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Multi‑objective design space exploration using explainable surrogate 
models

Pramudita Satria Palar1 · Yohanes Bimo Dwianto1 · Lavi Rizki Zuhal1 · Joseph Morlier2 · Koji Shimoyama3 · 
Shigeru Obayashi4

Abstract
The surrogate model is an essential part of modern design optimization and exploration. In some cases, exploration of design 
space in multi-objective problems is important to reveal useful design insight and guidelines that will be useful for engineers. 
However, most surrogate models are black boxes, making interpretation difficult. This paper investigates the framework of 
explainable surrogate models using Shapley Additive Explanations (SHAP) to gain important design insight that helps users 
better understand the relationship between objective functions and design variables. We applied the explainable surrogate 
model framework to multi-objective design problems and performed a comparison with active subspaces and Sobol indices. 
Several techniques to extract design insight based on SHAP values are discussed: the averaged SHAP, the SHAP summary 
plot, the single- and bi-objective SHAP dependence plot, and the SHAP correlation matrix. Two aerodynamic design cases 
are selected to demonstrate the capability of explainable surrogate models: nine-variable inviscid and twenty-variable vis-
cous transonic airfoil design. The findings indicate that SHAP provides more valuable insights than active subspaces and 
Sobol indices, particularly regarding the impact of individual design variables on the objectives. Consequently, SHAP can be 
employed in conjunction with active subspaces and Sobol indices to explore the input–output relationship in multi-objective 
design exploration comprehensively.

Keywords Design space exploration · Multi-objective · Surrogate model · Interpretability · Shapley additive explanations

1 Introduction

Optimization plays an essential role in engineering design, 
which aims to improve the performance of solutions by 
finding better alternatives that enhance performance (e.g., 
efficiency). Complementary to optimization, Design Space 
Exploration (DSE) plays a crucial role in uncovering crucial 

trends and physical insights that benefit engineers. DSE 
may include various tasks such as global sensitivity analy-
sis, parameter sweep, and complexity analysis of the design 
space. Although DSE sometimes refers to electronic and 
embedded systems (Pimentel 2016), the term can refer to 
any systematic design analysis in virtually any field. Sur-
rogate models, which are fast analytical approximations of 
black-box models, are enabling technologies that greatly 
assist DSE. There is a plethora of surrogate models avail-
able in the literature. Some popular examples include sup-
port vector regression (SVR) (Smola and Schölkopf 2004), 
Gaussian Process Regression (GPR)/Kriging (Rasmussen 
2003), neural network/deep learning (LeCun et al. 2015), 
random forest (Ho 1998) and polynomial regression/poly-
nomial chaos expansion (PCE) (Blatman and Sudret 2011; 
Xiu and Karniadakis 2003).

There are several design frameworks similar to DSE. 
For example, the framework of multi-objective design 
exploration (MODE) uncovers the structure of design 
space in multi-objective optimization through data mining, 
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visualization, and trade-off analysis (Obayashi et al. 2005, 
2007, 2010). Examples of tools used in MODE include vari-
ance-based sensitivity analysis (Sobol 2001), self-organizing 
map (SOM) (Kohonen 1990), decision theory, and rough 
sets (Pawlak 1998). The main emphasis of MODE is on 
revealing trade-off information between multiple objectives. 
Recent applications of such design thinking include intake 
design optimization (Brahmachary et al. 2020) and blended-
wing-body type flyback booster (Sumimoto et al. 2019). An 
integral part of MODE encompasses a data-efficient optimi-
zation algorithm, where surrogate-based optimization plays 
a crucial role in this context. Bayesian optimization emerges 
as an important surrogate-based optimization approach 
that has proven effective in addressing complex engineer-
ing scenarios, including optimization tasks within the 
aerospace design domain (Grapin et al. 2022; Bartoli et al. 
2023). A more general term for such a research endeavour 
is knowledge discovery from multi-objective optimization, 
in which Bandaru et al. (2017) emphasize the importance 
of visual data mining methods and machine learning (ML) 
for knowledge discovery. In recent decades, the field of ML 
has experienced significant growth, including the subfield 
of interpretable ML. The primary focus of interpretable 
ML is to provide accurate predictions and extract valuable 
insights. Within the context of ML models, interpretability 
is defined as the capacity of an ML model to offer easily 
comprehensible explanations to humans (Doshi-Velez and 
Kim 2017). Although intrinsically interpretable models 
(e.g., linear regression) are easy to understand, they often 
lack accuracy when compared to more complex and less 
interpretable models. To address this issue, model-agnostic 
techniques have been developed to facilitate the interpre-
tation of black-box models. These techniques help to dis-
sect the black-box models and enhance their explainability. 
Although interpretability and explainability are sometimes 
used interchangeably, we use the former to denote inher-
ently interpretable models, while the latter is used when 
explaining hard-to-interpret models (i.e., to make the models 
explainable). Some explainability techniques include partial 
dependence plot (PDP) (Greenwell et al. 2018), accumulated 
local effects (Apley and Zhu 2020), individual conditional 
expectations (ICE) (Goldstein et al. 2015), local surrogate 
(LIME), and, most recently, Shapley Additive Explanations 
(SHAP) (Lundberg and Lee 2017). To take examples out-
side engineering design, explainable models are important 
to allow reasonable data-driven decision models in health-
care (Stiglic et al. 2020), predictive maintenance (Bukhsh 
et al. 2019; Vollert et al. 2021), and genetics (Azodi et al. 
2020).

Applying explainable ML in engineering, particularly in 
engineering design optimization, is still relatively uncom-
mon. However, the explainable framework has tremendous 
potential for assisting engineering design optimization and 

exploration. Understanding the trade-off between objectives 
and the individual impact of design variables is crucial for 
engineers. Additionally, engineers can use explainable ML 
models to better analyze the input–output relationship, 
including nonlinearity. Surrogate models are particularly 
beneficial in engineering as they allow rapid exploration 
of the design space using high-fidelity simulations. With 
the growing interest in ML for engineering design and the 
increasing use of surrogate models, there is enormous poten-
tial for deploying explainable ML techniques to support 
engineering design.

A surrogate model is often a black-box model that is dif-
ficult to interpret. While accuracy is critical in DSE, explor-
ing the surrogate model can provide better design insights to 
users. SHAP is one of the most recent and useful explainable 
ML techniques available. SHAP connects Shapley values 
and LIME, making it highly effective for explaining surro-
gate models. However, despite its usefulness, SHAP is still 
not commonly applied in engineering design, and most exist-
ing applications are unrelated to engineering optimization 
and DSE. For example, SHAP has been used in the failure 
mode and effect analysis in civil engineering (Mangalathu 
et al. 2020) and diagnostic for nuclear power plants (Park 
et al. 2022). Recent papers on SHAP for knowledge discov-
ery include Palar et al. (2023) and Takanashi et al. (2023). 
Palar et al. (2023) emphasizes the use SHAP for single-cri-
teria analysis and compares its effectiveness with the Mor-
ris’ elementary effect. On the other hand, Takanashi et al. 
(2023) applies SHAP for multi-criteria analysis of aerody-
namic design. The current work shares a similar spirit with 
both papers. The main theme of this paper is to systemati-
cally investigate how SHAP can be used for effective multi-
objective engineering design exploration.

The main objective of this paper is to introduce the frame-
work of the explainable surrogate model so that the user can 
gain better design insight from the analysis of the multiple 
input-multiple output relationship. This paper also investigates 
the capability of SHAP for trade-off analysis in multi-objective 
design. We present several approaches to visualize SHAP in 
the context of single- and bi-criteria design exploration, mak-
ing it possible to depict important information regarding the 
relationship between the design variables and the two objec-
tives. Several methods to aid multi-objective design based on 
SHAP are presented, including (1) the averaged SHAP values, 
(2) the SHAP summary plot, (3) the single-objective SHAP 
dependence plot, (4) the bi-objective SHAP dependence plot, 
and (5) the SHAP correlation matrix. Specifically, we intro-
duce the utilization of SHAP correlation values to deepen 
comprehension. Additionally, we suggest enhancing the SHAP 
dependence plot by incorporating the relative impact of input 
variables and the SHAP correlation values, aiming to broaden 
knowledge and improve clarity. Using GPR and polynomial 
chaos (PC)-Kriging (Kersaudy et al. 2015) as the models of 



choice, the multi-objective explainable surrogate model frame-
work is then demonstrated on two engineering design prob-
lems: a nine-variable inviscid airfoil and 20-variable viscous 
airfoil design problem. Comparison with related techniques, 
namely active subspace method (ASM) (Constantine 2015) 
and Sobol indices (Sobol 2001), is performed to understand 
better the advantages and possible disadvantages of SHAP 
compared to the two techniques.

The primary contributions of this paper can be outlined in 
three aspects: (1) Introducing a unified framework for multi-
objective design exploration using SHAP, enhancing analysis 
and providing insights that may be challenging or impossible 
to obtain through other methods, (2) introducing the SHAP 
correlation matrix to facilitate the analysis of multi-objective 
design exploration, revealing variables that contribute to the 
trade-offs between objectives alongside their input importance, 
and (3) comparing SHAP with established methods, namely 
Sobol indices and ASM, specifically in the context of multi-
objective design exploration.

The rest of this paper is structured as follows. Section 2 
explains the surrogate model types utilized in this paper. Sec-
tion 3 details the Shapley values, SHAP, and various methods 
to explore information from SHAP for multi-objective design 
exploration. Section 4 presents numerical results on aerody-
namic problems. Finally, Sect. 5 concludes the paper with sug-
gestions for future works.

2  Surrogate modeling

Let us denote an input variable vector x = {x1, x2,… , xm}
T , 

where x ∈ ℝ
m , and y = f (x) as the output. A surrogate model 

f̂ (x) replicates f (x) based on a finite set of experimental design 
(ED), X = {x(1), x(2),… , x(n)}T , where n is the size of the ED. 
To build a surrogate model, the observations at the ED are 
required, i.e., y = {y(1), y(2),… , y(n)}T where y = f (X) . There 
are some advancements in the field of surrogate modeling for 
mixed variables (Saves et al. 2023), but such a topic is beyond 
the scope of this paper. This paper uses GPR and PC-Kriging 
as surrogate models, as explained below.

2.1  Gaussian process regression

GPR treats a black-box function as a realization of jointly nor-
mally distributed random variables (Sacks et al. 1989; Ras-
mussen 2003), reads as

where �(x) is the mean function and Z(x) is a zero-mean 
stochastic process. The most common form is to set �(x) as a 
constant, i.e., �(x) = �GP , which is obtained from maximum 
likelihood estimation.

(1)Y(x) = �(x) + Z(x),

GPR assumes that the outputs are correlated, which is 
modeled by the kernel function. Consider two different 
inputs, x and x′ , in which x, x� ∈ ℝ

m . A kernel function 
k(x, x�;�) , where � = {�1, �2,… , �m} is the vector of length-
scales, models the correlation between the output of x and 
x′ . More formally,

The most widely used kernel function is the squared-expo-
nential, which reads as

A correlation matrix R of size n × n , where Rij = k(x(i), x(j);�) , 
can be constructed after defining the kernel function. Let us 
also define r(x) = {k(x, x(1);�),… , k(x, x(n);�)}T . The predic-
tion of a GPR model reads as

where 1 is a vector of ones with size n × 1 . Due to its proba-
bilistic treatment, GPR also outputs the uncertainty estimate 
of the prediction, which reads as

where �2
GP

 is the signal variance. Adding a small regression 
factor � to the diagonal elements of R is usual to enhance 
numerical stability.

Calibration of a GPR model is usually done via maxi-
mum likelihood estimation. Let us denote a vector of 
hyperparameters � = {�,�GP, �

2
GP
, �} . The hyperparam-

eters are calibrated to maximize the following log-like-
lihood function

The mean term is calculated as follows:

We employ a hybrid approach that combines the covariance-
matrix adaptation evolution strategy (CMA-ES) (Hansen 
and Ostermeier 2001) with the Broyden–Fletcher–Gold-
farb–Shanno (BFGS) (Liu and Nocedal 1989) algorithm as 
a local optimizer to optimize the log-likelihood function by 
tuning � . The CMA-ES implementation employs a popula-
tion size of 100, a maximum iteration limit of 5000, and sets 
the number of stall generations to 100. Subsequently, the 

(2)k(x, x�;�) = corr(y, y�;�).

(3)k(x, x�;�) = exp

(
− 0.5

(
x − x�

�

)2)
.

(4)ŷ(x) = 𝜇GP + rTR−1(y − 1𝜇GP),

(5)
ŝ2(x) =�2

GP
(

1 − (r(x)TR−1r(x))

+
(

1 − 1TR−1r(x)
)2(1TR−11

)−1),

(6)

ln (�) = − n
2
ln(2�) − n

2
ln(�2

GP) −
1
2
ln(|R|)

−
(y − 1�GP)TR−1(y − 1�GP)

2�2
GP

.

(7)�̂�GP = (1TR−1
1)−11TR−1y.



BFGS algorithm utilizes the solution obtained by CMA-ES 
for local refinement of the log-likelihood.

2.2  Polynomial chaos‑Kriging

The next surrogate model of interest is the PC-Kriging 
that combines PCE and GPR (Kersaudy et al. 2015), in 
which the former acts as the trend function for the lat-
ter (notice that we keep the name PC-Kriging instead of 
PC-GPR since the former is the name used in the original 
paper). PC-Kriging employs the PCE-based trend func-
tion, and standard likelihood-based maximization is per-
formed at each combination of trend functions used within 
the least angle regression algorithm to find the Kriging 
hyperparameters. The role of least angle regression here 
is to find the best subset of polynomial bases to act as the 
trend function for GPR, eventually yielding a PC-Kriging 
model with the lowest cross-validation error. PC-Kriging 
holds the potential to discover a more accurate approxima-
tion model compared to PCE and GPR alone, albeit at the 
expense of increased computational costs. The main idea 
is to replace �GP with �(x) , in which the latter uses a PCE 
surrogate model.

The PCE trend function can then be written as (Blatman 
and Sudret 2011)

where ��(x) is a multivariate orthogonal polynomial, �� is 
the PCE coefficient, and � = {�1, �2,… , �m} , � ≥ 0 is an 
index belongs to a set Ip , i.e., � ∈ Ip . In this paper, the PCE 
model is constructed using Legendre polynomials, and the 
polynomial basis set Ip . Consequently, it is necessary to 
normalize the design space to the range of [−1, 1]m prior to 
surrogate model construction. In this paper, the basis set Ip 
is formed by employing total order expansion (Blatman and 
Sudret 2011), which can be expressed as:

where ‖�‖1 =
∑m

i=1
�i . It is worth noting that we did not 

directly use the PCE surrogate model. Rather, it is incorpo-
rated as the trend function for GPR. This paper utilizes the 
least angle regression-based method to compute the vec-
tor of coefficients, given the experimental design and the 
maximum polynomial order in the expansion. Some changes 
are necessary to adjust to the non-constant trend function, 
especially in calculating the likelihood and prediction. Most 
importantly, the trend coefficients of the PCE are deter-
mined through generalized least squares, diverging from 
the stand-alone PCE which employs ordinary least squares 
(OLS). Further, the candidate polynomial basis set needs to 
be determined by the user, by providing the algorithm with 

(8)�(x) =
∑

�∈Ip

����(x),

(9)Ip ≡ {� ∈ ℕ
m ∶ ‖�‖1 ≤ p}.

the basis set Ip (in practice, by specifying the value of p). 
However, to avoid a lengthy paper, we refer interested read-
ers to Kersaudy et al. (2015) for more details on PC-Kriging.

The accuracy of the model was measured by using the 
following leave-one-out cross-validation (LOOCV) error 
computed at the experimental design:

 where f̂−i(x(i)) denotes the surrogate model constructed 
using all points in the experimental design excluding x(i) , 
and Var[f (x)] represents the variance of the response, esti-
mated from all available samples.

3  Explainable surrogate models for design 
exploration

3.1  Shapley values

First, let us discuss the concept of Shapley values before 
SHAP (Shapley 2016). In game theory, a coalition game is 
defined as a game consisting of m players. Each possible coa-
lition is assigned with a real value that comes from a value 
function val(.) . Let us also denote [1 ∶ m] ≡ 1, 2,… ,m , 
u ⊆ [1 ∶ m] , and {−u} = [1 ∶ m]⧵u . For a coalition u, the 
value function is then defined as val(u) . For a regression/
ML model, the players and the value function are the input 
variables/features and the prediction, respectively. The value 
of val(u) can change if a player or a group of players leave 
or enter the game.

Consider a player j, the corresponding Shapley value for 
a player j (i.e., �j ) is written as

where (val(u ∪ {j}) − val(u)) is the marginal contribution of 
player j to a coalition u. Notice that the marginal contribu-
tion of player j is weighted and then summed for every pos-
sible coalition. An important property of Shapley value is 
efficiency, which essentially means that the sum of Shapley 
value for all players equals that of the grand coalition [1 : m], 
that is

 The efficiency property is important because it eases 
interpretation.

In the context of design optimization and exploration, 
creating an explanation up to the single prediction level will 

(10)𝜀LOO =
1

n

�∑n

i=1

�
f
�
x(i)

�
− f̂−i

�
x(i)

�2�

Var[f (x)]

�

(11)𝜙j =
1

m

∑

u⊆{−j}

(
m − 1

|u|

)−1

(val(u ∪ {j}) − val(u)),

(12)�0 +

m∑

j=1

�j = val([1 ∶ m]).



be insightful. This is because there is often an interest in 
analyzing how a prediction model arrives at a certain pre-
diction. The next section details the SHAP method, which 
utilizes Shapley values to explain the output of any regres-
sion model in a quantitative and informative way.

3.2  SHAP

The main idea of SHAP is that it creates individual explana-
tions (for a single prediction) that can be aggregated, hence 
allowing local and global explanations of the model (Lund-
berg and Lee 2017). SHAP can be applied to any regression 
or ML model, thus making it a model-agnostic explanation 
technique. The coalition u in SHAP consists of the subset 
of input variables. However, the value function in SHAP 
now applies for a single prediction at an arbitrary x . That is, 
val(u) at x now equals to f̂u(xu) , where f̂u(xu) is the predic-
tion model that takes all variables in u as the input variables 
and xu = (xj)j∈u . The value function for the grand coalition 
equals the original prediction of the model itself, that is, 
f̂[1∶m](x) = f̂ (x) . With this in mind, SHAP works by decom-
posing the prediction at x as follows

where �j is the Shapley value for the j-th variable, and �0 
equals the prediction without any input variables included, 
i.e., f̂�(x) . In practice, f̂�(x) is usually set to the average of 
the regression model or the training samples. In this paper, 
we set f̂�(x) = f̂ (xm) , where xm is the centre of the input 
space. It can be seen now that the sum of the Shapley values 
in SHAP for all individual variables, including the empty 
set, equals the main model’s prediction. The individual 
Shapley value explains how each variable contributes to the 
prediction. Note that the Shapley value can be either a posi-
tive or negative value, depending on how the addition of the 
variable affects the prediction.

To get a better grasp on the concept of SHAP, let us 
define uclo as follows

That is, uclo is defined as the union of the power set of a set 
u, in which u itself is a subset of [1 : m]. Next, we define 
f̂ clo
u

(xu) as a predictive model that takes all combinations of 
inputs as in uclo , written as

Here, the value function for a coalition u is set to f̂ clo
u

(xu) . 
As for the empty set and the grand coalition, we can define 

(13)f̂ (x) = 𝜙0 +

m∑

j=1

𝜙j(x)

(14)uclo =
⋃

v⊆u

v.

(15)f̂ clo
u

(xu) =
∑

v⊆u

f̂v(xv).

f̂ clo
�

(x�) = f̂ (xm) and f̂ clo
[1∶m]

(x) = f̂ (x) . In other words, the 
value function is the prediction of the ML/regression model 
that only uses the variables included in u as the inputs. 
Finally, by using the definition of Shapley values in Eq. (11), 
the SHAP value for the j-th variable is defined as

Equation (16) is point-wise and applies at an arbitrary input 
x . The rightmost term in Eq. (16) is the marginal contribu-
tion of the j-th variable to a coalition u.

Calculation of SHAP is computationally intensive due 
to the need to construct 2m + 1 models. Thus, the SHAP 
values are usually estimated using several approximation 
techniques. The most common method is KernelSHAP 
which employs a special weighted linear regression for each 
feature (Lundberg and Lee 2017). Kernel SHAP estimates 
Shapley values by considering subsets of input features, and 
a weighted average is computed. The weights represent the 
number of ways each feature can be included in different sub-
sets, ensuring that each feature’s contribution is accounted 
for accurately. It is important to emphasize that performing 
weighted linear regression is required for each combination 
of input variables. Consequently, the use of KernelSHAP 
may incur substantial computational expenses, particularly 
as the number of input variables increases. Nonetheless, it is 
worth noting the computational cost of KernelSHAP is still 
typically cheaper compared to the expense associated with 
evaluating a single computer simulation, e.g., one compu-
tational fluid dynamics (CFD) simulation.

3.3  Explainable surrogate models 

It is worth noting that the goal of design exploration is not 
just a mere prediction but also to extract insight. There-
fore, the surrogate serves as a model that helps interpret 
the input–output relationship. It is worth noting that we 
use the term “surrogate model” as equal to the “supervised 
ML model”. In ML literature, the term “surrogate model” 
usually denotes the proxy for the original ML model, e.g., 
to calculate SHAP. The KernelSHAP technique uses inter-
pretable models such as linear regression to act as a proxy 
for the original complicated ML models. We use the term 
“surrogate model” in the engineering context, that is, the 
approximation model of the original black-box function.

The first necessary step is to build the surrogate model, 
which should be as accurate as possible. The validity of 
the knowledge extracted depends on the model’s accuracy. 
Therefore, it is important to check the quality of the model 

(16)

𝜙j(x) =
1

m

∑

u⊆{−j}

(
m − 1

|u|

)−1(
f̂ clo
u∪{j}

(xu∪{j}) − f̂ clo
u

(xu)

)
.



first before extracting any knowledge, e.g., via k-fold or 
LOOCV.

In this paper, we demonstrate several techniques that 
can be used to extract insight from SHAP values of two 
objectives. The main interest is to extract global trends as 
an aggregate of SHAP values in multiple instances. The 
techniques include (1) the averaged SHAP, (2) the SHAP 
summary plot, (3) the single-objective SHAP dependence 
plot, (4) the bi-objective SHAP dependence plot, and (5) 
the SHAP correlation matrix, as summarized in Fig. 1. 
The details of these techniques are discussed further in 
the following sections.

3.3.1  Averaged SHAP

In the context of GSA, the averaged SHAP values serve as 
a sensitivity metric/feature importance at the global level. 
The averaged SHAP for the j-th variable can be written as

 where nr is the sample size used for calculating �̄�j . In gen-
eral ML applications, the training set is usually used to cal-
culate �̄�j , thus, nr = n . Because we are interested not just in 
the training set, we calculate �̄�j by generating an independent 
set Xind that is randomly generated in the input space, where 
nr ≫ n . Other alternatives for GSA include the Sobol indices 
and activity scores (see Appendices 1 and 2). We believe that 
using the aggregated SHAP values is a more natural way to 
assess the sensitivity of the input variables for design explo-
ration. The reason is that the input variables are not random, 
making it unsuitable for applying variance-based decom-
position techniques such as Sobol indices. Since SHAP is 
based on how the input variable contributes to the predic-
tion, the aggregated SHAP values are more reflective of the 

(17)�̄�j =
1

nr

nr∑

i=1

||𝜙j

(
x(i)

)||

variation in the input–output relationship of a design explo-
ration problem (i.e., the inputs are not random variables).

3.3.2  SHAP summary plot

A SHAP summary plot presents a summary of each fea-
ture’s impact on the model’s output for a set of samples. A 
typical SHAP summary plot displays the input variables on 
the y-axis, ranked in descending order by their importance 
according to the averaged SHAP values. However, it is also 
possible to display the order of the variable arbitrarily, which 
we use in this paper. The x-axis represents the SHAP values, 
which quantify the impact of each input on the surrogate’s 
predictions. By examining a SHAP summary plot, one can 
quickly identify which inputs significantly influence the 
model’s predictions and understand the direction and mag-
nitude of their impact. Furthermore, the SHAP summary 
plot of the two objectives can be shown side by side so that 
it is possible to analyze the two-directional impact (in the 
sense of objectives) of changing one input variable. Suppose 
one detects an interesting individual trend from the SHAP 
summary plot. In that case, one can then analyze the single- 
and multi-objective SHAP dependence plot to uncover the 
trend further, as discussed next.

3.3.3  Single‑objective SHAP dependence plot

Visualization of SHAP through the dependence plot reveals 
important information, including the level of nonlinearity 
and interaction. Specifically, the single-objective SHAP 
dependence plot visualizes the relationship between the 
magnitude of the single input variable versus the correspond-
ing SHAP value at multiple instances. While Sobol indices 
compute the strength of such interactions through variance 
decomposition, they do not reveal how the two or more vari-
ables exactly interact. On the other hand, SHAP can reveal 
both the magnitude and structure of the interaction through 

Fig. 1  A schematic illustration 
of several means to explore 
SHAP from a surrogate model 
for knowledge discovery



visualization. The way to visualize SHAP is by depicting 
one input variable and the corresponding SHAP values in 
the abscissa and ordinate, respectively. Furthermore, the dots 
are colored according to the input values of another variable 
that strongly interacts with the respective variable (inferred 
from the second-order Sobol indices); a distinct trend will 
appear if a sufficiently strong interaction exists.

To add more meaningful information, we suggest adding 
the correlation coefficients in the plot to aid in the interpreta-
tion (see Sect. 3.3.5). Further, a bar that indicates the rela-
tive strength of the averaged SHAP values of the respective 
variable is also added to the plot. The role of adding such a 
bar is to help interpret the magnitude of the strength of the 
input variable relative to the strongest input variable. Taking 
advantage of bounded variables typical in design optimiza-
tion, we can plot several or all SHAP partial dependences on 
a single plot by first normalizing the inputs to the same scale, 
e.g., [0, 1]m or [−1, 1]m . It is worth noting that the simulta-
neous depiction is only useful if the SHAP values are not 
too scattered (meaning weak interactions). Otherwise, the 
simultaneous depiction will be too cluttered.

3.3.4  Bi‑objective SHAP dependence plot

Although SHAP can identify the difference in the impor-
tance of the input variables on the two or more QOIs, such 
knowledge can also be obtained from Sobol indices analy-
sis. The main advantage of SHAP within a multi-criteria 
context is that it allows richer analyses of the input–output 
relationship. As shown later in the examples, SHAP ena-
bles the simultaneous analysis of the impact of changing an 
input variable on multiple quantities of interest. The most 
beneficial part of SHAP is that it can reveal how each input 
variable affects the prediction because it works on the level 
of individual prediction.

The bi-objective SHAP dependence plot shows the 
respective SHAP values of the first versus those of the sec-
ond objective, colored by the magnitude of the input vari-
ables. The plot was first introduced in Takanashi et al. (2023) 
with the name “SHAP trade-off plot”. In this paper, we pre-
fer to use the term “bi-objective SHAP dependence plot” 
since trade-off as a function of an input variable does not 
always exist. This plot is particularly useful for simultane-
ously investigating the impact of an input variable on the two 
objectives. Furthermore, the bi-objective SHAP dependence 
plot can also reveal how the two objectives correlate to each 
other with respect to the contribution of the input variable 
being investigated. Subsequently, the plot is useful for iden-
tifying the variables that contribute to the trade-off and those 
that simultaneously improve the objectives.

The bi-objective SHAP dependence plot, as its name 
implies, is designed to illustrate the dependency of two 
objectives on a single input variable. This plot can be 

expanded into three objectives by incorporating an addi-
tional axis corresponding to the third objective, although 
this introduces added complexity to the analysis. An alter-
native approach is to generate three separate bi-objective 
SHAP dependence plots-namely, 1st vs 2nd, 1st vs 3rd, and 
2nd vs 3rd objectives to facilitate analysis. Another possibil-
ity is to leverage data visualization tools for many-objective 
optimization (He and Yen 2017; Meneghini et al. 2018) 
and combine it with SHAP. For the scope of this paper, our 
emphasis is on the two-objective scenario, with the explora-
tion of three-objective dependence plots reserved for future 
works in other applications.

3.3.5  SHAP correlation matrix

Let us first define the “SHAP correlation value”, which 
measures the correlation between one of the following: (1) 
the correlation between input variables and the correspond-
ing SHAP values for a single objective, and (2) the correla-
tion between the SHAP values of the two objectives, as a 
function of a single input variable. The correlation can take 
any form; however, we use the Pearson or Spearman cor-
relation matrix (denoted as � and r, respectively). Several 
insights can be obtained from analyzing the SHAP correla-
tion value. First, by investigating the correlation between 
input variables and the SHAP values, it is possible to check 
whether an input is positively or negatively correlated with 
the output. Suppose one variable yields a perfect positive 
Pearson correlation with the output (i.e., � = 1 ). This means 
that increasing that particular input would lead to a linear 
increment in the objective (and vice versa for � = −1 ). A 
Spearman correlation can also be used to identify a monoto-
nous relationship. The low correlation itself does not mean 
no correlation exists. Instead, it might signal strong interac-
tion or neither a monotonous nor linear relationship (i.e., a 
more complex relation).

Alternatively, examining the SHAP correlation between 
the two objectives based on a specific input variable pro-
vides insight into whether changes in the input result in 
simultaneous improvements or the opposite. If the aim is 
to minimize both objectives, a perfect positive correlation 
indicates that the variable in question contributes to the 
simultaneous enhancement of both objectives. Conversely, 
a perfect negative correlation suggests that the input vari-
able is responsible for trade-offs between the objectives. A 
low correlation signifies a more intricate relationship (or no 
correlation) between the two objectives concerning a single 
input variable.

We propose a visualization method called the SHAP cor-
relation matrix, which encodes the two information above 
(either Pearson or Spearman, see Appendix 3) and the aver-
aged SHAP values for the two objectives. The corresponding 
coloring also accompanies the correlation value to ease the 



reading. The SHAP correlation matrix does not visualize 
the possible interaction and nonlinearity; however, one can 
quickly analyze the correlation and possible interaction/non-
linearity in a single plot. Suppose there are some interesting 
variables similar to the SHAP summary plot. In that case, 
one can then visualize the individual single-objective SHAP 
dependence plot or the bi-objective SHAP dependence plot 
for further exploration.

All experiments in this paper were executed using MAT-
LABTM R2022a with the personal computer specification as 
follows: Processor 11th Gen Intel(R) Core(TM) i7-1165G7 
@ 2.80 GHz, 2803 Mhz, 4 Core(s), 8 Logical Processor(s) 
and 16 GB RAM (see Replication of Results for more 
details).

3.4  Pedagogical demonstration: four‑bar trusses 
test problem

The capabilities of SHAP are first demonstrated on a sim-
ple four-bar test problem (see Fig. 2) adopted from Stadler 
(1988). The goal is to minimize the weight and the vertical 
displacement of the outer loaded node subjected to several 
load conditions, expressed as follows:

where f1 is the weight of the truss system, f2 is the displace-
ment, E is the elastic modulus, L is the length of a truss sec-
tion, and � is a characteristic stress. The design variables, 
which correspond to the cross-sectional areas, are defined 
as follows: (F∕�) ≤ x1 ≤ 3(F∕�) , 

√
2(F∕�) ≤ x2 ≤ 3(F∕�) , √

2(F∕�) ≤ x3 ≤ 3(F∕�)  ,  a n d  (F∕�) ≤ x4 ≤ 3(F∕�)  , 
where F = 10 kN, E = 2 × 105  kN/cm2 , L = 200  cm, 
and � = 10  kN/cm2 . The problem originally involves a 
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constraint, but we neglect the constraint since this paper 
focuses on the objective functions for design exploration.

The first objective is linear in terms of the input variables. 
On the other hand, f2 varies reciprocally with the input vari-
ables, which becomes the origin of the objectives trade-off. 
The simple form of the four-bar truss problem makes it a 
good test case for demonstrating the capabilities of SHAP 
for multi-objective design. Therefore, the SHAP extracted 
from a surrogate model should be able to reflect such trends 
well. GPR models with 200 samples from Latin hypercube 
sampling (McKay et al. 2000) were built to approximate 
the two objectives, yielding a highly accurate model with 
LOOCV error in the order of 10−4 for both weight and dis-
placement. The SHAP values are sampled from 10,000 
realizations on the input space, primarily for calculating the 
averaged SHAP. This example shows various methods to vis-
ualize SHAP values for the two objectives. However, a more 
comprehensive visualization and comparison are given and 
discussed on the non-analytical problems shown in Sect. 4.

Let us begin by comparing the GSA metric derived from 
total indices and averaged SHAP as shown in Fig. 3. For the 
sake of simplicity, we do not show the activity scores and 
uncertainties associated with the GSA metrics for this prob-
lem. The wall-clock time to compute Sobol indices using 
10,000 samples is about 2 s while the cost for the averaged 
SHAP using the same amount of samples is about 43 s. The 
averaged SHAP gives the same ranking as the total Sobol 
indices, but the interpretation is different. Note that the aver-
aged SHAP values quantify the average contribution of an 

Fig. 2  A schematic illustration of the four-bar trusses problem

(a) Averaged SHAP, f1 (b) Total Sobol indices, f1

(c) Averaged SHAP, f2 (d) Total Sobol indices, f2

Fig. 3  Averaged SHAP barplot and total Sobol indices of f
1
 and f

2
 for 

the four-bar problem



input to the prediction. In contrast, Sobol indices quantify 
the impact of input variables and their interactions with 
the total variance, which is a squared quantity. In the con-
text of the design exploration problem, we think that one 
obtains more useful information from how the design vari-
ables change the output (on average) compared to partial 
variances. For example, the most significant variable for f1 , 
i.e., x1 , yields an average SHAP contribution to the weight 
with a magnitude of 200.44. The third variable contributes 
only 26.95 to the weight, which is clear from the expres-
sion shown in Eq. (18) and the corresponding upper and 
lower bounds. On the other hand, the total Sobol indices 
yield ST ,x1 = 0.63 and ST ,x3 = 0.01 . Averaged SHAP makes 
more sense in the context of design exploration because it 
maintains the same unit as the objective function.

The SHAP summary plot for the four-bar problem is 
shown in Fig. 4. This plot basically shows the direction of 
the change in the objective function with respect to the input 
variables. What is clear from this plot is that both objectives 
change monotonously as the function of each input variable, 
as indicated by the gradual change in color. In essence, it 
is clear that increasing the cross-sectional area results in a 
heavier system (the SHAP value of f1 increases when the 

design variable is increased). On the other hand, increas-
ing the cross-sectional area of the first, second, and fourth 
truss (i.e., x1 , x2 , and x4 ) would reduce the displacement. The 
trend for the third bar (i.e., x3 ) is the opposite; decreasing 
its cross-sectional area would lead to smaller displacement. 
The reason is that reducing the flexibility of the third bar 
leads to a larger absorption of the applied loads, leading to a 
redistribution of forces within the structure. The knowledge 
extracted from the SHAP summary plot then matches with 
that from basic statics.

To further analyze the dependency of the objectives on 
each input variable, Fig. 5 shows simultaneously the SHAP 
dependence plots for f1 and f2 , which depict the average 
impact of changing all input variables on the two objectives 
separately (shown in the normalized inputs for easier depic-
tion). It can be seen that all variables impact the weight ( f1 ) 
linearly (see Fig. 5a), with x1 coming out as the most impor-
tant variable. Further, increasing all input variables straight-
forwardly leads to the increase of f1 , which makes sense 
since increasing cross-sectional area leads to higher weight. 
It is not trivial to tell from the SHAP summary plot that f2 
varies reciprocally, but the plot clearly shows that the input 
variables affect f2 in a more nonlinear fashion compared to 

Fig. 4  SHAP summary plot for 
f
1
 and f

2
 , the four-bar problem
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(b) f2

Fig. 5  Combined SHAP 
dependence plot of f
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 and f
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 for 

the four-bar problem
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.

f1 . The SHAP dependence plot for f2 also further reveals that 
all variables but x3 negatively correlated with f2 . The figures 
also show that there are no interactions between input vari-
ables for both f1 and f2 since no dispersion is observed in the 
SHAP values; this is clear from the expression in Eq. (18). 
This is also why all four variables are shown simultaneously 
in the SHAP dependence plot since the number of variables 
is few and no interactions are involved, so the plot would not 
be too cluttered. It is clear from the SHAP dependence plot 
that the functions can be expressed as an additive model. In 
essence, the knowledge obtained from SHAP matches the 
expression of the four-bar problem.

We now move to discuss the four-bar problem from 
the multi-objective design viewpoint. Figure 6 shows the 
bi-objective SHAP dependence plots of f1 versus f2 with 
respect to x1 and x3 in two separate plots. These two vari-
ables are selected as representatives because x1 is the most 
important variable for both objectives, while x3 displays 
an interesting trend. The plots are colored with respect to 
the magnitude of the respective inputs. From Fig. 6a, it can 
be seen that the increase in x1 leads to the increase in f1 
and a decrease in f2 (pay attention to the color gradation). 
The plot shows that the change in x1 leads to a clear trade-
off between f1 and f2 . Indeed, the correlation between the 
objectives with respect to the change in x1 is nearly linear 
and strictly decreasing or increasing, as evidenced by the 
perfect Spearman coefficient and sufficiently high Pearson 
coefficient (both are negative values). On the other hand, the 
change in x3 positively correlates with f1 and f2 . Thus, if we 
isolate the impact of x3 , a decrease in weight due to x3 also 
decreases displacement. From the pure viewpoint of the two 
objectives defined, the variable x3 is not the source of the 
trade-off between the objectives, although its impact on f1 is 
small (see the inset bar). It can then be said that the value of 
x3 , without involving constraints, should be purely decreased 
to lead to optimal designs. It is also worth noting that the 
impact of x1 is significantly larger than x3 in changing f1 

(see the different scale in the x-axis). Similar plots can also 
be created for x2 and x4 ; however, the plots are not depicted 
since the trend is similar to that of x1.

Finally, the SHAP correlation matrix with Spearman cor-
relation coefficient is shown in Fig. 7. The SHAP correlation 
matrix simultaneously shows all the information mentioned 
above. The advantage is that one can simultaneously see 
how changing all cross-sectional areas affects the weight and 
displacement and how it affects the two objectives simulta-
neously. It is important to interpret the correlation matrix in 
conjunction with the averaged SHAP values to analyse the 
dependency and magnitude comprehensively.

This simple demonstration shows how SHAP values are 
used for trade-off analysis in a multi-criteria design prob-
lem. The next section further demonstrates the capabilities 
of SHAP on two non-analytical case studies, in which the 
responses of interest are evaluated using computational 
simulations.

Fig. 6  Bi-objective SHAP 
dependence plot for the four-bar 
problem according to x
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4  Case studies

This section provides a comprehensive discussion of the 
abilities of SHAP in investigating various engineering 
design optimization and exploration problems. SHAP 
values are estimated for all these problems using various 
surrogate models. It is important to note that the accuracy 
of the model used for extracting SHAP values is crucial for 
obtaining reliable information. The comparison of SHAP 
with other GSA methods, namely, Sobol indices and ASM 
is also carried out. The ASM is particularly intriguing as 
it serves as both a design exploration and GSA method, 
making it a valuable point of comparison with SHAP.

4.1  Case 1: nine‑variable inviscid airfoil design 
problem

The first non-analytical test problem is an inviscid airfoil 
design problem with nine-variable PARSEC parameteriza-
tion (Sobieczky 1999) (see Fig. 8). There are two outputs 
of interest, namely, the lift coefficient ( Cl ) and drag coef-
ficient ( Cd ) evaluated at a fixed angle of attack (AoA) of 
2◦ and Mach number of 0.73. The inviscid solver from 
an open-source CFD code SU2 (Economon et al. 2016) 
is used to evaluate the aerodynamic coefficients, with 
the upper and the lower bounds of the variables shown 

in Table 1. With our computing resources, a single Euler 
simulation takes approximately one minute. The first goal 
of this problem is to investigate the impact of the geo-
metrical variables on the quantities of interest in terms of 
nonlinearity and strength. The second goal is to investi-
gate the interactions between the two quantities of interest 
when the input variable is changed. This problem serves 
as a good benchmark case because we already know the 
underlying inviscid aerodynamic phenomenon; thus, we 
can critically assess the insight obtained from SHAP 
analysis.

GPR models for each output of interest were constructed 
using an experimental design set with n = 315 generated 
from Latin hypercube sampling  (McKay et  al. 2000), 
yielding normalized LOOCV errors equal 6.3 × 10−3 and 
7.9 × 10−3 for Cl and Cd , respectively. This indicates that the 
models are highly accurate, which is deemed sufficient for 
knowledge extraction via SHAP. An external sampling set 
consisting of 10,000 samples was generated to compute the 
mean SHAP values. However, we only use a few samples 
to depict the dependence plots to avoid too cluttered plots. 
For this problem, the average time of SHAP calculation 
for a single combination of input variables is about 0.02 s. 
Hence, the time required to compute the averaged SHAP 
from 10,000 samples is roughly about 200 s. In contrast, 
the calculation of Sobol indices and activity scores from 
the model using 10,000 samples only took about 9 and 10 s, 
respectively.

4.1.1  Global sensitivity analysis

The accuracy of the GPR models, although high, is not 
as accurate as the pedagogical problem discussed earlier. 
Consequently, the GSA metrics need to be supplemented 
with the uncertainty linked to the random sampling points. 
To address this, 95% confidence intervals were established 
through bootstrapping  (Dubreuil et al. 2014), involving 
50 repetitions, each was constructed from sampling with 
replacement from the experimental design. The results are 
shown in Figs. 9 and 10, together with the active subspace 
summary plots. The narrow band of uncertainty associated 
with the obtained GSA metrics indicates a level of precision 
that allows considering the metrics as accurate.

First, the averaged SHAP values are computed for the 
two objectives and compared with activity scores and Sobol 
indices. The mean SHAP values generally agreed well with 
the total Sobol indices and activity scores in terms of vari-
able ranking. In this regard, all GSA metrics indicate that 
yup is the most important input for Cl and Cd . The two next 
important variables for Cd are xup and ylo . On the other hand, 
GSA shows that ylo and �TE are the next important variables 
for Cl . The interpretation of the averaged SHAP goes as fol-
lows. Take yup as an example, this means that, on average, yup 

Table 1  Design variables for the inviscid transonic airfoil problem

Variable lb ub Definition

rLE 0.0065 0.0092 Radius of leading edge
xup 0.3466 0.5198 Upper crest absissca
yup 0.0503 0.0755 Upper crest ordinate
yxxup − 0.5094 − 0.3396 Upper crest curvature
xlo 0.2894 0.4342 Lower crest absissca
yloo − 0.0707 − 0.0471 Lower crest ordinate
yxxlo 0.5655 0.8483 Lower crest curvature
�TE − 0.1351 − 0.0901 Trailing edge direction
�TE 0.1317 0.1975 Trailing edge wedge angle

Fig. 8  A schematic illustration of the PARSEC parameterization used 
in the inviscid transonic airfoil problem



affects Cd by the order of close to ×10−2 (similar interpreta-
tion goes for Cl ). The activity score is probably the hardest 
to interpret since it is based on the direction of the variables.

The lift response shows a strong, almost linear, one-
dimensional active subspace (see Fig. 9a). Therefore, the 
component of the 1st eigenvector is sufficient to show the 
impact and the direction of how the variables affect lift. 
Interestingly, the drag response also shows a strong one-
dimensional active subspace (see Fig. 10a). Unlike lift, 
however, the trend in the one-dimensional active subspace 
for drag is not monotonous. The nonlinear drag response 
exhibits a valley of local optimum, indicating a single global 
optimum of Cd for this problem. However, the disadvan-
tage of the active subspace summary plot is that it does not 
reveal which variables contribute to such nonlinearity. Fur-
thermore, the capabilities of the active subspace method to 
reveal how variables interact are limited. As explained next, 
SHAP analysis helps in deciphering such information.

4.1.2  SHAP summary plot

The SHAP summary plots are shown in Fig. 11. From these 
plots, we can see trace of nonlinearity due to some variables, 
e.g., xup , in how of they affect lift and drag production (pay 

attention to the disordered coloring). However, as shown 
later in the SHAP dependence plot, yup also affects the drag 
nonlinearly to a certain degree. The plots also show that 
the SHAP values of Cl and Cd for yup and ylo positively cor-
related with their respective inputs. Such a trend indicates 
that increasing yup and ylo increases lift and drag. The result 
is as expected since the increase in yup and ylo leads to posi-
tive camber, thus increasing lift and drag. On the other hand, 
the plot also reveals that �TE negatively correlated with lift 
and drag (the trend is also clearly linear). The next section 
further discusses the SHAP dependence plots to analyze the 
general findings from the SHAP summary plot.

4.1.3  SHAP values visualization

Figures 12 and 13 show the single-criteria SHAP depend-
ence plot of selected variables for Cl and Cd (note that the 
figures show the normalized inputs). In particular, xup and 
yup are chosen due to their strong impact on Cd . On the other 
hand, ylo is selected due to its strong impact on Cl . Unlike the 
four-bar case, the drag response features a relatively strong 
interaction between variables, as indicated by the dispersed 
values of SHAP for the three representative variables. Con-
versely, the lift response displays weaker interactions, except 
for xup . Upon analyzing the SHAP dependence plots, we can 

Fig. 9  One-dimensional ASM 
summary plot and activity 
scores for the inviscid transonic 
airfoil problem, C

l
 case

(a) 1D summary plot (b) Activity scores

(c) Total Sobol indices (d) Averaged SHAP



see the combination of the average effect of yup and xup on 
drag (with positive and negative correlation, respectively), 
together with strong interactions, lead to the nonlinearity on 
the drag response. The reason why both variables are impor-
tant in drag production is that they control the location and 
magnitude of the shock wave. On the other hand, in general, 
the single-criteria SHAP dependence plots for Cl reveal that 
the input variables tend to change the lift linearly. However, 
the change in xup affects lift nonlinearly, depending on how 

it interacts with yup . We observe that the trend in Cl due to 
xup becomes more nonlinear if the value of yup is high, and 
vice versa for the drag; this observation is not evident from 
the active subspace summary plot since it focuses on finding 
a representative one-dimensional subspace.

The bi-objective SHAP dependence plot is discussed 
next (see Fig. 14). Let us first consider xup , in which the 
plot makes it feasible to simultaneously show the averaged 
effect of xup on Cl and Cd , and also the interaction between 

Fig. 10  One-dimensional ASM 
summary plot and activity 
scores for the inviscid transonic 
airfoil problem, C

d
 case

(a) 1D summary plot (b) Activity scores

(c) Total Sobol indices (d) Averaged SHAP

Fig. 11  SHAP summary plots 
for C
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them. It is particularly interesting to see the impact of xup , 
in which Cl and Cd are negatively correlated (thus, simul-
taneous improvement), but the trend becomes rather com-
plex for either low or high Cl (achieved by moving xup to 
the upstream or downstream direction, respectively) due to 

the interaction between xup and other variables. The higher 
dispersion of SHAP for xup on the high Cl and low drag 
region indicates that controlling xup to achieve such char-
acteristic should also be done with the other variables (due 
to the interaction). The bi-objective SHAP dependence plot 
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Fig. 12  SHAP dependence plots of select variables for the inviscid airfoil problem, C
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Fig. 13  SHAP dependence plots of select variables for the inviscid airfoil problem, C
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Fig. 14  Bi-objective SHAP dependence plots of select variables for the inviscid transonic airfoil problem



shows the tendency for a trade-off between both objectives 
when controlling yup . However, one should also pay atten-
tion to the interaction between yup and the xup since the latter 
negatively correlates with drag. Finally, a positive correla-
tion which indicates trade-off is observed in the bi-objective 
SHAP values due to ylo (i.e., increasing ylo would increase 
lift but also increase drag).

4.1.4  SHAP correlation matrix

The SHAP correlation matrix with Spearman correlation 
coefficient for the inviscid transonic airfoil design is shown in 
Fig. 15. From this plot, one can simultaneously see the SHAP 
correlation for all variables, which eases analysis. In particular, 
only two variables negatively correlate with lift, i.e., xlo and 
�TE . On the other hand, the correlations are more complex for 
the drag, with alternating sign and near-zero correlation. The 

near-zero correlation does not always indicate that the vari-
ables are not affecting the objectives. Rather, it might indicate 
that a strong interaction exists.

The intricate relationship between drag components ulti-
mately results in complexity within the bi-objective correla-
tion. Most variables show a positive correlation, indicating 
the change in these variables leads to the trade-off between 
objectives. Conversely, variables exhibiting negatively corre-
lated bi-objective SHAP values indicate that these variables 
are the source of simultaneous improvement in the two objec-
tive functions (most notably xup ). The same thing can also be 
said for rle ; however, note again that its overall impact on drag 
and lift is minuscule.

4.2  Case 2: viscous transonic airfoil

The next test case is the design of a viscous transonic airfoil 
(i.e., the RAE 2822 airfoil) under geometrical change parame-
terized by 20-variable Hicks–Henne bump function (Hicks and 
Henne 1978), see Fig. 16a. The Hicks–Henne bump function 
alters the geometry of the airfoil by a set of disturbance func-
tions. Let us denote the abscissa and ordinate of the airfoil as xc 
and yc , respectively, with k as the number of bump functions. 
The expression for yc , given the base ordinate yc,base reads as

where

with xJi and wi correspond to the location of the maxima 
and the width of the basis function, respectively. The design 
variables are the vector of coefficients c = {c1,… , ck} . The 
abscissa locations of the bump function are set from xJ1 to xJ10 
in a step of 0.05, while wi is fixed to w = 3 for all variables. 
Hence, there are 10 basis functions on each surface (i.e., 

(19)ȳc = yc,base +

k∑

i=1
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(20)vi = ln(0.5)∕ln(xJi ),
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Fig. 16  The coordinates of the 
RAE 2822 airfoil and visuali-
zation of the 10 Hicks–Henne 
bump functions

(a) Coordinates (b) Hicks-Henne function



a total of 20 design variables). The first ten Hicks–Henne 
bump functions (scaled to unity) are visualized in Fig. 16b. 
Shown in the figure are the Hicks–Henne bump functions 
for the upper surface, while the lower surface (i.e., x11 to 
x20 ) are simply the mirror of their upper surface counter-
parts. Note that x1 and x11 are located on the leading edge 
of the airfoil. The range of the bumps’ magnitude is set to 
[−0.003, 0.003]20 . It is worth noting that the value of the 
Hicks–Henne bump function corresponds to their scale. In 
other words, positive coefficients, regardless of the upper 
and lower surface, always lead to thicker airfoils.

The outputs of interest are the Cd and absolute moment 
coefficient measured at 0.25 chord (i.e., |Cm| ), both are to 
be minimized, evaluated using the Reynolds-Averaged 
Navier–Stokes (RANS) solver with Spalart–Allmaras tur-
bulence model from an open-source SU2 CFD code. The 
case is evaluated at a fixed Cl condition, i.e., Cl = 0.723 , 
at a Mach number of 0.729. As such, the solver automati-
cally tunes the angle of attack to satisfy the lift constraint. 
The wall-clock time elapsed for a single RANS evaluation 
is about 20 min. This problem was first studied in the con-
text of preference-based multi-objective of a transonic air-
foil (Palar et al. 2018). In this paper, we aim to shed light on 
the impact of design variables on objective functions rather 
than pure optimization per se. PC-Kriging was preferred for 
this problem due to its higher accuracy compared to GPR. 
The PC-Kriging uses total order truncation with a maximum 
polynomial order of p = 2.

The PC-Kriging model for Cd yielded a LOOCV error of 
0.0631, sufficient for extracting knowledge from the model. 
The PC-Kriging model for |Cm| is even more accurate with 
LOOCV error equals 9.6 × 10−3 . The fact that the model is 
accurate despite the relatively high dimensionality of the 
problem indicates that the responses are either linear or only 
have a few effective dimensions. The SHAP plots, in con-
junction with the active subspace plot, are used to reveal 
such knowledge.

4.2.1  Global sensitivity analysis comparison

Evaluating SHAP for this problem is expensive, with each 
SHAP evaluation taking approximately 0.65  s. Conse-
quently, the assessment of SHAP using 1000 samples con-
sumes around 10.8 min. Due to this constraint, we opted 
for 1000 samples to estimate averaged SHAP values, noting 
that even with this reduced number, SHAP values appear to 
converge effectively. In contrast, computing activity scores 
and total Sobol indices using 10,000 samples requires only 
about 120 and 30 s, respectively.

First, as shown in Fig. 17a, the active subspace sum-
mary plot indicates that the trend of Cd is not monotonous. 
Instead, there is an evident trend of nonlinearity, as indicated 
by the valley of minimum in the one-dimensional summary 

plot. However, the active subspace summary plot does not 
indicate which variable is the source of such nonlinearity. 
Such knowledge can be useful to identify which part of the 
airfoil geometry leads to such change, as revealed by the 
SHAP dependence plot shown later. Furthermore, inferring 
the direction of the variable’s impact is difficult because the 
problem does not feature a strong one-dimensional active 
subspace.

A comparison of the three GSA metrics for Cd reveals 
a slightly different trend (see Fig. 17b–d). It is worth not-
ing that the uncertainty derived from the bootstrap with 50 
samples is relatively high compared to the previous problem. 
Nevertheless, all metrics agree that x3 and x4 are crucial in 
drag production, followed by x20 or x5 , in which the three 
metrics differ in how they interpret the third important vari-
able. The interpretation is easier for total Sobol indices and 
averaged SHAP than the activity scores. One particular chal-
lenge in understanding activity scores is that their values 
are sensitive to the range of the input variables. At the same 
time, this is not the case for total Sobol indices and averaged 
SHAP. It is also worth noting that activity scores and total 
Sobol indices are squared quantities. Hence, the contribu-
tion of variables appears larger for the averaged SHAP than 
for the others.

On the other hand, the trend of |Cm| is monotonous, as 
shown by the 1D summary plot in Fig. 18a. The insight from 
ASM is perhaps sufficient for trend identification of |Cm| . 
There is no urgent need to perform a deeper nonlinearity 
analysis regarding which variable contributes to nonlinearity 
since the trend is extremely close to linear. A comparison 
of the three GSA metrics also shows clear agreement (see 
Fig. 18), with the uncertainty being sufficiently small to 
draw meaningful conclusions.

4.2.2  SHAP summary plot

The SHAP summary plots of the objectives for the viscous 
airfoil problem are shown in Fig. 19. By comparing the two 
summary plots, it is possible to see, in general, which vari-
ables contribute to the trade-off and those that lead to the 
simultaneous improvement in Cd and |Cm| . First, it can be 
seen that the set of Hicks–Henne functions on the upper 
surface (i.e., x1 to x10 ) is primarily responsible for drag pro-
duction. It is also interesting to see that the direction of drag 
change is not the same for all upper surface variables (i.e., 
x1 to x10 ). Decreasing the three most important variables for 
drag (i.e., x3 and x4 ) leads to decreased drag. This basically 
means that large drag reduction can be achieved by reducing 
the upper surface of the airfoil in between the leading edge 
and maximum thickness location (i.e., 37.9% of the chord). 
However, it is worth noting that increasing x1 , which primar-
ily corresponds to increasing the leading edge radius, leads 
to reduced drag.



The trend is more evident and linear for |Cm| . Analysis 
of the impact of the Hicks–Henne bump functions on |Cm| 
should be understood in the sense of how they affect the 
pressure distribution changes (subsequently, the centre of 
pressure). In this regard, the switch in the trend (i.e., from 
x2 to x3 and x12 to x13 ) is due to the respective location of the 
bump to the 1/4 chord. It makes sense that increasing the 
lower surface Hicks–Henne bump function leads to reduced 
|Cm| , and the trend is persistent for almost all lower surface 
variables, but x11 and x12 (i.e., those that are closer to the 
leading edge). The impact on |Cm| is substantially higher 
on the trailing edge of the lower surface variables. In com-
parison, middle-upper surface variables are also important 
for the pitching moment due to their proximity to the shock 
wave location. In general, increasing the upper surface leads 
to a higher absolute moment coefficient.

4.2.3  SHAP values visualization

The SHAP dependence plots of selected variables for Cd 
and |Cm| (i.e., x4 , x14 , and x20 ) are shown in Figs. 20 and 21, 
respectively. Also shown in the dependence plots is the rela-
tive impact of the respective variables on the objective in the 
form of a barplot. Note that the impact is measured relative 

to the most impactful variable (i.e., the most impactful varia-
ble yields a full-filled bar). The variable x4 is chosen since it 
contributes the most to drag production, while x14 and x20 are 
selected due to their nonlinearity and high impact on |Cm| . It 
can be seen that x4 affects the drag almost linearly. However, 
the impact of the interacting variable can be observed. That 
is, the average impact of changing x4 decreases when the 
magnitude of the interacting variable (i.e., x5 ) is decreased. 
In other words, greater reduction in Cd can be achieved by 
controlling x4 and x5 together.

The relative impact of interaction on drag is notable for 
x14 , in which the dynamics of the change depending on the 
value of x5 . Further, x14 also changes the drag nonlinearly, 
despite its overall impact on drag is relatively small. The 
SHAP dependence plot of Cd according to x20 indicates 
that the nonlinearity of Cd is primarily due to x20 (i.e., the 
point on the lower surface and closest to the trailing edge). 
Upon closer inspection, it can be seen that x20 controls the 
change in the curved aft section at the trailing edge, which 
is also one defining feature of a supercritical airfoil. It then 
makes sense why x20 affects the drag nonlinearly. Although 
the impact of changing x20 is not as prominent as x4 , its 
impact on Cd is still notable. The impact of the Hicks–Henne 
variables on |Cm| is strongly linear, as can be seen from the 

Fig. 17  One-dimensional ASM 
summary plot and global sen-
sitivity indices for the viscous 
transonic airfoil case, C

d
 case

(a) 1D summary plot (b) Activity scores

(c) Total Sobol indices (d) Averaged SHAP



SHAP dependence plot. Further, the effect of interactions on 
|Cm| is almost non-existent (the disordered color gradation 
also indicates no interaction).

The bi-objective SHAP dependence plots, simultane-
ously show the impact of changing a specific input vari-
able on the two objectives (see Fig. 22). Figure 22a, shows 
that the change in x4 , in general, simultaneously improves 
or deteriorates Cd and |Cm| . The high value of Pearson 
and Spearman correlation coefficient indicates that the 

two-way impact is close to linear and monotonous. On 
the other hand, we observe that x14 is the source of the 
trade-off between the two objectives since, e.g., increas-
ing x14 would lower the |Cm| but with a penalty on drag 
increment. However, one should also pay attention to the 
relative magnitude of the SHAP. In this sense, the impact 
of x14 on |Cm| is larger than that on Cd . The scattered val-
ues are primarily due to the effect of interactions on Cd . 
Finally, one can see that the interplay between objectives 

Fig. 18  One-dimensional sum-
mary plot and global sensitivity 
indices for the viscous transonic 
airfoil case, |Cm| case

(a) 1D summary plot (b) Activity scores

(c) Total Sobol indices (d) Averaged SHAP

Fig. 19  SHAP summary plots 
for C

d
 and |Cm| , the viscous 

transonic airfoil case
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due to x20 has no linear nor monotonous relationship due 
to its nonlinear effect on Cd . From this viewpoint, the cor-
relation between Cd and |Cm| due to x20 is positive for small 
x20 , but turns to negative for large value of x20.

4.2.4  SHAP correlation matrix

Finally, in Fig. 23, we can observe the SHAP Spearman 
correlation matrix representing the viscous transonic airfoil 
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Fig. 20  SHAP dependence plots of select variables for the RAE 2822 problem, C
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Fig. 21  SHAP dependence plots of select variables for the RAE 2822 problem, |Cm| case
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Fig. 22  Bi-objective SHAP dependence plots of select variables for the RAE 2822 problem



design. This visualization provides a clearer understanding 
of the relationships between variables. Regarding the SHAP 
correlation matrix for |Cm| , it is evident that each variable 
exhibits a strong correlation with the pitching moment, with 
correlations either being perfect or close to perfect positive 
or negative (the values are rounded to the third decimal). In 
contrast, the Cd trend is more intricate, particularly for the 
upper surface, where the correlation alternates between posi-
tive and negative values. Conversely, the trend for the lower 
surface is less complex, indicating that an increase in all 
corresponding variables almost consistently leads to higher 
drag. Additionally, the bi-objective SHAP correlation (see 
the rightmost barplot) highlights the more intricate trend 
among the upper surface variables, while the trend in the 
lower surface is much simpler. It is worth noting that the cor-
relation analysis should be performed while also interpreting 
the magnitude of the averaged SHAP values, which is also 
shown in the SHAP correlation matrix.

4.3  Discussions on practical aspects of SHAP

Concluding the results of numerical experiments, we can 
now assess the practical advantages and limitations of 
SHAP. The findings highlight several practical benefits of 
SHAP in terms of uncovering additional information that is 
challenging or impossible to deduce from Sobol indices and 
active subspaces. Sobol indices, while effective for global 
sensitivity analysis, fall short when the objective is to gain 
deeper insights into the interdependence of output and input 
variables. ASM offers a means to achieve this by reveal-
ing aspects such as whether the function exhibits multiple 
optima and potential nonlinearity. However, in the case 

of a nonlinear function, ASM is unable to pinpoint which 
input variables contribute to the nonlinearity. In contrast, 
SHAP’s advantage lies in its capability to identify variables 
that influence the function linearly and those that contrib-
ute to its nonlinearity. SHAP is capable of breaking down 
the intricacy of the function into the individual effect of 
the input variable. However, in contrast to ASM, discerning 
the unimodal or multimodal nature of the objective function 
via SHAP analysis is not straightforward, primarily because 
SHAP’s decomposition nature poses challenges in identify-
ing such characteristics.

Regarding interaction, Sobol indices are very useful 
in deciphering the magnitude of interaction through the 
second-order Sobol indices, although it is not capable of 
visualizing the interaction. A drawback of the current form 
of the ASM lies in its limited capability to explore interac-
tions between variables in depth. While strong second or 
third eigenvectors from ASM might hint at interactions, the 
method lacks the tools to visually represent how input varia-
bles interact and influence the output. The absence of means 
to effectively visualize the intricate relationships between 
input variables and their impact on the output stands as a 
notable limitation within ASM. In contrast, SHAP offers a 
mechanism to visually represent interactions between vari-
ables using the single-output SHAP dependence plot. In 
cases where interaction is present, the plot exhibits scattered 
dots, offering valuable insights into the nature of interactions 
among input variables and how they collectively influence 
the output.

Specifically in the context of multi-objective design, 
SHAP offers an intuitive approach, facilitated by the bi-
objective SHAP dependence plot and correlation values 
depicting the relationship between the SHAP scores of 
two objectives. The localized and decomposition nature of 
SHAP paved the way to investigate the contribution of input 
variables on two objectives simultaneously. This aspect is 
not attainable through Sobol indices. Furthermore, utiliz-
ing information from active subspaces of the two objec-
tives to deduce crucial insights in multi-objective design 
is not straightforward. This is particularly true when trying 
to discern which variable contributes to the simultaneous 
enhancement or trade-offs between objectives, especially in 
cases where the active subspace demonstrates strong second 
or third eigenvectors.

A significant drawback of SHAP lies in the computa-
tional expense linked to the KernelSHAP algorithm. When 
used for visualization, a limited number of samples may be 
adequate to uncover the general trend. However, comput-
ing the averaged SHAP necessitates a substantial number 
of samples to accurately estimate their values. Nonetheless, 
this heightened computational cost is justified given that the 
execution of a single simulation could require minutes or 
even hours. Despite this, it is crucial to note that the expense 
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of conducting KernelSHAP becomes more substantial as 
the input dimensionality increases, and this factor should be 
considered in practice.

The insights derived from SHAP analysis prove highly 
valuable when the number of input variables is sufficiently 
small such that it leads to meaningful interpretation. In cases 
involving a substantial number of input variables, particu-
larly in applications like optimization, ASM can be more 
advantageous as it offers methods for dimensionality reduc-
tion (Lukaczyk et al. 2014; Li et al. 2019). In contrast, SHAP 
does not directly offer the means for more efficient optimiza-
tion besides identifying the importance of input variables on 
the objectives, which is a task that can also be accomplished 
by ASM. However, SHAP analysis is meaningful when the 
goal is to delve deeper into the complexity of the problem 
and the dependency of the objective on input variables.

After comparing the three techniques, we conclude that 
the insight obtained from the three techniques is comple-
mentary to each other. Therefore, for practical complex 
multi-criteria engineering problems, the three techniques 
can be used together to reveal information from multiple 
viewpoints, which eventually enrich the analysis.

5  Conclusions and future works

The present study explores the effectiveness of SHAP to 
help interpret a surrogate model for multi-objective design 
exploration. The goal is to evaluate how SHAP can uncover 
valuable insights from the design optimization space, which 
will eventually be useful for practitioners and designers. The 
SHAP is coupled with either GPR or PC-Kriging although 
other models can also be used since SHAP is a model-
agnostic method. The primary objective is to utilize SHAP 
in multi-criteria design optimization, which is also directly 
applicable to single-criteria problems.

The use of SHAP in conjunction with a surrogate model 
allows for the identification of various design insights based 
on the input–output relationship. SHAP enables visualiza-
tion of the nonlinearity of this relationship, as well as the 
interaction between variables and the strength of input vari-
ables’ impact on the output. This paper discusses several 
means to explore such a relationship, including the newly 
presented SHAP correlation values and the accompanying 
SHAP correlation matrix. This research demonstrates that 
SHAP is valuable in quantifying and visualizing how an 
input variable affects multiple outputs simultaneously. Such 
knowledge is particularly useful in situations where trade-
off analysis is necessary, especially in multi-criteria design.

Our study showcases how SHAP can be beneficial in 
solving two engineering problems: a nine-variable inviscid 
airfoil design and a 20-variable viscous transonic airfoil 
design. We also compare the effectiveness of SHAP with 

other techniques, namely, Sobol indices and ASM, to high-
light the advantages of SHAP. Additionally, Sobol index 
cannot illustrate the trade-off between diverse design criteria 
as it is grounded in variance decomposition. On the other 
hand, although ASM is advantageous, it is rather complex 
to comprehend how an individual variable influences the 
output, such as which variable contributes to the nonlinear 
relationship. Furthermore, analyzing the trade-off between 
design criteria is not straightforward with ASM, particu-
larly concerning the impact of a single input variable. SHAP 
analysis takes steps further, thanks to its capability to break 
down the individual averaged impact of each input variable. 
The use of SHAP also eases the analysis of the objectives 
trade-off study to the level of a single input variable.

In practice, SHAP can be used in complementary with 
ASM and Sobol indices for design exploration. This is 
because each method has its own advantages. ASM is pri-
marily useful to detect the existence of one- or two-dimen-
sional active directions, which can be used to preliminary 
detect unimodality and nonlinearity. The active direction 
information itself is not directly straightforward to infer from 
SHAP. On the other hand, Sobol indices are particularly use-
ful to quantify the interactions, while it is not trivial to do 
so using SHAP.

For future works, one interesting research avenue is to 
exploit information from SHAP to perform design optimi-
zation. Also, note that the SHAP estimated from the model 
does not provide uncertainty, which is why we used boot-
strapping. Swift uncertainty estimation of SHAP emerges 
as a crucial topic for future exploration, especially in the 
context of probabilistic models like GPR. Furthermore, it 
would be interesting to investigate the capability of SHAP 
for trade-off analysis in problems involving constraints and 
more than two objectives.

Appendix 1: Active subspace method

ASM (Constantine 2015) works by first calculating the aver-
aged outer product of the output gradient ∇f (x) from a set of 
samples, written as

Subsequently, the eigendecomposition of C is performed:

where

The eigenvectors w are arranged in a descending order based 
on their corresponding eigenvalues. This means that the 
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eigenvector with the highest eigenvalue corresponds to the 
most active direction.

A global sensitivity metric called activity scores, which is 
compared with the SHAP averaged value in this paper, can 
also be used (Constantine and Diaz 2017), reads as

In the context of surrogate modeling, the output gradient 
is calculated from the surrogate model, either from finite 
differencing or automatic differentiation. The inputs should 
be normalized first so that they have the same scale before 
applying ASM.

Appendix 2: Sobol indices

The main principle of Sobol indices is the variance-based 
decomposition, which decomposes the total variance of f (x) 
into the partial variances of the single variable and their 
interactions (Sobol 2001).

Define the set [1  : m] as 1,… ,m , and let u be a sub-
set of this set. The complement of u can be defined as 
−u = [1 ∶ m]⧵u , and the cardinality of u is denoted by |u|. 
For an index set u, we define �u as the subset of � such 
that �u =

∏
i∈u �i . The decomposition of a function into its 

constituent parts can involve main effects and interactions 
between variables, which can be expressed as

All the summands in Eq. (25) are orthogonal to each other, 
and the first term corresponds to the mean of f (x).

The total variance of f (x) can be expressed as the sum of 
partial variances Vu , reads as

where �(x) is the joint probability density function of the 
input, Vu = � [fu(xu)] = �2

u
 is the partial variance for a subset 

u. Following the variance decomposition, the Sobol indices 
for a non-empty subset u is calculated by dividing Vu with 
the total variance V, written as

where 
∑

�≠u⊆[1∶m] Su = 1 . The total Sobol indices are defined 
as the sum of the contribution of a single variable, including 
the main effect and all interactions, reads as
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,

where Kj = {(u1,… , u|u|) ∶ ∃k, 1 ≤ k ≤ |u|, uk = j} and 
Kj ⊆ [1 ∶ m].

Appendix 3: Correlation coefficients

The Pearson correlation coefficient measures the linear 
correlation between two inputs. Let us consider two vari-
ables Y1 and Y2 , the sample version of the Pearson correla-
tion coefficient ( � ) is calculated as

where ȳ1 and ȳ2 denote the sample mean of Y1 and Y2 , 
respectively, and nr is the number of samples. In contrast 
to the Pearson correlation coefficient, the Spearman cor-
relation coefficient (r) is capable of measuring the monoto-
nous relationship between two inputs. The observations are 
first assigned a rank, that is, R(y(i)

1
) and R(y(i)

2
) . The Spear-

man correlation can then be computed by the well-known 
formula:

where di = R(y
(i)

1
) − R(y

(i)

2
) is the difference between the two 

ranks of each sample point.
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