N

N

Deep Q-Network and Traffic Prediction based Routing
Optimization in Software Defined Networks
El Hocine Bouzidi, Abdelkader Outtagarts, Rami Langar, Raouf Boutaba

» To cite this version:

El Hocine Bouzidi, Abdelkader Outtagarts, Rami Langar, Raouf Boutaba. Deep Q-Network and
Traffic Prediction based Routing Optimization in Software Defined Networks. Journal of Network and
Computer Applications (JNCA), 2021, 192, pp.103181. 10.1016/j.jnca.2021.103181 . hal-04512393

HAL Id: hal-04512393
https://hal.science/hal-04512393v1
Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-04512393v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S1084804521001909
Manuscript_8c8916315e7f05fc4164fb4182{828eb

Click here to view linked References *

Deep Q-Network and Traffic Prediction based Routing Optimization in
Software Defined Networks

EL Hocine Bouzidi*, Abdelkader Outtagarts?, Rami Langar®®, Raouf Boutaba?

“Nokia Bell Labs, Villarceaux Center - Route de Villejust 91620 Nozay, France
bLIGM CNRS-UMR 8049, University Gustave Eiffel, 77420 Marne-la-Vallée, France
CSITE Department, ETS-Montréal, Montréal (QC), Canada
4D.R. Cheriton School of Computer Science, University of Waterloo, Waterloo (ON), Canada

Abstract

Software Defined Networking (SDN) is gaining momentum not only in research but also in IT industry representing the drivers
of 5G networks, due to its capabilities of increasing the flexibility of a network and address a variety of network challenges, by
logically centralizing the intelligence in software-based controllers. Thanks to Machine Learning (ML) techniques, the network
performances and utilization can be optimized and enhanced. Neural Networks (NN) and Reinforcement Learning (RL), in par-
ticular, have demonstrated great success in cooperating with complex problems arising in network operation and management. To
this end, we exploit in this paper, an SDN-based rules placement approach that aims to dynamically predict the traffic congestion
by using mainly NN and learn optimal paths and reroute traffic to improve network utilization by deploying a Deep Q-Network
(DQN) agent. To this end, we first formulate the Quality-of-Service (QoS)-aware routing problem as a Linear Program (LP), whose
objective is to minimize the end-to-end (E2E) delay and link utilization. Then, we propose a simple yet efficient heuristic algorithm
to solve it. Numerical results through emulation using ONOS controller and Mininet demonstrate that the proposed approach can

significantly improve network performances in terms of decreasing the link utilization, the packet loss and the E2E delay.

Key words: SDN, Prediction, Neural Networks, QoS, ONOS, DQN, LSTM

1. Introduction

With the development of new technologies such as (5G),
network traffic is expected to grow at an exponential rate, due
to the wide range of applications with stringent and heteroge-
neous requirements, such as massive machine-type communi-
cations, ultra-reliable low-latency, enhanced mobile broadband
communications, big data and cloud applications. Hence, to
meet Quality-of-Service (QoS) and Service Level Agreement
(SLA) requirements, it is essential to develop innovative ways
in which traffic flows can be managed in real-time. Software
Defined Networking (SDN) [1] is one of the key emerging tech-
nologies for the 5G vision, capable of increasing the flexibility
of a network and reduce its costs.

SDN aims at decoupling the network intelligence from the
network devices, enabling thus a centralization of network intel-
ligence, a flexibility in traffic control and a simplicity in network
management and operation. However, as the size of the network
and the number of flows increase, the computational complex-
ity of the control plane increases exponentially. Adapting tradi-
tional network policies to the continually changing network be-
havior is a challenging task. Indeed, to effectively avoid conges-
tion and overloading links, both latency and throughput must be

Email addresses: el_hocine.bouzidi®@nokia.com (EL Hocine
Bouzidi), abdelkader.outtagarts@nokia-bell-labs.com (Abdelkader
Outtagarts), rami . langar@u-pem. fr;rami.langar@etsmtl.ca (Rami
Langar), rboutaba@uwaterloo.ca (Raouf Boutaba)

Preprint submitted to Elsevier

monitored continually and proactively, in order to quickly route
packets to less used links. One of the first SDN protocol stan-
dards is OpenFlow [2] that enables direct interaction with the
forwarding plane of network devices. Although OpenFlow pro-
vides a mechanism to request throughput statistics, latest speci-
fications of this protocol do not provide mechanisms to measure
latency.

Moreover, existing routing algorithms are not suitable for
SDN due to their convergence limit and the absence of a future
vision on the evolution of network traffic. Several approaches
have been proposed to cope with this challenge. In [3], authors
proposed the Self-driving network concept, in which the rout-
ing decision is automatic and based on the analyzed teleme-
try collected from the network data plane, where analyzing
collected statistics can be done by Artificial intelligence (AI)
and Machine Learning (ML) techniques. Authors in [4] pro-
posed Knowledge-Defined Networking (KDN), by introducing
the Knowledge plane (KP) to the conventional SDN paradigm,
that is responsible for learning the behavior of the network by
applying ML on the collected data plane statistics.

Incorporating intelligence via ML to the SDN control plane
is crucial to guarantee the requested QoS and optimize routing
in SDN-based networks [5]. Indeed, authors in [6] used the lin-
ear prediction method Auto-Regressive Integrated Moving Av-
erage (ARIMA) to predict the future evolution of network traf-
fic. However, such ML methods are not suitable to handle 5G
networks and beyond due to their limits to efficiently cope with

June 20, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license

https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1084804521001909

the large volume data. To this end, the deep learning techniques
are well placed to intelligently make decisions on scheduling,
bandwidth reservation, etc.

Reinforcement Learning (RL) techniques [7] as well are
gaining momentum in routing optimization. The principal idea
behind it is to deploy an agent that periodically makes deci-
sion and automatically adjusts its strategy by learning a state-
to-action mapping while maximizing a numerical reward. Au-
thors in [8] proposed a Q-routing algorithm looking for mini-
mizing the average delivery time. The main drawback of RL
techniques is the slowness to reach the best policy when ex-
ploring the entire system, making it unsuitable and inapplicable
to large-scale networks with almost countless state number. By
taking advantage of Deep Learning to speed up the learning pro-
cess, combining RL techniques to Deep Learning is well placed
to overcome limitations of RL, which referred to as Deep Re-
inforcement Learning (DRL). Consequently, using NN instead
of QO-tables in DRL makes it possible to achieve new network
states, save the time processing and storage of Q-tables. Several
methods of DRL have been used where the basic one is DQN
[9][10], that combines a DNN with Q-learning.

To this end, we propose, in this paper, a dynamic and ef-
ficient traffic engineering scheme, called Deep Q-Network and
Traffic Prediction based Routing Optimization (DTPRO), which
extends our previous work in [11] by adding a DQN agent as
well as a traffic prediction module in order to optimize the net-
work flow routing. Specifically, our proposed solution consists
of three main phases. Firstly, we dynamically optimize the flow
routing in the network by training a DQN agent. Secondly, we
predict congestion and adjust the DQN reward function to pro-
vide better routing configurations. Finally, we route the net-
work traffic based on a set of link weights given by the trained
DQN agent, and at the same time reroute the existing traffic
away from the congested paths by resolving a Linear Program
(LP). The formulated LP represents the flow rules placement
problem, where the objective is to minimize the total network
delay, packet loss and link utilization. Note that, during the
third phase, we have proposed an heuristic that interacts with the
DQN agent and the traffic prediction in order to solve the for-
mulated LP and optimize network performances. Experimental
results, using the ONOS controller and Mininet, show that the
proposed approach provides a promising enhancement against
traditional routing algorithms.

The main contributions of our paper can be summarized as
follows:

e First, we train a DQN agent with appropriate states and
actions, in order to optimize the flow routing in the net-
work.

e Second, we predict congestion and adjust the DQN re-
ward function to provide better routing configurations.

e Third, we mathematically model the QoS-aware routing
problem as a LP, which takes as inputs routing strategy
given by the trained DQN agent and the predicted traffic.
Our objective is to minimize the E2E delay, E2E link uti-
lization and E2E packet loss. Then, we propose a simple

yet efficient heuristic algorithm called DTPRO to solve
the LP.

e Fourth, we implement the DTPRO approach using ONOS
controller and Mininet.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related works. In Section 3, we discuss the ar-
chitecture of the proposed framework and the rules placement
algorithm. Section 4 evaluates the proposed method. We finally
conclude this paper in Section 5.

2. Related Works

In the following, we first survey the literature on traffic mon-
itoring approaches for collecting data plane statistics in SDN.
Then, we focus on the ML techniques used for traffic prediction
and routing optimization.

2.1. Traffic Monitoring

Recently, SDN [1] with OpenFlow protocol [2] implemen-
tation is getting a lot of attention. There are many OpenFlow
software implementing the SDN architecture, where the most
used in the control plane are ONOS [12], POX [13] and Ryu
[14], and OpenvSwitch [15] in the data plane. In traditional
networks, many monitoring tools are available, such as, SNMP
[16], Cisco NetFlow [17], sFlow [18]. However, these mon-
itoring tools are not compatible with the OpenFlow network.
Several works have been proposed in OpenFlow monitoring.
Authors in [19] proposed PayLess, a network monitoring frame-
work for SDN, which is built on top of an OpenFlow controller’s
northbound API and provides a high-level RESTful API, and of-
fers an adaptive scheduling algorithm for polling, that achieves
the same level of accuracy as continuous switch polling with
much less communication overhead. In [20], authors proposed
OpenNetMon, a network monitoring tool based on OpenFlow,
that collects statistics such as throughput and packet loss from
the edge devices in order to improve the measurement accu-
racy and reduce the computation overhead. PathMon [21] pro-
vides a way to collect per-flow statistics such as throughput and
packet loss by inserting a separate set of flow entries called
monitoring entries into every switch along a path to be mon-
itored. In these works, statistics can be collected proactively
by using FlowsS tatisticsRequest message or reactively by us-
ing the FlowRemoved notification message. However, they did
not provide mechanisms to measure latency by using only the
OpenFlow protocol.

There have been many studies on latency measurement in
SDN using OpenFlow protocol [22][23]. The most relevant
work is described in [23] in which the authors present SLAM,
a framework for Software-defined Latency Monitoring between
any two network switches. The delay is measured inside the
network by capturing directly path information from network
devices. Different from these works where the latency is mea-
sured for a specific path, we propose in this paper to measure
metrics, such as latency, throughput and per-flow size, for all

critical links in the network, where the probability of conges-
tion is important. In this way, an important number of paths can
be covered without affecting performances.

2.2. Machine Learning based QoS-aware Routing

Optimizing flow routing in SDN-based networks is crucial
to meet the needs for efficient resource allocation. For that rea-
son, a wide range of solutions have been proposed in the litera-
ture.

In [24], authors propose approaches based on genetic and
ant-colony algorithms to optimize the flow rule placement.
However, these approaches are limited to certain situations and
do not cover more complicated routing problems. Several re-
search works have been made to install flow rules across pre-
computed optimal paths, by exploiting the SDN controller's
global visibility. In [25], authors propose an approach to re-
duce power consumption and network congestion, where they
compute the optimal topology that can accommodate the ex-
pected traffic demands, then a traffic load balancing by distribut-
ing flows across k-shortest paths of optimal topology, by resolv-
ing an Integer Linear Program (ILP) Problem.

Holt—Winters (HW), ARMA/ARIMA models [26] are tradi-
tional linear prediction methods, that are widely used for net-
work traffic forecasting. Works in [27] and [28] both deploy
NNs based on SDN for network Traffic Matrix (TM) predic-
tion. Authors in [27] presented an approach to predict ag-
gregated Ethernet traffic with NNs employing multiresolution
learning (MRL). They consider the problem of forecasting the
transfer rate, by predicting future values, given a set of trans-
fer rates observed on a specific link. Experimental results show
that nonlinear traffic prediction based on NNs outperforms lin-
ear forecasting models (e.g. ARIMA, Auto-Regressive Auto-
Regressive (ARAR), HW) which cannot meet the accuracy re-
quirements. In [28], authors present a Long Short Term Memory
(LSTM) based Recurrent Neural Network (RNN) framework,
which makes use of model parameters to train prediction mod-
els for large scale TM prediction, by training and comparing
LSTM models at various numbers of parameters and config-
urations. Simulations show that the proposed LSTM models
converge quickly and achieve high prediction accuracy in a few
seconds of computation.

Authors in [8] used RL techniques in the context of rout-
ing optimization, where they present a O-Routing algorithm dis-
covering efficient routing policies in dynamically changing net-
works, without having to know in advance the network topology
and traffic patterns. As in Q-Routing algorithms, the Q-Value is
stored in a packet traversing the network. Even solutions pro-
posed in this work can achieve low latency, high throughput,
and adaptive routing, it can be inefficient when it comes to the
(Q-Table storage space and the time to reach the best policy.

DRL addresses this challenge by taking advantage of Deep
Neural Networks (DNN5s) to train the learning process of RL al-
gorithms. Most relevant works are described in [29][4], where
the DRL agent interacts with the network through three sig-
nals: state (Traffic Matrix), action (link-weight vector), and re-
ward (improving network performances). DQN [9][10] is one

of the most used DRL methods in network routing optimiza-
tion. Authors in [30] presented an adaptive DQN based en-
ergy and latency-aware routing protocol (DQELR) that adopts
a DQN algorithm with both off-policy and on-policy methods
to make routing decisions adaptively in different network con-
ditions. In [31], authors presented DRL-R (Deep Reinforce-
ment Learning-based Routing) to cope with the problem of co-
existence of Elephant flow/Mice flow/Coflow and multiple re-
sources (bandwidth, cache and computing). The proposed ap-
proach is based on DQN and Deep Deterministic Policy Gra-
dient (DDPG). Experimental results demonstrated the effective-
ness of this solution in improving network performances. How-
ever, these works did not take into account the traffic prediction,
since the DRL agent is triggered only once the first packet in
a traffic flow is detected by the controller. Moreover, actions
depend only on link weights modification not on flow rules in-
stallation.

To sum up, the aforementioned works present the following
shortcomings: (i) the non-consideration of the mapping history
between the network state and the corresponding action when
predicting congestion, and (ii) the non-consideration of current
and predicted congestion when rewarding actions. Based on
these observations, we propose in this paper to train a DQN
agent capable of optimizing routing by dynamically choosing
the optimal path according to a rewarding function, while tak-
ing into account latency, throughput, and packet loss. In addi-
tion, we propose to deploy a traffic Prediction module to predict
network congestion.

3. Proposed Deep Q-Network and Traffic Prediction based
Routing Optimization (DTPRO) Approach

Combining ML techniques with SDN is crucial to improve
network performances. In this section, we first present our
DTPRO approach. We start by explaining the global architec-
ture. Thereafter, we describe the Network Measurement mod-
ules (i.e., Latency Measurement, Statistics), the DQN and Traf-
fic Prediction modules. Finally, the mathematical model and the
proposed heuristic will be described in the Proactive Forwarding
module.

3.1. DTPRO Architecture

Although SDN provides the centralization of network in-
telligence, a flexibility in traffic control and simplicity in net-
work management and operation is still needed. KDN has been
introduced as a new paradigm to bring the intelligence to the
network management, using the telemetry data, which suggests
to add the Knowledge plane (KP) to the conventional SDN
paradigm, by adopting Al and cognitive system to build the net-
work model.

In this context, we propose to design our framework accord-
ing to the KDN paradigm, in which we exploit the control plane
to have a global view of the network (cf. Fig. 1).

As depicted in Fig. 1, our proposed architecture consists of
four planes: Data plane, Control plane, Management plane and
Knowledge plane.

Knowledge plane

Path to install
new Flow

Traffic
Prediction

DQN Agent a{{}

Northbound SDN Controller API

Network

Measurement

(Proactive
Forwarding

Flow Rules
Installation

Statistics
Polling

SDN Controller

j OpenFlow
e e

[==
% f

Data plane =1

Figure 1: DTPRO Architecture

The Data plane consists of programmable forwarding de-
vices in charge of data packet processing and forwarding. These
devices have no embedded intelligence to take decisions and
rely on the control plane to populate their forwarding tables and
update their configurations based on the OpenFlow protocol.

The Control plane is considered as the brain of the SDN net-
work, which incorporates the whole intelligence by centralizing
the management and global view of the network in a special-
ized central controller, in which we deploy two main modules:
Network Measurement and Proactive Forwarding modules. The
Network Measurement module consists of two sub-modules:
Statistics which continuously collects metrics such as the num-
ber of packets and bytes per flow to measure the throughput, and
Latency Measurement. This latter sub-module measures con-
tinuously the network latency by periodically sending a packet
probe to the data plane. On the other hand, the Proactive For-
warding module is responsible for determining the optimal rout-
ing strategy as well as the predicted traffic from the KP by re-
solving an optimization problem as will be explained later in
sub-section 3.5.

The Management plane ensures the correct operation and
performance of the network by collecting the network mea-
surement from the control plane, specifically from the Network
Measurement module, in order to provide network analytic. The
collected statistics will be analyzed and sent to the KP.

Finally, the KP exploits the control and the management
planes by taking the data from the Management plane as input
to be fed to ML algorithms, which convert them to the form of
knowledge. Precisely, they learn the behavior of the network,
by processing the collected statistics, then extract the optimal
paths, representing the knowledge, to route flows by deploying
a DQN agent, and finally, predict network congestion using pre-
diction methods (i.e., LSTM, ARIMA, Linear Regression (LR))
in the Traffic Prediction module. Note that the routing strategy
is determined by the DQN agent by exploiting the historical data
of routing configurations.

In what follows, we detail further these modules.

3.2. Network Measurement

The Network Measurement module ensures the data plane
monitoring based on the OpenFlow protocol, which is crucial
in network management, and helps Operators to make decisions
about Load Balancing, Routing, QoS, SLA and so on. The col-
lection of statistics from the data plane can be either active or
passive. In the active mode, the Controller sends and receives
probe packets to the entire data plane network to measure statis-
tics such as the Round-Trip-Time (RTT), Latency, Packet Loss.
On the other hand, the passive mode corresponds to querying
the statistics information from switches by using standard Open-
Flow messages.

As stated earlier, the Network Measurement module con-
sists of two sub-modules: Statistics and Latency Measure-
ment. The Statistics module monitors the data plane accord-
ing to the passive mode using the OpenFlow standard mes-
sages to read the information from the control plane. Specif-
ically, it uses the OFPStatsReply message type, in which,
the switch periodically reports its statistics through two types
of messages: PortStatsReply and FlowStatsReply, to re-
spectively measure the throughput and the per-flow size. Note
that, the throughput can be measured based on the number of
sent/received packet or bit reported in the PortStatsReply
message.

The Latency Measurement module, on the other hand, uses
the active monitoring mode by sending periodically a packet
probe to the data plane to measure the latency based on the noti-
fications’ arrival times at the control plane. Specifically, it con-
sists in firstly, measuring the time that takes a packet probe from
the controller and traverse the path and return back to the con-
troller (T otalpeiay). Secondly, it measures the time that takes the
packet probe to go from the controller to the first switch (i.e.,
t1) and the last switch on the path (i.e., t;), as shown in Fig. 2.
[32][27].

c
PacketOut Packetln
ty tz
ds‘rc fg ddst

Figure 2: Latency computation mechanism

Some specific monitoring rules must be installed at the first
and last switches (src, dst) respectively on the path that con-
tains "Send to Controller”, in order to measure the delay
between the controller and the switches (i.e., 1, t, as shown
in Fig. 2) and to send the packet probe back to the controller
at the last switch of the path. The switches between the first
and the last switches in the path forward the packet probe by a
pre-installed forwarding flow rules corresponding to the packet

probe. The delay needed corresponds to the time #3, and can be
determined as follows:

I3 = TOtalDelay - (tl +1 + dsrc + ddst + C) (1)

Where dy,., d4g are the processing times in the devices (src,
dst) respectively, and c is the processing time in the controller.
In order to accurately estimate the Totalp,qy, t1 and t, delays,
the time is encapsulated in nanoseconds in the packet probe.
Moreover, the monitoring rules installed to guide the packet
probe do not interfere with the normal traffic.

It is worth noting that the Latency Measurement module
is designed according to the Open Services Gateway Initia-
tive (OSGI) standard that implements an application as a com-
plete and dynamic component model. It is indeed composed
of four components: Monitoring Flow Rules Installation, Probe
Packet Generator, Packet Processing and Latency Measurement,
as shown in Fig. 3. When activating the Latency Measurement
module we start by installing the probe packet flow rules to
guide the probe packet along the path to be monitored. The
Probe Packet Generator will then send periodically a specific
probe packet to the data plane, that matches the monitoring
flow rules already installed by the previous component. There-
after, the Packet Processing component listens to the incoming
PacketIn, then, if the latter corresponds to the probe packet,
the Packet Processing component extracts the times between the
controller and switches and sends them to the Latency Measure-
ment component that measures the latency as explained above
and stores the latency in a centralized database.

Monitoring Flow Rules
installation

!

_ PacketOut Probe Packet
Generator
Latency If (Probe Packet) .
Measurement

\ |

Report Latency
to Database

Control plane

- - ____ S — Dat;_piane
b
> N , =

et

Figure 3: Latency Measurement Design

Packetin

3.3. Traffic Prediction Models

In order to avoid congestion and improve network perfor-
mances, it is important to predict the future evolution of network
traffic.

To do so, we propose here to use the well-known LSTM
model to predict the network latency and compare it with two
other prediction models: ARIMA, and LR. In what follows, we
detail these three models and show how we adapt them to predict
the E2E network latency.

3.3.1. Linear Regression (LR)

itis a statistical prediction method that attempts to model the
relationship between an explanatory variable and a dependent
variable, by fitting a linear equation to observed data, where the
objective is to predict the outcome of the dependent variables
from the explanatory variables [33]. Identifying the dependency
among a singe variable refers to the uni-variate regression as
shown in the equation (2), where x is the explanatory variable,
y is the dependent variable, A and u are constants and ¢ is the
error:

Y=Adx+u+e 2)

As described in Fig. 4), a valuable way of modeling the rela-
tionship between the measuring time of delays (i.e., the explana-
tory variable t) and estimated ones (i.e., the dependent variable
D;l;y) is by using a correlation coefficient, which indicates the
strength of the association of the observed data for the two vari-
ables. We can build the regression equation between the time of
sampling and the delay, by using the equation in (3) :

Delay = At +u+e 3)

Where ¢ is the sampling time, A and u are obtained from
a set of measurements S: (i.e., Delay, Measurement time) so
that the gap between the measurement and the model in (3) is
minimized. Note that the regression quality is determined by
the size of previous values (i.e., training data).

Delay
.
. .
. * ® .
.
. . e
. .

. . .

. .

e o @
Measurement time
of Delay "t"

Figure 4: Linear Regression

3.3.2. ARIMA Model

Using this model, the latency can be considered as a stochas-
tic process, expressed as a linear combination of p past obser-
vations (i.e., Latency Measurement): D;_1,D;_»,...,D;_ ,, and
q past white noises: e,_,€;_2, ..., ¢;,_4, together with a random
error in the same time series, as shown in the following equation
[34]:

Di=c+¢Di_1+..+¢,Di_p+e+01e,_1+..+0,6_,)

Where, p, the number of past observations represents the
Auto-Regressive (AR) degree, g represents the number of Mov-
ing Average (MA) order and d is the degree of differentiation
[34]. It is worth noting that D, is the latency to be predicted
using previous samples of the latency time series.

Recall that the identification of the ARIMA model involves
several steps where the mains are: i) checking the stationarity
to be able to use correctly the ARIMA model, ii) order (p,d, q)
must be estimated, we refer to Auto-Correlation Function (ACF)
and Partial Auto-Correlation Function (PACF) to estimate these
orders [34].

3.3.3. Long Short-Term Memory (LSTM)

with the continuous development of network services, the
network traffic is constantly expanding showing more burst and
more complexity. Consequently, the traffic evolution shows
non-linearity. This makes the RNN, in particular its LSTM
variant model, well placed to learn complex non-linear patterns.
One of the advantages of LSTM is that several models can be
used based on each type of time series forecasting such as the
shape of the input/output of the NN. In this way, we propose to
model the traffic latency prediction using LSTM model [35] for
multi-step time series forecasting as follows:

o L.STM Inputs:

Sample: S

Time Steps: T

Features: n

Learning Window: w
— Units: nbr_units
— Delay Vector: D ={d ..}

e LSTM Output:
— Predicted Delay Vector: D :{ZZ\(w))

Where the samples S represents the number of training ex-
amples, the Timesteps T refers to the LSTM memory capacity
and the Feature n is the amount of features in every time step.
These three elements construct the three-dimensional structure
[Samples, Timesteps, Features] expected by the LSTM model.
The Learning Window w refers to the number of previous time-
slots to learn from in order to predict the future Delay vector.
This parameter is used to avoid learning in long sequences that
can result in high computational complexity. The nbr_unit pa-
rameter represents the number of neurons and finally the Delay
vector refers to the previous latency Measurements to be fed to
the LSTM Model. The output of the LSTM model is the pre-
dicted vector of link delays. Fig. 5) shows the overall architec-
ture of the proposed LSTM model.

It is worth noting that, before applying an LSTM model on
the dataset, we need to transform the data as follows: i) the Time
series data must be stationary, ii) the Time series must be trans-
formed into a supervised learning problem. More specifically,
the previous observations are used to predict the current obser-
vation, and iii) It is necessary to have a specific scale responding
to the default tangent hyperbolic activation function T anh of the
LSTM model.

‘ ‘jeff&-y = [ﬁn 5&1.] ﬁtﬂ\']

——

LSTM Block

s

| Detay = D1, D 3, ., Dy 1]

Figure 5: LSTM based network Latency prediction

3.4. Routing Optimization Model based on DQN

To meet the requested QoS, flows must be routed following

the best routing strategy. As the traffic state (stream) depends
on the type of data transported in the network, choosing the best
routing path to that stream improves its QoS. To this end, we
propose here to deploy a DQN agent that dynamically deter-
mines the optimal path. We model this DQN as follows:
Given a network topology represented as a non-oriented graph
G(V,E,C) where V, E and C are, respectively, the vertex, the
edge and the link capacity sets, and |V| = n represents the num-
ber of network nodes, the DQN agent interacts with the environ-
ment through three signals: State, Action, and Reward. “’State”
is the (n x n) Traffic Matrix representing the current network
load. The ”Action” taken by the agent is the link-weight vector,
and the "Reward” r of the agent is related to the QoS parame-
ters, which are mainly: the average of Network latency (L), the
average of Data rate (W) and the average of Packet Loss (PL).
In this case, the Reward r can be determined as follows:

r=aW-BL-vy.PL (®)]

Where a, 8,y € [0, 1] are the adjustable weights determined
by the routing strategy. Our objective here is to determine the
optimal policy m mapping the set of states to the set of actions in
order to maximize the reward r. Note that the routing strategy
is determined by a set of weights and periodically updated at
the beginning of each time epoch T pon, Which is initialized to
1 hour in this work.

3.5. Proactive Forwarding Formulation and Resolution

The Proactive Forwarding module is responsible for rout-
ing flows according to the optimal routing strategy, by using the
current and predicted Traffic Matrix. It is designed according
to the OSGI model and combines four components: (i) Load
Predicted Traffic, (ii) Load Weights, (iii) Packet Processing and
(iv) Flow Rules Generator, as shown in Fig. 6. The two sub-
modules Load Predicted Traffic and Load Weights are respec-
tively responsible for collecting the predicted traffic and the set
of link weights from the KP layer. The Packet Processing lis-
tens to the PacketIn coming from the data plane and finally
the Flow Rules Generator is responsible for flow routing. Two
events automatically trigger the latter: the first one corresponds
to generating flow rules for new incoming flows by using the

collected weights by Load Weights sub-modules, to calculate
their corresponding paths, and the second one happens when a
congestion is detected, where the action is to reroute the current
traffic to the less used paths.

Traffic Prediction DQN Agent
Knowledge plane
Load Predicted .
Traffic Load Weights

5 i Flow Rules
ongeston Yes Generator
p.-} L- /') .A.:
Control plane gretu:
Data plane ¥
g .7 Packetin
~ S s e R
—

Figure 6: Proactive Forwarding Design

The idea here is to give more accuracy to the routing strategy
selected by the DQN agent as explained in the previous sub-
section 3.4, by incorporating the prediction aspect, where the
objective is to determine which link to route which flow in order
to minimize the E2E network latency and balance the network
load by minimizing link utilization.

In this context, the physical infrastructure can be represented
by a capacitated graph G(V, E, C), where V denotes the set of
nodes or switches and E the set of edges representing the phys-
ical or virtual links in the network. Each link is characterized
by its current and predicted propagation delay d(,,,), d(.,, band-
width capacity C,, and threshold 7'S (). We assume the net-
work has m nodes (|V| = m), ne links (|E| = ne) and [flows.
The current and predicted Traffic Matrix T M, T M representing,
respectively, the current and predicted volume of traffic flows
between all pairs of origin and destination nodes in the network.
Each flow f; is characterized by its size FS (4., ,) and the path to
which is affected Py,

The network may have the capacity limitation constraint. To
this end, we define three variables E(f, ., v), LU, v), MLU,,) as

follows :
1, iff;, €m,v)
E = ! 6
e {O, otherwise ©
LU,y = Z(E(ﬁ,u, » X ES(fum) (N
fieF
MLU(u, v) = C(u, v) * /l(u, V) (8)

Where the symmetric Binary matrix E = E; ,) denotes
whether the flow rule f is allocated to the link (u,v) or not. Also
LU,y denotes the current link utilization and MLU|,) repre-
sents the Maximum Link Utilization of link (&,v). In the equa-
tion (8), A depends on link characteristics and Cy,) is the link

capacity.

As the network traffic may have several classes based on la-
tency sensitivity, it will be necessary to give more priority to
those latency sensitive applications. To this end, we also define
two variables: ¢ and sty ;.. We assume each switch has g pri-
ority, the variable ¢ represents the priority of flow f; in switch
s; and the decision variable sty, ;; denotes whether the flow f; is
being routed or waiting in the queue.

5= Ofs;s Ofs; € .[1,q],iffl- €s; ©)
0, otherwise
1, if f. i ted
sty = | b s oute (10)
/ 0, if f;is waited

Hence, our problem can be formulated mathematically as a
LP as follows:

e Objective:
— Minimize 7.D + v.LU + {.PL
e Subject to:

— Delay limitation: ¥(u,v) € E :
Max(d(u,v), d(u,v)) < TS(u,v)

— Link capacity limitation:
Y(u,v) € E: LUy < MLU(y .

— Path capacity limitation:
V(M, V) € FP: MLU(M,V) - LU(M’V)
< Cap_Av_Path(FP)

— Path Flow priority:
Vs € Path PV f;, f; € st -
6ﬁ,P > 6fj’p = Stp s = > St 5
skEP skEP

— Demand satisfaction:
Y(u,v) € Path PVf; € F :

Z FS(ﬁ’qu) =dem,»
(u,v)ePath,fieF

The delay and link capacity limitation constraints are speci-
fied so that we force each link to not be delayed and overloaded.
The Path Flow priority constraint ensures that the flow with high
priority must be routed first and finally the Demand satisfaction
constraint ensures that the traffic demand dem; sent through any
path source src; must be equal to that in the path destination
dst;. Our objective is to minimize the network delay D, the link
utilization LU and the packet loss PL, while the total demands
are always satisfied. Note that 7, v, are the weighting factors
related to the degree of importance of D, LU and PL, respec-
tively. These latters are defined as follows:

1
D=— d(u,v) (11)
ne (H%QE
1
LU = —
. > LUwy (12)
(u,v)eE

1
PL=— dem; — FStuv 13
ne Z(em Z (fis s)) ()

fieF (u,v)eP,c,.

The formulated problem can be considered as a multi-
commodity flow problem, which are known to be NP-hard.
Furthermore, it is assumed to be solved by the SDN Controller
for each incoming flow. However, as the size of the network and
the number of flows increase, the computational complexity in-
creases exponentially. Clearly, such approach is not feasible in
practice, since it generates high overhead due to the frequent
updates of the flow tables.

To cope with this problem, and reduce the computation time
and complexity, we propose here a simple yet efficient heuristic
algorithm, called DTPRO algorithm. DTPRO allows a high-
quality traffic allocation, while minimizing the total network la-
tency and packet loss. Algorithm 1 shows the detail of the pro-
posed heuristic. It takes as inputs the current and predicted Traf-
fic Matrix (TM and T'M, respectively), the current and predicted
matrix of link delays (D and D, respectively), and the matrix
of link delays threshold 7S that defines the maximum tolerable
delays of each link (u,v). It is worth noting that, the DTPRO
is executed for each incoming flow as well as when detecting a
congestion.

Our algorithm works as follows. At the beginning of each
time epoch T pgy, it requests the DQN agent to get the opti-
mal link weights Links_Weights, then it updates the network
configuration (lines 2-6). It is worth noting that, the 7 pgy cor-
responds to the time interval to apply a new routing strategy
obtained from the DQN agent. Moreover, to show the impact of
using different network configurations or routing strategies, this
parameter is initialized to 1 hour. However, this parameter can
be modified by the network administrator in the order of days or
weeks.

Thereafter, since we measure continuously current and pre-
dicted Traffic Matrix, if a congestion occurs, in which the cur-
rent or predicted link delay is greater than a certain threshold
or the link is overloaded (line 8), our algorithm finds the flow
rule R corresponding to the flow with maximum size in the con-
gested path CP. Then, it sorts all other paths (denoted by S P)
by the delay matching the flow rule R (lines 9-12). In this case,
the flow rule R must be rerouted to a path in S P (lines 13-19).
If no path in S P can accommodate the corresponding flow size,
the flow is discarded and our algorithm goes to the next flow
in the CP (line 20). Finally, it adjusts the parameters («,,7)
of the DQN reward function r, so that the DQN agent avoids a
similar transition (line 22). The Ad just_Reward function (lines
25-31) adjusts the parameter 8 (equation. 5) if a link is delayed
or predicted to be delayed. On the other hand, the @ and y pa-
rameters are adjusted when a link is overloaded or is predicted
to be overloaded.

4. Performance Evaluation

In this section, we evaluate the efficiency of our proposed
approach. We start by presenting our environmental setup.
Then, we present the experimental results.

Algorithm 1: DTPRO algorithm

1: procedure (G(V,E,C),TM ,TIT/I)

2 schedule_every (T pon)

3 Links Weights < get optimal Weights
4: from DON agent

5: Update_Net_Config(Links_Weights)

6 end schedule

7 t<0 -

8 while (d(,,) > TS (u,v) OF diy,v) > TS . v) OF
LU(M’ v) > MLU(M, v)) do

9: CP Get_Congested_Path(u,v)
10: F Sorted_Flows_Priority(CP,9)
11: R Flt].flow
12: SP Sorted_Backup_Paths(R)
13: for each path p € SP do
14: if p can route R then
15: Install Rule(p, R)

16: Remove_Rule(CP,R)
17: Break

18: end if

19: end for

20: te—t+1

21: end while

22: Ad just_Reward(a,3,y)

23: end procedure

24: W 1072, a,B,y < 1071

25: procedure Apjust REWARD(a, 3, Y)

26: if d(uy‘,) >TS (u,v) OF d(u’ vy > TS (u,v) then
27: B—pL+w

28: if LU(H’ v) > MLU(u’ V) then

29: a a+ w

30: vy y+w

31: end procedure

4.1. Experimental setup

First, we implement the Network Measurement module (La-
tency Measurement and Statistics) as well as the Proactive For-
warding module as cooperating modules for the Java-based
OpenFlow controller ONOS [12], based on our previous frame-
work developed in [36]. Then, the DQN agent and the Traffic
Prediction are implemented based on Python', which are dock-
erized on Docker? Containers. Note that the DQN agent and the
Traffic Prediction interact with the Proactive Forwarding mod-
ule based on the ONOS Northbound API. We used the network
emulation tool OpenvSwitch [15] to implement the experimen-
tal topology illustrated in Fig. 7. To generate traffic among
hosts, we used Iperf 3_ which consists of a set of flows between
a set of hosts (4, ..., hg). The Network Measurement mod-
ule collects statistics (network latency, throughput, and per-flow
size) from the devices and reports those time-series statistics to

Uhttps://www.python.org/
2https://wwwidocker.com/
3https://iperf.fr/

the InfluxDB* database each time interval Ti which is equals
to 5 seconds. The link-labels in Fig. 7 show the capacity C for

each link.

We built and trained the DQN model by using the Tensor-
flow® library, by deploying separately two NNs, one for Q-
Network and the other for Q-target, which have the same ar-
chitecture. The parameters of the DQN are illustrated in table
L. In particular, both the Q-Network and the Q-target consists
of 2 dense layers. In order to show the impact of the action
space size, which corresponds to the number of network config-
urations for each input traffic matrix state, we trained separately
three DQN agents with 24, 60 and 120 network configuration,
respectively. The state vector size is 48, which corresponds to
the input shape of each NN, and the outputs of the NNs for each
training correspond to the actions space sizes 24, 60 and 120,
respectively. Consequently, the architectures corresponding to
each training are (48, 24), (48, 60) and (48, 120). During the
training phase, we adopt e-greedy method as action selection
method and the final exploration rate is fixed at 0.2, while the
Q-target parameters are copied from the Q-Network every 300
steps. The learning rate and discounted factor are, respectively,
0.01 and 0.95. Finally, as we trained three different DQN agents,
each training corresponds to 120 episodes.

L

S

Figure 7: Emulated Topology

Table 1: DQN parameters for DTPRO

Name Values
Dense layers 2
State size 48
Action space size / Output shape 24.,60,120
Q-target network update frequency 300
Learning rate 0.01
Discounted factor 0.95
Mini-batch size 32
Final exploration rate 0.2
Memory size 500 units
Number of episodes 120
Episode capacity 360000 steps

On the other hand, we built and trained the LSTM model
by using Keras Library®, where the number of dense layers is

4https://Www.inﬂuxda’[a.com/time—series—platform/inﬂude/
5https://WWW.tensorﬂow.org/
6https://kt:—:ras.io/

2. We used Adam [37] for learning the NN parameters with a
learning rate 0.01. We used Relu as activation function. The
LSTM method outputs a predicted vector. To this end, we re-
ferred to the traffic matrices used for DQN, by dividing them
into multiple input/output samples and the size of the output
sample corresponds to the prediction interval Pi.

Note that, in order to improve the performances, the train-
ing of ARIMA, LSTM and DQN models is done offline. These
trained models are then saved in such a way that only one step is
needed to get the optimal path from the DQN agent or the pre-
dicted traffic from LSTM or ARIMA. In parallel, these models
continue to learn from these new steps.

4.2. Prediction accuracy evaluation

To quantitatively evaluate the overall performance of our
prediction models, we use the Root Mean Square Error
(RMSE), defined as the difference between the predicted val-
ues and the actual values by computing the root of the average
sum of squared errors. It can be expressed as follows:

RMS E(model) = (14)

where X; and x; are, respectively, the normalized predicted
value and the normalized actual value for the same time interval
and N corresponds to the total number of predictions or the size
of the prediction interval Pi, which is initialized to 5 seconds.

4.3. Experimental results

In order to evaluate the performance of our proposed DT-
PRO solution, we first select the best predictions models to
the network traffic evolution. Then, we evaluate the DQN
model, while using different parameters and configurations and
finally, we compare the proposed solution with different routing
schemes, while taking into account the obtained traffic predic-
tions models.

First, we estimate the best ARIMA model to the proposed
network traffic evolution, which is done by estimating the
ARIMA parameters [34] : the order of the AR term (p), the or-
der of the MA term (¢g) and the number of differencing needed
to make the time series stationary (d). The time series should
be stationary by having values around a defined mean. How-
ever, the network traffic could have non-stationary evolution
over time. To this end, differencing the time series is a one
way to make it stationary and the right order of differencing
corresponds to (d). In our experiments, we referred to the ACF
plot [34] for differencing and the Augmented Dickey Fuller
(ADF) [38] to check if the series is stationary. In this way,
while the differenced series are not stationary, we increment d.
The order of the AR term p corresponds to the number of lags
(Xt~ 1,X;=2,...,X;— p) that must be used as predictors. In this
work, we referred to the PACF [34] to estimate the parameter p,
by checking if there is a correlation between a specific lag and
the time series. Finally, the parameter ¢ corresponds to the num-
ber of lagged prediction errors needed in the ARIMA model and

similar to PACF to estimate the parameter p, we used the ACF
to estimate the parameter g.

Fig. 8 compares the prediction and forecasting accuracy of
a set of best ARIMA models to our network traffic, using the
RMSE metric. The parameters are estimated based on meth-
ods presented above. In this way, the forecasting term is used
to indicate the prediction of future values given past values of
time series, while the prediction term is used to do estimation
whether in future, current or past. From this figure, we can see
that models with d = 1 give a good prediction and forecasting
accuracy regarding the network traffic. The evolution can be
repeated over time. We hence refer to this model with best pre-
diction accuracy as the one with (p = 9,d = 1,¢q = 1). This
model will be used in our next experiments.

RMSE of ARIMA models
1.4

mm Predict
1.3 Forcast
1.2 4
114

1.0 A

RMSE

0.9 1

0.8 q

0.7 1

0.6 -

(9,1,1)
(8,1,2)
(8,1,5)
(10,1,2)
(10,1,6)
(10,1,11)
8,2,2)
6,2,3)
(10,2,1)
(8,2,9)

Figure 8: Selecting ARIMA models while varying the p, d, ¢ parameters

Regarding the LSTM model, in order to ensure that its es-
timation accuracy is good enough and to avoid the over-fitting
problem when the network is trained, it is required to find the
best number of neurons and the number of training epochs. To
this end, we plot in Fig. 9 the average of the Loss function and
the average of RMSE under different number of training epochs.
In this way, we measure both the RMSE and Loss function for
each 500 epochs. For the sake of simplicity, we fixed the number
of nodes to 100 nodes. In this experiment, we decided about the
number of training epochs when the Loss function converges
and starts to be stable, which is ensured from this figure by
both the RMSE and Loss function. We can see also that both
the RMSE and Loss function start to be stable and achieve a
good estimation accuracy when the number of training epochs
is 9000. The next experiment will focus on identifying the num-
ber of hidden nodes.

As stated earlier, the number of hidden nodes of the LSTM
network is crucial to achieve a stable network configuration. To
this end, we plot in Fig. 10 the average of the Loss function and
the average of RMSE under different number of hidden nodes
by increasing the number of hidden nodes by 10 for each mea-
surement. Similar to the previous experiment, we decided about
the number of hidden nodes when the Loss function converges
and starts to be stable. We can clearly see from that figure that
both the Loss function and the RMSE converge and start to be

10

- Prediction accuracy

—— RMSE LOSS

1.0

0.8 1

0.6

RMSE

A

T
2000

0.4 4

\‘__A

M

T T
4000 6000
Number of training epochs

0.2 1

0.0

T T
8000 10000

Figure 9: LSTM Loss and RMSE under different number of training epochs

stable and achieve a good estimation accuracy when the number
of hidden nodes is 150.

s Prediction accuracy

—— RMSE LOSS

1.0

0.8

0.6

RMSE

0.4 4

*1 \-\v’—\—v——w
0.0 T
25

T T T T T T
75 100 125 150 175 200

Number of hidden nodes

T
50

Figure 10: LSTM Loss and RMSE under different number of hidden nodes

From the results obtained in the two previous experiments,
we decided about the best LSTM model, which corresponds to
9000 training epochs and 150 hidden nodes, alongside to the
initial parameters presented above in this section.

On the other hand, the LR parameters A and y, as indicated
in equation (3), are estimated online, which means that when the
prediction is triggered, the Traffic Prediction based LR looks
for the N previous measurement, to identify the parameters A4
and y, then it predicts the future evolution of network traffic by
using the equation (3). In Fig. 11, we plot the variation of A, u
parameters while training the LR prediction model. We can see
that these parameters are dynamically changed while changing
the data intervals.

Fig. 12 compares the prediction accuracy of the different
methods presented earlier (i.e., LSTM, ARIMA and LR) by
measuring the impact of the prediction interval Pi on the RMSE
metric, which is increased by 3 seconds for each measure-
ment. Recall that the ARIMA model used in this experiment is
(p=9,d =1,q = 1) and the used LSTM model is the one with
9000 training steps and 150 hidden nodes and the LR model is
dynamically estimated.

From Fig. 12, we can see that the RMSE of LSTM is quasi-
stable when increasing the prediction interval Pi. We can see
also that ARIMA achieves a clear stability when increasing the
prediction interval Pi, due to the nature of the network traffic,

(a) A parameter (b) g Parameter

60 0.4
A ——
40 0.2 4
< 204 3 0.0
—0.2 4
04
T T T T T 0.4 = T T T T
0 5 10 15 20 0 5 0 15 20

Data interval number Data interval number

Figure 11: LR parameters A, u under different data intervals

Prediction accuracy

2.5
— LR ARIMA —— LSTM
2.0 1
w 1.5 +
wn
=
€ 104
> W
0.0 T T T T T T T
0 10 20 30 40 50 60 70

Prediction interval (s)

Figure 12: RMSE of LSTM, ARIMA and LR prediction methods

which is periodic in a certain level. However, the increase in
the LR RMSE is clearly visible, which can be interpreted as the
increasing of the distance between the predicted points in the
line A.f + i and the dispersed traffic points. Furthermore, we can
see that ARIMA outperforms LR due to its capacity to estimate
the correlation with the previous lags of the time series. Finally,
it is clearly visible that LSTM outperforms all others prediction
methods due to its capacity to learn long term dependencies. In
what follows, we determine the best DQN model for the pro-
posed network traffic evolution.

(a) Mean Cost

— act24 — act6o actl20
D 10
[=]
)
c
3 51
=
04 : T . : i i
0 20 40 60 80 100 120
Number of episodes
. (b) Mean Reward
° act24 — act60 — actl20
[
-4
= ﬁ-/

0 -7 T T
0 20

T
40 60 80
Number of episodes

T T
100 120

Figure 13: Impact of varying the action space size while training the DQN agent

11

Recall that, the principal idea of the proposed DQN model is
to learn the best policy mapping the set of states (i.e., traffic ma-
trices) to the set of actions (i.e., network configurations), while
maximizing a numerical reward defined in equation (5). In this
way it is required to find the best action structure, in order to
ensure a good estimation accuracy of the DQN model, while
avoiding the over-fitting problem when the DQN is trained. To
this end, we plot in Fig. 13 the evolution of the average of the
Loss function and the average of the reward function under dif-
ferent number of training episodes and the three action space
sizes (24, 60, 120). The DQN is trained based on the initial pa-
rameters as stated earlier in this section. In the experiment, we
decide about the best action structure when the Loss function
converges and the reward function starts to be stable.

From Fig. 13 we can see that the Loss function for the three
action space configuration converge. However, we can observe
from Fig. 13 (b) that the more we increase the action space ca-
pacity, the more the reward function is increased. The increas-
ing reflects the existence of appropriate new network configu-
rations (i.e., network paths), so the queues of nodes could be
unloaded and lead to decreasing both packet loss and network
latency. As a result from this experiment, we decide to take the
action space size as 120.

As mentioned in the equation (5), the reward function is re-
lated to Data rate (W), Network latency (L) and Packet Loss
(PL) with parameters «, 8 and vy, respectively. These parameters
play an important role to determine, in one side, the importance
of each factor and on the other side the convergence of the Loss
function. To this end, we plot in Fig. 14 the evolution of the
average of the Loss function under different number of train-
ing episodes, while changing the reward function parameters.
From Fig. 14 we can see that, the less we give importance to
both packet loss and network latency, the more the Loss function
converges and gives small values. As a result, we decide that the
best DQN model corresponds to the one with action space size
120, and the reward function parameters (@ = 0.3, =1,y = 1).
In the next experiments, we assess the performance of our pro-
posed heuristic while using the aforementioned DQN model and
prediction methods.

Mean Cost
30

— a=0.5,8=03,y=03
— a=04,8=06,y=06
a=038=1y=1

25 A

20 A

15

Mean Cost

10 4

T T T T
40 60 80 100 120

Number of episodes

o+
~N
=]

Figure 14: Impact of varying the reward function parameters «, 3,y while train-
ing the DQN agent

In order to evaluate the performance of our proposed so-
lution DTPRO, which corresponds to combining the best ob-

tained DQN and LSTM models, we compare it with the follow-
ing baselines:

o Hop-count (HC) based routing, which is the default rout-

ing metric used by ONOS.

Reduced DTPRO by using the obtained DQN model for
routing optimization and at the same time disabling the
Traffic Prediction module.

DTPROV1, which consists in using the obtained DQN
model for routing optimization and the obtained ARIMA
model (instead of LSTM) for Traffic Prediction.

DTPROV2, which consists in using the obtained DQN
model for routing optimization and LR for Traffic Pre-
diction.

Fig. 15 plots the packet loss, the delay and the link utiliza-
tion for all schemes (DTPRO, DTPROv1, DTPROv2, Reduced
DTPRO, and HC). We can see that the HC approach causes
obviously considerable packet loss and increases the link uti-
lization, since all the flows are forwarded to shortest paths that
shares the same link with minimum capacity. On the other hand,
when using the DQN agent without prediction (i.e., the Reduced
DTPRO scheme), considerable packet loss is still observed, in-
creasing thus the link utilization, due to the incapacity of DQN
to predict the future evolution of network traffic. Finally, we
can see that DTPRO outperforms all other schemes, especially
DTPROvV1 and DTPROV2, where the packet loss, delay and link
utilization are decreased. This is related to the high accuracy of
LSTM in predicting network congestion, compared to ARIMA
and LR prediction methods.

We plot in Fig. 16 the number of predicted congestion, while
combining the DQN with different traffic predictions methods.
It is worth noting that, the congestion happens when the net-
work latency or traffic load exceed a certain threshold which is
fixed to 80% of each link capacity. In the proposed network
traffic evolution from 3000 states defined above in this section,
we force certain states to overload the network for some spe-
cific network configurations. From this figure, we can see that
LSTM outperforms others methods due to its high accuracy for
predicting the future evolution compared to ARIMA and LR.

To improve the Quality of Experience (QoE), it is necessary
to provide wider varieties of services than just a single class
of best-effort service [39]. To this end, we propose to eval-
uate our DTPRO approach with and without priority accord-
ing to the following simulation scenario: we use initially spe-
cific paths for Latency Sensitive Application (LSA), Through-
put Sensitive Application (TSA) and Packet Loss Sensitive Ap-
plication (PLSA). Then, we force these paths to be delayed and
congested. Based on a specific set of priorities (p1, p2, p3),
Fig. 17 compares the following baselines:

e DTPRO_Flow_Size corresponds to the proposed DTPRO
heuristic which sorts the traffic flows according to their
size to reroute the traffic once there is a congestion.

12

(a) Packet Loss

0.5
g 0.4 1 Packet Loss
w
w03+
-
4 0.2 1
3 0.1
0.0 T ; T T T
HC Reduced DTPRO DTPROv1 DTPROV2 DTPRO
(b) Latency
s I Latency
(%]
E
>
o
3
=]
5 R [| | | =l
HC Reduced DTPRO DTPROv1 DTPROV2 DTPRO

(c) Link Utilization

Link Utilization

LU (MB/s)

HC Reduced DTPRO DTPROvl DTPROV2 DTPRO

Figure 15: Packet Loss, Delay and Link utilization under rule placement algo-
rithm based on DQN with and without prediction

Number predicted congestion
200

Emm Number predicted congestion
157
N ii
102
o s
EZL N lI II .B.3
50 4
0 l. l.
LSTM ARIMA LR

Figure 16: Number of predicted congestion while combining the DQN with
different traffic predictions methods

e DTPRO_Priority corresponds to the proposed DTPRO
heuristic which sorts the traffic flows according to their
priority to reroute the traffic once there is a congestion.

The set of priorities are selected as follows:

e pi: p(LSA) =10, p(TSA) =5, p(PLSA) =1
e pr: p(LSA) =5, p(TSA) =10, p(PLSA) = 1
e p3: p(LSA) =1, p(TSA) =5, p(PLSA) = 10

From Fig. 17 (a) we can see that, when giving more pri-
ority to LSA in p;, DTPRO_ Priority performs better than DT-
PRO_Flow _Size in decreasing the E2E Delay. However, when
giving more priority to TSA in p, and PLSA in ps the E2E De-
lay for both schemes is close to each other. On the other hand,

(a) E2E Delay

EEm DTPRO_Flow_Size
N DTPRO_Priority

(b) E2E Throughput

H DTPRO_Flow_Size
I DTPRO_Priority

Delay (ms)
Throughput (MB/s)

Figure 17: DTPRO with and without priority

we can see from Fig. 17 (b) that, when giving more priority
to TSA in p, or PLSA in p3, DTPRO_Priority performs bet-
ter than DTPRO_Flow_Size in decreasing the E2E Throughput.
However, when giving more priority to LSA in p;, the perfor-
mances for both schemes are close with no improvement in the
E2E Throughput. The reason of improving the performances
is that the flows corresponding to these application types in the
congested paths are routed first. This allows the DTPRO ap-
proach to be used in a context of Network Slicing where each
slice is dedicated for specific traffic types.

(a) Nbr of Predicted

Congestion (b) E2E Delay (c) E2E Rate
175
Nbr_cong —e— Delay (ms) os —i— Rate (MB/s)
170 4 3.0 A -
9.0
2.5
165 - 8.5
2.0
8.0
160 A
151 7.5 1
155 - +—————— B e e 70—
Lo CcCC oo Lo cCc o cco L c oo
NSO 0Ny T NS WO 0y ST W00y T
oy o~ =~

Figure 18: Impact of varying the Tpoy time interval on the network perfor-
mance

Fig. 18 plots the impact of varying the Tpoy time interval
on the network performance (i.e., Number of Predicted Network
Congestion, the E2E Delay and the E2E Throughput or Rate).
This parameter is varied in the set of intervals: [1h, 2h, 4h, 6h,
8h, 12h, 24h]. Recall that, the Tpon parameter corresponds to
the time interval to apply a new routing strategy obtained from
the DQN agent.

From this figure we can observe that both the Network Con-
gestion and E2E throughput increase with the increase of the
time interval Tpoy. On the other hand, the E2E Delay decreases
with the increase of Tpgy. The reason is that the DQN state
space increases with the increasing of the Tpgy time interval,
where new transitions and new network configurations are de-
tected. Moreover, the LSTM model in the Traffic Prediction
module is able to predict new traffic evolutions, which leads to
predict new network congestion and rerouting the traffic more
efficiently, decreasing thus the E2E Delay and increasing the
E2E Throughput.

Finally, Fig. 19 shows a comparative analysis between the

13

(c) E2E PL (%)

10(a) E2E Rate (MB/s) (b) E2E Delay (ms)

1.4

1.3

1.2

11

TOL {

TOL
DRL-R
DQELR
DTPRO
DRL-R

[=4
—
w
o
[a]

DQELR A
DTPRO A
DRL-R A
DTPRO

Figure 19: Comparative analysis between DTPRO, TOL, DRL-R and DQELR

proposed approach DTPRO and three main approaches indi-
cated in the related works: 1) Deep Reinforcement Learning-
based Routing (DRL-R) [31], which represents a traffic opti-
mization solution based on DQN, 2) Traffic Optimization based
on LSTM (TOL) [28], which corresponds to the use of the
LSTM RNN framework for predicting the network traffic ma-
trix, and 3) Deep Q-Network-based Energy and Latency-aware
Routing (DQELR) [30], which is a routing optimization solu-
tion based on DQN.

As the design of DTPRO is modular, in which the knowl-
edge plane consists of two separated modules: i) routing op-
timization based on DQN and ii) Traffic Prediction based on
LSTM, the comparison of our proposed approach with DRL-R
and DQELR is done by deactivating the traffic prediction mod-
ule and using only the routing optimization module. On the
other hand, for the TOL approach, we used only the Traffic Pre-
diction module.

We used the same experimental topology, shown in Fig. 7,
for all approaches. For DRL-R [31], the DQN Q-Network and
Q-Target consist of two hidden layers with 30 neurons. The
Relu corresponds to the activation function and the learning rate
is fixed to 0.001, as proposed in [31]. For the DQELR model
[30], the input layer consists of four nodes. Three hidden layers
with 300, 150 and 15 nodes, respectively, are also used. Finally,
the TOL approach consists in using the LSTM model in [28].
All these models are trained based on the aforementioned pa-
rameters. Then, we measured the E2E Delay, the E2E Through-
put and the E2E Packet Loss for each approach for a time inter-
val of 24h, as shown in Fig. 19.

From this figure, we can see that the TOL approach causes
obviously more packet loss and delay, and provides less network
throughput compared to all other approaches. This can be ex-
plained by the fact that, this approach does not take into account
the best routing strategy, increasing thus the number of conges-
tion links and leading to a new network behavior with low pre-
diction accuracy. Second, we can see that DRL-R and DQELR
perform better than TOL since both approaches consist in defin-
ing routing strategies by training DQN agents, while maximiz-
ing certain rewards related specifically to network throughput
and delay. On the other hand, DRL-R performs slightly bet-
ter than DQELR, since adding DQN based routing decisions to
packets in the DQELR approach impacts the performances and
decentralizes the routing decisions, which is contradictory to the

SDN design. Finally, the superiority of our proposed DTPRO
method over all other approaches, in terms of E2E Throughput,
E2E Delay and E2E Packet Loss, is clearly visible. The reasons
are: i) different from DRL-R and DQELR, the action of our pro-
posed DQN model is to modify the links weights vector, which
is equivalent to defining all flow paths in one action instead of
defining the path for each incoming flow, as defined in DRL-R
and DQELR, ii) the TOL approach predicts only the traffic ma-
trix without considering the routing strategy, and iii) combining
the DQN agent with the traffic prediction based on LSTM al-
lows unseen transitions from the DQN agent to be predicted by
the traffic prediction module by considering the previous experi-
ences in the DQN agent and at the same time the future behavior
of network traffic in LSTM.

5. Conclusion

In this paper, we presented a method for rules placement in
Software-defined Networks based on real-time statistics mea-
surement and traffic prediction, which are implemented sepa-
rately as a cooperating modules on both the Control Plane and
the KP layers. By taking advantage of the KP, the network
routing is dynamically optimized by deploying a DQN agent
that dynamically determines the optimal policy mapping the set
of states (Traffic Matrices) to the set of actions (changing the
vector of link weights). In addition, we proposed to deploy a
Traffic Prediction module based on the well known prediction
methods LSTM, in order to avoid congestion. To this end, we
have mathematically formulated the QoS-aware routing prob-
lem as a LP, where the corresponding optimization problem is
to minimize the total network latency, packet loss and link uti-
lization. To solve this optimization problem, a simple yet effi-
cient heuristic algorithm was proposed and implemented, called
Deep Q-Network and Traffic Prediction based Routing Opti-
mization (DTPRO) that dynamically interacts with the external
DQN agent module to get the set of link weights, and the Traffic
Prediction to avoid congestion. Experimental results using the
ONOS controller and OpenvSwitch, showed that the DQN agent
is able to learn a mapping between the Traffic Matrix state and
the set of link weights to route the traffic flows. However, DQN
itself is not well adapted for predicting the future evolution of
the network traffic. By combining DQN with Traffic Prediction,
we showed that network latency, packet loss and link utilization
can be decreased. Moreover, we showed that LSTM achieves a
high estimation accuracy, which outperforms traditional predic-
tion methods, and decreases both E2E delay and packet loss.

As future work, we plan to further exploit our solution in
the context of distributed SDN controllers, where their number,
locations as well as the associated set of data plane switches can
be optimized by deploying a DQN agent.

Acknowledgement

This work was partially supported by the FUI SCORPION
project (Grant no. 17/00464).

14

References

[1] ONF, Software-defined networking: The new norm for networks, https:
//www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf, [Online]
(April 2012).

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, Openflow: Enabling innovation in
campus networks, Computer Communication Review 38 (2008) 69-74.
doi:10.1145/1355734.1355746.

J. Hyun, J. W. Hong, Knowledge-defined networking using in-band net-
work telemetry, in: 2017 19th Asia-Pacific Network Operations and Man-
agement Symposium (APNOMS), 2017, pp. 54-57.

Q. Pham Tran Anh, Y. Hadjadj-Aoul, A. Outtagarts, Deep Reinforce-
ment Learning Based QoS-Aware Routing in Knowledge-Defined Net-
working: Potentiale und Grenzen in der Aus- und Weiterbildung stu-
dentischer Tutorinnen und Tutoren, 2019, pp. 14-26. doi:10.1007/
978-3-030-14413-5_2.

R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-
Solano, O. Caicedo Rendon, A comprehensive survey on machine learn-
ing for networking: Evolution, applications and research opportunities,
Journal of Internet Services and Applications (05 2018). doi:10.1186/
s13174-018-0087-2.

H. Feng, Y. Shu, Study on network traffic prediction techniques, in: Pro-
ceedings. 2005 International Conference on Wireless Communications,
Networking and Mobile Computing, 2005., Vol. 2, 2005, pp. 1041-1044.
doi:10.1109/WCNM.2005.1544219.

J. Boyan, M. Littman, Packet routing in dynamically changing networks:
A reinforcement learning approach, Advances in Neural Information Pro-
cessing Systems 6 (10 1999).

S. Khodayari, M. J. Yazdanpanah, Network routing based on reinforce-
ment learning in dynamically changing networks, in: 17th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI’05), 2005,
pp. 5 pp.—366. doi:10.1109/ICTAI.2005.91.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, M. Riedmiller, Playing atari with deep reinforcement learning (2013).
arXiv:1312.5602.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
D. Hassabis, Human-level control through deep reinforcement learning,
Nature 518 (2015) 529-33. doi:10.1038/nature14236.

E. H. Bouzidi, A. Outtagarts, R. Langar, Deep reinforcement learning
application for network latency management in software defined net-
works, in: 2019 IEEE Global Communications Conference (GLOBE-
COM), 2019, pp. 1-6. doi:10.1109/GLOBECOM38437.2019.9013221.
P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, et al., Onos: towards
an open, distributed sdn os, in: Proceedings of the third workshop on Hot
topics in software defined networking, 2014, pp. 1-6.

S. Kaur, J. Singh, N. Ghumman, Network programmability using pox con-
troller, 2014. doi:10.13140/RG.2.1.1950.6961.

SDN Controller Rye, https://www.opennetworking.org/
images/stories/downloads/sdn-resources/white-papers/
wp-sdn-newnorm. pdf, [Online].

B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, S. Shenker, Ex-
tending networking into the virtualization layer., in: Hotnets, 2009.

A. Affandi, D. Riyanto, I. Pratomo, G. Kusrahardjo, Design and imple-
mentation fast response system monitoring server using simple network
management protocol (snmp), in: 2015 International Seminar on Intelli-
gent Technology and Its Applications (ISITIA), 2015, pp. 385-390.
Cisco NetFlow, http://www.cisco.com/en/US/products/ps6601/,
[Online].

sflow, https://sflow.org/, [Online].

S. R. Chowdhury, M. F. Bari, R. Ahmed, R. Boutaba, Payless: A low cost
network monitoring framework for software defined networks, in: 2014
IEEE Network Operations and Management Symposium (NOMS), 2014,
pp. 1-9.

N. L. M. van Adrichem, C. Doerr, F. A. Kuipers, Opennetmon: Network
monitoring in openflow software-defined networks, in: 2014 IEEE Net-
work Operations and Management Symposium (NOMS), 2014, pp. 1-8.

[2]

[3]

[4]

[51

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]
(35]

(36]

[37]
(38]

(39]

Ming-Hung Wang, Shao-You Wu, Li-Hsing Yen, Chien-Chao Tseng,
Pathmon: Path-specific traffic monitoring in openflow-enabled networks,
in: 2016 Eighth International Conference on Ubiquitous and Future Net-
works (ICUFN), 2016, pp. 775-780.

M. Azizi, R. Benaini, M. B. Mamoun, Delay measurement in openflow-
enabled mpls-tp network, Modern Applied Science 9 (3) (2015) 90.

C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, H. V. Madhyastha,
Software-defined latency monitoring in data center networks, in: Interna-
tional Conference on Passive and Active Network Measurement, Springer,
2015, pp. 360-372.

M. Reza Parsaei, R. Mohammadi, R. Javidan, A new adaptive traffic engi-
neering method for telesurgery using aco algorithm over software defined
networks, European Research in Telemedicine / La Recherche Européenne
en Télémédecine 6 (11 2017). doi:10.1016/j.eurtel.2017.10.003.
Y. Han, S. Seo, J. Li, J. Hyun, J. Yoo, J. W. Hong, Software de-
fined networking-based traffic engineering for data center networks, in:
The 16th Asia-Pacific Network Operations and Management Symposium,
2014, pp. 1-6. doi:10.1109/APNOMS.2014.6996601.

P. Cortez, M. Rio, M. Rocha, P. Sousa, Internet traffic forecasting using
neural networks, in: The 2006 IEEE International Joint Conference on
Neural Network Proceedings, 2006, pp. 2635-2642.

M. Barabas, G. Boanea, A. B. Rus, V. Dobrota, J. Domingo-Pascual, Eval-
uation of network traffic prediction based on neural networks with multi-
task learning and multiresolution decomposition, in: 2011 IEEE 7th In-
ternational Conference on Intelligent Computer Communication and Pro-
cessing, 2011, pp. 95-102. doi:10.1109/ICCP.2011.6047849.

A. Azzouni, G. Pujolle, A long short-term memory recurrent neural net-
work framework for network traffic matrix prediction (2017). arXiv:
1705.05690.

C. Yu, J. Lan, Z. Guo, Y. Hu, Drom: Optimizing the routing in software-
defined networks with deep reinforcement learning, IEEE Access 6 (2018)
64533-64539. doi:10.1109/ACCESS.2018.2877686.

Y. Su, R. Fan, X. Fu, Z. Jin, Dgelr: An adaptive deep g-network-based
energy- and latency-aware routing protocol design for underwater acoustic
sensor networks, IEEE Access 7 (2019) 9091-9104.

W. Liu, Intelligent routing based on deep reinforcement learning in
software-defined data-center networks, in: 2019 IEEE Symposium on
Computers and Communications (ISCC), 2019, pp. 1-6.

M. M. Tajiki, B. Akbari, N. Mokari, Qrtp:qos-aware resource realloca-
tion based on traffic prediction in software defined cloud networks, in:
2016 8th International Symposium on Telecommunications (IST), 2016,
pp. 527-532. doi:10.1109/ISTEL.2016.7881877.

Kavitha S, Varuna S, Ramya R, A comparative analysis on linear regres-
sion and support vector regression, in: 2016 Online International Confer-
ence on Green Engineering and Technologies (IC-GET), 2016, pp. 1-5.
P. Brockwell, R. A Davis, An Introduction to Time Series and Forecasting,
Vol. 39,2002. doi:10.1007/978-1-4757-2526-1.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural compu-
tation 9 (1997) 1735-80. doi:10.1162/neco.1997.9.8.1735.

E. H. Bouzidi, D. Luong, A. Outtagarts, A. Hebbar, R. Langar, Online-
based learning for predictive network latency in software-defined net-
works, in: 2018 IEEE Global Communications Conference (GLOBE-
COM), 2018, pp. 1-6. doi:10.1109/GLOCOM.2018.8648063.

D. Kingma, J. Ba, Adam: A method for stochastic optimization, Interna-
tional Conference on Learning Representations (12 2014).

R. Mushtaq, Augmented dickey fuller test, SSRN Electronic Journal (08
2011). doi:10.2139/ssrn.1911068.

S. Shenker, Fundamental design issues for the future internet, IEEE Jour-
nal on selected areas in communications 13 (7) (1995) 1176-1188.

15

EL Hocine Bouzidi

received the engineering degree in com-
puter science from the National School
of Computer Science of Algiers (ESI), in
2010, and the M.Sc. degree in computer
science in safe embedded and mobile sys-
tems from le CNAM, France, in 2016. He
is currently pursuing the Ph.D. degree in telecom engineering
with Nokia Bell Labs and Paris Est Marne la Vallée University,
France. He joined National School of Computer Science of Al-
giers (ESI), as a System and Network Engineer, from 2012 to
2015. He joined Orange Lab, France, for his master’s degree in-
ternship, as a software developer. His research interests include
5G networks, networks resource management, software defined
networks (SDN), and network function virtualization (NFV).

Abdelkader Outtagarts

IEEE senior member is a senior re-
searcher and technical leader in NFV and
SDN orchestration, machine learning and
automation in Nokia Bell Labs. Abdelka-
der received the MSc and Ph.D. degrees
from the INSA de Lyon in France, in
1990 and 1994 respectively, on automa-
tion of energy systems. In 1999, he receives a MSc on software
engineering from Ecole de Technologie Supérieure of Montreal
in Canada. His professional experience of over 20 years, on in-
formation systems and telecommunications, energy efficiency,
software engineering, cloud computing, data mining, NFV mi-
cro services and SDN orchestration and automation, is mainly
acquired in France and Canada in R&D teams (Alcatel-Lucent,
Nextenso, Hydro-Quebec, UTILICASE and SCII Technology),
in research laboratories in Lyon (INSA), Montreal (ETS, CRIM)
and Nozay (Nokia Bell labs).

-

Rami Langar

(Member, IEEE) received the M.Sc. degree
in network and computer science from Uni-
versity Pierre and Marie Curie (now Sor-
bonne University) in 2002, and the Ph.D. W]
degree in network and computer science Q“‘ ‘
from Telecom ParisTech, Paris, France, in ‘ "

2006. He was a Post-Doctoral Research Ak
Fellow with the School of Computer Science, University of
Waterloo, Waterloo, ON, Canada, from 2006 to 2008, and an
Associate Professor with LIP6, University Pierre and Marie
Curie, from 2008 to 2016. He is currently a Full Profes-
sor affiliated with University Gustave Eiffel (France) and ETS-
Montréal (Canada). He is involved in many European and Na-
tional French research projects, such as ANR 5G-INSIGHT,
ANR ABCD, FUI SCORPION, FUI ELASTIC Networks, FUI
PODIUM, MobileCloud (FP7), GOLDFISH (FP7), etc. His re-
search interests include resource management in future wireless
systems, cloud-RAN, network slicing in 5G/5G+/6G, software-
defined wireless networks, and mobile cloud offloading. He was

a co-recipient of the Best Paper Award from the IEEE/IFIP In-
ternational Conference on Network and Service Management
2014 (IEEE/IFIP CNSM 2014). He was the Chair of the IEEE
ComSoc Technical Committee on Information Infrastructure
and Networking (TCIIN) from January 2018 to December 2019.

Raouf Boutaba

(M’93-SM’01-F’12) received the M.Sc.
and Ph.D. degrees in computer science
from the Pierre and Marie Curie Univer-
sity, Paris, France, in 1990 and 1994, re-
spectively. He is currently a Professor of
computer science with the University of
Waterloo, Waterloo, ON, Canada. His re-
search interests include resource and service management in
networks and distributed systems. Dr. Boutaba is a Fellow of
the IEEE, the Engineering Institute of Canada, and the Cana-
dian Academy of Engineering. He served as a Distinguished
Speaker for the IEEE Computer and Communications Soci-
eties. He is the founding Editor-in-Chief of the IEEE TRANS-
ACTIONS ON NETWORK AND SERVICE MANAGEMENT
(2007-2010), and he is on the editorial boards of other jour-
nals. He was the recipient of several Best Paper Awards and
other recognitions, such as the Premier’s Research Excellence
Award, the IEEE Hal Sobol Award in 2007, the Fred W. Eller-
sick Prize in 2008, the Joe LociCero Award and the Dan Stokes-
bury Award in 2009, the Salah Aidarous Award in 2012, and the
McNaughton Gold Medal in 2014.

16

