the periodic
boundary conditions [30]. To better understand the
inverse homogenization method, the periodic boundary
condition and the Matlab implementation the related
papers are suggested [4,29,30].

https://github.com/mid2SUPAERO/Ex-EMTO
https://github.com/mid2SUPAERO/Ex-EMTO


Fig. 4. Method flowchart.

Fig. 5. Baseunit cellwith thebeamsAB,BC,CD,AD,ACandBD.
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3 The new explicit approach

In this section the new explicit approach is explained
starting from how the truss-based unit cells are built. The
new micro-scale optimization and the definition of the
lighter database are described. The macro-scale optimiza-
tion is briefly reported too. In Figure 4 the flowchart
diagram of the proposed method is shown.
3.1 Truss-based unit cell

The considered unit cell is made by superimposing a square
structure and an x-shaped structure as illustrated in
Figure 5, asWang et al. [20], Wu et al. [31] and Zhang et al.
[32]. This design allows to ensure an intrinsically well-
connection between neighbouring cells, avoiding the
definition of the transmission zones. In the meanwhile,
6 beams that connect the 4 vertices of the square design
space can be identified: AB, BC, CD, AD, AC and BD.

The unit cell is moreover parametrized by 4 geometric
parameters bi(i=1,2,3,4) that allow to cluster the beams in
4 “groups”, each group being related to one of the
bi-parameters as described in Figure 6. These parameters
are defined as the ratio between the actual thickness of the
associated beams and the maximum physical thickness.
Therefore, each parameter can range from 0 to 1. For
example, considering the group (a) in Figure 6, the beams
AD and BC can assume a thickness from 0 to half the side of
the design space, in particular here b1 is equal to 0.2.

The unit cell design is built starting from a full-white
cell design and giving as inputs the dimensions of the cell
and the values of the 4 parameters. As stated before, the
thicknesses of the beams are related to the parameters. 4
vertices are defined for each element, as shown in Figure 7,
and for each j-th vertex the distance dj from the boundary
(or the axes for the diagonal beams) of the beam is
evaluated. The maximum and minimum distances are
compared to the thickness ti (or the half-thickness for the
diagonal beams) of the i-th beam to understand if the
element is completely covered, partially covered or not
covered by the i-th beam. If the element is covered (as for
element A, all the distances are less than t 1 that is the
thickness of beam AD), the value 1 is assigned to its
density, otherwise (as for element B, all the distances are
greater than t1) the value remains 0. If the element is
partially covered (as for element C, d1 or equally d4 are less
than t1 and d2 or equally d3 are greater than t1), a value
from 0 to 1 has to be assigned in order to have a smooth
curve for the volume fraction of the structure depending on
the parameters. The value assigned is the area of the
element covered by the beam; for the element C, since the
beam occupy half element, the value assigned is 0.5 as
shown in Figure 8, where the fictitious density of the
element C is plotted with respect to the beam thickness.
The designs of each group of beams are evaluated one by
one independently, therefore, 4 values of fictitious density
are associated to each element. Finally, the structure is
obtained by keeping only the maximum fictitious density
associated to each element. The design is represented with
a grey scale, where white stands for a fictitious density 0,
black for 1 and grey for the intermediate values. It is
important to note that the grey elements can only appear
at the border of the beams. These grey elements are



Fig. 6. The 4 b-dependent groups of beams. (a) AD and BC are defined by the parameter b1; (b) AB and CD are defined by the
parameter b2; (c) BD is defined by the parameter b3; (d) AC is defined by the parameter b4. Here, the 4 designs are obtained by
assigning the value 0.2 to the related parameter.

Fig. 7. Detail to understand the implementation for the unit cell: the element A is completely inside the beam so is black; the element
B is completely outside the beam so is white; the element C is half covered by the beam, so the value assigned is 0.5 and is grey.
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fundamental to have smooth partial derivatives of the
objective function and the constraint with respect the
parameters in the micro-optimization (Eq. 4 and Eq. 5).

The implemented Matlab function to build the unit cell
can be called from the command window
x ¼ Cell 4pðnelx;nely; betaÞ where nelx and nely are the
dimensions of the design space respectively along the x and
y directions, and beta is the vector of the parameters
b= [b1,b2,b3,b4], the output x are the fictitious density of
the elements of the design space. The design in Figure 7 is
obtained by calling from the commandwindow x=Cell_4p
(10, 10, [0.5, 0, 0, 0]).

3.2 The micro-scale optimization

Once implemented the code for the structural architecture
of the unit cell, the micro-optimization code is developed to
compute the database of optimal micro-structures on a
regularly-spaced 3-dimensional grid of the three macro-
variables (density xdens, orientation xor and cubicity xcub
introduced in Sect. 2).

The design space is a discretized square of N (=
nelx� nely) micro elements. The design variables are the
parameters b, that define the structure assigning to each
element a fictitious density xe (a value from 0 to 1) thanks
to the unit cell code explained in Section 3.1. The Young’s
modulus of each micro element is given by a linear
relationship with xe:
Ee xeð Þ ¼ Emin þ xe E0 � Eminð Þ; ð1Þ
where Ee is the element Young’s modulus, E0 is the
Young’s modulus of the material and Emin is a very small
stiffness assigned to void regions in order to prevent the
stiffness matrix from becoming singular. A linear combi-
nation is used since the grey elements can only appear at
the border of the beams and so it is not necessary to
penalize them as the SIMP approach [33].

Once the structural architecture of the unit-cell is
defined, the structural properties can be evaluated by
means of the inverse homogenization and the periodic
boundary conditions as in Xia and Breitkopf [29]. In this
work, an energy-based homogenization approach allows to
obtain the 4-th order homogenized stiffness tensor
Eklqp

� �
k;l;q;p∈ 1;2f g of the unit-cell by the equation (2).

Eklqp ¼ 1

N

XN
iþ1

ðuA klð Þ
i ÞTkiuA pqð Þ

i ; ð2Þ

where N is the number of micro elements, ki is the stiffness
matrix of the i-th micro-element, and u

A pqð Þ
i are the

displacement solutions for the for i-th micro-element
corresponding to the unit-test strain fields in Figure 3
applied to the considered unit-cell. In Figure 3 the unit-test
strain corresponds to (p, q)= (1, 1), (2, 2) and (1, 2).



Fig. 8. Fictitious density plot depending on the thickness t1
considering the element C from the example in Figure 7. The
distances d1 (that is equal to d4) and d2 (that is equal to d3) are
reported with red dot-dashed lines, t1 is set along vertical black
dashed lines and the fictitious density for t1 is reported with a red
star in the graph.
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Therefore, the stiffness tensor is equal to

E ¼
E1111 E1122 E1112

E2211 E2222 E2212

E1211 E1222 E1212

2
4

3
5;

Following the original EMTO, the objective function e
(b) is defined as the weighted sum of the two principal
components of the homogenized stiffness tensor rotated of
an angle a as follows

e bð Þ ¼
� 1�

p
xcub

2

� �
E
a xorð Þ
1111 bð Þ þ

p
xcub

2
E
a xorð Þ
2222 bð Þ

� �
; ð3Þ

where a (= xorp/4) is related to the orientation macro-
variable xor belonging to the interval [0,1], the weights
depend on the cubicitymacro-variable xcub belonging to the
interval [0,1] and the rotated stiffness tensorEa is obtained
using the following equation

Ea ¼ MT
a � E � Ma ≡ Ea

klpq

� 	
k;l;p;q∈ 1;2½ �

;

whereMa is a rotation tensor defined for a rotation angle a
measured with respect to a chosen global basis vector. For
example, assuming xor=0 (that stands for an angle a=0)
and xcub=0, the objective function becomes e(b)= –E1111
and the optimization procedure is going to search for an
optimal micro-structure with the highest possible first
principal component respecting the volume fraction
constraint given by xdens.

Therefore, the mathematical formulation of the micro-
optimization problem for the unit-cell is

minimize

bj; j ¼ 1:::4
e ¼ � 1�

ffiffiffiffiffiffiffiffi
xcub

p
2

� �
E

aðxorÞ
1111 þ

ffiffiffiffiffiffiffiffi
xcub

p
2

E
aðxorÞ
2222

� �

subject to Fðp; qÞ ¼ KuAðp;qÞ

V ð�Þ
V 0

¼ v ≥ xdens

0 � e � bj � 1 j ¼ 1:::4:

Here K is the unit-cell assembled stiffness matrix, uA

and F are the global displacement vector and the external
force vector of the unit-cell,V(b) is the volume occupied by
the material, V0 is the total volume of the design space, n is
the material volume fraction, bj are the parameters whose
lower bound is a very small value ∊ and the upper bound is
1. The micro-optimization of the new approach is not a
topology optimization as for the original EMTO, but is a
sizing optimization.

The sensitivity analysis is carried out by finite differ-
ences for both the objective function e and the constraint v
for simplicity, since the analytic derivates are not easy to
compute. For each j-th parameter, the following deriva-
tives are evaluated.

∂e
∂bj

≅
e bj þ h
� �� e bj

� �
h

; ð4Þ

∂v
∂bj

≅
v bj þ h
� �� v bj

� �
h

: ð5Þ

Once the derivatives are obtained, the optimality
criteria method (OCM) is used to solve the optimization
problem with the heuristic updating scheme following
Sigmund [34].

The iterative process terminates when the difference for
each j-th parameter bnew

j � bj is less than the convergence
tolerance 10�5, when 150 iterations are reached, or when 50
iterations without finding a new minimum are reached.

The Matlab function can be called by the command
window as follows

tens; obj; beta½ � ¼ unitCell 4p nelx; nely; x dens;ð
penal; x or; x cub; beta 0Þ



Fig. 9. Example of optimal unit cell for xdens=0.55, xor=0.63 (a of about p/6) and xcub=0.31. The stiffness tensor and the rotated
stiffness tensor are shown too.

Fig. 10. Iteration history for the example in Figure 9.
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here nexl and nely are the dimensions of the design space
respectively along the x and y directions, x_dens, x_or and
x_cub are the macro-variables, penal is the penalization
coefficient (set to 1) and beta_0 is the initial guess vector of
the parameters b. The outputs are the homogenized
stiffness tensor, the objective function and the vector of the
parameters named respectively tens, obj and beta.

For illustration, let us consider a random example with
a 100� 100 initial full white design space (beta_0= [0,0, 0,
0]) and for xdens=0.55, xor=0.63 (that corresponds to an
orientation angle a of about p/6) and xcub=0.09. The
obtained structure with the related stiffness tensor E and
rotated stiffness tensor Ea are shown in Figure 9. The
optimal unit cell is found at the 61-th iteration and both the
objective function e and the volume fraction v rapidly reach
the optimal point after 15 iterations, as shown in Figure 10,
with the vector of the parameters equal to b= [b1, b2, b3,
b4] = [0,0.11, 0.49, 0] and the objective function

e ¼ � 1�
p
xcub
2

� 	
E
a xorð Þ
1111 þ

p
xcub
2 E

a xorð Þ
2222

h i
≅ � 0:4005:

3.3 The macro-scale optimization

Before presenting the new database and the results
obtained, a brief explanation of the macro-scale optimi-
zation is given without going too much in the implementa-
tion details.We refer to Duriez et al. [28] for amore detailed
description.

For a design space of M macro-elements, the objective
function is the compliance of the structure, and the design
variables are the density, orientation and cubicity
explained in Section 2, named in the code respectively
xdens, xor and xcub. Therefore, each macro-element has three
variables assigned during the optimization process. The
problem formulation is

minimize

x ¼ ½xdens;xor;xcub� cðxÞ ¼ UTKU

subject to F ¼ KU

�
M

j¼1
xjdens � Mf v

0 � xj � 1; j ¼ 1:::M;
where U is the global displacements matrix, K is the
stiffness matrix, F is the vector of the external forces and fv
is the volume fraction constraint.

Actually, due to the periodicity of the orientation
variable, the applied filtering method [33] could lead to
optimization issues. To mitigate these issues, the orienta-
tion variable xor is replaced by two other variables, from
which the orientation is derived:

xor ¼ arctan
xsin

xcos

� �
;

where xsin and xcos are not the real sine and cosine but have
the same ratio. Defining these variables allows to make the
design space redundant, since any set of xsin and xcos with
the same ratio corresponds to the same orientation.

During the optimization the stiffness tensor of the j-th
macro-element is obtained from the database for the set

xj
dens;x

j
or;x

j
cub

h i
by using the Nadaraya-Watson’s kernel-

weighted average [35] obtaining Epred xjð Þ and its deriva-
tives with respect to the design variables. The surrogate
prediction of Epred xjð Þ is reported in Appendix A. Epred
enables to find the stiffness matrix K and to solve the
equilibrium equation by a finite element analysis. After the



Fig. 11. The 3-dimensional grid over which the database is
computed. Some cells are shown to show the effects of the three
macro-variables.
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sensitivity analysis, the variables are updated with the
method of moving asymptotes (MMA, [36]) and the
convergence is checked. The process goes iteratively ahead
until one of the termination criteria is satisfied: 100
maximum number of iterations, 15 maximum number of
iterations without a new minimum or 10�3 convergence
tolerance. Finally, the macro variables and the compliance
of the final design, computed using the homogenized
stiffness tensors, are obtained as outputs.

Once obtained the final optimal set of macro variables
for each macro element, the full scale structure can be
obtained by replacing each macro-element with the closest
cell in terms of Euclidean distance in the micro-structure
database. Due to the limits of using homogenization to
obtain the overall compliance of the final structure, the full-
scale structure can be evaluated by computing the
compliance with a finite element analysis. The EMTO
also includes the possibility to use a post-processing code to
improve the structure performances by assuring connection
between micro-structures and getting rid of unstressed
elements. The post-processing consists in three steps. In the
first step, a full finite element analysis is carried out on the
design to compute the stress in all the micro-elements.
These stresses are compared to the mean stress value
through the structure times a given constantCpost to assess
if the elements are or not useful. If they are lower thanCpost
times the mean stress value, the related element is “deleted”
setting density to 0. The process is repeated three times
considering three different constants. In the second step, a
classical density filter is applied having a filter radius
defined with respect to the micro-element size, improving
manufacturability and making the thin structural mem-
bers thicker. Then, all the elements are set to a density
value 0 or 1 depending on a threshold that is adjusted
through an iterative process to ensure the desired volume
fraction. The final step gives the full-scale final design. The
original EMTO work [28] is suggested to have further
details about the post-processing.

3.4 Database construction

The database is constructed off-line in order to have a
faster macro-optimization. The inputs of the database are
the three macro-scale design variables and the outputs are
the four parameters to build the cell and the six
independent terms of the homogenized stiffness tensor of
the corresponding cell. Actually, the database is divided
into two databases, one containing the tensors, and the
second one the parameters. Only the tensors are loaded
during the macro-optimization. Once the macro-optimi-
zation is finished, the database of parameters is used to get
the full-scale design by calling the unit-cell code in
Section 3.1.

The database is computed considering cells of 100�100
elements for the 3-dimensional grid as in Figure 11 whose
coordinates are given by:

–
 32 values from 0 to 1 (0 and 1 excluded) for the volume
fraction (density variable);
–
 32 values from 0 to 1 for the orientation variable (or
equally angle a), where 0 stands for a rotation angle of 0
rad and 1 for a rotation angle of p/4 rad;
–
 32 values from 0 to 1 for the cubicity variable, where 0
stands for stiffness only along the first principal direction
and 1 for equal stiffness along both directions.

Considering a multi-start strategy with 4 possible
initial guesses, the total number of designs evaluated is
equal to 323� 4=131072. The best solution for each input
combinations is kept and added to the database. The unit
cells for volume fractions 0 and 1, computed only once
because they correspond to void and full material unit cells,
are added too. So, a first database containing 34816 unit-
cells and their properties is obtained.

Since the original EMTO follows SIMP with penaliza-
tion p=3 to obtain the optimal unit-cells, to compare the
parametrized cells of the Ex-EMTO with the free ones of
the original EMTO, the properties and the objective
functions for the parametrized cells in Figure 12 have been
recomputed by considering a penalization p=3. The
worsening of the performances of the parametrized cells
due to the introduction of the penalization is very low since
the grey elements can only appear at the border of the
beams as explained in Section 3.1. In fact, considering a
sample group of 3584 very different cells, the mean
deviation of the objective function computed with p=3
with respect to the ones with a linear relationship for the
Young’s modulus (that can be seen as having p=1) is
about 2.5%.

The unit cells obtained with the parametrized approach
have more regular shapes than the free cells by the original
EMTO as shown in Figure 12. Due to the parameterization,
the design space is restricted and the performances are
worse: the objective function value increases by about 2-
10%. However, it is an acceptable trade off to diminish the



Fig. 12. Random examples of cells with the related homogenized stiffness tensor and objective functions from the new database (left)
compared to the ones from the original EMTO database (right). The orientation variable from 0 to 1 means an orientation angle from 0
rad top/4 rad; the cubicity variable ranges from 0 to 1, where 0 stands for stiffness only along the first principal direction and 1 for equal
stiffness along both directions.
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database size of about the 97% since the structure database
needs to store just the 4 parameters b= [b1, b2, b3, b4] and
not the N micro-elements of the structure.

Besides, thedesign spacehas tobeartificially extended to
avoid local minima at the border. Therefore, the database is
extended by applying symmetries and rotation to the
computedunit cellwithout the needof solving furthermicro-
optimizationproblems.Thefinaldatabasecontainsunit cells
for anorientationvariable ranging from0top rad (redefining
xor from0 to1) and cubicityvariable from stiffness only along
the first principal direction considered (value 0) to stiffness
only along the secondprincipal direction (value 1),whereas a
value of 0.5 means that stiffness is along both the principal
directions. Finally, thefinal database is obtainedwith a total
number of unit cells equal to 267750. In this way, the
gradient-based macro-optimizer has multiple paths from a
cell to another as shown in Figure 13.

Due to the restricted unit-cell design space, the
transition from one cell to another by changing only one
macro variable is not always smooth, as shown in
Figure 13b. In that figure, the three intermediate unit
cells are almost equal and before and after them there is a
quite sharp change to different cells. Despite this, the cells
result to be well connected without the need to define the
transmission zones.

4 Results and discussion

Classical test cases from the literature as shown in
Figure 14 are solved with the Ex-EMTO approach and
the results are analysed and discussed hereafter compared
to the one of the original EMTO. The computational times
are not reported since they are almost the same of the
original EMTO ones [28]. This is related to the fact that the
two approaches have in common the macro-optimization
code and the two databases are structured in the same way.
A test case for a comparison with another multi-scale
approach is analysed too. For all the cases, the Young’s
modulus for the solid material is E0= 1, the Poisson’s ratio
0.3 and the force F=1.
4.1 MBB beam

In Figure 14a just half of the MBB problem is represented
and considered for the computation thanks to the problem
symmetry. A 30� 10 macro-scale grid is considered. The
objective is to minimize the compliance of the macro design
with a constraint for the global volume fraction of 0.5. For
both the EMTO and Ex-EMTO, the full-scale designs over
a micro-scale grid 3000� 1000 are obtained for a
penalization coefficient p=3 without and with the post-
processing (PP) and are shown in Figure 15.

The designs are similar and, despite the worse
performances of the unit cells of the new Ex-EMTO
database, the compliances are almost equal too, as can be
seen in Table 1. In that table, the objective functions and
the %-variation with respect to the “homogenized”
compliance (the one obtained by the computation by
using the stiffness tensors from the database) of EMTO are
reported for each step of the optimization. By comparing
Figures 15a and 15c, the limitation of the new approach is
evident for the cells where there is a transition from normal



Fig. 13. Unit cells examples to show the redundant design space. There are two paths from the cell on the left (density=0.5,
orientation=0 rad, cubicity= 0.2) to the cell on the right ((a) density=0.5, orientation= 0 rad, cubicity=0.8 or (b) density=0.5,
orientation=p/2 rad, cubicity=0.2).

Fig. 15. Comparison of MBB designs with 100� 100 cells for the compliance minimization: (a) and (b) original EMTO respectively
without post-processing and with post-processing, (c) and (d) Ex-EMTO respectively without post-processing and with post-
processing.

Fig. 14. Beam problems.
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stress to shear stress (for example the cells highlighted in
red). In fact, as anticipated in Section 3 with Figure 13, the
restricted design space of the parametrized cells does not
allow to obtain optimal cells for transition stress cases as
good as the free cells. Moreover, after the post-processing in
Figure 15d (Ex-EMTO) those cells are slightly distorted,
whereas in Figure 15b (EMTO) they are almost the same as
before the post-processing. However, the performances of
Ex-EMTO are only diminished by 1% with respect to the
ones of original EMTO, meaning that the previous
limitation is not detrimental. In addition, the fact that
the performances are similar between original EMTO and
Ex-EMTO, demonstrates that the parametrized unit cells
are intrinsically well-connected as expected. Moreover, the
convergence performances are similar too as shown for the
homogenized step in Figure 16. Both the codes have a rapid
drop for the compliance before the 15-th iteration and then
converges to a final value approximately equal, instead the
volume fraction is quite regular. EMTO converges after 67
iterations, Ex-EMTO after 90 iterations.



Table 1. Comparison of compliances from EMTO vs Ex-EMTO for theMBB beam problem for the different steps in the
method.

Step Evaluation grid Objective function c vs EMTO-Homo

EMTO
Homogenized 30� 10 193.8 −

No PP - 100� 100 cells 3000� 1000 213.1 +10.0%
PP - 100� 100 cells 3000� 1000 203.6 +5.1%
No PP - 25� 25 cells 750� 250 214.0 +10.4%
PP - 25� 25 cells 750� 250 200.1 +3.3%
Ex-EMTO
Homogenized 30� 10 192.7 − 0.0%
No PP - 100� 100 cells 3000� 1000 212.1 +9.4%
PP - 100� 100 cells 3000� 1000 205.7 +6.1%
No PP - 25� 25 cells 750� 250 214.8 +10.8%
PP - 25� 25 cells 750� 250 202.2 +4.3%

Fig. 16. Homogenized step iteration histories for theMBBbeam.
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4.2 Cantilever beam

The cantilever beam is shown in Figure 14b and a 20� 10
macro-scale grid is considered. The objective is to minimize
the compliance with a constraint for the global volume
fraction of 0.5. Both the EMTO and the Ex-EMTO full-
scale designs over a 2000� 1000 micro-scale grid without
and with post-processing are shown in Figure 17. As for the
MBB beam problem, the cantilever beam designs are
similar but the performances with the new database are
worse of only the 3% with respect to the one of the original
EMTO, as reported in Table 2. The difference in the
performances between EMTO and Ex-EMTO are higher
for the cantilever beam than for the MBB beam, but they
are still small. This is probably due to the limitation of the
parametrized unit cell, as in the MBB beam design, for the
“transition” cells. Therefore, the observations are similar to
the MBB beam ones. However, for the cantilever beam, the
designs with the post processing (Figs. 17b and 17d) results
to be almost equal to the “homogenized” step ones. In
Figure 18, the iteration histories for the homogenized step
are shown for both the code. The compliance rapidly drops
before the 10-th iteration, instead the volume fraction
shows a less regular behaviour until the 25-th iteration.
The final convergence is reached for both the code after the
95-th iteration.

4.3 L-shaped beam

The L-shaped beam problem in Figure 14c with a 14� 14
macro-scale grid is considered. The objective is to minimize
the compliance with a volume fraction constraint of 0.5.
The full-scale designs over a 1400� 1400 micro-scale grid
are shown in Figure 19. The designs obtained by Ex-EMTO
show more regular shapes and have performances compa-
rable with the ones of EMTO as reported in Table 3 and
shown in Figure 20. However, both the approaches for the
full-scale designs have performances worse by more than
20% with respect to the “homogenized” step. This
discrepancy is due to the low number of macro-elements
used to be able to compute the full-scale model.
Consequently, the loads are not perfectly transmitted
from one cell to another. Usingmoremacro-elements would
give lower discrepancies.
4.4 Comparison with works from literature

Ex-EMTO has been tested also for a half MBB beam
problem with a macro-scale grid 32� 24 and 0.3 global
volume fraction constraint to compare the results with the
ones obtained for the same problem by Garner et al. [17].
The design obtained by Garner in Figure 21a has been
projected over a micro-scale grid of 800� 600 as in
Figure 21b and the compliance evaluated with the same
code used to evaluate the full-scale designs of the EMTO.
For the comparison, the original EMTO has been
considered too. To reduce the computational and memory
efforts of EMTOs, the 100� 100 cells of the databases have



Fig. 17. Comparison of Cantilever beam designs which minimize the compliance: (a) original EMTO without post-processing,
(b) original EMTO with post-processing, (c) Ex-EMTO without post-processing and (d) Ex-EMTO with post-processing.

Table 2. Comparison of compliances from EMTO vs
Ex-EMTO for the Cantilever beam problem for the
different steps in the method.

Step Obj. function c vs EMTO-Homo

EMTO
Homogenized 67.6 −

No PP 72.8 +7.7%
With PP 67.5 −0.0%
Ex-EMTO
Homogenized 67.8 +0.0%
No PP 74.4 +10.1%
With PP 69.5 +2.8%

Fig. 18. Homogenized step iteration histories for the Cantilever
beam.
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been reshaped to 25� 25 cells, allowing also to have the
same micro-scale grid of 800� 600 elements. It is
immediate to reshape the parametrized cells since the
code to build the cells allows to do that by inserting as input
the desired dimensions and the vector of parameters
(stored in the database). In Figure 22, some reshaped cells
both for Ex-EMTOand original EMTO, with their stiffness
tensors and objective functions, are shown. The parame-
trized cells are less affected by the reshaping, as can be seen
by comparing the objective function values of the cells in
Figure 12 with the reshaped cells in Figure 22. This is
probably due to the much more regular shapes of the
parametrized cells as can be seen in Figures 22b and 22c.
Considering 3584 cells, the reshaping leads to a mean
worsening of the objective function of about 5.8% for the
parametrized cells and 6.9% for the free cells. Despite the
loss in performance of the unit cells, substituting in the full
scale design the reshaped cells (for example the 25� 25 cells
instead of the 100� 100 cells) does not affect the results in
terms of compliance as shown for the half MBB problem in
Table 1 in Section 4.1. However, since the database of the
stiffness tensors is related to the 100� 100 cells, full scale
results with reshaped cells in line with the “homogenized”
step ones are not always sure.

In Table 4 the compliances of the various designs are
reported and compared to the ones of top88 (mono-scale
approach) with the 800� 600 grid. The designs of top88 (on
a 32� 24 grid and 800� 600 grid) are shown in Appendix B
in Figure B1. As expected from the previous test problems
Ex-EMTO and EMTO have similar results for each step of
the methods. Both the EMTOs show an “homogenized”
compliance lower of about the 12% with respect to the one
of top88 on an 800� 600 grid. However, after the
introduction of the cells, obtaining the full-scale designs
with the post-processing, the compliance for the EMTOs is
slightly worse than the one of top88, about 5% worse, but



Fig. 19. Comparison of L-shaped beam designs which minimize the compliance: (a) original EMTO without post-processing,
(b) original EMTO with post-processing, (c) Ex-EMTO without post-processing and (d) Ex-EMTO with post-processing.

Table 3. Comparison of compliances from EMTO vs
Ex-EMTO for the L-shaped problem for the different steps
in the method.

Step Obj. function c vs EMTO-Homo

EMTO
Homogenized 78.2 −

No PP 106.0 +35.5%
With PP 95.9 +22.6%
Ex-EMTO
Homogenized 78.5 +0.4%
No PP 106.4 +36%
With PP 97.6 +24.8%

Fig. 20. Homogenized step iteration histories for the L-shaped
beam.
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with a lower computational effort and time as discussed in
the previous work [28]. The total computational time to
obtain and evaluate the EMTO full-scale design with the
post-processing (800� 600 grid) is about 6 times lower than
the top88 time on the same 800� 600 grid.

The post-processed designs deviate from the theoreti-
cal results of about the 16%, that is considered acceptable.
This deviation with respect to the theoretical results could
be also due to the reshaping of the cells. Therefore, designs
with higher resolutions for the unit cells should be tested to
find a lower limit for the dimensions of the cells reshaping.
Despite the slightly worse performances of the EMTOs with
respect to the top88 method, the results are instead much
better than the ones obtained by Garner’s method.

The previous comparisons and the new approach for
the EMTO demonstrate the validity and versatility of
the method. The introduction of the macro variables and
the database allow to have a lot of freedom in the design
of the unit cells. It is possible to reduce the solution space
over which the database is built or to reduce the resolution
of the unit cells without losing too much in the
performances of the method.
4.5 Ultra-light design

Ultra-light structures are of great interest in several
industries like automobile, aerospace and aircraft, and to
get such structures, ultra-light materials are widely
studied, including truss-like materials [37,38]. The
Ex-EMTO allows to get truss-like ultra-light designs
with very simple shapes. It has been tested for a 20� 10
half MBB beam problem for compliance minimization
with volume fractions 0.126, 0.127 and 0.128. The post
processed designs, shown in Figure 23, are obtained with
50� 50 cells, so over a 1000� 500 micro-scale grid, and
compared with the one of the original EMTO. The
compliances are reported below each structure.

Thanks to the more regular shapes of the parame-
trized cells, the designs by Ex-EMTO results to be very
simple and well connected. Moreover, the designs of the
Ex-EMTO have better performances with respect to the
one of the original EMTO since the compliances are much
lower as can be seen from Figure 23. In particular, in
Figure 23a the compliance of the new approach is about
the half of the original one. The Pareto curve of the half
MBB beam problem is shown in Figure 24.
5 Demonstration of the versatility
of Ex-EMTO

The new Ex-EMTO approach to build the database
demonstrates the versatility of the EMTO to be used with
different types of unit cells. The versatility of the method is



Fig. 21. Comparison of half MBB designs. (a) and (b) design from Garner et al. [17] and the same design reprojected on a 800� 600
grid, (c) and (d) Ex-EMTO on a 32� 24 grid of 25� 25 cells (800� 600micro-scale grid) without andwith post-processing respectively,
(e) and (f) EMTO on a 32� 24 grid of 25� 25 cells (800� 600 micro-scale grid) respectively without and with post-processing.
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also related to the possibility to accommodate different types
of problems and constraints. Therefore, it is interesting to see
howthese twostrengthsof themethodscancoexist,by solving
with the new database the problems of fiber orientation,
controlled porosity [39] and fixed topology test cases.

5.1 The fiber orientation test case

Since one of the macro-variables is the orientation of the
unit cell, EMTO can be easily adapted to get optimal fiber
orientation in a topology optimization framework. In
Figure 25, the orientations solutions for 80� 40 half MBB
beam problems are shown.

In Figure 25a, the problemhas a constraint related to the
usage of macro elements in percentage, that is set to 1, and a
constraint for the unit cell volume fraction set to 0.5.
Therefore, the global volume fraction constraint can be
obtained by multiplication of the two constraints giving as a
result 0.5. The images are the results of the Ex-EMTO (top)
and the original EMTO (bottom) and show the orientation
variabledatabase indexesof eachcell.The indexesgo from1to
32, where 1 stands for 0 rad and 32 for p/4 rad. Ex-EMTO
shows a smoother and more regular transition of the
orientation variable.

In Figure 25b the problem the usage of macro elements
in percentage is equal to 0.5 and the unit cell volume
fraction 0.5, therefore a global volume fraction constraint
of 0.25. In this case, the Ex-EMTO shows a better topology
and also, as a consequence, a more regular orientation
variation. These results are just preliminary results and
further improvements are needed to correctly solve the
fiber orientation test case.



Fig. 22. Examples of 25� 25 cells with the related homogenized stiffness tensor and objective functions obtained by reshaping the
100� 100 cells in Figure 12 from the new database (left) and the original EMTO database (right).

Table 4. Comparison of compliances from different methods for the MBB beam problem.

Method Evaluation grid Objective function c vs top88
800� 600 grid

top88 800� 600 65.1 −

Garner’s reprojected 800� 600 104.2 +37.5%
EMTO
Homogenized 32� 24 58.1 − 12.0%
PP - 25� 25 cells 800� 600 68.4 +4.8%
Ex-EMTO
Homogenized 32� 24 57.2 − 13.8%
PP - 25� 25 cells 800� 600 69.4 +6.2%

Fig. 23. Examples obtained for a 20� 10 macro-scale grid half MBB beam for different volume fractions, both for the new database
(top figures) and the original EMTO one (bottom figures). The compliance is reported below each structure.
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5.2 The controlled porosity test case

In Figure 26a the designs obtained by Ex-EMTO and the
original EMTO are shown in the case of porosity fixed to
0.5 for a cantilever beam with global volume fraction
constraint of 0.5. In Figure 26b the designs in the case of
porosity constrained to a minimum value of 0.4 are
shown. These two cases are easier to implement imposing
limits to the density variable xdens: a same porosity
(pfixed) as in equation (6) or a minimum porosity (pmin) as
in equation (7).

xdens ¼ 1− pfixed; ð6Þ

xdens � 1� pmin; ð7Þ



Fig. 24. “Theoretical compliance vs volume fraction” Pareto
curve for the 20� 10 half MBB beam problem.

Fig. 25. Examples obtained for a 80� 40 half MBB beam for the
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In Figure 26 the theoretical compliances or “homoge-
nized” ones (i.e. the compliances computed by using the
stiffness tensors form the database) are reported below the
designs. The compliances of the Ex-EMTO are a bit higher
than the original EMTO ones. This is due to the restrained
design space of the unit cells as explained in Section 3.4.

5.3 The fixed topology test case

In Figure 27, the design of Ex-EMTO and original EMTO
are shown for a 120� 40 cantilever beam in the case of fixed
unit cell topology with a global volume fraction constraint
of 0.5. The cubicity and the orientation variables are fixed
respectively to 0.5 (the principal directions have the same
importance) and 0.25 (that stands for an orientation angle
of p/4 rad). The designs are really similar and also the
values of the theoretical compliances are almost the same.
Ex-EMTO seems to give a totally symmetric result. For the
optimum, it seems to be slightly better, but it should be
remembered that the new database is obtained with a
penalization coefficient equals to 1 so a better result for the
compliance was expected.
new database (top figures) and the original one (bottom figures).



Fig. 26. Examples obtained for a 50� 20 cantilever beam with restrained porosity both for the new database (top figures) and the
original EMTO one (bottom figures).

Fig. 27. Example obtained for a 120� 40 cantilever beam by limiting the design space.

Fig. 28. 3D unit cell obtained by superimposing beams.
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6 Conclusions

In this paper a different approach to build the unit cell for
the EMTO is developed. Here we restricted ourselves to
the two-dimensional case, postponing its application to the
three-dimensional cases for other communications. In the
2D case, the connectivity is assured by considering
intrinsically well-connected unit cells instead of using
the transmission zones. Despite the reduction of the design
space of the micro-structures, the efficiency and versatility
of the EMTOmethod is demonstrated thanks to the results
of the parametrized cells similar to the ones of the free cells.
Moreover, the new developed approach to construct the
unit cells leads to some advantages:

–
 A lighter database, since it is not necessary to store all the
100� 100 elements of the optimal micro-structure, but
just the 4 parameters;
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–

F
32
The possibility to introduce more easily additive
manufacturing constraints, since minimum and maxi-
mum thicknesses for the beams can be defined both in the
unit cell code and in the micro-optimization;
–
 The resultingmacro-structures are surelymade of beams,
without the risk to have very strange shapes;
–
 The possibility to reshape more easily the micro-
structures reducing the computational cost of the full-
scale evaluation.

Future works include speeding up the codes, adding
additive manufacturing constraints and validate the
results by testing printed structures obtained by
the method. Lately, it is also worth mentioning that the
foregoing two-dimensional analysis is currently being
extended to three-dimensional case. The 3D case has to
deal with a higher number of parameters to build the 3D
unit cell shown in Figure 28, as well as higher computa-
tional effort and complexity. It will be presented in a
forthcoming communication.

Appendix A: Surrogate prediction
The Nadaraya–Watson’s kernel-weighted average with a
Gaussian Kernel G

Epred xi
� � ¼

Xk

l¼11
G xi;xlð ÞEdb xlð ÞXk

l¼1
G xi;xlð Þ

;

G xi; xl
� � ¼ exp � deucl x

i; xlð Þ2
2b2

 !
:

HereEpred (x
i) is the predicted stiffness tensor of the cell

corresponding to the set of macro-design variable
xi ¼ xi

dens;x
i
or;x

i
cub

� �
xl are the points in the database and

Edb (xl) are the database stiffness tensors of the cells
corresponding to those points; b is the kernel radius; deucl
(xi, xl) measures the Euclidean distance between xi

and xl.

Appendix B: top88 results
ig. B1. Comparison of half MBB designs. a top88 design on a
� 24 grid and b top88 design on a 800� 600 grid.
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