
HAL Id: hal-04512393
https://hal.science/hal-04512393v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Deep Q-Network and Traffic Prediction based Routing
Optimization in Software Defined Networks

El Hocine Bouzidi, Abdelkader Outtagarts, Rami Langar, Raouf Boutaba

To cite this version:
El Hocine Bouzidi, Abdelkader Outtagarts, Rami Langar, Raouf Boutaba. Deep Q-Network and
Traffic Prediction based Routing Optimization in Software Defined Networks. Journal of Network and
Computer Applications (JNCA), 2021, 192, pp.103181. �10.1016/j.jnca.2021.103181�. �hal-04512393�

https://hal.science/hal-04512393v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Deep Q-Network and Traffic Prediction based Routing Optimization in

Abstract

Software D e drivers
of 5G network nges, by
logically centr network
performances ), in par-
ticular, have d ment. To
this end, we e ngestion
by using main -Network
(DQN) agent. ), whose
objective is to lgorithm
to solve it. Nu oach can
significantly im

Key words: S

1. Introducti

With the d
network traffic
to the wide ra
neous require
cations, ultra-
communicatio
meet Quality-
(SLA) require
in which traffi

Defined Netw
nologies for th
of a network a

SDN aims
network devic
ligence, a flexi
management a
and the numb
ity of the cont
tional network
havior is a cha
tion and overlo

Email addres
Bouzidi), abdelk
Outtagarts), rami
Langar), rboutab

kly route
col stan-
with the
low pro-

est speci-
measure

itable for
f a future
proaches
], authors
the rout-
teleme-

nalyzing
nce (AI)
[4] pro-

troducing
aradigm,
twork by

trol plane
e routing
d the lin-
ving Av-
ork traf-

andle 5G
ope with

Preprint submitte ne 20, 2021

Click here to view linked References

© 2021 publis
https://creativ

Version of Record: https://www.sciencedirect.com/science/article/pii/S1084804521001909
Manuscript_8c8916315e7f05fc4164fb4182f828eb
Software Defined Networks

EL Hocine Bouzidia,b, Abdelkader Outtagartsa, Rami Langarb,c, Raouf Boutabad

aNokia Bell Labs, Villarceaux Center - Route de Villejust 91620 Nozay, France
bLIGM CNRS-UMR 8049, University Gustave Eiffel, 77420 Marne-la-Vallée, France

cSITE Department, ETS-Montréal, Montréal (QC), Canada
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efined Networking (SDN) is gaining momentum not only in research but also in IT industry representing th
s, due to its capabilities of increasing the flexibility of a network and address a variety of network challe
alizing the intelligence in software-based controllers. Thanks to Machine Learning (ML) techniques, the
and utilization can be optimized and enhanced. Neural Networks (NN) and Reinforcement Learning (RL
emonstrated great success in cooperating with complex problems arising in network operation and manage
xploit in this paper, an SDN-based rules placement approach that aims to dynamically predict the traffic co
ly NN and learn optimal paths and reroute traffic to improve network utilization by deploying a Deep Q
To this end, we first formulate the Quality-of-Service (QoS)-aware routing problem as a Linear Program (LP
minimize the end-to-end (E2E) delay and link utilization. Then, we propose a simple yet efficient heuristic a
merical results through emulation using ONOS controller and Mininet demonstrate that the proposed appr
prove network performances in terms of decreasing the link utilization, the packet loss and the E2E delay.

DN, Prediction, Neural Networks, QoS, ONOS, DQN, LSTM
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evelopment of new technologies such as (5G),
is expected to grow at an exponential rate, due

nge of applications with stringent and heteroge-
ments, such as massive machine-type communi-
reliable low-latency, enhanced mobile broadband
ns, big data and cloud applications. Hence, to
of-Service (QoS) and Service Level Agreement
ments, it is essential to develop innovative ways
c flows can be managed in real-time. Software

orking (SDN) [1] is one of the key emerging tech-
e 5G vision, capable of increasing the flexibility
nd reduce its costs.
at decoupling the network intelligence from the

es, enabling thus a centralization of network intel-
bility in traffic control and a simplicity in network
nd operation. However, as the size of the network
er of flows increase, the computational complex-
rol plane increases exponentially. Adapting tradi-
policies to the continually changing network be-

llenging task. Indeed, to effectively avoid conges-
ading links, both latency and throughput must be
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ader.outtagarts@nokia-bell-labs.com (Abdelkader
.langar@u-pem.fr;rami.langar@etsmtl.ca (Rami
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monitored continually and proactively, in order to quic
packets to less used links. One of the first SDN proto
dards is OpenFlow [2] that enables direct interaction
forwarding plane of network devices. Although OpenF
vides a mechanism to request throughput statistics, lat
fications of this protocol do not provide mechanisms to
latency.

Moreover, existing routing algorithms are not su
SDN due to their convergence limit and the absence o
vision on the evolution of network traffic. Several ap
have been proposed to cope with this challenge. In [3
proposed the Self-driving network concept, in which
ing decision is automatic and based on the analyzed
try collected from the network data plane, where a
collected statistics can be done by Artificial intellige
and Machine Learning (ML) techniques. Authors in
posed Knowledge-Defined Networking (KDN), by in
the Knowledge plane (KP) to the conventional SDN p
that is responsible for learning the behavior of the ne
applying ML on the collected data plane statistics.

Incorporating intelligence via ML to the SDN con
is crucial to guarantee the requested QoS and optimiz
in SDN-based networks [5]. Indeed, authors in [6] use
ear prediction method Auto-Regressive Integrated Mo
erage (ARIMA) to predict the future evolution of netw
fic. However, such ML methods are not suitable to h
networks and beyond due to their limits to efficiently c
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ent Learning (RL) techniques [7] as well are

ntum in routing optimization. The principal idea
deploy an agent that periodically makes deci-
atically adjusts its strategy by learning a state-

ping while maximizing a numerical reward. Au-
oposed a Q-routing algorithm looking for mini-
erage delivery time. The main drawback of RL
the slowness to reach the best policy when ex-
tire system, making it unsuitable and inapplicable
networks with almost countless state number. By
ge of Deep Learning to speed up the learning pro-
g RL techniques to Deep Learning is well placed

imitations of RL, which referred to as Deep Re-
earning (DRL). Consequently, using NNs instead
DRL makes it possible to achieve new network
time processing and storage of Q-tables. Several

RL have been used where the basic one is DQN
ombines a DNN with Q-learning.
d, we propose, in this paper, a dynamic and ef-
ngineering scheme, called Deep Q-Network and
ion based Routing Optimization (DTPRO), which
revious work in [11] by adding a DQN agent as
c prediction module in order to optimize the net-
ting. Specifically, our proposed solution consists
phases. Firstly, we dynamically optimize the flow
network by training a DQN agent. Secondly, we
tion and adjust the DQN reward function to pro-
uting configurations. Finally, we route the net-
sed on a set of link weights given by the trained
nd at the same time reroute the existing traffic
congested paths by resolving a Linear Program

mulated LP represents the flow rules placement
re the objective is to minimize the total network
loss and link utilization. Note that, during the
e have proposed an heuristic that interacts with the
d the traffic prediction in order to solve the for-
d optimize network performances. Experimental
the ONOS controller and Mininet, show that the
oach provides a promising enhancement against
ting algorithms.
contributions of our paper can be summarized as

e train a DQN agent with appropriate states and
in order to optimize the flow routing in the net-

we predict congestion and adjust the DQN re-
nction to provide better routing configurations.

e mathematically model the QoS-aware routing
as a LP, which takes as inputs routing strategy
the trained DQN agent and the predicted traffic.

ective is to minimize the E2E delay, E2E link uti-
and E2E packet loss. Then, we propose a simple

• Fourth, we implement the DTPRO approach usin
controller and Mininet.

The remainder of this paper is organized as follo
tion 2 presents related works. In Section 3, we discu
chitecture of the proposed framework and the rules p
algorithm. Section 4 evaluates the proposed method. W
conclude this paper in Section 5.

2. Related Works

In the following, we first survey the literature on tra
itoring approaches for collecting data plane statistics
Then, we focus on the ML techniques used for traffic p
and routing optimization.

2.1. Traffic Monitoring

Recently, SDN [1] with OpenFlow protocol [2] im
tation is getting a lot of attention. There are many O
software implementing the SDN architecture, where
used in the control plane are ONOS [12], POX [13]
[14], and OpenvSwitch [15] in the data plane. In t
networks, many monitoring tools are available, such a
[16], Cisco NetFlow [17], sFlow [18]. However, th
itoring tools are not compatible with the OpenFlow
Several works have been proposed in OpenFlow mo
Authors in [19] proposed PayLess, a network monitorin
work for SDN, which is built on top of an OpenFlow co
northbound API and provides a high-level RESTful AP
fers an adaptive scheduling algorithm for polling, that
the same level of accuracy as continuous switch pol
much less communication overhead. In [20], authors
OpenNetMon, a network monitoring tool based on O
that collects statistics such as throughput and packet
the edge devices in order to improve the measurem
racy and reduce the computation overhead. PathMon
vides a way to collect per-flow statistics such as throug
packet loss by inserting a separate set of flow entri
monitoring entries into every switch along a path to
itored. In these works, statistics can be collected pr
by using FlowS tatisticsRequest message or reactive
ing the FlowRemoved notification message. However
not provide mechanisms to measure latency by using
OpenFlow protocol.

There have been many studies on latency measur
SDN using OpenFlow protocol [22][23]. The most
work is described in [23] in which the authors presen
a framework for Software-defined Latency Monitoring
any two network switches. The delay is measured i
network by capturing directly path information from
devices. Different from these works where the latenc
sured for a specific path, we propose in this paper to
metrics, such as latency, throughput and per-flow siz
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critical links in the network, where the probability of conges-
tion is important. In this way, an important number of paths can
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Learning based QoS-aware Routing

g flow routing in SDN-based networks is crucial
eds for efficient resource allocation. For that rea-
nge of solutions have been proposed in the litera-

thors propose approaches based on genetic and
orithms to optimize the flow rule placement.

e approaches are limited to certain situations and
ore complicated routing problems. Several re-

have been made to install flow rules across pre-
imal paths, by exploiting the SDN controller's
ty. In [25], authors propose an approach to re-
nsumption and network congestion, where they
ptimal topology that can accommodate the ex-
emands, then a traffic load balancing by distribut-

ss k-shortest paths of optimal topology, by resolv-
Linear Program (ILP) Problem.
ers (HW), ARMA/ARIMA models [26] are tradi-
rediction methods, that are widely used for net-
recasting. Works in [27] and [28] both deploy
SDN for network Traffic Matrix (TM) predic-

s in [27] presented an approach to predict ag-
rnet traffic with NNs employing multiresolution
). They consider the problem of forecasting the
y predicting future values, given a set of trans-

ved on a specific link. Experimental results show
traffic prediction based on NNs outperforms lin-

g models (e.g. ARIMA, Auto-Regressive Auto-
RAR), HW) which cannot meet the accuracy re-
[28], authors present a Long Short Term Memory
Recurrent Neural Network (RNN) framework,

use of model parameters to train prediction mod-
cale TM prediction, by training and comparing
s at various numbers of parameters and config-
ulations show that the proposed LSTM models

kly and achieve high prediction accuracy in a few
putation.
[8] used RL techniques in the context of rout-

on, where they present a Q-Routing algorithm dis-
ent routing policies in dynamically changing net-
t having to know in advance the network topology
erns. As in Q-Routing algorithms, the Q-Value is
cket traversing the network. Even solutions pro-
work can achieve low latency, high throughput,
outing, it can be inefficient when it comes to the
e space and the time to reach the best policy.

esses this challenge by taking advantage of Deep
rks (DNNs) to train the learning process of RL al-
st relevant works are described in [29][4], where
t interacts with the network through three sig-

affic Matrix), action (link-weight vector), and re-
ing network performances). DQN [9][10] is one

ergy and latency-aware routing protocol (DQELR) th
a DQN algorithm with both off-policy and on-policy
to make routing decisions adaptively in different netw
ditions. In [31], authors presented DRL-R (Deep R
ment Learning-based Routing) to cope with the proble
existence of Elephant flow/Mice flow/Coflow and mu
sources (bandwidth, cache and computing). The prop
proach is based on DQN and Deep Deterministic Po
dient (DDPG). Experimental results demonstrated the
ness of this solution in improving network performanc
ever, these works did not take into account the traffic p
since the DRL agent is triggered only once the first
a traffic flow is detected by the controller. Moreove
depend only on link weights modification not on flow
stallation.

To sum up, the aforementioned works present the f
shortcomings: (i) the non-consideration of the mappin
between the network state and the corresponding act
predicting congestion, and (ii) the non-consideration o
and predicted congestion when rewarding actions.
these observations, we propose in this paper to train
agent capable of optimizing routing by dynamically
the optimal path according to a rewarding function, w
ing into account latency, throughput, and packet loss.
tion, we propose to deploy a traffic Prediction module
network congestion.

3. Proposed Deep Q-Network and Traffic Predicti
Routing Optimization (DTPRO) Approach

Combining ML techniques with SDN is crucial to
network performances. In this section, we first pr
DTPRO approach. We start by explaining the global
ture. Thereafter, we describe the Network Measurem
ules (i.e., Latency Measurement, Statistics), the DQN
fic Prediction modules. Finally, the mathematical mod
proposed heuristic will be described in the Proactive Fo
module.

3.1. DTPRO Architecture

Although SDN provides the centralization of ne
telligence, a flexibility in traffic control and simplici
work management and operation is still needed. KDN
introduced as a new paradigm to bring the intelligen
network management, using the telemetry data, which
to add the Knowledge plane (KP) to the conventio
paradigm, by adopting AI and cognitive system to buil
work model.

In this context, we propose to design our framewor
ing to the KDN paradigm, in which we exploit the con
to have a global view of the network (cf. Fig. 1).

As depicted in Fig. 1, our proposed architecture c
four planes: Data plane, Control plane, Management p
Knowledge plane.
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Figure 1: DTPRO Architecture

plane consists of programmable forwarding de-
of data packet processing and forwarding. These

no embedded intelligence to take decisions and
trol plane to populate their forwarding tables and
nfigurations based on the OpenFlow protocol.

ol plane is considered as the brain of the SDN net-
corporates the whole intelligence by centralizing
nt and global view of the network in a special-
ntroller, in which we deploy two main modules:
urement and Proactive Forwarding modules. The
surement module consists of two sub-modules:
h continuously collects metrics such as the num-
and bytes per flow to measure the throughput, and
urement. This latter sub-module measures con-
network latency by periodically sending a packet
ata plane. On the other hand, the Proactive For-
le is responsible for determining the optimal rout-
well as the predicted traffic from the KP by re-

timization problem as will be explained later in
5.
gement plane ensures the correct operation and
f the network by collecting the network mea-
the control plane, specifically from the Network

module, in order to provide network analytic. The
stics will be analyzed and sent to the KP.
e KP exploits the control and the management
ng the data from the Management plane as input
L algorithms, which convert them to the form of
recisely, they learn the behavior of the network,
the collected statistics, then extract the optimal

nting the knowledge, to route flows by deploying
and finally, predict network congestion using pre-
s (i.e., LSTM, ARIMA, Linear Regression (LR))
rediction module. Note that the routing strategy

by the DQN agent by exploiting the historical data
figurations.

3.2. Network Measurement

The Network Measurement module ensures the d
monitoring based on the OpenFlow protocol, which
in network management, and helps Operators to make
about Load Balancing, Routing, QoS, SLA and so on.
lection of statistics from the data plane can be either
passive. In the active mode, the Controller sends and
probe packets to the entire data plane network to measu
tics such as the Round-Trip-Time (RTT), Latency, Pac
On the other hand, the passive mode corresponds to
the statistics information from switches by using standa
Flow messages.

As stated earlier, the Network Measurement mod
sists of two sub-modules: Statistics and Latency
ment. The Statistics module monitors the data plan
ing to the passive mode using the OpenFlow stand
sages to read the information from the control plane
ically, it uses the OFPStatsReply message type, i
the switch periodically reports its statistics through t
of messages: PortStatsReply and FlowStatsRepl

spectively measure the throughput and the per-flow si
that, the throughput can be measured based on the n
sent/received packet or bit reported in the PortSta

message.
The Latency Measurement module, on the other h

the active monitoring mode by sending periodically
probe to the data plane to measure the latency based on
fications’ arrival times at the control plane. Specifical
sists in firstly, measuring the time that takes a packet pr
the controller and traverse the path and return back to
troller (TotalDelay). Secondly, it measures the time that
packet probe to go from the controller to the first sw
t1) and the last switch on the path (i.e., t2), as shown
[32][27].

Figure 2: Latency computation mechanism

Some specific monitoring rules must be installed a
and last switches (src, dst) respectively on the path
tains ”Send to Controller”, in order to measure
between the controller and the switches (i.e., t1, t2,
in Fig. 2) and to send the packet probe back to the c
at the last switch of the path. The switches between
and the last switches in the path forward the packet p
pre-installed forwarding flow rules corresponding to t
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probe. The delay needed corresponds to the time t3, and can be
determined as follows:

t3 =

Where dsrc
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ined by
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st obser-
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a random
equation

et − q (4)
TotalDelay − (t1 + t2 + dsrc + ddst + c) (1)

, ddst are the processing times in the devices (src,
ly, and c is the processing time in the controller.

curately estimate the TotalDelay, t1 and t2 delays,
capsulated in nanoseconds in the packet probe.
monitoring rules installed to guide the packet

nterfere with the normal traffic.
noting that the Latency Measurement module

ccording to the Open Services Gateway Initia-
andard that implements an application as a com-
amic component model. It is indeed composed
nents: Monitoring Flow Rules Installation, Probe
tor, Packet Processing and Latency Measurement,
ig. 3. When activating the Latency Measurement
art by installing the probe packet flow rules to
be packet along the path to be monitored. The
Generator will then send periodically a specific
to the data plane, that matches the monitoring
ady installed by the previous component. There-
et Processing component listens to the incoming
en, if the latter corresponds to the probe packet,
cessing component extracts the times between the
switches and sends them to the Latency Measure-
ent that measures the latency as explained above
latency in a centralized database.

Figure 3: Latency Measurement Design

ediction Models

avoid congestion and improve network perfor-
portant to predict the future evolution of network

other prediction models: ARIMA, and LR. In what fo
detail these three models and show how we adapt them
the E2E network latency.

3.3.1. Linear Regression (LR)
it is a statistical prediction method that attempts to m

relationship between an explanatory variable and a d
variable, by fitting a linear equation to observed data, w
objective is to predict the outcome of the dependent
from the explanatory variables [33]. Identifying the de
among a singe variable refers to the uni-variate regr
shown in the equation (2), where x is the explanatory
y is the dependent variable, λ and µ are constants an
error:

ŷ = λ.x + µ + ε

As described in Fig. 4), a valuable way of modeling
tionship between the measuring time of delays (i.e., the
tory variable t) and estimated ones (i.e., the dependen
D̂elay) is by using a correlation coefficient, which ind
strength of the association of the observed data for the
ables. We can build the regression equation between th
sampling and the delay, by using the equation in (3) :

D̂elay = λ.t + µ + ε

Where t is the sampling time, λ and µ are obtai
a set of measurements S : (i.e., Delay, Measurement
that the gap between the measurement and the model
minimized. Note that the regression quality is determ
the size of previous values (i.e., training data).

Figure 4: Linear Regression

3.3.2. ARIMA Model
Using this model, the latency can be considered as a

tic process, expressed as a linear combination of p pa
vations (i.e., Latency Measurement): Dt − 1,Dt − 2, ...,D
q past white noises: et − 1, et − 2, ..., et − q, together with
error in the same time series, as shown in the following
[34]:

Dt = c + φ1Dt − 1 + ...+ φpDt − p + et + θ1et − 1 + ...+ θq

5
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samples of the latency time series.

t the identification of the ARIMA model involves
here the mains are: i) checking the stationarity

se correctly the ARIMA model, ii) order (p, d, q)
ted, we refer to Auto-Correlation Function (ACF)
to-Correlation Function (PACF) to estimate these

hort-Term Memory (LSTM)
ontinuous development of network services, the
is constantly expanding showing more burst and
ity. Consequently, the traffic evolution shows
This makes the RNN, in particular its LSTM

well placed to learn complex non-linear patterns.
vantages of LSTM is that several models can be
each type of time series forecasting such as the
put/output of the NN. In this way, we propose to
c latency prediction using LSTM model [35] for

e series forecasting as follows:

nputs:

mple: S
me Steps: T
atures: n
arning Window: w
its: nbr units
lay Vector: D̂ ={d̂( u,v)}
utput:

edicted Delay Vector: D̂ ={d̂( u,v)}
samples S represents the number of training ex-
mesteps T refers to the LSTM memory capacity
e n is the amount of features in every time step.
ements construct the three-dimensional structure
esteps, Features] expected by the LSTM model.

Window w refers to the number of previous time-
from in order to predict the future Delay vector.
r is used to avoid learning in long sequences that
igh computational complexity. The nbr unit pa-
ents the number of neurons and finally the Delay
o the previous latency Measurements to be fed to
del. The output of the LSTM model is the pre-
f link delays. Fig. 5) shows the overall architec-

posed LSTM model.
noting that, before applying an LSTM model on
need to transform the data as follows: i) the Time

st be stationary, ii) the Time series must be trans-
supervised learning problem. More specifically,
bservations are used to predict the current obser-
It is necessary to have a specific scale responding

angent hyperbolic activation function Tanh of the

Figure 5: LSTM based network Latency prediction

3.4. Routing Optimization Model based on DQN

To meet the requested QoS, flows must be routed f
the best routing strategy. As the traffic state (stream)
on the type of data transported in the network, choosin
routing path to that stream improves its QoS. To this
propose here to deploy a DQN agent that dynamica
mines the optimal path. We model this DQN as follow
Given a network topology represented as a non-orien
G(V, E,C) where V , E and C are, respectively, the v
edge and the link capacity sets, and |V | = n represents
ber of network nodes, the DQN agent interacts with the
ment through three signals: State, Action, and Reward
is the (n × n) Traffic Matrix representing the current
load. The ”Action” taken by the agent is the link-weig
and the ”Reward” r of the agent is related to the QoS
ters, which are mainly: the average of Network latenc
average of Data rate (W) and the average of Packet L
In this case, the Reward r can be determined as follow

r = α.W − β.L − γ.PL

Where α, β, γ ∈ [0, 1] are the adjustable weights de
by the routing strategy. Our objective here is to deter
optimal policy π mapping the set of states to the set of
order to maximize the reward r. Note that the routing
is determined by a set of weights and periodically u
the beginning of each time epoch T DQN , which is init
1 hour in this work.

3.5. Proactive Forwarding Formulation and Resolutio

The Proactive Forwarding module is responsible
ing flows according to the optimal routing strategy, by
current and predicted Traffic Matrix. It is designed a
to the OSGI model and combines four components:
Predicted Traffic, (ii) Load Weights, (iii) Packet Proce
(iv) Flow Rules Generator, as shown in Fig. 6. The
modules Load Predicted Traffic and Load Weights ar
tively responsible for collecting the predicted traffic an
of link weights from the KP layer. The Packet Proce
tens to the PacketIn coming from the data plane an
the Flow Rules Generator is responsible for flow rout
events automatically trigger the latter: the first one cor
to generating flow rules for new incoming flows by
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collected weights by Load Weights sub-modules, to calculate
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Figure 6: Proactive Forwarding Design

ere is to give more accuracy to the routing strategy
e DQN agent as explained in the previous sub-
y incorporating the prediction aspect, where the
determine which link to route which flow in order
e E2E network latency and balance the network
izing link utilization.
text, the physical infrastructure can be represented
ed graph G(V, E,C), where V denotes the set of
hes and E the set of edges representing the phys-
links in the network. Each link is characterized
nd predicted propagation delay d(u,v), d̂(u,v), band-
C(u,v) and threshold TS (u,v). We assume the net-

odes (|V | = m), ne links (|E| = ne) and l flows.
d predicted Traffic Matrix T M, T̂ M representing,
he current and predicted volume of traffic flows
irs of origin and destination nodes in the network.
characterized by its size FS ( fi, u, v) and the path to

ted P fi .
rk may have the capacity limitation constraint. To
efine three variables E( fi, u, v), LU(u, v), MLU(u, v) as

E( fi, u, v) =


1, if f i ∈ (u, v)
0, otherwise

(6)

LU(u, v) =
∑

fi∈F

(E( fi, u, v) × FS ( fi, u, v)) (7)

MLU(u, v) = C(u, v) ∗ λ(u, v) (8)

symmetric Binary matrix E = E( fi, u, v) denotes
w rule f is allocated to the link (u,v) or not. Also
s the current link utilization and MLU(u,v) repre-
imum Link Utilization of link (u,v). In the equa-
ends on link characteristics and C(u,v) is the link

tency sensitivity, it will be necessary to give more p
those latency sensitive applications. To this end, we al
two variables: δ and st fi,s j . We assume each switch h
ority, the variable δ represents the priority of flow fi
s j and the decision variable st fi,s j denotes whether the
being routed or waiting in the queue.

δ =


δ fi,s j , δ fi,s j ∈ [1, q], if f i ∈ s j

0, otherwise

st fi,s j =


1, if f i is routed
0, if f i is waited

Hence, our problem can be formulated mathemati
LP as follows:

• Objective:

– Minimize τ.D + ν.LU + ζ.PL

• Subject to:

– Delay limitation: ∀(u, v) ∈ E :
Max(d(u,v), d̂(u,v)) < TS (u,v)

– Link capacity limitation:
∀(u, v) ∈ E : LU(u,v) < MLU(u,v)

– Path capacity limitation:
∀(u, v) ∈ FP: MLU(u,v) − LU(u,v)
≤ Cap Av Path( FP)

– Path Flow priority:
∀sk ∈ Path P,∀ fi, f j ∈ s2

k :
δ fi,P > δ f j,P ⇒

∑
sk∈P

st fi,sk ≥
∑

sk∈P
st f j,sk

– Demand satisfaction:
∀(u, v) ∈ Path P,∀ fi ∈ F :∑
(u,v)∈Path, fi∈F

FS ( fi, u, v) = demi

The delay and link capacity limitation constraints a
fied so that we force each link to not be delayed and ov
The Path Flow priority constraint ensures that the flow
priority must be routed first and finally the Demand sa
constraint ensures that the traffic demand demi sent thr
path source srci must be equal to that in the path de
dsti. Our objective is to minimize the network delay D
utilization LU and the packet loss PL, while the total
are always satisfied. Note that τ, ν, ζ are the weightin
related to the degree of importance of D, LU and PL
tively. These latters are defined as follows:

D =
1
ne

∑

(u,v)∈E

d(u,v)

LU =
1
ne

∑

(u,v)∈E

LU(u,v)
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(u,v)∈P fi

FS ( fi, u, v)) (13)

ulated problem can be considered as a multi-
ow problem, which are known to be NP-hard.
it is assumed to be solved by the SDN Controller
ing flow. However, as the size of the network and
flows increase, the computational complexity in-

entially. Clearly, such approach is not feasible in
it generates high overhead due to the frequent

flow tables.
ith this problem, and reduce the computation time
y, we propose here a simple yet efficient heuristic
led DTPRO algorithm. DTPRO allows a high-
allocation, while minimizing the total network la-
ket loss. Algorithm 1 shows the detail of the pro-
c. It takes as inputs the current and predicted Traf-

and T̂ M, respectively), the current and predicted
delays (D and D̂, respectively), and the matrix

threshold TS that defines the maximum tolerable
link (u,v). It is worth noting that, the DTPRO

r each incoming flow as well as when detecting a

thm works as follows. At the beginning of each
DQN , it requests the DQN agent to get the opti-
hts Links Weights, then it updates the network
(lines 2-6). It is worth noting that, the T DQN cor-
e time interval to apply a new routing strategy
the DQN agent. Moreover, to show the impact of
network configurations or routing strategies, this

nitialized to 1 hour. However, this parameter can
the network administrator in the order of days or

, since we measure continuously current and pre-
Matrix, if a congestion occurs, in which the cur-
ted link delay is greater than a certain threshold
overloaded (line 8), our algorithm finds the flow
onding to the flow with maximum size in the con-
P. Then, it sorts all other paths (denoted by S P)
atching the flow rule R (lines 9-12). In this case,
must be rerouted to a path in S P (lines 13-19).

P can accommodate the corresponding flow size,
carded and our algorithm goes to the next flow
e 20). Finally, it adjusts the parameters (α, β, γ)
ward function r, so that the DQN agent avoids a

ion (line 22). The Ad just Reward function (lines
the parameter β (equation. 5) if a link is delayed
be delayed. On the other hand, the α and γ pa-

djusted when a link is overloaded or is predicted
ed.

ce Evaluation

tion, we evaluate the efficiency of our proposed
e start by presenting our environmental setup.
ent the experimental results.

1: procedure (G(V, E,C),T M,T̂ M)
2: schedule every (T DQN)
3: Links Weights← get optimal Weight
4: f rom DQN agent
5: U pdate Net Con f ig(Links Weights)
6: end schedule
7: t ← 0
8: while (d(u, v) > TS (u, v) or d̂(u, v) > TS (u, v)

LU(u, v) > MLU(u, v)) do
9: CP Get Congested Path(u, v)

10: F S orted Flows Priority(CP, δ)
11: R F[t]. f low
12: S P S orted Backup Paths(R)
13: for each path p ∈ S P do
14: if p can route R then
15: Install Rule(p,R)
16: Remove Rule(CP,R)
17: Break
18: end if
19: end for
20: t ← t + 1
21: end while
22: Ad just Reward(α, β, γ)
23: end procedure
24: ω 10−2, α, β, γ ← 10−1

25: procedure Adjust Reward(α, β, γ)
26: if d(u, v) > TS (u, v) or d̂(u, v) > TS (u, v) then
27: β← β + ω
28: if LU(u, v) > MLU(u, v) then
29: α α + ω
30: γ γ + ω
31: end procedure

4.1. Experimental setup

First, we implement the Network Measurement mo
tency Measurement and Statistics) as well as the Proac
warding module as cooperating modules for the Ja
OpenFlow controller ONOS [12], based on our previo
work developed in [36]. Then, the DQN agent and th
Prediction are implemented based on Python1, which
erized on Docker2 Containers. Note that the DQN agen
Traffic Prediction interact with the Proactive Forward
ule based on the ONOS Northbound API. We used the
emulation tool OpenvSwitch [15] to implement the ex
tal topology illustrated in Fig. 7. To generate traffi

hosts, we used Iperf 3, which consists of a set of flows
a set of hosts (h1, . . . , h8). The Network Measurem
ule collects statistics (network latency, throughput, and
size) from the devices and reports those time-series st

1https://www.python.org/
2https://www.docker.com/
3https://iperf.fr/
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the InfluxDB4 database each time interval Ti which is equals
to 5 seconds. The link-labels in Fig. 7 show the capacity C for
each link.

We built a
flow5 library,
Network and
chitecture. Th
I. In particula
of 2 dense lay
space size, wh
urations for ea
three DQN ag
respectively. T
the input shap
training corres
respectively.
each training
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steps. The lea
0.01 and 0.95.
each training c

Action
Q-target

F

N

On the oth
by using Kera

4https://www.
5https://www.
6https://keras.

2. We used Adam [37] for learning the NN parameters with a
learning rate 0.01. We used Relu as activation function. The

d, we re-
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e. These
ne step is
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Figure 7: Emulated Topology

nd trained the DQN model by using the Tensor-
by deploying separately two NNs, one for Q-

the other for Q-target, which have the same ar-
e parameters of the DQN are illustrated in table

r, both the Q-Network and the Q-target consists
ers. In order to show the impact of the action

ich corresponds to the number of network config-
ch input traffic matrix state, we trained separately
ents with 24, 60 and 120 network configuration,
he state vector size is 48, which corresponds to

e of each NN, and the outputs of the NNs for each
pond to the actions space sizes 24, 60 and 120,

Consequently, the architectures corresponding to
are (48, 24), (48, 60) and (48, 120). During the
, we adopt ε-greedy method as action selection
e final exploration rate is fixed at 0.2, while the
eters are copied from the Q-Network every 300

rning rate and discounted factor are, respectively,
Finally, as we trained three different DQN agents,
orresponds to 120 episodes.

Table 1: DQN parameters for DTPRO

Name Values
Dense layers 2

State size 48
space size / Output shape 24,60,120
network update frequency 300

Learning rate 0.01
Discounted factor 0.95
Mini-batch size 32

inal exploration rate 0.2
Memory size 500 units

umber of episodes 120
Episode capacity 360000 steps

er hand, we built and trained the LSTM model
s Library6, where the number of dense layers is

influxdata.com/time-series-platform/influxdb/

tensorflow.org/

io/

LSTM method outputs a predicted vector. To this en
ferred to the traffic matrices used for DQN, by divid
into multiple input/output samples and the size of th
sample corresponds to the prediction interval Pi.

Note that, in order to improve the performances,
ing of ARIMA, LSTM and DQN models is done offlin
trained models are then saved in such a way that only o
needed to get the optimal path from the DQN agent o
dicted traffic from LSTM or ARIMA. In parallel, thes
continue to learn from these new steps.

4.2. Prediction accuracy evaluation

To quantitatively evaluate the overall performanc
prediction models, we use the Root Mean Squa
(RMSE), defined as the difference between the pred
ues and the actual values by computing the root of th
sum of squared errors. It can be expressed as follows:

RMS E(model) =

√√√
1
N

N∑

i=1

(x̂i − xi)2

where x̂i and xi are, respectively, the normalized
value and the normalized actual value for the same tim
and N corresponds to the total number of predictions o
of the prediction interval Pi, which is initialized to 5 s

4.3. Experimental results

In order to evaluate the performance of our prop
PRO solution, we first select the best predictions m
the network traffic evolution. Then, we evaluate t
model, while using different parameters and configura
finally, we compare the proposed solution with differen
schemes, while taking into account the obtained traffi

tions models.
First, we estimate the best ARIMA model to the

network traffic evolution, which is done by estim
ARIMA parameters [34] : the order of the AR term (p
der of the MA term (q) and the number of differencin
to make the time series stationary (d). The time seri
be stationary by having values around a defined mea
ever, the network traffic could have non-stationary
over time. To this end, differencing the time series
way to make it stationary and the right order of diff
corresponds to (d). In our experiments, we referred to
plot [34] for differencing and the Augmented Dick
(ADF) [38] to check if the series is stationary. In
while the differenced series are not stationary, we inc
The order of the AR term p corresponds to the numb
(xt − 1, xt − 2, ..., xt − p) that must be used as predictors
work, we referred to the PACF [34] to estimate the par
by checking if there is a correlation between a specifi
the time series. Finally, the parameter q corresponds to
ber of lagged prediction errors needed in the ARIMA m
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similar to PACF to estimate the parameter p, we used the ACF
to estimate the parameter q.

Fig. 8 com
a set of best A
RMSE metric
ods presented
to indicate the
time series, w
whether in fut
that models w
accuracy rega
repeated over
diction accura
model will be

Figure 8: Sele

Regarding
timation accur
problem when
best number o
this end, we p
the average of
In this way, w
each 500 epoc
of nodes to 10
number of tra
and starts to
both the RMS
the RMSE an
good estimatio
is 9000. The n
ber of hidden

As stated e
network is cru
this end, we p
the average of
by increasing
surement. Sim
the number of
and starts to b
both the Loss

ng epochs

e number

en nodes

eriments,
sponds to
de to the

indicated
when the
LR looks
meters λ
traffic by
n of λ, µ
e can see
changing

different
LR) by

e RMSE
measure-
riment is
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model is
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e can see
asing the
rk traffic,
pares the prediction and forecasting accuracy of
RIMA models to our network traffic, using the

. The parameters are estimated based on meth-
above. In this way, the forecasting term is used
prediction of future values given past values of

hile the prediction term is used to do estimation
ure, current or past. From this figure, we can see
ith d = 1 give a good prediction and forecasting
rding the network traffic. The evolution can be
time. We hence refer to this model with best pre-
cy as the one with (p = 9, d = 1, q = 1). This
used in our next experiments.

cting ARIMA models while varying the p, d, q parameters

the LSTM model, in order to ensure that its es-
acy is good enough and to avoid the over-fitting
the network is trained, it is required to find the

f neurons and the number of training epochs. To
lot in Fig. 9 the average of the Loss function and
RMSE under different number of training epochs.
e measure both the RMSE and Loss function for
hs. For the sake of simplicity, we fixed the number
0 nodes. In this experiment, we decided about the
ining epochs when the Loss function converges
be stable, which is ensured from this figure by
E and Loss function. We can see also that both
d Loss function start to be stable and achieve a
n accuracy when the number of training epochs

ext experiment will focus on identifying the num-
nodes.
arlier, the number of hidden nodes of the LSTM
cial to achieve a stable network configuration. To
lot in Fig. 10 the average of the Loss function and

RMSE under different number of hidden nodes
the number of hidden nodes by 10 for each mea-
ilar to the previous experiment, we decided about
hidden nodes when the Loss function converges

e stable. We can clearly see from that figure that
function and the RMSE converge and start to be

Figure 9: LSTM Loss and RMSE under different number of traini

stable and achieve a good estimation accuracy when th
of hidden nodes is 150.

Figure 10: LSTM Loss and RMSE under different number of hidd

From the results obtained in the two previous exp
we decided about the best LSTM model, which corre
9000 training epochs and 150 hidden nodes, alongsi
initial parameters presented above in this section.

On the other hand, the LR parameters λ and µ, as
in equation (3), are estimated online, which means that
prediction is triggered, the Traffic Prediction based
for the N previous measurement, to identify the para
and µ, then it predicts the future evolution of network
using the equation (3). In Fig. 11, we plot the variatio
parameters while training the LR prediction model. W
that these parameters are dynamically changed while
the data intervals.

Fig. 12 compares the prediction accuracy of the
methods presented earlier (i.e., LSTM, ARIMA and
measuring the impact of the prediction interval Pi on th
metric, which is increased by 3 seconds for each
ment. Recall that the ARIMA model used in this expe
(p = 9, d = 1, q = 1) and the used LSTM model is the
9000 training steps and 150 hidden nodes and the LR
dynamically estimated.

From Fig. 12, we can see that the RMSE of LSTM
stable when increasing the prediction interval Pi. W
also that ARIMA achieves a clear stability when incre
prediction interval Pi, due to the nature of the netwo
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dic in a certain level. However, the increase in
is clearly visible, which can be interpreted as the

the distance between the predicted points in the
the dispersed traffic points. Furthermore, we can
A outperforms LR due to its capacity to estimate
with the previous lags of the time series. Finally,
ible that LSTM outperforms all others prediction
o its capacity to learn long term dependencies. In
we determine the best DQN model for the pro-
traffic evolution.

of varying the action space size while training the DQN agent

trices) to the set of actions (i.e., network configuration
maximizing a numerical reward defined in equation (5
way it is required to find the best action structure, in
ensure a good estimation accuracy of the DQN mod
avoiding the over-fitting problem when the DQN is tra
this end, we plot in Fig. 13 the evolution of the avera
Loss function and the average of the reward function u
ferent number of training episodes and the three acti
sizes (24, 60, 120). The DQN is trained based on the i
rameters as stated earlier in this section. In the experi
decide about the best action structure when the Loss
converges and the reward function starts to be stable.

From Fig. 13 we can see that the Loss function for
action space configuration converge. However, we can
from Fig. 13 (b) that the more we increase the action
pacity, the more the reward function is increased. The
ing reflects the existence of appropriate new network
rations (i.e., network paths), so the queues of nodes
unloaded and lead to decreasing both packet loss and
latency. As a result from this experiment, we decide to
action space size as 120.

As mentioned in the equation (5), the reward funct
lated to Data rate (W), Network latency (L) and Pac
(PL) with parameters α, β and γ, respectively. These pa
play an important role to determine, in one side, the im
of each factor and on the other side the convergence of
function. To this end, we plot in Fig. 14 the evoluti
average of the Loss function under different number
ing episodes, while changing the reward function pa
From Fig. 14 we can see that, the less we give impo
both packet loss and network latency, the more the Loss
converges and gives small values. As a result, we decid
best DQN model corresponds to the one with action s
120, and the reward function parameters (α = 0.3, β =

In the next experiments, we assess the performance of
posed heuristic while using the aforementioned DQN m
prediction methods.

Figure 14: Impact of varying the reward function parameters α, β, γ
ing the DQN agent

In order to evaluate the performance of our prop
lution DTPRO, which corresponds to combining the
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DTPRO by using the obtained DQN model for
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rediction module.

v1, which consists in using the obtained DQN
or routing optimization and the obtained ARIMA
instead of LSTM) for Traffic Prediction.

v2, which consists in using the obtained DQN
or routing optimization and LR for Traffic Pre-

ts the packet loss, the delay and the link utiliza-
emes (DTPRO, DTPROv1, DTPROv2, Reduced
HC). We can see that the HC approach causes
siderable packet loss and increases the link uti-
all the flows are forwarded to shortest paths that
e link with minimum capacity. On the other hand,
DQN agent without prediction (i.e., the Reduced
e), considerable packet loss is still observed, in-

the link utilization, due to the incapacity of DQN
future evolution of network traffic. Finally, we
TPRO outperforms all other schemes, especially
DTPROv2, where the packet loss, delay and link

decreased. This is related to the high accuracy of
icting network congestion, compared to ARIMA
tion methods.
Fig. 16 the number of predicted congestion, while
DQN with different traffic predictions methods.

ting that, the congestion happens when the net-
r traffic load exceed a certain threshold which is

of each link capacity. In the proposed network
n from 3000 states defined above in this section,
in states to overload the network for some spe-

configurations. From this figure, we can see that
orms others methods due to its high accuracy for
future evolution compared to ARIMA and LR.
e the Quality of Experience (QoE), it is necessary
der varieties of services than just a single class
service [39]. To this end, we propose to eval-
RO approach with and without priority accord-
owing simulation scenario: we use initially spe-
Latency Sensitive Application (LSA), Through-
pplication (TSA) and Packet Loss Sensitive Ap-

A). Then, we force these paths to be delayed and
ased on a specific set of priorities (p1, p2, p3),
res the following baselines:

Flow Size corresponds to the proposed DTPRO
which sorts the traffic flows according to their

eroute the traffic once there is a congestion.

Figure 15: Packet Loss, Delay and Link utilization under rule plac
rithm based on DQN with and without prediction

Figure 16: Number of predicted congestion while combining the
different traffic predictions methods

• DTPRO Priority corresponds to the proposed
heuristic which sorts the traffic flows accordin
priority to reroute the traffic once there is a con

The set of priorities are selected as follows:

• p1: p(LS A) = 10, p(TS A) = 5, p(PLS A) = 1

• p2: p(LS A) = 5, p(TS A) = 10, p(PLS A) = 1

• p3: p(LS A) = 1, p(TS A) = 5, p(PLS A) = 10

From Fig. 17 (a) we can see that, when giving m
ority to LSA in p1, DTPRO Priority performs better
PRO Flow Size in decreasing the E2E Delay. Howev
giving more priority to TSA in p2 and PLSA in p3 the
lay for both schemes is close to each other. On the ot
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om Fig. 17 (b) that, when giving more priority
or PLSA in p3, DTPRO Priority performs bet-
O Flow Size in decreasing the E2E Throughput.
n giving more priority to LSA in p1, the perfor-
th schemes are close with no improvement in the
put. The reason of improving the performances
s corresponding to these application types in the

hs are routed first. This allows the DTPRO ap-
sed in a context of Network Slicing where each

ted for specific traffic types.

t of varying the TDQN time interval on the network perfor-

ts the impact of varying the TDQN time interval
performance (i.e., Number of Predicted Network
e E2E Delay and the E2E Throughput or Rate).
r is varied in the set of intervals: [1h, 2h, 4h, 6h,
Recall that, the TDQN parameter corresponds to

al to apply a new routing strategy obtained from
t.
figure we can observe that both the Network Con-
2E throughput increase with the increase of the
DQN . On the other hand, the E2E Delay decreases
ase of TDQN . The reason is that the DQN state
s with the increasing of the TDQN time interval,
nsitions and new network configurations are de-
over, the LSTM model in the Traffic Prediction

to predict new traffic evolutions, which leads to
etwork congestion and rerouting the traffic more
creasing thus the E2E Delay and increasing the
ut.
g. 19 shows a comparative analysis between the

Figure 19: Comparative analysis between DTPRO, TOL, DRL-R a

proposed approach DTPRO and three main approac
cated in the related works: 1) Deep Reinforcement L
based Routing (DRL-R) [31], which represents a tra
mization solution based on DQN, 2) Traffic Optimizat
on LSTM (TOL) [28], which corresponds to the u
LSTM RNN framework for predicting the network tr
trix, and 3) Deep Q-Network-based Energy and Laten
Routing (DQELR) [30], which is a routing optimizat
tion based on DQN.

As the design of DTPRO is modular, in which th
edge plane consists of two separated modules: i) ro
timization based on DQN and ii) Traffic Prediction
LSTM, the comparison of our proposed approach wit
and DQELR is done by deactivating the traffic predict
ule and using only the routing optimization module
other hand, for the TOL approach, we used only the Tr
diction module.

We used the same experimental topology, shown
for all approaches. For DRL-R [31], the DQN Q-Net
Q-Target consist of two hidden layers with 30 neuro
Relu corresponds to the activation function and the lea
is fixed to 0.001, as proposed in [31]. For the DQEL
[30], the input layer consists of four nodes. Three hidd
with 300, 150 and 15 nodes, respectively, are also used
the TOL approach consists in using the LSTM mode
All these models are trained based on the aforement
rameters. Then, we measured the E2E Delay, the E2E
put and the E2E Packet Loss for each approach for a ti
val of 24h, as shown in Fig. 19.

From this figure, we can see that the TOL approac
obviously more packet loss and delay, and provides less
throughput compared to all other approaches. This c
plained by the fact that, this approach does not take int
the best routing strategy, increasing thus the number o
tion links and leading to a new network behavior with
diction accuracy. Second, we can see that DRL-R and
perform better than TOL since both approaches consis
ing routing strategies by training DQN agents, while
ing certain rewards related specifically to network th
and delay. On the other hand, DRL-R performs slig
ter than DQELR, since adding DQN based routing de
packets in the DQELR approach impacts the performa
decentralizes the routing decisions, which is contradict
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