
HAL Id: hal-04512395
https://hal.science/hal-04512395v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

5G network slices resource orchestration using Machine
Learning techniques

Nazih Salhab, Rami Langar, Rana Rahim

To cite this version:
Nazih Salhab, Rami Langar, Rana Rahim. 5G network slices resource orchestration using Machine
Learning techniques. Computer Networks, 2021, 188, pp.107829. �10.1016/j.comnet.2021.107829�.
�hal-04512395�

https://hal.science/hal-04512395v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

5G Network Slices Resource Orchestration using Machine Learning Techniques

Nazih SALHABa,b, Rami LANGARa, Rana RAHIMb,c

aLIGM, CNRS-UMR 8049, University Gustave Eiffel, Champs-sur-Marne 77420, France
bDoctoral School of Sciences and Technologies (DSST), Lebanese University, Tripoli, Lebanon

cFaculty of Science, Lebanese University, Tripoli, Lebanon

Abstract

To efficiently serve heterogeneous demands in terms of data rate, reliability, latency and mobility, network operators
must optimize the utilization of their infrastructure resources. In this context, we propose a framework to orchestrate
resources for 5G networks by leveraging Machine Learning (ML) techniques. We start by classifying the demands for
resources into groups in order to adequately serve them by dedicated logical virtual networks or Network Slices (NSs).
To optimally implement these heterogeneous NSs that share the same infrastructure, we develop a new dynamic slicing
approach of Physical Resource Blocks (PRBs). On first hand, we propose a predictive approach to achieve optimal slicing
decisions of the PRBs from a limited resource pool. On second hand, we design an admission controller and a slice
scheduler and formalize them as Knapsack problems. Finally, we design an adaptive resource manager by leveraging
Deep Reinforcement Learning (DRL). Using our 5G experimental prototype based on OpenAirInterface (OAI), we
generate a realistic dataset for evaluating ML based approaches as well as two baselines solutions (i.e. static slicing
and uninformed random slicing-decisions). Simulation results show that using regression trees for both classification
and prediction, coupled with the DRL-based adaptive resource manager, outperform alternative approaches in terms of
prediction accuracy, resource smoothing, system utilization and network throughput.

Keywords: Network Slicing, Machine-Learning, Resource Orchestration, 5G and beyond, OpenAirInterface OAI

1. Introduction

Mobile networks are anticipated to provide three classes of services known as enhanced Mobile Broadband (eMBB),
massive Machine Type Communication (mMTC) and ultra-Reliable Low-Latency Communication (uRLLC) [1]. Accord-
ing to a feasibility study technical report from Third Generation Partnership Project (3GPP) [2], each class (eMBB,
mMTC and URLLC) has its requirements in terms of throughput, mobility, reliability, latency, energy efficiency, in5

addition to different connectivity and traffic densities. In order to keep costs affordable, mobile network operators have
to optimize their resources to serve all of these heterogeneous demands. This is particularly interesting due to natu-
ral scarcity of resources, whether external (spectrum and power) or infrastructural (compute, networking, and storage).
Leveraging two enabling technologies, namely Software-Defined Networking (SDN) and Network Function Virtualization
(NFV), a solution consists of provisioning dedicated logical networks, also known as Network Slices (NSs) [3], to assure10

required Quality of Service (QoS). The first step consists of classifying the requests. In particular, we consider QoS
Class Identifiers (QCIs), in order to have each type of traffic associated to a class of service supported by a tailor-made
NS. NSs are fine-tuned slices that are optimized to maximize service level objectives while meeting underlying system’s
constraints. Note that we denote by slicing ratios the amount of Physical Resource Blocks (PRBs), in the Radio Access
Network (RAN), that are divided among the instantiated slices. Aiming to provide an End-To-End (E2E) QoS network15

design, we implement four building blocks, including: i) demands classification, ii) optimum slicing ratios prediction, iii)
admission control coupled with scheduling, and iv) adaptive resource management. In this context, we aim to address
resource orchestration for 5G network slices. Recall that resource orchestration is about effectively consuming available
scarce resources, streamlining them into capabilities and leveraging the capabilities to create added-value through an
optimized performance. Our proposed resource orchestration process acts as follows. After demands classification, we20

address predicting the optimum slicing ratios for several NSs sharing resources from a limited resource pool bounded by

Email addresses: nazih.salhab@univ-eiffel.fr (Nazih SALHAB), rami.langar@univ-eiffel.fr (Rami LANGAR),
rana.rahim@ul.edu.lb (Rana RAHIM)

1A preliminary version of this paper appeared in the proceedings of the 2019 IEEE Global Communication Conference (GLOBECOM
2019).

Preprint submitted to Journal of Computer Networks December 27, 2020

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1389128621000165
Manuscript_228186497b113d6ff548ac9584d4bcdd

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1389128621000165
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1389128621000165

underlying systems capacities. To do so, we first propose employing Machine Learning (ML) techniques and particularly,
Regression Trees (RTs) for demands classification and slicing ratios forecasting. Recall that an RT is a graph that uses
branching method to illustrate every possible outcome of a decision. Then, we propose a Deep Reinforcement Learning
(DRL) implementation for an adaptive resource manager. We validate our proposal using an experimental 5G prototype25

[4], which is implemented as a micro-service oriented architecture based on OpenAirInterface� (OAI) [5] and Docker [15]
containers. Specifically, we configure multiple slices, generate a dataset and benchmark the performance of several ML
models as well as two baseline solutions, namely static slicing and un-informed random slicing-decisions. Accordingly, we
compare the ground-truth with our predicted value of slicing ratios, and we analyze the effect of resource orchestration
using four different metrics: Number of Uplink (UL) PRBs, Buffer Status Report (BSR), system utilization and network30

throughput.
The main contributions of our paper can be summarized as follows:

� First, we comprehensively review the state of the art on resource orchestration for 5G network slices.

� Second, we design a framework consisting of four building blocks for resource orchestration.

� Third, we provide formulation, models and algorithms to implement these building blocks. Specifically, we propose35

i) using ML techniques for classification, ii) predicting slicing ratios based on RTs, iii) modeling admission control
and scheduling as Knapsack optimization problems and iv) leveraging DRL for adaptive resource management.

� Finally, we show the effectiveness of our proposal using our 5G experimental prototype based on OAI including
ground-truth measurements and other metrics, namely, UL PRBs, BSR, system Central Processing Unit (CPU)
utilization and network throughput.40

The remainder of this paper is organized as follows. In section 2, we present an overview of the related works. Section
3 describes our system design and details our proposed models for implementing the building blocks of our framework.
Section 4 presents the performance evaluation including a description of our prototype, used dataset, and the discussion
of the results. We conclude this paper in section 5.

2. Related Work45

Resource orchestration has triggered interest among researchers in the past few years. In what follows, we discuss a
selection of relevant papers grouped by research areas.

2.1. Classification and Slicing approaches

Authors in [6] proposed a framework integrating various ML algorithms, SDN and NFV. They used a traffic classifi-
cation module and network slicing for self-organizing networks. In addition, they implemented such traffic classification50

and network slicing for eMBB, but they did not consider admission control, and scheduling processes in their proposed
framework.
On another hand, Authors in [7] investigated a management and orchestration architecture incorporating SDN and NFV
for instantiating and managing the federated network slices. They elaborated on their proposed architecture, but, they
did not address the validation of such architecture in a 3GPP compliant testbed.55

Authors in [8] used a DRL-based approach to allow network entities to learn about the network, aiming to make optimal
decisions related to network slicing in 5G. They concluded that a DRL outperforms Q-learning as well as greedy and
random approaches in terms of average utility per service request, but they did not provide implementation details.
A multi-access edge computing broker to answer heterogeneous tenant demands and related privileges in a network slic-
ing environment was proposed by authors in [9]. They devised an orchestration mechanism able to fulfill tenant requests60

while avoiding Service Level Agreement (SLA) violations, but they did not consider the elasticity of cloud resources.

2.2. Traffic and Resource Prediction approaches

Authors in [10] proposed a supervised ML model based on Decision Trees (DTs) for root-cause-analysis of QoS
degradation. They observed that DTs can predict future QoS anomalies with confidence in order to proactively exploit65

these findings. They shed some lights on a real use case where inputs about path, devices, boards, ports and links faults
are processed to detect anomalies, but, no validation through system implementation was included. Conversely, in this
paper, we elaborate on the implementation of 5G experimental prototype used to validate our proposal in section 4.
Authors in [11] used feature-selection based prioritization to predict mobile traffic leveraging data from an open dataset

2

used in a big-data challenge. They proposed to reduce the volume of traffic log data sent from base stations to the server70

while maintaining high prediction accuracy, but they did not consider adaptive resource management of the server.
Authors in [12] used a stochastic model to represent time series data using hierarchical hidden Markov model, which
includes two nested hidden Markov chains and one observable process. Knowing that MCs are memory-less by design,
they did not consider the elasticity provided by cloud resources.
A multi-objective genetic algorithm to optimize resource allocation while minimizing CPU and memory utilization75

and the energy consumption was proposed by authors in [13]. Their approach consisted of forecasting the resource
requirement according to historical time slots in addition to Virtual Machines (VMs) placement, whereas, in our work,
our formulation applies not only to VMs but also to containers that are suitable for a cloud-native deployment [14].
We used Docker containers [15] for implementing our platform used for evaluating our proposals. Moreover, in our
previous work [4], we demonstrated a micro-service based deployment of 4G EPC core using OpenAirInterface (OAI).80

Finally, multiple authors used machine learning-based approaches for time series predictions [16]. This includes Trees
[17], K-Nearest Neighbor (KNN) [18], Discriminant-based [19], Random Forests [20], Support Vector Machine (SVM)
[21] and Gaussian Process Regression (GPR) [22]. We use these techniques as baselines, when benchmarking our results.

2.3. Admission control and Scheduling optimization approaches

Authors in [23] presented a testbed called OVNES (OVerbooking NEtwork Slices) in charge of collecting network85

statistics, predicting traffic behaviors by leveraging ML and applying admission control policies to select requests increas-
ing network efficiency and scheduling. The paper did not provide details about the implementation of these modules.
Same authors in [24] designed a hierarchical control plane to manage the E2E orchestration of slices. They formulated
the orchestration problem as a stochastic yield management problem and proposed optimal and heuristic approaches.
However, they assumed a static maximum capacity of resources, which is not the case in cloud-oriented deployment, as90

there is elasticity of cloud resources through auto-scalablity.
An intelligent resource scheduling strategy for 5G RAN by exploiting a collaborative learning framework leveraging
deep-learning and re-inforcement learning was proposed in [25].
Authors in [26] designed a network slice admission control algorithm leveraging ML that learns the best acceptance
policy while satisfying service guarantees to tenants. They provided an analytical model for slice admissibility, analyzed95

the system using a Semi-Markov decision processes and optimized the benefits using a practical ML approach.
Authors in [27] proposed an admission control algorithm using a multi-unit combinatorial auction model to determine
fast winner when reserving resources with performance guarantees. They developed a reinforcement learning-based
utility-maximizing strategy to distribute resources across tenants.
Authors in [28] proposed a DRL based approach for optimizing network latency in an SDN context. They collected100

optimal paths form the DRL agent and aimed at predicting future demands using deep neural networks. Moreover, they
formulated the flow rules placement as an integer linear program to minimize the total network delay.
Inspired by these works, we formalize four building blocks along with their models and implement the whole system in
a 5G experimental prototype.

2.4. Adaptive resource management approaches105

A framework for the configuration of radio resource management in a sliced RAN using static slicing ratios was
proposed by authors in [29]. They evaluated the blocking rate and the throughput per data radio bearer of different
types of slices. However, to achieve efficient resource allocation within a changing environment, dynamic slicing based
on traffic load is necessary.
Authors in [30] designed three key building blocks for network slicing, namely a forecasting module, an admission control110

agent and a scheduler. They used Holt-Winters method for traffic prediction. They tolerated some violation of SLAs
for an increase in resource utilization. Details of the used dataset and its characteristics were not provided. In contrast,
we include an adaptive resource manager allowing to avoid SLA violations and guarantee isolation between slices. Also,
we elaborate the details of our dataset generation.
On the other hand, authors in [31] proposed using Seasonal Auto-Regressive Moving-Average (SARIMA) for predictions.115

Although, SARIMA is not complex as it does not rely on predictor variables, it fails when there is an unusual growth or
slowdown in the time series trends. Conversely, predictor-based approaches capture such change through its predictors.
We propose a framework for resource orchestration in 5G networks consisting of multiple stages leveraging ML techniques
in contrast to the aforementioned approaches using Holt-Winters method or SARIMA. Note that ML based approaches
are expected to be competitive in accuracy thanks to data used for training the ML models [32].120

3

Slice
Blueprints

Classifier
and

Marker

Forecast Aware Slicer

Classified
Requirements

Admission
Controller Denied

Revoked

Reinforcement Learning

Granted

Network Slice
Orchestrator

Gatekeeper

D
ec

is
io

n-
M

ak
er

Resource
Manager

Slice
Scheduler

Traffic Profile

Figure 1: Block Diagram of 5G Network Slice Orchestrator

As a conclusion, differently from these works, which focused on a single QoS aspect, in our work, we design a com-
prehensive QoS provisioning framework including classification, forecasting, admission control, scheduling and resource
management to fill the gaps that we identified in the state of the art.

3. System Design125

The design of our network slices orchestrator, depicted in Fig. 1, is inline with the 3GPP technical specification
detailing the concept and requirements for network sharing and management architecture [33]. After classifying tenants
demands, accomplished by the Gatekeeper building block, the tenants traffic profile along with classified requirements
are used to predict the adequate slicing ratios for each of the classified demand. This process is followed by admission
control, resource management and scheduling processes. The starting point is to get NSs requirements grouped in terms130

of network characteristics such as spectral efficiency, latency, reliability, and energy efficiency, for a service instance [34].
We use supervised ML for implementing the classification [35]. The Decision Maker building block is composed of two
sub-modules: a Forecast Aware Slicer using ML based regression and an Admission Controller that either grants or
denies resource requests according to current and predicted loads. Two outcomes are anticipated from the admission
controller. The granted requests are forwarded to the Slice Scheduler to be served in the nearest time window. The135

observations about denied requests, in case of no admission, are sent to the adaptive Resource Manager to train its
resource management techniques. We use DRL by implementing an automatic flow control system to efficiently handle
high resource utilization and maximize the throughput. The Slice Scheduler provides a feedback to the Decision Maker to
close the optimization loop and serve the postponed requests. In what follows, we present in details the aforementioned
building blocks by formulating each sub-problem and proposing corresponding solutions.140

3.1. Gatekeeper Model and Problem Formulation

Based on slice blueprints, used as an input to our orchestrator, in Fig. 1, we implement an initial phase of classification
of the demands. It is impractical to let every use case dictate a tailor-made network slice to meet its requirements.

4

Instead, a simple approach consists of aggregating the traffic per slice type. Table 1 reports our view of some QoS classes
of traffic according to blueprints and the SLAs [36]. For instance, when traffic class l = 3, QCI = 65 with Guaranteed
Bit Rate (GBR) bearer type, delay budget=10 ms, packet loss tolerance = 10−2, and a priority of 0.7, we can say that
the Mission Critical Push To Talk (MCPTT) service can be fit [36].

Denoting by r
(l)
h (t) a request of a tenant h for a traffic class (l) over time (t), every instance (or event) of a point process

ξ can be represented by ξ
(l)
h =

∑T
t=0 δtr

(l)
h (t) to constitute a feature vector, where δt denotes the Dirac function.

Using classification formulation elaborated in [37], let us denote by k a possible category, and by αk the transpose of the
corresponding weights vector. Recall that a weight vector is a set of parameters that are calculated during the training
phase to correctly classify the training set and maximize the utility function. Our classification problem consists of
assigning a score to each possible category k through the multiplication, using a dot product, of the feature vector of an
instance by its related weights vector. The selected category would be the one with the highest utility resulting from
assigning instance h to category k. Accordingly, our utility function can be formulated as follows.

utility(ξ
(l)
h , k) = αk · ξ(l)

h (1)

This formulation applies to multiple classification techniques including regression trees. Recall that a regression tree is
built using a binary recursive partitioning, which is an iterative process that splits the data into partitions or branches.
Then, it continues splitting each partition into smaller groups as the method moves up through each branch [17].

3.2. Decision Maker Model and Problem Formulation145

3.2.1. Forecast Aware Slicer

A traffic profile is a graph of network traffic based on data collected over a profiling time window. This serves as
an input to the orchestrator for an enriched decision making process. Based on these consolidated traffic profiles, used
as an input in Fig. 1, the forecast aware slicer predicts the optimum slicing ratios for the different slices in order to
have a good starting point for the slicing process. Accordingly, in this module, we use multiple predictor variables150

extracted from the enriched historical traffic profile, namely: timestamp, day-of-the-week, planned-event existence, and
cloudy conditions environmental factor, to predict optimal values for the slicing ratio. Note that cloudy conditions and
other environmental factors affect the slicing forecast in two ways. From technical point of view: Radio propagation is
affected in general by moisture content in the air, as water tends to absorb electro-magnetic waves reducing the range
and bandwidth of wireless systems. From ecological point of view: cloudy conditions are usually coupled with a decrease155

in term of mobility. Accordingly, users tend to use more frequently their data connections. Accordingly, the demands
for radio resources is typically increased.

To choose the best performance forecasting technique, we evaluated several methods including the RTs. Denoting
by X = (x1, x2, . . . , xn)′ ∈ Rn, a vector of n predictor variables, and by y ∈ R, a scalar output denoting the response
variable; we formulate our regression model as follows.

y = f(X,β) + e (2)

where e is an independent random noise involved in the statistical relationship between response variable y and predictor
variables xi allowing a non perfect deterministic relation. Parameter β = (β1, β2, . . . , βn)′ is a vector of n unknowns
that are evaluated during the training based on the chosen regression model by minimizing the sum of squared errors160

(S), that is considered as our cost function. In particular, our proposed objective function for growing an RT consists

Table 1: Standardized QCI characteristics [36]

l QCI
Bearer
Type

Delay
Budget

Loss
Rate

Priority

0 1 GBR 100 ms 10−2 2
1 3 GBR 50 ms 10−3 3
2 6 non-GBR 300 ms 10−6 6
3 65 GBR 10 ms 10−2 0.7
4 66 GBR 100 ms 10−2 2

5

of minimizing the sum of squared errors over all the leaves c of our tree T as follows:

S∗ = minimize
∑

c∈leaves(T)

∑
g∈c

(yg −mc)
2 (3)

where mc = 1
nc

∑
g∈c yg is the prediction for leaf c having nc points in it.

Please note that we will focus on the RTs as they provide the best performance compared to other methods, as we will
see in the evaluation section.165

3.2.2. Proposed Algorithm for growing regression trees

We propose a simple yet efficient algorithm (Algorithm 1) for growing regression trees. Starting initially with a
current node containing all the (M) points, we calculate the prediction for leaf (c) and the cost function (S∗). Note that
the object node is an internal variable denoting the current node in which the decomposition is taking place. Let us
denote by (q) a quality indicator that is a function of the minimum leaf size for the sought tree and by parameter (ε0)170

the threshold for the largest variation of ∆(S). The search for optimum S∗ is repeated until either the largest decrease
of S would be less than ε0 or one of the resulting nodes would contain less than q points. The result of this algorithm
is a grown tree and its depth that allows us to predict the adequate slicing ratios. These are used as a starting point
for the split of the PRBs. Afterwards, the admission control takes place.

Algorithm 1: ML-based Regression Tree Growing

Data: M points of k predictors and their responses
Result: Grown Tree T for responses and its depth δ

1 do
2 Initialize a single node containing all M points;
3 Calculate mc and S;
4 if ∀ points in current node, predictors are same then
5 break;
6 else
7 search over all binary splits of all variables for the one which reduces S
8 end
9 if (Max(∆(S)) < ε0 or ∃ cardinal(node) < q) then

10 break;
11 else
12 take that split and create 2 new nodes
13 end

14 while no more new nodes;
15 S∗ ← S;
16 return grown tree and its depth δ

3.2.3. Complexity Analysis of Regression Tree Growing175

Based on Algorithm 1, our regression tree calculates a quality condition that is used as a stopping criterion (line 9)
before proceeding with the split of the data. It does this, for each predictor in every node that is not a leaf node. The
process repeats as long as there are some levels (affecting the depth) to be treated. Denoting by M the number of points
used for training, in the best case of a balanced tree, the depth δ is O(log2(M)) because of the split into two nodes (line
12). However, in the worst case of depth, δ is O(M) because each split decomposes the data in 1 and (M ′−1) examples,180

where M ′ is the number of points of the current node. Denoting by k the number of predictors, the time complexity
for the regression tree growing is O(k.M.δ), that corresponds to O(k.M2) in the worst case or O(k.M. log2(M)) in the
best case.

3.3. Admission Controller

An Admission Controller receives the requests that need to be scheduled. Based on the current system load (l)185

and supported by the data generated by the Forecast Aware Slicer, it decides whether to grant or deny each individual
request according to its priority class, as reported in Table 1.

6

Afterwards, granted requests are sent to the Slice Scheduler. In addition, it forwards the observations to the
Resource Manager so that a reinforcement learning takes place. Accordingly, for high priority resource requests, a
pool re-dimensioning could take place in order to decrease the chances of service denial, taking into consideration the190

capabilities of underlying system and the availability of additional infrastructure resources. We will address the priority
concept in section 3.5.

3.3.1. Problem Formulation and Resolution

At an instant (t) , we denote by xij a binary decision variable indicating whether a request j is served by slice i and
thus admitted into the system or not. Index variables n and m denote the number of requests and the number of slices,
respectively. Each admitted request j is valued as vj to reflect its individual revenue vi corresponding to the amount
of consumed resources. In this context, we assume that a slice tenant pays a monetary amount corresponding to the
consumed resources. For simplicity, we will not get into a particular pricing of a multi-tenancy environment. Several
models are available online by major Cloud service providers, such as Google Cloud Provider (GCP) [38] or Amazon
Web Services (AWS) [39]. We formalize the Admission Controller problem as D-dimensional Multiple-Choice Knapsack
problem that is bounded by D constraints imposed by the hosting system capacities. The admission controller problem
is formalized as follows.

max
x

a =

m∑
i=1

n∑
j=1

vjx
(t)
ij (4a)

s.t.
n∑
j=1

w
(d)
j x

(t)
ij ≤ C

(d)(t)
i , d ∈ {1, . . . , D}, i ∈ {1, . . . ,m} (4b)

m∑
i=1

x
(t)
ij ≤ 1, j ∈ {1, . . . , n} (4c)

x
(t)
ij ∈ {0, 1}, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (4d)

The objective function in (4a) aims to maximize the value resulting from the resource utilization, while serving network

slice requests having weights w
(d)
j expressed in terms of the D system capacities. The set of constraints (4b) specifies the195

constraints on the infrastructure computing resources in regard to the required demands in terms of the D capacities.

These resources cannot bypass upper bounds imposed by underlying system capabilities denoted by C
(d)
i . Assuming

that a single task is assigned to exactly one system, constraint (4c) enforces such exclusivity. Constraint (4d) ensures
atomic mapping with binary values. In the evaluation section 4, we will consider that the number of capacities D is 2,
representing the number of virtual Central Processing Units (vCPUs) and the amount of memory [13].200

Problem (4) is NP-hard [40], but can be solved using a polynomial time algorithm, listed in Algorithm 2 [41], and
described as follows. The process starts by sorting the constraints on computing resources in increasing order to identify
the bottleneck constraint. Note that we mean by bottleneck constraint, the tightest dimension from the D-dimensions
of the Multiple Choice Knapsack Problem (D-MCKP) that is first consumed when solving the mapping problem.
Accordingly, the index of such bottleneck is denoted d∗. We reject any network slice requests for which requirements205

cannot be satisfied. Then, we calculate the efficiency of each request defined as the ratio between the network resource
utilization value v of each request and the bottleneck constraint value C(d∗). These values are then sorted in decreasing
order starting by the requests with the highest efficiency. This process is reiterated in order to include additional requests
that satisfy the constraints on resources. The algorithm stops once no more requests can be satisfied. In this case, the
final network resource utilization as well as the selected set of slice requests to be served are obtained.210

3.3.2. Complexity Analysis of the proposed D-MCKP

The algorithm used to solve our D-dimension Multiple Choice Knapsack Problem (D-MCKP) problem is based on
the well-known Quicksort algorithm, which employs divide and conquer strategy to do the sorting [42]. It is known
that the time complexity of Quicksort of n items is O(n.log2(n)) in both best and average cases, and O(n2) in the
worst case [42]. As Quicksort has the best performance in the average case for most inputs, it is generally considered215

the “fastest” sorting algorithm among known sorting algorithms [42]. Thus, the sort instruction (line 1) has a time
complexity of O(D. log2(D)) as D is the number of constraints. The for-loop (lines 3-10) in the algorithm (2) consists
of (D.n) iterations in the worst case that is when no request violates the constraints and the for-loop is not prematurely
ended. Thus, its complexity is O(D.n). The sorting process is the time dominant task in the second part of the algorithm

7

Algorithm 2: Heuristic for D-dimension Multiple Choice Knapsack Problem

Data: Requests rj with their values vj and weights wj , systems si with constraints C
(d)
i ;

Result: Max resource utilization mapping
1 Sort the constraints on si in increasing order;
2 Prioritize the bottlenecks (to get d∗);
3 for rj = 1 to n do
4 for constraint d = 1 to D do

5 if (w
(d)
j > C

(d)
i) then

6 disregard this rj ;
7 break;

8 end

9 end

10 end
11 Get shortlist of eligible requests (n’)
12 for rj = 1 to n′ do

13 efficiency(rj) ← vj/C
(d∗)
i ;

14 end
15 Sort requests by decreasing efficiency per bottleneck;
16 for j = 1 to n′ do
17 if (rj fits in si) then consider it ;
18 end
19 if (rj has non-integer variables) then disregard it ;
20 Return decision variables that maximize the resource utilization;

(lines 12-24). The for-loops in the last part of the algorithm consist of (n′) iterations. The second sort instruction of the220

algorithm (line 15) consists of a sort operation of (n′) numbers that should be less complex than the first sort instruction
knowing that (n′ < n) by design. All in all, provided that D and the number of slices m are far less than n, the time
complexity of the proposed algorithm is O(n. log2(n)), where n is the number of requests.

3.4. Slice Scheduler Model and Problem Formulation

Once the Admission Controller has mapped the demands to network slices, the mapping is addressed to the Slice
Scheduler to properly serve corresponding demands with minimal time duration. We denote by pj the processing time of
a transmission request j, out of n requests, such that its time-span is cj,t. Note that, as we are considering micro-service
based architectural deployment, the processing time is independent from the processing capabilities of the processing
node as each micro-service is atomic and is similar to any of its replicas [43]. Our problem consists in finding a schedule
minimizing the total time duration. We define a binary decision variable zjt to indicate if a request j is scheduled in
time window (τ). Our slice scheduler can be formalized, once again, as an optimization problem as follows.

min
x

ṡ =

n∑
j=1

τ∑
t=1

cjtzjt (5a)

s.t.
n∑
j=1

τ∑
σ=max{0;t−pj+1}

zjσ ≤ N, t ∈ {1, . . . , τ} (5b)

τ∑
t=1

zjt ≤ 1, j ∈ {1, . . . , n} (5c)

zjt ∈ {0, 1}, j ∈ {1, . . . , n}, t ∈ {1, . . . , τ} (5d)

Provided that the host implementing a slice has finite capacity and can handle a maximum of up to N requests225

concurrently, constraint (5b) stipulates that during time window (τ), up to N requests can be executed. Constraint (5c)
ensures that each request has to be scheduled only once. Finally, constraint (5d) stipulates that each request should be

8

either served in current time window τ or deferred to following time window.
Note that τ is chosen according to the lowest granularity reported in the delay budget of the requested quality of services
profiles, reported in Table 1. In our case, we considered τ to be 100 ms. Such a value is reported in [44] as the delay230

budget for conversational voice, Non-mission critical user plane Push to Talk voice, Mission critical video user plane. It
is worth noting that the formulated problem in (5) is NP-hard [40] and corresponds to a Knapsack problem, which is a
particular case of a D-MCKP. The same Algorithm 2 proposed above to solve the D-MCKP problem can be thus used
to solve our particular scheduling problem in a polynomial time. In particular, we consider that D in this case to be
equal to one.235

3.5. Resource Manager Model and Problem Formulation

As stated earlier, denied requests from the Admission Controller module are sent to the adaptive Resource Manager
to train its resource management techniques and decrease the chances of service denial in the future.

Let us denote by ld and l, the demanded load level and the actual system load, respectively. These loads are expressed
in bit and imply certain infrastructure requirements in terms of vCPUs and memory as elaborated in [45]. As an initial240

setting, we can either be based on readings from a similar application running on another VM/container or by allocating
the mininum of available vCPUs, that is usually a unit.
Accordingly, our goal here is to let the resource manager function at an optimum flow rate (fset), expressed in bit/s,
while maintaining a safety load margin (lg) to account for the shortfall between the demanded and actual system
loads. We define the flow rate as the number of requests passing through the resource manager point in a given time245

period usually expressed in a per-second basis. We can achieve this optimal behavior, by controlling the variation of
the resource manager processing rate over time through elasticity. Such elasticity consists of scaling-in and/or scaling-
out the operations capacities in terms of resources. Using a micro-service based architecture, and particularly Docker
containers, allows us to seamlessly do this auto-scaling as we demonstrated in one of our previous works [4]. Note that
leveraging the prediction achieved by the forecast aware slicer typically favorites less scaling commands. In addition,250

with Docker containers, such elasticity guarantees that the session of the application are not interrupted as reported by
[46] and verified by ourselves in our previous work [4].

As it is not efficient to keep scaling-in/out on constant basis, two questions need to be thoughtfully analyzed. First,
provided that we use a particular policy (Π), how to automatically determine an optimum flow rate (fset), to maximize
the performance of the resource manager? Second, how to determine such ideal particular policy? Thus, the rationale255

behind the design of our resource manager is to act as an adaptive flow control system by leveraging DRL. Indeed, using
DRL allows to capture all the intricate details of the acquired knowledge and thus relieves from explicitly doing the
feature engineering process as elaborated in the following.

3.5.1. System Model

Our resource manager is supposed to adapt its available resources according to the received binary priority ρt from260

the Admission Controller. Two main actions are possible: i) increase/decrease when ρt = 1 or ii) maintain the current
processing flow rate, when ρt = 0. Accordingly, the resource manager adapts its flow rate by considering the dynamics
of the resource demands. For this end, we will consider the following three variables: i) the flow variation over time
(γ) representing the acceleration/deceleration, ii) the flow rate per time-unit (f) and iii) the current system load (l).
Note that γ has a direct impact on the cost in a cloud computing deployment [47]. Ideally, γ should follow the demands265

flow (γd) change in terms of increase/decrease. To bound this flow variation, we define two parameters γmin and γmax

representing the minimum and maximum permissible flow variation over time, respectively.
Prior formalizing our problem, we give an illustrative example, in the context of automotive industry. Our resource

manager is similar to the cruise control system that is used to automatically set the vehicle’s speed. In this case, our
resource manager can decide to accelerate, maintain or decelerate according to the changes in the environmental factors,
while keeping a safe distance from the demands.
In this context, inspired by vehicle dynamics, that maps the safe distance between two vehicles to the velocity and the
time gap in between, we formulate the load difference between the demand and the system load as a linear function of
the flow rate per time unit and the time gap. Accordingly, let us formalize the safety load margin (lg) that determines
the reference flow rate of our system (fref). We consider a simple model to let the flow rate be the distance between the
demanded and current systems load over the time in between. We formulate lg as a linear function of f , as follows.

lg = tgap.f + lg0 (6)

where lg0 is the initial load margin and tgap is the time gap to transit from current to desired system state.
Let us denote by the relative load margin (lrel) the difference between the demanded load (ld) and the system load (l)

9

Figure 2: Block Diagram of the resource manager with adaptive flow control

as follows.
lrel = ld − l (7)

The system maintains some safety margin to account for the demands variability as follows.

f =

{
min(fd, fset) if lrel < lg

fset otherwise
(8)

Three observations are collected from the environment: i) the flow error (et), defined as the difference between the270

reference flow rate fref and f for each time step t, ii) its integral
∫
et dt allowing to eliminate the steady state error, and

iii) the current flow (f) providing a boost effect.
The mechanism is similar to a Proportional-Integral-Derivative (PID) controller, where the integral term seeks to
eliminate a residual error by adding some control effect onto the historic cumulative value of the error. Accordingly,
when the error is eliminated, the integral term will cease to grow. It will result in diminishing the proportional effect275

when the error decreases, or compensating such error by the growing integral effect.
Finally, initial conditions of load and flow for the demands and the resource manager are denoted by: (ld0, fd0) and

(l0, f0), respectively.

3.5.2. Problem Formulation

Keeping in mind that our objective is to maximize the resource utilization, our adaptive resource manager problem
can be formalized as follows.

max
t

∑
t≥0

ρt.l

s.t. (6), (7), (8)

(9)

Problem (9) is NP-hard as it has non-linear and conditional constraints. Accordingly, we propose to decompose it, as280

depicted in Fig. 2, and solve it using DRL, as explained here-after.

First, recall that reinforcement learning consists of dynamically learning through a trial and error method to maximize
an outcome. By following a policy Π, the system follows sample paths of state s ∈ S, action a ∈ A, and reward r ∈ R
(e.g., s0, a0, r0, s1, a1, r1, etc). To enable our system to learn the best set of actions autonomously, we also define a
reward rt, which is a function of the control input (ut), the flow error (et) and a binary bias (bt) as follows:

rt = −(0.1e2
t + u2

t−1) + bt (10)

10

Note that et is the flow error between desired flow rate and the flow rate from previous iteration, while ut−1 represents
the control input from the previous time step. We consider bt as a binary variable reflecting the minimized magnitude
of the flow error, such that bt =1 if e2

t ≤ ε, or bt = 0 otherwise, with ε being a small preset threshold. Note that as
the error et and previous control input ut−1 are both preceded by a negation coefficient, therefore, the reward function,
expressed in 10, is large whenever et and ut−1 have small magnitudes, especially that they are also squared. Accordingly,
we can observe that the reward value is big when the magnitudes of the error and the previous control input are small
and vice versa. In addition, it is worthy to note that the we decreased the impact of the error further by using a 10%
coefficient in front of the squared error term. This multiplier is arbitrary chosen, less than one, to make sure that only
a small proportion of the error affects the reward value.
We denote by p the transition probability from a state s to another, and by E the expectation. On first hand, we need
to find the optimal policy Π∗ that maximizes the total reward as follows.

Π∗ = arg max
Π

E [
∑
t≥0

δtrt|Π]

s.t. s0 ∼ p(s0)

at ∼ Π(·|st)
st+1 ∼ p(·|st, at)

(11)

where t is a time step and δ is a discount factor that is ≤ 1. From another side, we define the value function V Π(s) as
the expected cumulative reward from following a policy Π, starting from state s, as follows.

V Π(s) = E [
∑
t≥0

δtrt|s0 = s,Π] (12)

We define the Quality (Q) value QΠ(s, a) as the expected cumulative reward from taking that action a in state s and
following the policy Π, as follows.

QΠ(s, a) = E [
∑
t≥0

δtrt|s0 = s, a0 = a,Π] (13)

On second hand, based on the defined actions in the system model, as well as the Q-value in (13) and our designed
instant reward, we can write the DRL problem for a particular policy Π as a maximization of the expected Q-Value as
follows.

Q∗(s, a) = max
Π

E [
∑
t≥0

δtrt|s0 = s, a0 = a,Π] (14a)

s.t.

a ∈ A, s ∈ S (14b)

Based on the Bellman equation [48], problem (14a) could be rewritten in a recursive form as follows.

Q∗(s, a) = Es′ [r + δmaxQ∗(s′, a′)|s, a] (15)

where Q∗(s′, a′) is the next time-step Q-value. To solve this problem to optimality, we can use value iteration as follows.

Qi+1(s, a) = E[r + δmaxQi(s
′, a′)|s, a] (16)

We can say that Qi, expressed in (16), will converge to Q∗ when i→∞. However, this problem is not scalable. Thus,
we propose to use a function approximator to estimate Q(s, a) by exploiting deep neural networks. On first hand, we
propose using a Deep Q-Learning (DQL) function approximator of the Q-Value, as shown in section 3.5.3.285

In order to avoid an overly complicated Q-function and in order to enable future-proofness for a possible continuous
action space, we also consider learning an optimum policy Π∗ for all possible actions [8]. Accordingly, on second hand,
we also propose using deep neural networks to learn both of Q-value and the optimum policy, using Q-learning and
Policy Gradients methods respectively, by training both of an actor (the policy) and a critic (the Q-value), as shown in
section 3.5.4. In this case, we use a Deep Deterministic Policy Gradient (DDPG) agent to learn both of Π and Q and290

finds an optimal policy (Π∗) that maximizes the long-term reward. We will investigate the performance both of these
approaches next in our evaluation section.

11

Algorithm 3: Listing of Deep Q-Learning Algorithm

Data: Replay Buffer R, with capacity N
Result: Optimal Q (φ(st), a, θ)

1 Initialize replay buffer R to capacity N
2 Initialize Q with random weights
3 while (simulation-condition) do
4 while (episode-iteration) do
5 Initialize sequence s1 = {x1} and old sequence φ1 = φ(s1)
6 for t=1 . . . T do
7 According to probability ε
8 case: exploration, select random action at
9 case: exploitation, select at = maxaQ

∗(φ(st), a, θ)
10 Execute at and observe rt and state xt+1

11 Set st+1 = st, at, xt+1

12 Preprocess φt+1 = φ(st+1)
13 Store transition (φt, at, rt, φt+1) in R
14 Get random minibatch of transitions (φi, ai, ri, φi+1) from R
15 if isterminal(φi+1) then
16 Set yi = ri
17 else
18 Set yi = ri + δmaxa′Q(φi+1, a

′, θ)
19 end
20 Perform a gradient descent step on (yi −Q(φi, ai, θ))

2

21 end

22 end

23 end

3.5.3. Algorithm for Deep Q-Learning with Experience Replay

The proposed algorithm for Deep Q-Learning with experience replay is listed in Algorithm 3 and works as follows.
First, we initialize the replay buffer R and the Q-network with random weights. The simulation is terminated when the295

(simulation − condition) is no more true (Line 3), that is when f < 0 or lrel < 0. During the training of the agent,
we run at max Nep training episodes, with each episode lasting for up to T time steps. We stop the training process,
when the agent receives an episode reward > V that is a value that we set to be relatively high. We denote by Nep
the maximum number of episodes and by V the stop training value. The condition (episode− iteration) is fulfilled as
long as both of the conditions on Nep and V are satisfied. Accordingly, the latter specifies when the agent stops upon300

reception of an episode reward greater than V . We initialize the state of start at the beginning of each episode. For each
time step, with a small probability ε, select an action of exploration (try new action) or exploitation (select a greedy
action from current policy), and observe the reward rt and next state st+1 (Lines 6-10). We store the transition in the
replay buffer. Finally, we sample a random minibatch of transitions form R and perform a gradient descent step (Lines
14-20).305

3.5.4. Algorithm for Deep Deterministic Policy Gradient

The proposed algorithm for training our DDPG agent is listed in Algorithm 4. First, we initialize all of the critic
Q(s, a|φ), the actor network Π(s|θ) with random values of φ and θ respectively, to set a target network Q′. Then, we
start our iterative training process (Line 7). We also initialize a replay buffer R, which we will populate during the
iteration of each time step (Lines 5 and 15). Within each time step (t), we select an action according to the policy π310

with a certain random noise (N) and we execute it as an exploration (Line 13). We store the transition in the replay
buffer R, accordingly. Note that in the forward pass, we compute a loss function (Line 18) to update the critic by
minimizing such loss over the chosen random transition i chosen from the replay buffer R. We also, update the policy
Π using policy gradient (Line 21), through the soft-update of the policy and critic parameters (θ) and (φ), respectively
(Lines 23-24).315

12

Algorithm 4: Listing of DDPG Algorithm

Data: Policy Π parameters (θ), critic Q parameters (φ)
1 and discount factor (δ)
Result: Optimal policy Π∗ with maximum reward

2 Initialize critic network Q(s, a|φ) with random φ
3 Initialize actor network Π(s|θ) with random θ
4 Update target network Q′ and Π′ with φ′ ← φ, θ′ ← θ
5 Initialize the replay buffer R
6 Let episode ← 0
7 while (simulation-condition) do
8 while (episode-iteration) do
9 episode ← episode + 1

10 Initialize a random process N as noise
11 Collect initial observation state s1

12 for t=1 . . . T do
13 Execute action at = Π(st|θ) +N
14 Observe reward rt and new state st+1

15 Store transition (st, at, rt, st+1) in R
16 Get random (i = 1..N) transitions from R
17 Set yi = ri + δQ′(si+1,Π

′(si+1|θ′)|φ′)
18 Loss L = 1

N

∑N
i=1(yi −Q(si, ai|φ))2

19 Update critic by minimizing L across all i
20 Update Π using policy gradient:

21 ∇θJ = 1
N

∑
i∇aQ(s, a|φ)|s=si,a=Π(si)∇θΠ(s|θ)|si

22 Perform soft-update with µ� 1 as follows:
23 φ′ ← φ+ (1− µ)φ′

24 θ′ ← θ + (1− µ)θ′

25 end

26 end

27 end

4. Performance Evaluation

In this section, we start by presenting the implementation of the resource orchestrator in our 5G prototype. We have
used such prototype to generate realistic datasets to train the different modules, prior exporting them. Before presenting
the overall network slice orchestrator performance used in our prototype, we evaluate the performance of each building
block from a standalone viewpoint.320

4.1. 5G Experimental Prototype Overview

Fig. 3 depicts our 5G Non-Standalone (NSA) experimental prototype based on OAI implementing RAN and Core
Network (CN). Northbound interface (NBI) for Configuration Management (Configuration Manager in orange) interacts
with our proposed orchestrator. In its turn, the configuration manager commands the Software-Defined RAN Controller,
namely, FlexRAN [5] through the NBI to manage underlying RAN nodes implemented using OAI.325

We implement an Operation Support Subsystem/Business Support Subsystem using open-source projects, by setting
up a “TICK Stack” (Telegraf, InfluxDB, Chronograph and Kapacitor) [49]. Telegraf is a plugin-driven server agent for
collecting and sending metrics and events from databases, systems, IoT sensors, and HTTP APIs. InfluxDB is a time-
series database optimized for fast, high-availability storage and retrieval of time series data in fields such as operations
monitoring, application metrics, Internet of Things sensor data, and real-time analytics. Chronograph allows to rapidly330

build dashboards with real-time visualizations of the accumulated data. Finally, Kapacitor is a native data processing
engine. It can process both stream and batch data from InfluxDB, acting in real-time via its programming language
called TICK-script. The User Equipments (UEs) are conventional Commercial Off-The-Shelf (COTS) smartphones. We
used OAI-5G for RAN to implement both of the Digital Unit (DU) and Central Unit (CU) of a gNB as Docker containers.
OAI-CN, including Home Subscriber Server (HSS), Mobility Management Entity (MME) and Serving/Packet Gateways335

(S/P-GWs) are implemented as services. This implementation is inline with 5G deployment option 3 for NSA [34].

13

Figure 3: Our 5G experimental prototype block diagram

Table 2: Gatekeeper and Decision Maker Simulation Parameters

Parameter Explanation Value

C(1) vCPUs constraint 2
C(2) RAM constraint (GB) 1
D # of Knapsack constraints 2

slices number of slices 3
UEs number of UEs 3
ε0 threshold for tree growing 0.05

S (Complex) # of splits in the tree 100
S (Medium) # of splits in the tree 20
S (Simple) # of splits in the tree 4

q (Complex) minimum leaf size 4
q (Medium) minimum leaf size 12
q (Simple) minimum leaf size 36

N # of PRBs 50/100
Frame Type duplexing type FDD

EUTRA band LTE band (F=2600 MHz) 7
K (Fine KNN) # of nearest neighbor 1

K (Coarse KNN) # of nearest neighbor 100
K (Other KNN) # of nearest neighbor 10

τ Time window for closed-loop (ms) 100

We used B210 USRP that is connected to a USB3 port on a laptop (Quad Core i7, 16 GB of RAM with Low Latency
Kernel), implementing the DU and the CU. Accordingly, the distributed RAN is backhauled using a Gigabit Ethernet
cabled network to a second laptop (Quad Core i7, 16 GB of RAM). Both laptops run Ubuntu 16.04. We argue that our
prototype is 5G-based. On first hand, we are using a functional split in the ex-4G-baseband Unit (BBU) into a central340

unit (CU) and digital unit (DU). In addition, on the second hand, we are employing a software-defined RAN controller
(FlexRAN) to manage the RAN slicing. Both of RAN functional split and SDN controller employment are 5G concepts.
We also argue that for the sake of simplicity, a limited number of three UEs can be sufficient, as we used two UEs as
users of an eMBB slice, and the third UE as a IoT Gateway behind which, the traffic of multiple IoT sensors/devices is

14

Table 3: Classification Accuracy, speed, and Training Time

Class Model
FA
(%)

FS
(obs/s)

TT
(sec)

Trees Complex tree 94.7 6000 1.148
[17] Medium Tree 94.7 5800 0.782

Simple Tree 95.3 9200 0.646
KNN Fine KNN 94.7 2200 1.618
[18] Medium KNN 94.7 2000 1.530

Coarse KNN 64.7 3600 1.444
Cosine KNN 84.7 2700 1.704
Cubic KNN 94 3500 1.623
Weighted KNN 95.3 4400 1.892

SVM Linear 96.7 1700 3.234
[21] Quadratic 96 1900 2.941

Cubic 94.7 2800 3.879
Fine Gaussian 92 2800 3.792
Medium Gaussian 96.7 2900 3.691
Coarse Gaussian 95.3 2500 3.545

Ensemble Boosted Trees 33.3 3100 2.186
[20] Bagged Trees 94 480 4.762

Subspace Discrim. 95.3 410 6.859
Subspace KNN 93.3 320 7.471
RUSBoosted Tree 33.3 8200 6.495

Discrim- Linear 98 6200 1.294
inant [19] Quadratic 96.7 3700 1.922

aggregated to implement an mMTC slice. Note that multi-base station validation is not needed in our case since we are345

not evaluating Handover or cell-reselection based metrics or related Key Performance Indicators (KPIs). Instead, we
are focusing on how to orchestrate network slices capacities sharing a BS within one mobile network, therefore a single
USRP is sufficient.

4.2. Dataset Generation and Simulation Environment

A dataset is generated using our 5G experimental prototype by running, for 24 hours, a background script inter-350

facing with FlexRAN to collect the configuration and performance management data of our COTS UEs. The collected
statistics, encoded as a JSON file (JavaScript Object Notation), include provisioned slicing ratios, priority, QCI, power
measurements, among other configuration and performance management metrics [5]. With background processes re-
quiring Internet connection, UEs are moved from time to time in our laboratory space to change their radio conditions.
ML models are implemented using MATLAB® [50] on Dual Intel Core i7, 2.4 GHz, 4-Cores 7th Gen. with 16 GB355

of RAM. Afterwards, RTs models are compiled as standalone applications for Linux so that they are implemented in
our 5G experimental prototype. Several ML based models are evaluated in MATLAB to classify different NSs (QCI,
resource type, loss rate, and priority level) corresponding to three conventional types of 5G slices: eMBB, URLLC and
mMTC, as summarized in Table 1. Simulation parameters for the gatekeeper and the decision maker are listed in Table
2. Note that we used both of 10 MHz and 20 MHz channel bandwidth for our Universal Software Radio Peripheral360

(USRP) [51], which corresponds to 50 Physical Resource Blocks (PRBs) or 100 PRBs, respectively.

4.3. Simulation and Implementation Results

We start by evaluating the different ML-based approaches used for classification, forecasting and reinforcement
learning for the resource manager. Then, we benchmark ML-based Regression Trees, which outperformed other evaluated
techniques, among different strategies: Optimum, Static, and Random-slicing. We finally compare to the system365

performance in terms of number of PRBs, BSR, system utilization and network throughput.

15

Table 4: Forecasting methods Benchmarking

Class Regression RMSE R2 MAE
Linear Basic 28.77 0.16 25.61
[16] Interactions Linear 29.34 0.12 25.52

Robust Linear 29.1 0.14 24
Stepwise Linear 29.41 0.12 25.82

Trees Complex Tree 5 0.97 3.07
[17] Medium Tree 5.17 0.97 3.15

Simple Tree 5.76 0.97 3.77
SVM Linear 31.48 0.01 21.74
[21] Quadratic 18.21 0.66 14.25

Cubic 16.82 0.71 13.4
Fine Gaussian 23.69 0.43 19.51
Medium Gaussian 17.48 0.69 14.12
Coarse Gaussian 29.06 0.14 20.32

Ensemble Boosted Trees 5.41 0.97 3.24
[20] Bagged Trees 12.52 0.84 10.13
GPR Square Exponential 16.87 0.71 13.62
[22] Matern 5/2 17.05 0.7 13.73

Exponential 17.91 0.67 13.6
Rational Quadratic 16.87 0.71 13.62

4.3.1. Performance of ML-based classification models:

Several ML-based classification techniques are benchmarked when proceeding with classification of 150 different
requirements (QCI, Resource Type, Loss Rate, Priority Level) to conventional three slices as anticipated for 5G (eMBB,
URLLC, mMTC). Table 3 reports the Forecasting Accuracy (FA), Forecasting Speed (PS) and Training Time (TT) of370

different classification models of the simulated 150 tenant requests with corresponding requirements, considering one
requirement sheet per tenant. We can notice that the majority of model types provide an accuracy of more than 90%
except for coarse KNN, cosine KNN, boosted trees and Random UnderSampling Boosted (RUSBoosted) trees. Linear
Discriminant provides the highest accuracy.
Table 4 reports different performance metrics including the Root Mean Square Error (RMSE), coefficient of determination375

(R2) and Mean Absolute Error (MAE) [17] for the simulated forecasting models. We can see that trees (complex,
medium, simple and even boosted trees), perform the best. However, this comes at the expense of an increased training
time, as shown in Fig. 4. Indeed, from that figure, we can clearly see that, although RTs provide the lowest RMSE and
highest forecasting speed, but their training time is not the least among the evaluated methods. However, this can be
acceptable since the training need is not as frequent as the calls for forecasting. Accordingly, we chose to implement380

the simple trees for subsequent evaluations due to its outstanding performance and lower complexity compared to other
trees.

4.3.2. ML-based forecasting using Regression Trees:

Ground-truth metric:
To measure the ground-truth, we consider a simple two-slices’ scenario (eMBB and mMTC) using the 100 PRBs setup385

(i.e., the USRP card is configured with 20 MHz channel bandwidth). Fig. 5a depicts the predicted values and Ground-
truth. From this figure, we can see that the predicted values are close to empirical ground-truth. Indeed, the predicted
values are spread around the straight line displaying a perfect match (Y=X) as shown in Fig. 5b.

Slicing ratio metric:
To show the benefit of the ML-based RTs for the Forecast Aware Slicer, we compare in Fig. 6, the predicted values390

of slicing ratios with three alternative schemes: Optimum, Static and Random-slicing approaches. Note that Optimum
values are calculated using a bottom-up estimation by aggregating demands of each slice and deducing the ratios. For
the static approach, we assume a ratio of 50% for the eMBB slice and 50% for the mMTC slice. We can see that the
random approach performs the worst. On the other hand, ML-based RTs outperform both static and random approaches
with an average gap of 5% only to the optimal approach. This is due to the highest forecasting accuracy among the395

evaluated schemes.

16

01
. L

in
ea

r

02
. I

nt
er

ac
tio

ns
 L

in
ea

r

03
. R

ob
us

t L
in

ea
r

04
. S

te
pw

is
e
L
in

ea
r

05
. C

om
pl

ex
 T

re
e

06
. M

ed
iu

m
 T

re
e

07
. S

im
pl

e
T
re

e

08
. L

in
ea

r S
V
M

09
. Q

ua
dr

at
ic
 S

V
M

10
. C

ub
ic
 S

V
M

11
. F

in
e
G
au

ss
ia
n
SV

M

12
. M

ed
iu

m
 G

au
ss

ia
n
SV

M

13
. C

oa
rs
e
G
au

ss
ia
n
SV

M

14
. B

oo
st
ed

 T
re

es

15
. B

ag
ge

d
T
re

es

16
. S

qu
ar

ed
 E

xp
on

en
tia

l G
PR

17
. M

at
er

n
5/

2
G
PR

18
. E

xp
on

en
tia

l G
PR

19
. R

at
io

na
l Q

ua
dr

at
ic
 G

PR

Regression Method

0

5

10

15

20

25

30

35

40

V
a
lu

e

RMSE

Prediction (10
3

obs/s)

Training Time (sec)

Figure 4: Performance comparison of Regression methods

0 2 4 6 8 10 12 14

Experiment

50

60

70

80

90

S
li

ci
n
g
 R

at
io

Ground Truth
Predicted

(a) Slicing ratios in experiments

60 65 70 75 80 85

Ground Truth

50

60

70

80

90

P
re

d
ic

te
d
 V

a
lu

e

Ground Truth

Predicted

(b) One to one comparison

Figure 5: Comparison of predicted vs. ground truth

4.3.3. Resource manager training and validation

Simulation parameters of the resource manager are reported in Table 5. Fig. 7 shows the reward for the DDPG
(black) along with the reward of DQL (red). As our agent is based on actor-critic method, we plot on the same figure the
critic’s estimate of the discounted long-term reward at the start of each episode (Q0), based on the initial observation of400

the environment. As training progresses through episodes, we can see that Q0 approaches the true discounted long-term
reward, which confirms the suitability of the design of the DDPG critic. At the bottom of Fig. 7, we display the number
of steps of each episode. We can observe that the number of steps is at most 600, as stipulated in our algorithm. We
note that the DDPG takes less steps than DQL.

4.3.4. Overall system performance:405

To further show the effectiveness of our system leveraging RTs based Forecast Aware Slicer, we compare it with a
simple baseline where the modules are disabled. We create two slices having identifiers (ID) “0” and “1”, where we map
our devices, successively, to one of these slices and we trigger Youtube video upload. Slice 0 is not configured to do
dynamic slicing ratio with forecasting capability, whereas Slice 1 exploits the RTs based forecasting. In order to assess
the performance of this scenario, we consider four metrics, namely the UL PRBs, the BSR, the system utilization and410

17

0 2 4 6 8 10 12 14 16 18

Experiment

0

20

40

60

80

100

S
li

c
in

g
 R

a
ti

o

Optimum

ML

Static

Random

Figure 6: Ratio of Optimum, ML, Static, Random

Table 5: Resource manager parameters and values

Parameter Explanation Value
γmax flow variation upper bound 1
γmin flow variation lower bound -1
ε threshold for reward bias 0.25
fset desired processing flow 30
fd0 demands initial flow 25
f0 system initial flow 20
L critic DNN neurons 48
ld0 demands initial load 80
lg0 initial load margin 20
l0 system initial load 10
Nep number of Episodes 5000
T number of time steps 600
tgap initial time gap 1.4
V stop training value 260
λc learning rate for critic 10−3

λa learning rate for actor 10−4

the network throughput. It is worth noting that the BSR provides information on how much data is accumulated in the
UEs’ buffer and is waiting to be uploaded from the UE to the Evolved Node-B/new Generation Node-B (eNB/gNB),
as sent in MAC Control Element (CE) [52]. According to the BSR, the eNB/gNB allocates the minimum amount of
UL Grant that are resources for the Physical Uplink Shared Channel (PUSCH) when such resource is available. Using
BSR, the network optimizes UL resources based on two folds. First, the network allocates UL resources (UL Grant)415

only when the UE has data to transmit. Second, BSR allows avoiding allocating too much UL resources (more than
what is needed by the UEs) to avoid the waste of such resources. As FlexRAN reports the buffer size value in bytes, we
map these values to BSR indexes based on a table in [52]. Note that BSR index values range between 0 and 63. The
BSR index is a unit-less simplified metric such that “0” value refers to a ”UE with no data to transmit” and when the
index gets larger, it means that the UE has additional data in the buffer, waiting for transmission.420

Number of UL PRBs:
In this experiment, we collected 23586 records of measurements including the total number of used UL PRBs using 10
MHz bandwidth (50 PRBs) USRP configuration. We plot in Fig. 8a the two normalized histograms of the used PRBs
in both cases: “With” and “Without” the decision maker and the scheduler. Since the sample sizes are different, we
have normalized the two histograms in order to have the sum of all bar heights equal to 1 and be able to plot them425

on the same figure for benchmarking. We use a uniform bin width of 5 PRBs for clarity. The X-axis refers to the
number of used UL PRBs at each observation. The Y-Axis refers to the normalized distribution of used UL PRBs. Two

18

-8000

-6000

-4000

-2000

0

R
ew
ar
d

DQL

DDPG

Q0 100 150 200 250 300
-1000

-800

-600

-400

-200

0

200

0 50 100 150 200 250 300

Episode

100

200

300

400

500

600

S
te
p
s

DQL

DDPG

0 50 100 150 200 250 300

Episode

Figure 7: Reward evolution in training stage

main observations can be made here. First, the number of occurrences decreases with growing UL PRB usage in both
approaches. We can explain this behavior as a result of the completion of the video upload process. Second, by enabling
the decision maker and the scheduler, we significantly favor the use of low number of UL PRBs compared to the case430

where they are disabled. This is particularly shown for the two first bins (i.e., 1-5 and 6-10 used PRBs cases), where
the frequency of used PRBs is higher when enabling these modules than that when they are disabled. This behavior
is reversed for high UL PRB usage. From a resource management standpoint, it is a positive behavior as our system
allocates sufficient resources to UEs without waste and tries to smooth the usage of the PRBs to avoid sudden spikes in
demands. This finding will be confirmed when analyzing the BSR index in the following Fig. 8b and Table 6.435

Number of BSR, system utilization and network throughput:
To illustrate the number of occurrences where the UEs have data to transmit but no UL resources are available, we plot
in Fig. 8b the normalized histograms of Non-zero BSR index values, with bin size of 10. Interestingly, we can observe
that, by enabling the Decision Maker and the Scheduler modules, the bytes left in the buffers are decreased compared
to the case when they are disabled, and that is for all BSR index values. In particular, there are no occurrences when440

activating these modules in bin 51, unlike the case when these modules are disabled. Moreover, we report in table 6
the number of events where the BSR index is not zero. From this table, we can see that, when the Decision Maker and
scheduler are not activated, there are more than 400 non-zero BSR indexes. These observations are seen even when the
maximum possible slices ratios (90% and 100%, respectively) are considered. However, no reported non-zeros BSR index
values are observed when these modules are enabled. This means that no bytes are left in the buffer in this case and445

the transmission of all the data is timely done. As for the observation of the Non-Zeros BSRs gradually increasing from
null value that were observed at UL slicing ratios of 20% and 30%, we can interpret it as follows. When the UL ratio
increased, additional PRBs were allowed to be used, and thus more bytes were uploaded, but the bottleneck in this case

19

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

Number of used UL PRBs

0

0.05

0.1

0.15

0.2

0.25

0.3
N

o
rm

a
liz

e
d

 F
re

q
u

e
n

c
y

With Decision Maker and Scheduler
Without Decision Maker and Scheduler

(a) Normalized PRBs histograms

1 10 11 20 21 30 31 40 41 50 51 63

Non-Zero BSR index value

0

0.05

0.1

0.15

0.2

0.25

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
c
y

With Decision Maker
and Scheduler
Without Decision Maker
and Scheduler

(b) Normalized Non-Zero BSR index

Figure 8: Decision Maker and Scheduler effect on PRBs and non-zero BSRs

Table 6: Decision Maker and Scheduler effect on Non-Zero BSRs for UL

UL Ratio Without Decision Maker and Scheduler With Decision Maker and Scheduler
10% 29 27
20% 5 0
30% 3 0
50% 111 4
80% 107 42
90% 104 0
100% 101 0

is geared towards the resource manager, and thus cause the increase seen in values 4 then 42. In this case, the resource
manager has autonomously triggered its scale-out, which explains why such count decreased again for the 90 and 100%450

ratios. This confirms our previous results and shows the effectiveness of the orchestration process in processing data in
a timely manner.
Finally, Fig. 9 depict the the normalized throughput for the eMBB Slice and the system CPU utilization during two
hours of simulation, respectively. We can observe, in Fig. 9a that, in overall, when the decision maker is enabled, the
normalized throughput is higher compared to the case where it is deactivated. But, this comes at a cost of an increased455

system utilization as seen in Fig. 9b. Interestingly, we note that the same normalized throughput was maintained
although we queued a new video for upload. This is clearly seen in the system utilization, which increased starting from
50 minutes and onwards, reflecting such additional load.

0 20 40 60 80 100 120

Time (min.)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

With Resource Manager Without Resource Manager

(a) eMBB Slice throughput

0 20 40 60 80 100 120

Time (min.)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n

With Resource Manager
Without Resource Manager

(b) CPU Utilization

Figure 9: Resource Manager effect on network throughput and system utilization

20

5. Conclusion

In this paper, we have presented a novel framework based on Machine-Learning (ML) for network slices orches-460

tration in 5G networks. Specifically, we have designed and implemented four building blocks, namely, Gatekeeper for
classification, Decision Maker with Forecast Aware Slicer and Admission Controller sub-modules, Slice Scheduler, and
adaptive deep reinforcement learning based Resource Manager. We evaluated the system performance using a 5G-ready
experimental prototype based on OpenAirInterface and FlexRAN. From our experiments, we have observed that the
Regression Trees (RTs) outperform other ML models in terms of classification and prediction accuracy. In particular,465

compared to linear based regressions, Root Mean Square Error (RMSE) is divided by six, prediction speed almost
quadrupled but training time has slightly increased. We also found that the average gap between RTs and the optimal
approach is only 5% and its trend is very close to the ground-truth slicing ratio. In addition, after implementing the
RTs, the whole system, allowed to reduce the number of wasted Physical Resource Blocks and increase the network
throughput compared to the case where system modules are disabled. But, this resulted in an acceptable increase of the470

system resources utilization. This effect is usually welcomed as it implies higher revenues in a multi-tenant environment,
which is a highly desirable behavior for both public and private cloud deployments.

Acknowledgment

This work was partially supported by the FUI SCORPION project (Grant no. 17/00464), the CNRS PRESS project475

(Grant no. 07771), “Azm & Saade” Association, and Lebanese University.

References

[1] N. Salhab, R. Rahim, R. Langar, R. Boutaba, Machine Learning Based Resource Orchestration for 5G Network
Slices, in: 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[2] 3GPP TR 22.864: Feasibility Study on New Services and Markets Technology Enablers - Network Operation; Stage480

1 (R.15) (Sept. 2016).

[3] K. Samdanis, S. Wright, A. Banchs, A. Capone, M. Ulema, K. Obana, 5G Network Slicing – Part 2: Algorithms
and Practice, IEEE Communications Magazine 55 (8) (2017) 110–111. doi:10.1109/MCOM.2017.8004164.

[4] N. Salhab, R. Rahim, R. Langar, NFV orchestration platform for 5G over on-the-fly provisioned infrastructure,
in: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),485

2019, pp. 971–972.

[5] OpenAirInterface (OAI), https://www.openairinterface.org/ (Dec. 2019).

[6] L. Le, B. P. Lin, L. Tung, D. Sinh, SDN/NFV, Machine Learning, and Big Data Driven Network Slicing for 5G,
in: 2018 IEEE 5G World Forum (5GWF), 2018, pp. 20–25. doi:10.1109/5GWF.2018.8516953.

[7] T. Taleb, I. Afolabi, K. Samdanis, F. Z. Yousaf, On multi-domain network slicing orchestration architecture and490

federated resource control, IEEE Network (2019) 1–11doi:10.1109/MNET.2018.1800267.

[8] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, L. Wang, Deep Reinforcement Learning for Mobile 5G:
Fundamentals, Applications, and Challenges, IEEE Vehicular Technology Magazine 14 (June 2019). doi:

10.1109/MVT.2019.2903655.

[9] L. Zanzi, F. Giust, V. Sciancalepore, M2EC: A multi-tenant resource orchestration in multi-access edge computing,495

in: IEEE Wireless Communications and Networking Conference (WCNC), 2018, pp. 1–6. doi:10.1109/WCNC.

2018.8377292.

[10] G. Zhu, J. Zan, Y. Yang, X. Qi, A supervised learning based QoS assurance architecture for 5G networks, IEEE
Access (2019). doi:10.1109/ACCESS.2019.2907142.

[11] Y. Yamada, R. Shinkuma, T. Sato, E. Oki, Feature-selection based data prioritization in traffic prediction using500

machine learning, in: IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.

21

[12] Y. Xie, J. Hu, Y. Xiang, S. Yu, S. Tang, Y. Wang, Modeling oscillation behavior of network traffic, IEEE Transac-
tions on Parallel and Distributed Systems 24 (9) (Sep. 2013).

[13] F. Tseng, X. Wang, L. Chou, H. Chao, V. C. M. Leung, Dynamic resource prediction and allocation for cloud data
center using the multiobjective genetic algorithm, IEEE Systems Journal 12 (2018).505

[14] N. Salhab, R. Rahim, R. Langar, Optimization of Virtualization Cost, Processing Power and Network Load of 5G
Software-Defined Data Centers, IEEE Transactions on Network and Service Management (2020) 1–12.

[15] DOCKER: Platform for High-Velocity Innovation, https://www.docker.com/ (Dec. 2019).

[16] D. J. MacKay, Bayesian interpolation, Neural computation 4 (3) (1992) 415–447.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and regression trees, Chapman and Hall by510

CRC, 1984.

[18] S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, Efficient knn classification with different numbers of nearest neighbors,
IEEE Transactions on Neural Networks and Learning Systems 29 (5) (2018) 1774–1785.

[19] R. Gribonval, From projection pursuit and cart to adaptive discriminant analysis?, IEEE Transactions on Neural
Networks 16 (3) (2005) 522–532.515

[20] Y. Wang, S. Xia, Q. Tang, J. Wu, X. Zhu, A novel consistent random forest framework, IEEE Transactions on
Neural Networks and Learning Systems 29 (8) (Aug 2018). doi:10.1109/TNNLS.2017.2729778.

[21] A. Y. Nikravesh, S. A. Ajila, C. Lung, W. Ding, Mobile network traffic prediction using MLP, MLPWD, and SVM,
in: 2016 IEEE International Congress on Big Data (BigData Congress), 2016, pp. 402–409.

[22] Y. Xu, F. Yin, W. Xu, J. Lin, S. Cui, Wireless traffic prediction with scalable gaussian process, IEEE Journal on520

Selected Areas in Communications (JSAC) (Mar. 2019).

[23] L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra, X. Costa-Perez, OVNES: Demonstrating 5G network slicing over-
booking on real deployments, in: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), 2018, pp. 1–2. doi:10.1109/INFCOMW.2018.8406867.

[24] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, X. Costa-Perez, Overbooking network slices through525

yield-driven end-to-end orchestration, in: ACM CoNEXT ’18, Association for Computing Machinery, New York,
NY, USA, 2018, p. 353–365. doi:10.1145/3281411.3281435.
URL https://doi.org/10.1145/3281411.3281435

[25] M. Yan, G. Feng, J. Zhou, Y. Sun, Y. Liang, Intelligent resource scheduling for 5G radio access network slicing,
IEEE Transactions on Vehicular Technology 68 (8) (2019) 7691–7703. doi:10.1109/TVT.2019.2922668.530

[26] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, X. Costa-Perez, A machine learning approach to 5G infrastruc-
ture market optimization, IEEE Transactions on Mobile Computing (2019) 1–1doi:10.1109/TMC.2019.2896950.

[27] M. Harishankar, S. Pilaka, P. Sharma, N. Srinivasan, C. Joe-Wong, P. Tague, Procuring spontaneous session-
level resource guarantees for real-time applications: An auction approach, IEEE Journal on Selected Areas in
Communications 37 (7) (2019) 1534–1548. doi:10.1109/JSAC.2019.2916487.535

[28] E. H. Bouzidi, A. Outtagarts, R. Langar, Deep reinforcement learning application for network latency management
in software defined networks, in: 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[29] J. Pérez-Romero, O. Sallent, R. Ferrús, R. Agust́ı, On the configuration of radio resource management in sliced
RAN, in: NOMS 2018 - IEEE/IFIP Network Operations and Management Symposium, 2018, pp. 1–6.

[30] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia, A. Banchs, Mobile traffic forecasting for540

maximizing 5G network slicing resource utilization, in: IEEE Conference on Computer Communications (INFO-
COM), 2017, pp. 1–9.

[31] Y. Yu, J. Wang, M. Song, J. Song, Network traffic prediction and result analysis based on seasonal arima and
correlation coefficient, in: 2010 International Conference on Intelligent System Design and Engineering Application,
2010, pp. 980–983.545

22

[32] MIT, Google, The new proving ground for competitive advantage, Tech. rep., Technical report, MIT Technology
Review (2017).

[33] 3GPP TS 32.130: Network Sharing: Concepts (Rel. 14) (Dec. 2016).

[34] 3GPP TR 28.801: Study on management and orchestration of network slicing for next generation network (Release
15) (Jan. 2018).550

[35] E. Brynjolfsson, T. Mitchell, What can machine learning do? workforce implications, Science 358 (6370) (2017).

[36] 3GPP TS 23.203: Policy and charging architecture (Rel. 7) (Jun. 2016).

[37] S. M. Wong, Y. Yao, Linear structure in information retrieval, in: Proceedings of the 11th annual international
ACM SIGIR conference on Research and development in information retrieval, 1988, pp. 219–232.

[38] Google, https://cloud.google.com/compute/all-pricing (Dec. 2019).555

[39] Amazon, https://aws.amazon.com/ec2/pricing/on-demand/ (Dec. 2019).

[40] R. M. Nauss, The 0–1 knapsack problem with multiple choice constraints, European Journal of Operational Research
2 (2) (1978) 125–131.

[41] N. Salhab, R. Rahim, R. Langar, Throughput-aware RRHs clustering in cloud radio access networks, in: 2018
Global Information Infrastructure and Networking Symposium (GIIS), 2018, pp. 1–5.560

[42] N. Wirth, Algorithms and data structures, CUMINCAD, 1986.

[43] A. R. Sampaio, J. Rubin, I. Beschastnikh, N. S. Rosa, Improving microservice-based applications with runtime
placement adaptation, Journal of Internet Services and Applications 10 (1) (2019) 1–30.

[44] 3GPP TS 23.501: System architecture for the 5G System (5GS), V16.6.0 (Rel. 16) (Oct. 2020).

[45] D. Davis, A. Rosemblat, vCPU Sizing Consideration, White Paper, Dell Software, https://565

virtualizationreview.com (Dec. 2019).

[46] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, P. Merle, Autonomic vertical elasticity of docker containers with elastic-
docker, in: 2017 IEEE 10th international conference on cloud computing (CLOUD), IEEE, 2017, pp. 472–479.

[47] H. Xu, B. Li, Dynamic cloud pricing for revenue maximization, IEEE Transactions on Cloud Computing 1 (2)
(2013) 158–171.570

[48] R. Bellman, Dynamic Programming, Princeton University Press, USA, 2010.

[49] Time Series Database, https://www.influxdata.com (Dec. 2019).

[50] Matrix Laboratory: MATLAB and Simulink, https://mathworks.com/ (Dec. 2019).

[51] Universal Software Radio Peripheral (USRP�), http://www.ettus.com (Dec. 2019).

[52] 3GPP TS 36.321: Medium Access Control (MAC) protocol Specification (Rel. 12) (Apr. 2015).575

23

Biographies

Nazih SALHAB received his Computer Science and Telecommunication Engineer degree and
his Master II Research from the Lebanese University, Engineering Faculty I. After that, he received
his double PhD degrees from University Paris-Est in France and the Lebanese University in Lebanon.
He is a senior advisor with more than 15 years of international experience in mobile networks oper-580

ation management, project management and business analysis for major mobile network operators
around the world. He also joined several international labs as visiting scientist, including EPFL-
Switzerland and D.R. Cheriton, University of Waterloo, ON, Canada. His research interest include:
Network Function Virtualization (NFV), Software-Defined Networking (SDN), Cloud Radio Access
Network (C-RAN), Orchestration, Artificial Intelligence/Machine Learning (AI/ML) and network585

resource management.

Rami LANGAR is currently a Full Professor at University Gustave Eiffel (UGE), France. Be-
fore joining UGE, he was an Associate Professor at LIP6, University Pierre and Marie Curie (now
Sorbonne University) between 2008 and 2016, and a Post-Doctoral Research Fellow at the School590

of Computer Science, University of Waterloo, Waterloo, ON, Canada between 2006 and 2008. He
received the M.Sc. degree in network and computer science from UPMC in 2002; and the Ph.D
degree in network and computer science from Telecom ParisTech, Paris, France, in 2006. Prof.
Langar is involved in many European and National French research projects, such as MobileCloud
(FP7), GOLDFISH (FP7), ANR ABCD, ANR 5G-INSIGHT, FUI PODIUM, FUI ELASTIC, FUI595

SCORPION. He was chair of IEEE ComSoc Technical Committee on Information Infrastructure
and Networking (TCIIN) for the term Jan. 2018-Dec. 2019, and co-recipient of the IEEE/IFIP

International Conference on Network and Service Management 2014 (IEEE/IFIP CNSM 2014) best paper award. His
research interests include resource management in future wireless systems, Cloud-RAN, network slicing in 5G/5G+/6G,
software-defined wireless networks, smart cities, and mobile Cloud offloading.600

Rana RAHIM received her Computer science and Telecommunication Engineer degree
from the Lebanese University in 2002. She then obtained her Master degree (DEA) in 2003
from the USJ University (Lebanon) and the Lebanese University, and her PhD degree in Jan-
uary 2008 from the University of Technology of Troyes (UTT) - France. She was a post-605

doctoral researcher at the UTT from October 2008 to October 2009. She obtained her HDR
(Habilitation à Diriger des Recherches) in 2016. She is currently Associate professor at the
Lebanese University. Her research interests include System management, Quality of Service,
IoT Networks, Smart Grids, cloud radio access networks, slicing in 5G and software-defined net-
works.610

24

