
HAL Id: hal-04512404
https://hal.science/hal-04512404v1

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ultra-Lightweight and Secure Intrusion Detection
System for Massive-IoT Networks

Roumaissa Bekkouche, Mawloud Omar, Rami Langar, Bechir Hamdaoui

To cite this version:
Roumaissa Bekkouche, Mawloud Omar, Rami Langar, Bechir Hamdaoui. Ultra-Lightweight
and Secure Intrusion Detection System for Massive-IoT Networks. 2022 IEEE International
Conference on Communications (ICC 2022), May 2022, Séoul, South Korea. pp.5719-5724,
�10.1109/ICC45855.2022.9838257�. �hal-04512404�

https://hal.science/hal-04512404v1
https://hal.archives-ouvertes.fr


Ultra-Lightweight and Secure Intrusion Detection
System for Massive-IoT Networks

Roumaissa Bekkouche∗, Mawloud Omar∗, Rami Langar∗‡, Bechir Hamdaoui§
∗ LIGM-CNRS UMR 8049, University Gustave Eiffel, F-77420 Marne-la-Vallée, France

‡ Software and IT Engineering Department, Ecole de Technologie Supérieure (ÉTS), Montréal, QC H3C 1K3, Canada
§ School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
E-mails: {roumaissa.bekkouche, mawloud.omar, rami.langar}@univ-eiffel.fr; hamdaoui@eecs.oregonstate.edu

Abstract—The Internet of Things (IoT) is starting to integrate
deeply into our daily lives thanks to the different services it
provides. This technology has already made us more closely
linked to the external environment through ubiquitous com-
munication devices. However, even though this proximity has
numerous benefits, it also has a significant security impact, where
the cyber-attack surface has grown dramatically. In this regard,
we present, in this paper, our results toward the development
of a decision tree-based machine learning model for intrusion
detection in Massive-IoT networks. The principal objective of
this work is to provide a highly accurate detection model, while
preserving resource consumption by developing a real prototype
of the intrusion detection system. To this end, we first propose
and apply our pre-processing methodology on the well-known
Avast IoT-23 dataset, allowing us to reach a high detection rate
with 99.99% of accuracy and just 1804KB of the model’s size.
Then, we propose a new machine learning model based on the
decision tree classifier and deploy it in a real environment with
malicious attack traffic. Obtained results show that our proposed
model allows 88% of real-traffic-based precision rate and up to
90% of specificity.

Index Terms—IoT, machine learning, network security, Avast
IoT-23, anomaly detection, intrusion detection, decision tree.

I. INTRODUCTION

The potential increase in mobile traffic, the expansion of
communication infrastructures, and the massive use of Internet
of Things (IoT) devices have led to crossing the capacities and
limits of 4G networks. The latter no longer meets the actual
requirements of users. A new generation of wireless mobile
communication technology, 5G, is emerging to achieve user
satisfaction and best meet user needs. One of the essential
5G’s slices is Massive-IoT which offers tremendous benefits
for end-users. 5G networks promise to meet the complex re-
quirements of IoT architectures and infrastructures and support
the massive number of devices connected simultaneously over
the network. A study by Cisco [1] says the number of IoT
devices will soon exceed 500 billion in 2030.

The IoT introduces new challenges for network security.
Due to the lack of security awareness of devices and end-users,
they have become vulnerable and the prime target for malware
developers so far to infiltrate and attack a more extensive
network. That is why the implementation of security measures
is among the essential requirements. Recently, the researchers
started looking into more advanced security measures to

confront this issue. One of those new measures is the use
of machine learning approaches to detect and classify attacks
to mitigate them.

The use of machine learning is now attracting a lot of inter-
est among academics. The most effective use of resources is
enabled by artificial intelligence-powered security. The devices
analyze the network traffic using more straightforward predic-
tion methods, avoiding complex packet filtering approaches
using traditional intrusion detection systems. Moreover, the
establishment of a security service does not involve the deploy-
ment of particular network security hardware. Many datasets
of attacks may be found in the literature. Unfortunately, most
of them are not dedicated to IoT, and some emerged attacks
are missing from the few IoT datasets available. Furthermore,
their feature set is rather restricted. In the context of our
study, we were interested in a very recent and comprehensible
dataset; namely, Avast IoT-23 [6]. The data were gathered from
several IoT devices, including 325307990 samples with 23
features. We meticulously pre-processed Avast IoT-23 dataset
under which we experimented and implemented a prototype of
the decision tree learning model. Our pre-processing approach
allowed us to reach a high detection rate with just 1804KB of
the model’s size, making it strongly suitable for IoT devices.
The resulting model has been then implemented in a real
environment with malicious attack traffic. Obtained results
show that our proposed model allows 88% of real-traffic-based
precision rate and up to 90% of specificity.

The rest of the paper is organized as follows. In Section
II, we review the literature. In Section III, we describe the
approach we use in data pre-processing. In Section IV, we
describe our intrusion detection system. In Section V, we
present the experimental setup and the evaluation methodol-
ogy, we present also in this section the result achieved and
the performance evaluation. Finally, Section VI concludes this
work by the perspectives and future research ideas.

II. LITERATURE REVIEW

Several works are addressing the conception of machine
learning approaches for network security. In this section, we
present some related works.

Authors in [10] discussed the idea of using machine learning
algorithms to secure IoT networks. They showed the poten-



tial of these approaches by focusing on the deployment of
supervised, unsupervised, and reinforcement learning for both
host-based and network-based security solutions for the IoT
environment. The ”host-based” is addressed using the data
held by the devices, and the ”network-based” is addressed
using the metadata of IoT network. They also discussed
the strength of machine learning techniques to enable more
efficient IoT protection. According to the authors, machine
learning algorithms to secure IoT devices are limited by the
unique characteristics of IoT and their environments. The
challenge is to develop novel, cost-effective, and scalable
machine learning techniques to meet the IoT ecosystem’s
computation power and environmental constraints.

Authors in [9] performed a comparison between different
machine learning algorithms applied to Avast IoT-23 with the
purpose to secure the IoT network and identify the best model
for anomaly detection. They examined the following machine
learning algorithms: Random Forest, Naive Bayes, Multi-
Layer Perceptron, Artificial Neural Network, Support Vector
Machine, and AdaBoost. They provided a comparison between
the performance of each algorithm in terms of precision, recall,
and f1-score. The obtained results showed that the random
forest algorithm had the best performance with 99.5% of
accuracy.

Another comparative study of machine learning algorithms
is done by Mehmood et al. in [5]. In their work, they employed
the dataset KDD99, which is a benchmark for anomaly-
based detection technique that contains four attack classes.
The authors experimented: Support Vector Machine, Naive
Bayes, Decision Tree, and Decision Table. The obtained results
show that not a single algorithm has a high detection rate for
each class of KDD99 dataset. But the overall accuracy of the
decision tree is high among all the other algorithms with a
low misclassification rate.

The authors of [3] tested a new solution for intrusion
detection problem. In their work, they combined two machine
learning algorithms: Decision Tree (DT) and Multilayer Per-
ceptron (MLP) to identify attacks with high accuracy and
reliability. To do that, they have used the KDD CUP 99
dataset.Their solution consists of two phases: in the first phase,
they have used both MLP and DT on the original dataset to
create a new dataset of the predicted values obtained by MLP
and DT; in the second phase, they used the new dataset with
another MLP network to classify data on attack or normal
traffic according to the results of the first phase.To evaluate
their hybrid method, they have used False Alarm Rate (FAR),
Accuracy (A), and Detection rate (DR).

The work of [8] addresses the problem of features selection
for machine learning algorithms in the context of anomaly
detection in the Internet of things network. They proposed a
new framework that allows to select an effective input feature
set and remove the unwanted features from the dataset used
by machine learning models. They have used Bot-IoT dataset
and four different ML algorithms, namely: C4.5, Naive Bayes,
Random forest and SVM to test and validate their solution.

Experimental results analysis showed that their solution can
achieve higher than 96% results on average.

The authors of [2] proposed a tool to detect cyber-attacks
and protect IoT devices that are directly connected to it from
various types of malicious traffic, including Port Scanning,
HTTP, SSH Brute Force, and SYN Flood attacks. The pro-
posed solution, named Passban, is a platform-independent
anomaly-based IDS that can be deployed directly on IoT
gateways and learn from the normal behavior of incoming
IoT traffic. Passban comprises five main components: Packet
Flow Discovery block, Feature Extraction block, Train/Load
model block, Action Manager procedure, and Web Manage-
ment Interface. The Packet Flow Discovery block is used to
capture packets and extract network flows. Then, the Feature
Extraction block will calculate network flow statistics and
build a feature set. The Train/Load model block is responsible
for the training of the IDS model using the normal network
flow. The learned model is stored on the gateway and used
to detect attacks. The Action Manager procedure provides the
protection strategies according to the attack classification. And
finally, Web Management Interface provides a user interface
to manage and explore the IDS parameters.

III. DATASET DESCRIPTION AND PRE-PROCESSING

The dataset used for this study is Avast IoT-23 [6]. It is
a new dataset created as part of the Avast AIC laboratory
with the funding of Avast Software. Avast IoT-23 is a labeled
dataset with malicious and benign traffic captured using IoT
devices. It consists of 23 captures (called scenarios) executed
in IoT devices with 20 captures for malicious traffic and 3
captures for benign traffic. The full IoT-23 dataset contains
the original capture files and the log files of Zeek network
analyzer. It contains labeled data and other files containing
different information about each capture.

A. Data Visualization and Encoding

The database consists of 23 features, where 21 of them
represent the flow characteristics. In Table I, we give the
description of each feature. Indeed, the flaws of certain pro-
tocols make the network vulnerable to attacks. However, we
notice that the protocol feature is of nominal type. Due to the
importance of this feature, we re-encoded it as an integer: 0
for UDP, 1 for TCP, and 2 for ICMP.

To provide a more detailed information to network mal-
ware researchers and analysts, this dataset contains labels
to describe the relation between flows related to (possible)
malicious activities. These labels were created in the strato-
sphere laboratory considering the malware captures analysis
[6]. In Table II, we give the description of the labels used for
malicious flows detection.

B. Data Pre-processing

Data pre-processing is an important phase in machine
learning that enhances the quality of data and the learning
process. In this step, we clean, format, and organize the data



Feature Description
ts Time when the capture was done.
uid Capture’s ID.
id.orig h Sender’s IP address.
id.orig p Sender’s port.
id.resp h Receiver’s IP address.
id.resp p Receiver’s port.
proto Used protocol (TCP, UDP or ICMP).
service Application protocol.
duration Packet exchange duration.
orig bytes Amount of sent data.
resp bytes Amount of received data.
conn state Connection state (specific variable used by

ZEEK).
local orig True if the sender is within the local

network.
local resp True if the receiver is within the local

network.
missed bytes Number of missed bytes in the capture.
history History of the connection state.
orig pkts Number of sent packets to the device.
orig ip bytes Number of sent bytes to the device.
resp pkts Number of sent packets from the device.
resp ip bytes Number of sent bytes from the device.
tunnel parents Connection’s ID (if tunnelled).
label Attack or benign traffic.
detailed-label Attack type.

TABLE I
FEATURES DESCRIPTION

Label Description
benign No suspicious or malicious activity.
Attack Suspicious or malicious activity.
C&C Device connected to a Command and Control

server.
HeartBeat Sent packets are used to keep a track on the

infected host by the C&C server.
Mirai Connections have the characteristics of Mirai

botnet.
Torii Connections have the characteristics of Torii

botnet.
PartOfA-
Horizontal-
PortScan

Indicates that the connections are used to
perform a horizontal port scan to gather in-
formation and carry-out further attacks.

Okiru Connections have the characteristics of Okiru
botnet.

DDoS Distributed Denial of Service attack is being
executed by the infected device.

FileDownloadA file is being downloaded into the infected
device.

TABLE II
LABELS DESCRIPTION

to get the most pertinent characteristics that improve the model
ability in terms of attack detection. To do so, we performed
the following steps:

• Discarding additional and nominal attributes: we were
interested in the attack category. Thus, we discarded the
label attribute since it represents redundant information
regarding the detailed-label attribute. We also discarded
uid, history, id.orig h and id.resp h, which are of
nominal type.

• Discarding specific attributes: we discarded the attribute
ts, which is a specific feature related to Wireshark
capture. Moreover, conn state is a specific variable
of Zeek (network analysis framework) that represents
the connection state between two devices. The targeted
model has to be generic and applicable for any network
configuration. Therefore, we discarded conn state.

• Discarding missing values: in this step, we discarded
tunnel parents, local orig, local resp, service and
missed bytes, where more than 80% of their values are
missed, and hence, do not contribute to the classification.

• Discarding correlated features: we identified the highly
correlated features that degrade the detection capability
of the target model by discarding them. We used a
correlation coefficient of 0.9. The two features that are
highly correlated are orig ip bytes and resp ip bytes.

IV. THE PROPOSED INTRUSION DETECTION TECHNIQUE

The proposed approach is based on the decision tree classi-
fier. It is a supervised algorithm based on a set of decision rules
inferred from the data structure. Decision trees can analyze
data and identify important features in the network that indi-
cate malicious activities. We have chosen the decision tree as
the classification algorithm for the many advantages of our use
case. It is an efficient classifier with a low cost compared to the
others regarding computation time and resource consumption.

A. Learning Phase

The outcome of this phase is the attack prediction model.
Our goal is to create a model that accurately predicts the value
of a target variable based on several input variables. To do so,
as a first step, the dataset is randomly split into two parts: 80%
for the training phase and the remaining 20% of the data is
used to test the trained model.

B. Attacks Prevention Mechanism

After training the model and validating it based on per-
formance metrics that we will present in Section V-B, we
implement it as a new intrusion detection system in a real
environment. Our proposed attack prevention mechanism, de-
scribed in Algorithm 1, goes through four steps, as follows:

1) The program sniffs the network and recovers the incom-
ing/outgoing packets to/from the machine. This process
is executed periodically by storing continuously the
temporary PCAP (Packet Capture, file format used by
Wireshark to save captured packets) file.



Algorithm 1 Attacks prevention mechanism
/*Sniffing the network*/
Sessions← getSessionsInfo()
/*Getting sessions information*/
for each s in Sessions do
protocol← s.protocol
source address← s.source address
destination address← s.destination address
source port← s.source port
destination port← s.destination port

end for
/*Features extraction*/
for each packet in Sessions.packets do

if packet.source address = s.source address and
packet.destination address = s.destination address
and packet.source port = s.source port and
packet.destination port = s.destination port then
nb packets sent← nb packets sent+ 1
amount data sent ← amount data sent +
packet.length

else if packet.source address = s.destination address
and packet.destination address = s.source address
and packet.source port = s.destination port and
packet.destination port = s.source port then

nb packets received← nb packets received+ 1
amount data received ←
amount data received+ packet.length

end if
connexion duration ← connexion duration +
packet.duration

end for
/*Model loading and prediction*/
model← loadModel()
model.predict(extractedFeatures)

2) We retrieve the connection sessions information from the
temporary file: the source IP address, destination IP ad-
dress, source port, destination port, and communication
protocol.

3) For each connection, we calculate the number of
sent/received packets, the amount of sent/received data
as well as the connection duration.

4) Once all the features are extracted, we pre-process every
flow by removing the IP addresses and encoding the
communication protocol.

5) Finally, the last step consists of loading the trained
model to classify and perform prediction.

C. Blacklist Mechanism

To further improve the prediction time and the quality of
the results, we set up a blacklist mechanism, which consists
of storing information about detected attacks to be able, for
future connections, to block connections from the same IP
address directly without going through our prediction model,
as illustrated in Figure 1.

Fig. 1. Blacklist mechanism

V. EXPERIMENTAL SETUP AND EVALUATION RESULTS

As stated earlier, we used the Avast IoT-23 dataset [6] in
our experimentation. This dataset was split into two parts: 80%
for training and 20% for testing. Once the model is trained,
we evaluate the trained model following two steps: first, we
use the test dataset to validate our model based on several
performance metrics (see Section V-B), then we evaluate the
validated model with real-time traffic.

The experiments were conducted on a machine running
under Windows 10 Professional 64bits, with processor Intel(R)
Core(TM) i5-10310U CPU @ 1.70GHz 2.21GHz, 16GO of
Memory, and Intel(R) UHD Graphics for the graphic card.
The algorithms were implemented using Sklearn of python.
Pycharm and Scapy libraries were used in the prototype
implementation.

In what follows, we start by describing our test environment
used to validate our model. Then, we present the obtained
performance results.

A. Test Environment

To test our model with real-time traffic, including benign
and malicious traffic, we deployed a network of virtual ma-
chines under VirtualBox to emulate IoT devices. The network
is composed of 4 machines. We have implemented a prototype
of the model on a machine running under Ubuntu 20.04.3 (64
bits) and set 3 machines to generate traffic on the network, as
illustrated in Figure 2.

1) Model deployment: We deployed the anomaly detection
system based on the trained model on the Ubuntu machine to
test and visualize the model’s performances under real-time
conditions, with real-time traffic.



Fig. 2. Test environment

Fig. 3. Overview of the developed prototype

As illustrated in Figure 3, we retrieve the incoming/outgoing
flows from which we extract the features, perform the pre-
processing and predict the attack existence, following our
proposed model presented in Section IV.

2) Traffic attack generation: To generate real network traf-
fic, Mausezahn [4], and HPing [7] tools were deployed on
the 3 attackers’ machines. Both tools are traffic generators,
which allow sending nearly every possible and impossible
packet. We used several parameters to generate various attack
scenarios based on flooding (DDoS, PortScan, etc.). The attack
is started from the 3 attackers and the results are recorded
on the target machine implementing the intrusion detection
system. An example of using these tools to simulate attacks
are shown in Figure 4.

Fig. 4. Example of attack simulation

B. Performance Results

Several performance metrics are used to evaluate the trained
model: recall, specificity, precision, and accuracy. We define
in the following each metric:

• Recall: or true positive rate (TPR), also known as sensi-
tivity. It is computed as follows:

Recall =
TP

TP + FN
,

where TP represents the number of actual positives that
were correctly identified, and FN is the number of actual
positives that were identified as negatives.

Fig. 5. The average metrics score of the trained model using the test dataset

• Specificity: or true negative rate (TNR), which is com-
puted as follows:

Specificity =
TN

TN + FP
,

where TN represents the number of actual negatives that
were correctly identified, and FP is the number of actual
negatives that were identified as positives.

• Precision: or positive predictive values (PPV), which is
computed as follows:

Precision =
TP

TP + FP
.

• Accuracy: is the ratio of correctly predicted observations
to the total observations. It is computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
.

The obtained results are illustrated in Figure 5. As can be
seen in this figure, our model performs a high classification
rate for both benign traffic and attacks with an error rate
of 0.01%. Moreover, it shows promise in terms of other
evaluation metrics. High recall (83.5%) refers to the ability
of the model to detect benign traffic correctly. On the other
hand, high specificity (99.99%) refers to the ability of the
model to detect the attacks correctly. Finally, the high precision
(82.72%) means that only few positives are detected as attacks.

Table III, summarized in Figure 6, shows the performance
details of these metrics. As it is a multi-class classification
problem, we have computed for each class the TP, TN, FP and
FN rates. The reported values are the average of the obtained
results regarding all classes.

C. Results on Real-Time Traffic Conditions

Under the test environment, we tested our model, which is
deployed on the first machine of benign traffic and generated
malicious traffic. The obtained results demonstrate the ability
of our model to distinguish efficiently between benign and
malicious traffic with 88% of precision rate and up to 90% of
specificity, as mentioned on Table IV.

One of the strong points of the system is its ability to detect
attacks from the first attacking flows, and with the use of



Metric PartOf
AHoriz
ontal
Port
Scan

Okiru DDoS Benign Attack C&C C&C:
Heart-
Beat

C&C:
PartO-
fA-
Hor-
izon-
tal-
PortScan

C&C:
Heart-
Beat
Attack

File
Down-
load

C&C:
Heart-
Beat
File
Down-
load

C&C:
Torii

C&C:
File
Down-
load

TP 1833 2326 9 4309 132 1 0 2 3.12e6 4 2.73e6 1.12e7 8.44e5

TN 1.79e7 1.79e7 1.79e7 1.79e7 1.79e7 1.79e7 1.79e7 1.79e7 1.48e7 1.79e7 1.52e7 6.71e6 1.71e7

FP 53 8 1 1 30 0 3 2 12 3 5 78 24

FN 41 9 2 1 41 1 173 0 12 1 0 11 28

Recall 0.978 0.996 0.818 0.999 0.763 0.5 0 1 0.999 0.8 1 0.999 0.999

Specificity 0.999 0.999 0.999 0.999 0.999 1 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Precision 0.971 0.996 0.9 0.999 0.814 1 0 0.5 0.999 0.571 0.999 0.999 0.999

Accuracy 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

TABLE III
RESULTS OF THE TEST DATASET

Fig. 6. Metrics score for each class of the test dataset

the blacklist mechanism, the system directly blocks the next
attacking flows and exploit its past experience to predict future
attacks. The prediction time varies between 1.35 sec to 6 sec
with a model size of 1804KB, which is lightweight enough to
be supported by IoT environment.

Metric Score
Precision rate 88%

Specificity 90%

Prediction time 1.35sec to 6sec

TABLE IV
RESULTS ON REAL-TIME TRAFFIC

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed and deployed our decision tree
machine learning model toward the design of a resource-
aware intrusion detection system for IoT. The Avast IoT-23
served as the basis for our research under which we trained
and deployed our model. Obtained results demonstrate the
efficiency of our proposed approach. In particular, the model’s
size is 1804KB, which fits the imposed constraints and makes
it strongly suitable for IoT. The developed model is tested and
proved its effectiveness even under real-time conditions and
with traffic containing benign flows and malicious flows. The

obtained results are promising and motivate further research to
refine the model by improving its detection rate and optimizing
its prediction time.

The most important next step is the design of the security-
as-a-service process. The service should be dynamically
migrated to vulnerable IoT devices based on their requirements
in terms of protection and hardware capability. The security
process will be integrated with a trust-based orchestration
paradigm to be deployed in 5G for Massive-IoT slices. The
final phase is to design a distributed experience exchange
protocol to make the devices smarter at detecting new attacks.

ACKNOWLEDGEMENT

This work was partially supported by the ANR 5G-
INSIGHT project (Grant no. ANR-20-CE25-0015).

REFERENCES

[1] CISCO. Internet of things. https://www.cisco.com/c/en/us/products/
collateral/se/internet-of-things/at-a-glance-c45-731471.pdf, 2016.

[2] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli. Passban ids:
An intelligent anomaly-based intrusion detection system for iot edge
devices. IEEE Internet of Things Journal, 7(8):6882–6897, 2020.

[3] J. Esmaily, R. Moradinezhad, and J. Ghasemi. Intrusion detection system
based on multi-layer perceptron neural networks and decision tree. In
2015 7th Conference on Information and Knowledge Technology (IKT),
pages 1–5. IEEE, 2015.

[4] H. Haas and D. Borkmann. mausezahn(8) — linux manual page. https:
//man7.org/linux/man-pages/man8/mausezahn.8.html, 2013.

[5] T. Mehmood and H. B. M. Rais. Machine learning algorithms in context
of intrusion detection. In 3rd International Conference on Computer and
Information Sciences (ICCOINS), pages 369–373. IEEE, 2016.

[6] A. Parmisano, S. Garcia, and M. Erquiaga. A labeled dataset with
malicious and benign iot network traffic. Stratosphere Laboratory:
Praha, Czech Republic, 2020.

[7] S. Sanfilippo. hping3(8) - linux man page. https://linux.die.net/man/8/
hping3.

[8] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani. Corrauc: a
malicious bot-iot traffic detection method in iot network using machine-
learning techniques. IEEE Internet of Things Journal, 8(5):3242–3254,
2020.

[9] N.-A. Stoian. Machine learning for anomaly detection in iot networks:
Malware analysis on the iot-23 data set. B.S. thesis, University of
Twente, 2020.

[10] S. Zeadally and M. Tsikerdekis. Securing internet of things (iot) with
machine learning. International Journal of Communication Systems,
33(1):e4169, 2020.


