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Dynamic Clustering of Software Defined Network Switches and Controller placement
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efined networking (SDN) has emerged as a promising alternative to the traditional networks, offering m
ding flexibility in network management, network programmability and guaranteeing application Quality-o

ments. In SDN, the control plane is separated from the data plane, and deployed as a logically centralized c
to the large scale of networks as well as latency and reliability requirements, it is necessary to deploy

satisfy these requirements. The distributed deployment of SDN controllers unveiled new challenges in term
number of controllers needed, their locations and the assignment of switches to controllers that minimizes
context, we propose, in this paper, a new method that dynamically computes the optimal number of co
ir optimal locations, and at the same time partitions the set of data plane switches into clusters and assign
rs. First, we mathematically formulate the controller placement as an optimization problem, whose objecti
ontroller response time, that is the delay between the SDN controller and assigned switches, the Control Lo

ter Delay (ICD) and the Intra-Cluster Throughput (ICT). Second, we propose a simple yet computationally
d Deep Q-Network based Dynamic Clustering and Placement (DDCP), that leverages the potential of reinf
ing techniques to solve the aforementioned optimization problem. Experimental results using ONOS contro
sed approach can significantly improve the network performances in terms of response time and resource ut

DN, Controller placement, DQN, Clustering, ONOS
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emerging paradigm that allows dynamicity, au-
ibility and centralized management of the under-
contrary to traditional networks making it ideal to
ond 5G networks (B5G) that involve essentially
y and lower latency. SDN separates the control
esponsible for making routing decisions and the
ane, that is only required to perform packet for-
ding to the received routing strategies from the
This communication is enabled via Application
Interfaces (APIs) such as the Representational
(REST) on the northbound interface and Open-

outhbound interface. Even the separation of the
ta planes brings technical benefits, it can cause

acks such as the number of controllers needed,
orresponding placement and which data plane de-
trolled by which controller.
dvent of B5G networks, the network size grows
Therefore, the deployment of a single controller
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to control the whole network brought greater challeng
SDN controller’s processing capabilities in terms of sc
performance and reliability. To this end, the use of mul
trollers is primordial, which can be achieved by two ma
gies: distributed controllers and replicated controller
replicated controllers strategy, several copies of the S
trollers have always the same information and keep the
of the network. Even the fast recovery time when a c
fails, keeping the set of replicated controllers aware of e
working operation, can bring expensive overhead in ter
source utilisation such as CPU, RAM and storage. On
hand, the distributed controllers strategy fragments the
into smaller domains, each supervised by a dedicated c
The set of controllers supervising these domains com
to each other by their west/eastbound interfaces.

The distributed controllers strategy unveils seve
lenges that must be considered such as : i) the optima
of controllers needed for a given network topology,
way that, each controller must be not overloaded neith
utilized, ii) the optimization of the controller placem
other concern, as it widely impacts on several fronts suc
setup latency, resiliency and load balancing and iii) th
ing of the data plane devices in order to improve the int
performances.
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s, the optimal number of controllers, their opti-
ts as well as the optimal clustering of data plane
o so, we first mathematically formulate the con-

ent problem as an optimization one, whose objec-
imize the controller response time, which corre-
delay between the SDN controller and assigned
controller resource utilization, the ICD and the
ormulated optimization problem is an NP-hard
e first propose to model the problem as a Markov
ess (MDP) and solve it by a Deep Q-Network
ach. Then, we propose a simple yet efficient
P that dynamically interacts with the DQN agent

orementioned optimization problem.
t of our knowledge, we are the first to propose and
solution using DQN approach. The main contri-
paper can be summarized as follows:

e mathematically model the controllers cluster-
placement problem as an optimization problem
bjective is to minimize the controller response

e controller resource utilization, the ICD and the

we formalize our problem as MDP with appro-
ates and actions, then propose using a DQN ap-
o solve it.

e propose simple yet efficient heuristic algorithm
DCP, that takes as inputs the set of switches and

ers, the trained DQN agent and outputs the opti-
tering in both the control and data planes.

nder of this paper is organized as follows. Sec-
s the state-of-the-art in several related research
overview of the DQN method. In Section 3, we
chitecture of the proposed framework, describes
rmulation and presents our DQN-based heuristic.
uates the proposed method. We finally conclude
ection 5.

ork and Overview

ork

years, with the development of distributed con-
ture such as DevoFlow [2], Kandoo [3], Hyper-

x [5], the problem of determining the number of
their placements in SDN has received consider-

and attracted many researchers.
[6] presented a comprehensive survey on the con-

ent problem (CPP) in SDN. The objective of this
troduce the CPP in SDN and highlight its signif-
presenting the classical CPP formulation along

rting system model as well as discussing a wide
PP modeling choices and associated metrics.
hors tackled the multi-controller placement issue
roposed a new approach with network partition

multiple subnetworks and for each subnetwork, one
controllers are deployed correspondingly. Specifically,
tering algorithm is leveraged to partition the network
networks and an optimized K-means algorithm is pro
shorten the maximum latency between the centroid an
ated switches in the subnetwork. The authors optimiz
means algorithm for clustering to minimize the overa
of the network.

Authors in [8] considered node-to-controller la
their controller placement optimization. They presente
a framework for Pareto-based Optimal Controller p
that provides operators with Pareto optimal placement
spect to different performance metrics. This framew
not segment the network into multiple domains by tre
network as a whole and the controllers work collab
which requires frequent exchange of state information
the controllers to achieve an accurate global state.

Authors in [9], defined a capacitated controller p
problem (CCPP), taking into consideration the load
trollers, and they introduced an efficient algorithm to
problem. The objective is to reduce the number of c
and their loads. However, the placement is not based
criteria. Instead of considering the propagation delay
the switches and the controller and ignoring the critica
the actual network which is the switch weights, the a
[10] defined a new metric : total- f low-request-cost. T
ric takes into account the switch weights, switch-to-c
routing costs, and inter controller routing costs, where
of this metric is to minimize Packet-in messages cost
switch to the controller, and information exchange cos
controllers.

In [11], authors first, considered the controller p
problem from the perspective of energy consumptio
they formulated the energy-aware controller placemen
based on a Binary Integer Program (BIP), which has th
of paths and the load of controllers as constraints for m
the energy consumption and proposed a genetic alg
solve the formulated problem.

Authors in [12] investigated different approaches
mine the optimal number of controllers for deploym
given SDN network, by taking into account the laten
tive. This study was followed by determining the optim
ments of the SDN controllers.

In [13], [14], authors considered several parameter
the number of controllers, the location of controller
set of switches of the network to achieve a high relia
[14], authors introduced QoS-Guaranteed Controller P
problem, which is to place the minimum number of c
in the network such that the response time of contro
meet a given delay bound. Three heuristics was propos
proposed approach: incremental greedy algorithm, prim
based algorithm and network partition-based algorithm
show superiority of the proposed incremental greedy m
the other two methods on all input topologies.

Recently, Machine Learning (ML) techniques h
used widely to solve complicated decision-making
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(1)
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rds from

lue func-
licy cor-

(si, ai) =

y accord-

(2)
c engineering in SDN based networks. Authors
sed the allocation of Virtual Network Function-
raph (VNF-FGs) for realizing network services.
deled the VNF-FG allocation problem as a MDP.
lved it by a DQN approach. Simulation results
d the effectiveness of the deep learning process,
formance of the proposed approach is improved
[16], authors proposed a simple heuristic algo-

fy the number of controllers and their locations in
leveraging a learning automaton (LA) approach,

g that propagation latency from any node to its
ller does not exceed a threshold.

ey Assumptions and Ideas

rom the approaches proposed in related works, we
paper the DDCP approach, by exploring the po-

orcement learning techniques, such as DQN, for
and placement of controllers, while taking into
erformance metrics: the Control Delay (CD), the
(CL), the Intra-Cluster Delay (ICD) and the Intra-
ghput (ICT). The idea behind using a DQN ap-
e the clustering and controllers’ placement prob-
only one step (after training) to get the optimal
cement as well as the corresponding data plane
itches, while considering the four performance
dvantage of using DQN is the ability to improve
rmances, while maximizing or minimizing a cer-
his reward can be modeled as an extensible func-
to account several parameters (that will be listed
tion) and can be further extended after training.

overcome the problem of scalability and extensi-
d in related works, we implement our DQN agent
dge plane, which is not part of the SDN archi-
makes our DDCP approach independent of the
plemented in both the control and data planes.
sitions our proposal vs. the state-of-the-art ap-
cifically, we highlight the added-values that our

e provides based on a set of critical performance
as the CL, the CD, the ICD, the ICT, the number
(Nbr of CTRLs) and using or not a DQN agent to
roller placement problem.

etwork (DQN)

rning technique (QL) is basically based on an
gent that interacts with the environment by se-
ng actions, while maximizing cumulative rewards
hown in Fig. 1, this can be described as a MDP in
t state si + 1 depends on the current state si and
ction by the agent according to a specific state
bability distribution P(si, ai, si + 1), which repre-
ability of switching to state si + 1 after action ai

QL, the agent senses the environment by identi-
ent state si and then selects the action ai to exe-
ronment subsequently feeds back a reward to the
pdating the current state to the new state. Then,

Ref CL CD ICD ICT Nbr of
CTRLs

D

[7] 7 3 3 7 7 7

[8] 7 3 7 7 7 7

[9] 3 7 7 7 7 7

[10] 3 7 3 7 7 7

[11] 3 7 3 7 7 7

[12] 7 7 3 7 3 7

[13] 7 3 3 7 3 7

[14] 7 3 3 7 3 7

[16] 7 3 7 3 3 7

[17] 3 3 7 7 7 7

[18] 3 3 7 7 7 7

[19] 3 3 7 7 7 7

DDCP 3 3 3 3 3 3

the trajectory of states, actions and rewards constitute
s0, a0, r0, s1, a1, r1... The objective is to learn the be
π(ai|si), while maximizing the cumulative rewards of
rent and next states which can be written as follows::

R =

n∑

i=0

ϕiri + 1

Where ϕ ∈ [0, 1] is a factor to discount future
Given a policy π, the expectation of accumulated rewa
action ai in a state si can be estimated by the Q-va
tion Qπ(si, ai) = E[R|si, ai, π]. Thereafter, the best po
responds to the highest Q-value in each state: Q∗

maxπQπ(si, ai). This function can be defined recursivel
ing to the Bellman equation as follows:

Qπ(si, ai) = ri + ϕ.Q∗(si + 1, ai + 1)

Figure 1: Deep Q-Network (DQN) architecture [20][21]
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llows:

Qπ(si, ai)← Qπ(si, ai) + η.∆ (3)

ri + ϕ.maxai+1 Qπ(si + 1, ai + 1) − Qπ(si, ai) (4)

[0, 1] is the learning rate, and the temporal differ-
r ∆ corresponds to the correction for the Q-value
e QL technique stores and updates the Q-values

les, which makes it slow to reach the best policy
g the entire table if the number of possible states
large. This affects significantly the performance
To cope with this challenge, the DQN makes use

works (NN) to approximate the estimation of the
ion. The DQN networks takes as input the state
tput is a vector of action Q-values, and its corre-
function is constructed based on the mean square
ed as follows :

L(θi) = (TargetQ − Q(si, ai, θi))2 (5)

getQ = ri + ϕ.maxai+1 Q(si + 1, ai + 1, θi) (6)

s the network parameter at iteration i. It is worth
convergence of the Loss function L(θi) is not sta-

g only one Neural Network. To improve the con-
lity, DQN adopts the method called Experience

corresponds to creating two Neural networks,
ame architecture, with parameters θ and θ

′
. The

d to retrieve Q-values, while the second one in-
ates in the training. After C steps the target net-
ers θ′ are updated. This mechanism is illustrated

proach

tion, we present our approach for the clustering
t of controllers in SDN using DQN. Firstly, we
erall framework. Thereafter, the problem formu-
Deep Q-Network Agent will be described.

rchitecture

our framework according to the Knowledge-
orking (KDN) paradigm [22], by introducing the
ne to the conventional SDN paradigm, in which
control plane to have a global view of the network

sents our system architecture, which consists of
ata plane, Control Plane, Management Plane and
ane.
lane that consists of programmable forwarding
arge of data packet processing and forwarding.
have no embedded intelligence to take decisions
control plane to populate their forwarding tables

Figure 2: DDCP Architecture

and update their configurations based on the OpenFlo
col. Moreover, the data plane is divided into multiple
and each of them is supervised by a dedicated controll

The control plane is considered as the brain of the
work, which incorporates the whole intelligence by ab
the management and global view of the network in a s
tributed controllers in different locations. Each contro
not have full control or knowledge of the network s
has the responsibility for only a portion of the network
main). It communicates with the other controllers thr
West/Eastbound interfaces.

The management plane ensures the correct opera
performance of the network by collecting the network
ment from the control plane Network Measurement m
order to provide network analytic. The collected stati
be analyzed and sent to the knowledge plane.

In order to not affect the control plane performa
process of deploying distributed controllers needs to be
tomated and can be ensured by the knowledge plane. T
exploits the control plane and the management plane
the data from the LP as input to be fed to ML algorithm
will convert them to the form of knowledge. Precisely
the behavior of the network, by processing the collect
tics, then determines the number of controllers, their
and the set of switches embedded in each controller’s
by deploying a DQN agent. The output of the DQN
transmitted to the control plane through the Northbo
controller API.

In what follows, we present our controller placem
lem formulation, then we detail the Deep Q-Network A
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3.2. Problem Formulation
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(15)
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previous
the SDN network as an undirected graph G =

V = {v j} is the set of switches and |V | = k is the
tches and E is the set of edges (i.e., links between
e control plane consists of a set of controllers

re |C| = n denotes the number of controllers. On
, the data plane is fragmented into a set of do-
l}, each domain wl = {v j}, v j ∈ V supervised by

nd |W | = p denotes the number of domains. The
Controller Placement Problem (CPP) can be rep-
inary vector F = (F1, F2, ..., Fn) ∈ Rn, where F i

i =


1, if controller ci is selected
0, otherwise

(7)

objective is to optimize the number of deployed
ile guaranteeing the QoS requirements of all traf-
the network, we define here-after four different
mpute the number of selected controllers: Con-
, Control Delay (CD), Intra-Cluster Delay (ICD),
ter Throughput (ICT).

r of Selected Controllers
ine the number of deployed controllers p (i.e., the
a plane domains), we first, define the variable Rt

i j
e total flow request from switch ( j) to controller
which corresponds to the number of Packet-In

erated by the switch. It is worth noting that, the
sages are generated and sent from switches to the
n there is no matching flow entries in their flow
ly, we assume that the portion of resources con-
flow request concerns essentially the CPU and
be written as follows:

λi =
CPU f lowi

CPU i
+

RAM f lowi

RAMi
(8)

U i and RAMi correspond, respectively, to the
acity of CPU and RAM of the controller ci. As

use different units, we divide them over their
maximum values to get normalized data. There-

ber of selected controllers can be written as fol-

p =

n∑

i=1

k∑

j=1

Rt
i, j.λi (9)

l Load (CL)
the CL as the load incurred by all the switches

he same domain. To this end, we use a decision
determine the relationship between the controller

tch ( j) as follows:

Ht
i, j =


1, if switch v j is controlled by ci at time
0, otherwise

The load of the controller ci can be thus given by:

CLt
i =

k∑

j=1

Ht
i, j.R

t
i, j.λi

To avoid the overloading of some controllers and t
utilization of others, we balance the traffic load betwe
of selected p controllers. To this end, we determine t
CL as follows:

CLt =
1
p

p∑

i=1

|CLt
i −CLt

avg|

Where CLt
avg denotes the average of the CL of all s

controllers.

3.2.3. Control Delay (CD)
The CD corresponds to the average response time o

troller ci, which is defined as follows:

CDt
i = PDt

i + 2.CMDt
i

Where PDt
i and CMDt

i are, respectively, the proce
lay and the communication delay of the controller c
t. We used two times of the communication delay
Packet-In comes from the switch to the controller an
back to the switch. In this way, the global CD is deter
the average of the CD of the set of selected controlle
can be written as follows:

CDt =
1
p

p∑

i=1

CDt
i

According to [23], the processing delay is determin
lows:

PDt
i =

1
ϕi − θi

Where ϕi and θi are, respectively, the capacity and
load of the controller ci. The communication delay
mined as follows:

qt
i =

k∑

j=1

Ht
i, j

CMDt
i =

k∑

j=1

Ht
i, j.d

t
i, j

qt
i

Where qt
i denotes the number of switches supervis

controller ci and dt
i, j denotes the delay between the con

and the switch v j. The latter is measured based on our
work in [24].
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CDt
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A(ve, vm).ψ(ve, vm)
ςi

(18)

e, vm) denotes the delay between nodes ve and vm

wi, ςi is the number of links of the cluster i, and
ecision variable representing the relationship be-
switches, which is defined as follows:

e, vm) =


1, if ve is connected to vm

0, otherwise
(19)

global ICD of the set of p clusters is determined

ICDt =
1
p

p∑

i=1

ICDt
i (20)

luster Throughput (ICT)
ic corresponds to how much data can be trans-
ecific data plane cluster (i) within a given time-
referred to us ICT t

i . Then, the global ICT of the
rs is determined as follows:

ICT t =
1
p

p∑

i=1

ICT t
i (21)

r Placement and Switches Migration

er the controllers as images installed in different
in different locations. In this way, the action of

cement refers to instantiating a container from the
orresponding server located in a specific location.
e consider ci, i ∈ [1, n] as the instance of the con-
erver or location i. Also, the deselection follows
by just deleting the instance or container ci.
noting that the clustering of control and data

ll as the placement of the controllers happen
ontrollers are overloaded, while others are under-
e, we define in equation (22) the load balancing
clusters, calculated as follows:

CLmig =
CLt

max(CLi)
× 100 (22)

finding new data plane clusters leads to migrating
es from old clusters controlled by specific con-
clusters controlled by new controllers.

Optimization Model

ive of our optimization model is to minimize the
d performance metrics including CL, CD, ICD
can be achieved as follows:

Min(α × CDt

CDmax
+ β × CLt

CLmax
+ γ × ICDt

ICDmax
− ρ ×

I

Subject to :

∀ i ∈ [1, p] : CLt
i < M.Fi

∀ (wu,wv) ∈ W2 : wu ∩ wv = �
if controllers ci and c j are selected: ci , c j

|W | = p

∀ (i, l) ∈ [1, p]2,∀ j ∈ [1, k] : (di, j < dl, j)⇒ (Ht
i, j > H

∀ j ∈ [1, k] : Ht
i, j ≤ Fi

∀ i ∈ [1, p] : (
k∑

j=1

Ht
i, j = 0)⇒ (Fi = 0)

∀ i ∈ [1, p] : CDt
i ≤ σi

∀ (ve, vm) ∈ V2 : A(ve, vm) ≤ δ
As the objective function involves different parame

different measurement units, we have divided each m
its corresponding maximum value to have a normaliz
tive function. Note that these maximum values are de
by the network operator and correspond to physical c
istics of involved network devices. Note also that α, β
are adjustable weighting factors determining the degr
portance of the CD, the CL, the ICD and the ICT me
spectively, such that α + β + γ + ρ = 1.

Constraint (24) forces all controllers to not be ov
Constraint (25) means that all domains do not overlap
node belongs to only one domain. Constraint (26) f
set of controllers to be selected only once. Constrain
sures that the number of selected controllers is the sam
number of data plane domains. Constraint (28) is the
constraint ensuring that a switch must be mapped to th
controller in terms of delay. Recall that, we refer to ou
[24] to measure the delay between the switches in the d
as well as between the switches and their correspond
trollers, where the delay is measured based on the time
ing and receiving a specific packet probe from the con
the switches in the data plane. Constraint (29) mea
switch is mapped to a controller if the latter exists a
lected. Constraint (30) means that if there is no switch
to a controller then the latter will be powered off. C
(31) forces the CD metric to not exceed a certain thre
and finally constraint (32) forces the links of each clus
be delayed.

The formulated optimization problem is an NP-h
lem [1], where the optimal solution is very difficult
in general. To this end, we propose to solve it by mod
training a Deep Q-Network Agent, as will be detailed i
section.
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3.5. Deep Q-N
To dynami

and their optim
delay between
source utilizat
DQN Agent b
acts with the e
and Reward.

3.5.1. State
The State

plane into p d
wt,i (i ∈ [1, p])

Where wt,

senting a clus
that, k corresp
plane.

Let S p den
value of p, wr

Where Tp

ing to p clust
constructed by
tion 3.4.

3.5.2. Action
The action

tor representin

the set of
llows:

rrespond-
tions are
and (27)
voids se-
onstraint
e as the

minimiz-
, and can

ICT
CT max

(33)
onsists in
s and the
R).
propose
itches in

as shown
e is frag-
ollers are
Figure 3: Demonstration of the DQN State and Action spaces using a simple topology

etwork Agent
cally determine the optimal number of controllers
al placements while considering the propagation
the switches and the controller, the controller re-

ion, the ICD and the ICT, we propose to model a
ased on a MDP. In this way, the DQN agent inter-
nvironment through three signals: S tate, Action

S t,p corresponds to the partitioning of the data
omains. To do so, we define it as a vector of
, and can be written as follows:

S t,p = [wt,1,wt,2, ...,wt,p]

i = [ve, ..., vm],∀(ve, vm) ∈ w2
t,i is a vector repre-

ter of switches, such that
∑p

i=1 |wt,i| = k. Recall
onds to the total number of switches in the data

ote the set of all states corresponding to a specific
itten as follows:

S p = [S 1,p, S 2,p, ..., S Tp,p]

corresponds to the number of states correspond-
ers. It is worth noting that, the set of states are
respecting the set of constraints indicated in Sec-

taken by the agent Ar,p is characterized by a vec-
g a selected set of p controllers from the available

n controllers, which is defined as follows:

Ar,p = [cr,1, ..., cr,p],∀cr,i ∈ C

Where r represents the action number. We denote
all actions corresponding to a specific value of p as fo

Ap = [A1,p, A2,p, ..., ARp,p]

Where Rp corresponds to the number of actions co
ing to p clusters. It is worth noting that, the set of ac
constructed by respecting the set of constraints (26)
indicated in Section 3.4. Recall that, constraint (26) a
lecting one controller for more that one cluster and c
(27) ensures that the number of controllers is the sam
number of data plane domains.

3.5.3. Reward
The ”Reward” function R of the agent consists in

ing the normalized objective function defined in (23)
be thus written as follows:

R = α × CD
CDmax

+ β × CL
CLmax

+ γ × ICD
ICDmax

− ρ ×
I

It is worth noting that the proposed DQN agent c
determining the best mapping between the set of state
set of actions, while maximizing 1/R (i.e., minimizing

In order to give more detail on the DQN design, we
to illustrate it graphically in a small topology with 9 sw
the data plane and 5 controllers in the control plane,
in Fig. 3. We can see that, when p = 3 the data plan
mented into three domains as well as only three contr

7



used to supervise each domain and the rest of controllers are not
instantiated. I
three domains
controllers. W
and action vec
are selected fo
four domains.

Recall tha
sponds to the n
take values fro
of controllers

3.6. DDCP H

Algorithm 1
1: proce
2: M
3: p
4: w
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15: en
16: re
17: end p
18: proce
19: if
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32: en
33: end p

As the sta
shapes for eac
(i.e., training d
agent separate
this way, to de
the best mappi

and the set of p controllers, we propose the DDCP heuristic (i.e.,

ocedures:
to deter-

acements
follows:

f splitted
2, ..., An}.
here the

plane do-
finds the

reward
∈ [1, n].

umber of
nding ID
f switch

led when
). In this
ure (i.e.,
he set of
rent from

witch in
t. The

ch before

proposed
p. Then,

of a set
hen, the
docker-

with the
e control
mulation
topology,
hosts, we
ent mod-
ow size)
cs to the
rtance of
gmented
thon.
etworks,
nction in
te the Q-
imate the
Fig. 1.
n this case, the state corresponds to the selected
and the action corresponds to the selected three
hen p = 4, we can see that the shapes of the state
tors are changed, where four controllers from five
r each action and the data plane is fragmented into

t, the number of controllers to be selected, corre-
umber of data plane domains or clusters, and can
m 1 to n, where n corresponds to the total number
in the control plane.

euristic

: DDCP algorithm
dure Clust(S = {S 1, ..., S n}, A = {A1, ..., An})
ax Reward ← 0
← 1
hile p ≤ n do

for each state ∈ S p do
Reward, Action← DQN(state, S p, Ap)
if Reward > Max Reward then

Max Reward ← Reward
S elect S t ← S tate
S elect Act ← Action
S elect p← p

end if
end for
p← p + 1

d while
turn S elect S t, S elect Act, S elect p

rocedure
dure Migration(S elect S t, S elect Act)
CLmig > Threshold then

for each CTRL ∈ S elect Act do
for each Domain ∈ S elect S t do

if Map(CTRL,Domain) then
for each S witch : s ∈ Domain do

if CTRL old(s) , CTRL then
Remove(s,CTRL old)
Assign(s,CTRL)

end if
end for

end if
end for

end for
d if

rocedure

te S t,p and action Ar,p take different forms or
h value of p, we propose to split the state space
ata) based on p values. Then, we train the DQN
ly for each value of p (i.e., DQN(S t,p, Ar,p)). In
termine the optimal number of controllers p and
ng between the set of states (clusters of switches)

Algo. 1):
The DDCP algorithm consists of two main pr

Clust and Migration. The Clust procedure is called
mine the set of controllers and their corresponding pl
as well as the set of data plane clusters. It works as
it takes as input the set of splitted states and the set o
actions based on p: S = {S 1, S 2, ..., S n}, A = {A1, A
Recall that, S p corresponds to the space of states w
number of controllers as well as the number of data
mains is p. Then, by using the trained DQN Agent, it
optimal S tate, Action corresponding to the maximum
(lines 4-15) iteratively for each sub-states S p ∈ S , p
The output of the Clust procedure is the optimal n
controllers to be deployed (S elect p), their correspo
(S elect Act ∈ AS elect p), and the corresponding set o
clusters (S elect S t ∈ S S elect p) (line 16).

On the other hand, the Migration procedure is cal
the control plane load is not well-balanced (lines 19
case, it takes as input the output of the Clust proced
S elect p, S elect Act, S elect S t). Then, it migrates t
switches to the new cluster if the new controller is diffe
the old one (lines 20-31).

Note that, the Map function indicates if a s
S elect S t is mapped to a controller in S elect Ac
CTRL old represents the controller of a specific swit
migration.

4. Performance Evaluation

In this section, we evaluate the efficiency of our
approach. We start by presenting our experimental setu
we present the experimental results.

4.1. Experimental Setup

First, the control plane is deployed as a cluster
of dockerized OpenFlow ONOS [22] controllers. T
DQN agent is implemented based on Python [15] and
ized on Docker Containers [16]. The latter interacts
control plane based on the ONOS Northbound API. Th
plane consists of 12 controllers. We used the network e
tool OpenvSwitch [23] to implement the experimental
which consists of 32 nodes. To generate traffic among
used Iperf [24]. The control plane Network Measurem
ules collect statistics (latency, throughput, and per-fl
from the devices and report those time-series statisti
InfluxDb database [20]. Note that, to show the impo
using DQN on a large space of states and actions, we au
the collected statistics by using data generated with Py

Recall that, the DQN model consists of two neural n
designed to improve the convergence of the Cost Fu
(5). One neural network is called Q-Network to estima
Values and the second one is called the Q-target to est
target network, according to the mechanism shown in

8



Table 2: DQN parameters
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a vector of p s
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in Sections 3.
splitting the tr
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we need to go

It is worth
tions is selecte

ber of switches in the data plane (i.e., 32 switches in our case)
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pacity of
on, while
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ed at 0.2,
Network
actor are
to η and
ch train-
fixed the

overload-
ction.

ed DDCP
based on
rmine the
d. To do
K-means
approach
assigned
ances in
perform

approach
1) Opti-

], 2) Dy-
atacenter
ns Algo-
Architec-

n is com-
L (CLt

i),
eters α,

y an im-
e of each
rgence of
, we de-

ce metric
nt under
in total),
e follow-

e perfor-
1
2 , γ =

e perfor-
0, γ =

formance
1
3 , ρ = 1

3 .

nce met-
Name Value
Dense layers 2

ontrol plane capacity 10
Data plane capacity 32
number of switches per cluster 1
number of switches per cluster 13
t network update frequency 200

Learning rate 0.01
Discounted factor 0.6
Mini-batch size 32

Final exploration rate 0.2
Memory size 2000 units

Number of episodes 1000

er of States and Actions under different number of clusters p

nd trained the DQN model by using the Tensor-
1], by deploying separately the two neural net-

-Network, Q-target), which have the same archi-
QN parameters are illustrated in Table 2. In par-
e Q-Network and the Q-target consist of 2 dense
mber of data plane switches is 32 and the number
in the control plane is 10.
g the implemented topology, and in order to not

tate space size, the training data are built as fol-
nimum and maximum number of switches in each
d to 1 and 13, respectively, ii) the clusters where
n the generated switches of a specific cluster are

the other hand, the training data (i.e., the set of
classified based on p, as the State corresponds to
ub-vectors. In this way, both the set of States and
ons are splitted based on p, as illustrated in Fig. 4.
ed separately a set of DQN agents according to

, we denoted the number of states corresponding
the number of actions corresponding to p by Rp

5.1 and 3.5.2, respectively. This mechanism of
aining data helps our proposed DDCP approach
he best clustering of control and data planes, as
through the set of all trained DQN agents.
noting that, the global number of States and Ac-
d based on a set of parameters: i) the global num-

and the number of controllers in the control plane (i.e
trollers in our case), ii) the maximum and minimum ca
each cluster, and iii) the convergence of the Cost functi
training the set of DQN agents based on p.

During the training phase, we adopt ε-greedy meth
tion selection method. The final exploration rate is fix
while the Q-target parameters are copied from the Q-
every 200 steps. The learning rate and discounted f
fixed to 0.01 and 0.6, respectively, which correspond
ϕ parameters in equations (3) and (4). In addition, ea
ing process corresponds to 1000 episodes. Finally, we
Threshold, indicated in Algorithm 1, to 30% to avoid
ing the control plane, as will be justified in the next se

4.2. Experimental Results
In order to evaluate the performance of our propos

approach, we first determine the best DQN model
the reward function weighting factors. Then, we dete
number of controllers (i.e., clusters) p to be deploye
so, we compare our approach with the well-known
clustering method. Then, we show the benefit of our
in term of data plane partitioning i.e., which switch
to which cluster. Thereafter, we evaluate its perform
terms of CD, CL, ICD and ICT metrics. Finally, we
a comparative analysis between our proposed DDCP
and three main schemes proposed in the literature:
mal and Dynamic Controller Placement (ODCP) [17
namic SDN Controller Placement in Elastic Optical D
Networks (DSCP) [19], and 3) A Hierarchical K-mea
rithm for Controller Placement in SDN-based WAN
ture (HKCP) [18].

As mentioned in equation (33), the reward functio
posed of four performance metrics (i.e., CD (CDt

i), C
ICD (ICDt

i) and ICT (ICT t
i)) weighted by four param

β, γ and ρ, respectively. These weighting factors pla
portant role to determine, in one side, the importanc
performance metric, and on the other side the conve
the Loss function, shown in equation (5). To this end
pict, in Fig. 5, the average value of each performan
(i.e., CD, CL, ICD, ICT) after training the DQN age
different number of training episodes (1000 episodes
while changing the weighting factors according to th
ing strategies:

• S 1: this strategy considers only the control plan
mance metrics (i.e., CD and CL): α = 1

2 , β =

0, ρ = 0.

• S 2: this strategy considers only the data plan
mance metrics (i.e., ICD and ICT): α = 0, β =
1
2 , ρ = 1

2 .

• S 3: this strategy considers delay-throughput per
metrics (i.e., CD, ICD, ICT): α = 1

3 , β = 0, γ =

• S 4: this strategy gives importance to all performa
rics: α = 1

4 , β = 1
4 , γ = 1

4 , ρ = 1
4 .
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(34)
of varying the reward function weighting factors α, β, γ, ρ on
e ICD and the ICT metrics

5, we can see that considering only the data plane
etrics in strategy S 2 causes obviously high val-
and ICD, while decreasing the ICT metric. The

ome controllers are overloaded and experiencing
hile others are under-utilized. On the other hand,
ows better performances compared to strategy S 2,

etric is taken into account. However, the control
till high compared to the two remaining strate-
4) since this metric is not taken into account in

nction of strategy S 3. Considering the CL met-
S 1 improves the performances compared to the
S 2 and S 3. This shows the importance of balanc-
etween the set of controllers in the control plane.
gy S 4, which takes into account all performance
CD, CL, ICD and ICT), outperforms all others
wing high throughput, low intra-cluster delay, low
and low control load. Hence, according to these
pt strategy S 4 (i.e., α = 1

4 , β = 1
4 , γ = 1

4 , ρ = 1
4 )

uent experiments.
w determine the optimal number/range of con-
lusters) to be deployed p. To do so, we plot in
lution of the reward and loss functions (as de-
ons (33) and (5)) under different number of train-
nd using the aforementioned weighting factors by
trategy S 4. We compare in Fig. 6(a) the following

6,R7,R8,R9: where Rp corresponds to the reward
e number of clusters p, p ∈ [4..9].

compare in Fig. 6(b) the following baselines:

6,C7,C8,C9: where Cp corresponds to the cost
e number of clusters p, p ∈ [4..9].

6 (b), we can see that the Loss function for all
es converges. On the other hand, we can observe

Figure 6: Impact of varying the number of clusters and the controller
while training the DQN agent

from Fig. 6 (a) that the mean reward increases while i
the number of clusters in the fist part of the range w
[4..6]. However, it starts to decrease in the second p
range where p ∈ [7..9]. The increase in the first part re
existence of new clustering configurations (i.e., base
latency) and controllers placement that lead to minimiz
the CL and the ICD metrics. The decreasing in the se
of the range of p, can be explained by the fact that the
in the number of controllers in the control plane im
performances such as the CL metric. As a result, the n
controllers or clusters to be deployed, according to o
approach, corresponds to that of the maximum reward
equal to 6 in our experiments. Next, for the sake of com
we take this range [4..6] for the variable p.

Let us now see the returned number of controllers p
ployed when using the well-known K-means clustering
Recall that K-means is widely used in network partit
lems [25] and includes four main steps: 1) select p
points as cluster centers called Centroids, 2) assign sw
the closest cluster based on the latency of links and th
tions, 3) recalculate the centroid for each cluster by c
the average of the assigned switches, 4) repeat steps
until none of the cluster assignments change.

To determine the number of controllers to be dep
ing the K-means algorithm, we refer to the Within Clu
of Squares (WCSS) method [26], which computes the
(i.e, delay in our case) between a centroid of a cluster
observation (i.e., switch in our case) based on which
the observation to the nearest cluster. To do so, we
Fig. 7, the WCSS method after training the K-means a
for maximum 300 iterations under different number o
of switches, where WCSS is determined as follows:

WCS S =

p∑

i=1

|wi |∑

j=1

(x j − yi)2
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equation

ers to the
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(vsrc, vdst, A(vsrc, vdst)), (vsrc, vdst) ∈ w2
i (35)

represents a link in the domain wi, in which
ta plane switches and A(vsrc, vdst) is the delay be-
e yi denotes the centroid of the domain wi. In this
S method consists in clustering the set of points
inimize the latency between switches.

7, we can see that the average controller response
S continues to decrease, while increasing the
sters, since the more we increase the number of
ore we have a small number of switches in each
ich leads to minimizing the latency. However,
o overload the control plane due to the increase
of controllers. To this end, we select the number
., controllers) when the WCSS starts to have low
stable. Moreover, for the sake of comparison

oach (i.e., DDCP), we select a range of p values
SS converges. This leads us to choose the range
e number of clusters p based on the K-means
is results in higher deployed clusters compared to
roach, where the identified range of p is [4..6].

show the benefit of our DDCP approach in term of
titioning (i.e., which switch is assigned to which
st compare it with the following baseline:

DDCP, which corresponds to our proposed ap-
in which the data plane clustering is determined
K-means algorithm instead of the DQN agent,
ere the number of controllers to be deployed is
] (for the sake of comparison) and identified stat-

Fig. 9 depict the data plane devices allocated to
y using the Reduced DDCP and DDCP schemes,
nder different values of p. It is noteworthy that,
the p values in the range [4, 5, 6]. Also, the re-
parameters of the DQN agent correspond to the

e., α = 1
4 , β = 1

4 , γ = 1
4 , ρ = 1

4 ). We can see that,
ber of clusters p is equal to 4, the allocation of
wing the two schemes (i.e., Original DDCP and
P) in Fig. 8(a) and 9(a) is completely different,

ous clustering experiences, while the K-means metho
the Reduced DDCP scheme, is based on recalculating
troid of each cluster for each step of the model trainin
p = 5 (cf. Fig. 8(b) and Fig. 9(b)), we can observe m
ilarity, compared to those when p = 4, mostly in the
ter. When p = 6 (cf. Fig. 8(c) and Fig. 9(c)) the two
achieve interestingly a close clustering result with a su
of the DDCP approach in terms of average CD, CL,
ICT metrics, as clearly depicted in Fig. 10. This con
in clustering can be explained by the fact that, as the
considers only the clustering in the data plane, referri
DDCP approach to determine the number of clusters
the performances. However, it still causes some de
comparing to the DDCP approach since the controllers
tified statically in the reduced one, which increase the
CL and the ICD metrics, as clearly depicted in Fig. 10

Finally, we perform, in the following, a comparati
sis between our proposed DDCP approach and three
proaches proposed in the literature:

• ODCP [17], which consists in using a quadratic
to solve the controller placement problem and de
the number of switches in each switch domai
solving the controller placement problem, it dyn
migrates switches in case of controller overload

• DSCP [19], which is based on dynamically mat
set of controllers to the set of data plane switche
to maximize the resource utilization. Moreover,
ically balances the traffic load and deploys the co

• HKCP [18], which is a SDN network partitionin
based on the hierarchical K-means algorithm. It
the latency between the switches and their cont
well as the load balancing between the set of co

We used the same experimental topology, describe
tion 4.1, for all approaches. In addition, to have a fair
ison, we have compared all approaches before and aft
migration. Recall that the action that triggers the switc
tion is the overloading of the control plane. To this end
the following scenario:

We consider the set of controllers and data plane
obtained by using our DDCP approach from Fig. 9, w
number of clusters is 5 before switch migration. T
force the switches to overload the set of controllers
ing a high number of Packet In. This will force the fou
approaches (DDCP, ODCP, DSCP, and HKCP) to pe
migration of some switches to new clusters and chang
work topology.

First, it is interesting to see the impact of varying th
old defined in our DDCP approach in the switch migra
cedure. To do so, we vary this parameter, denote
between 10% and 40% and depict the number of
switches in Fig. 11(a). Recall that CLmig, defined in
(22) and used in the switch migration procedure, ref
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Figure 9: Demonstration of the network clustering for the DDCP scheme

factor between clusters. The more this factor is
some controllers are overloaded compared to the

s way, when CLmig exceeds the Threshold (Th),
process is triggered. From Fig. 11(a), we can ob-
number of migrated switches increases while de-
ue to the difference in the load between the set
However, giving small values to Th may impact

rmances since the migration will happen more fre-
case, which increases the control delay, as shown
n the other hand, when Th is high, the number of

grate is low. However, clusters will be unbalanced
ce some controllers will be overloaded compared
This results in increasing again but more signif-
ntrol delay, as shown in Fig. 11(b). A trade-off

lusters’ load and the number of switches to mi-
ecessary. According to Fig. 11, this trade-off is

n the Threshold is equal to 30%. Hence, in our
periments, we fixed Th to this obtained value.

Fig. 12 shows the average resource utilization in
CPU and RAM before and after switch migration
schemes. First, we can observe that, the migration
reduces considerably the average resource utilizatio
schemes. The gain is more significant when using o
approach, since it considers both control and data p
formance metrics (i.e., CD, CL, ICD and ICT) in th
function when deploying a new cluster, as opposed to
schemes. Indeed, the DDCP approach shows a decreas
usage (respectively, RAM usage) of approximately
spectively, 28%). Compared to ODCP, DSCP, and HK
gains are reduced to 10%, 5%, and 7%, respectively
CPU usage. On the other hand, for the RAM usage, th
are reduced to 10%, 7%, and 9%, respectively. How
note here that this implies an additional deployment of
(controller) in our DDCP approach since the number o
after migration is increased to 6 in our experiment. In
the three other approaches ODCP, DSCP and HKCP

12



Figure 10: Comp
K-means methods

Figure 11: Impac
switches and cont

Figure 12: Ave

CP, DSCP,

network

s for all
duce the
umber is
HKCP),

t, having
ignalling
network

oach, we
rics (i.e.,
that the

decreases
ed when

KCP and
e into ac-
the con-

h outper-
nd lower
the DQN
the con-
t the ex-
ler in the
g that, as
tions, the
hallenges

where to
ontrolled
SDN. To
ion tech-
ers, their
ata plane
m is NP-
lgorithm,
approach
plane to

g a DQN
mapping
aring dynamic clustering and placement based on DQN and

t of varying the Threshold (Th) on the number of migrated
rol delay in the DDCP approach

rage resource utilization before and after switch migration

Figure 13: Comparison of number of migrated switches under OD
HKCP and DDCP schemes

ing the same number of clusters already defined by the
operator.

Fig. 13 depicts the number of migrated switche
schemes. We can see that both ODCP and DDCP re
number of migrated switches. On the other hand, this n
higher in the two remaining approaches (i.e. DSCP and
impacting thus the robustness of the network. In fac
a high number of switches to migrate increases the s
overhead, impacting thus the controllers’ load and the
stability.

To further show the benefit of our DDCP appr
plot in Fig. 14 the delay-throughput performance met
CD, ICD and ICT) for all schemes. We can see
DSCP scheme increases the intra-cluster delay and
the throughput, since those metrics are not consider
clustering the network. On the other hand, both H
ODCP schemes show better performances, as they tak
count additional parameters such as the delay between
trollers. Finally, we can see that our DDCP approac
forms all other schemes, showing higher throughput a
delay compared to the others, thanks to the use of
agent with a more complete reward function to solve
trollers’ placement problem. However, this comes a
pense of an additional deployment of a cluster/control
control plane, as stated previously. It is worth notin
several controllers need to be deployed in several loca
network will be more susceptible to different security c
and threats.

5. Conclusion

How many controllers to use in the control plane,
place them, which switch in the data plane must be c
by which controller represent challenging questions in
address these important questions, we used optimizat
niques to determine the optimal number of controll
optimal placements and the optimal clustering of d
switches. Because the formulated optimization proble
hard, a simple yet computationally efficient heuristic a
called DDCP, was proposed and implemented. Our
solution approach can be used as part of the knowledge
optimize control and data plane operations, by deployin
agent that dynamically determines the optimal policy

13
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