N

N

Dynamic clustering of software defined network switches
and controller placement using deep reinforcement
learning
El Hocine Bouzidi, Abdelkader Outtagarts, Rami Langar, Raouf Boutaba

» To cite this version:

El Hocine Bouzidi, Abdelkader Outtagarts, Rami Langar, Raouf Boutaba. Dynamic clustering of soft-
ware defined network switches and controller placement using deep reinforcement learning. Computer
Networks, 2022, 207, pp.108852. 10.1016 /j.comnet.2022.108852 . hal-04512391

HAL Id: hal-04512391
https://hal.science/hal-04512391v1
Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-04512391v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S1389128622000640
Manuscript_c417d8abd45a8d6d1a8670b3ab62195

Click here to view linked References *

Dynamic Clustering of Software Defined Network Switches and Controller placement
using Deep Reinforcement Learning

EL Hocine Bouzidi*, Abdelkader Outtagarts?, Rami Langar®®, Raouf Boutaba?

“Nokia Bell Labs, Villarceaux Center - Route de Villejust 91620 Nozay, France
bLIGM CNRS-UMR 8049, University Gustave Eiffel, 77420 Marne-la-Vallée, France
“Software and IT Engineering Department, ETS, Montréal (QC), Canada
4D.R. Cheriton School of Computer Science, University of Waterloo, Waterloo (ON), Canada

Abstract

Software defined networking (SDN) has emerged as a promising alternative to the traditional networks, offering many ad-
vantages, including flexibility in network management, network programmability and guaranteeing application Quality-of-Service
(QoS) requirements. In SDN, the control plane is separated from the data plane, and deployed as a logically centralized controller.
However, due to the large scale of networks as well as latency and reliability requirements, it is necessary to deploy multiple
controllers to satisfy these requirements. The distributed deployment of SDN controllers unveiled new challenges in terms of de-
termining the number of controllers needed, their locations and the assignment of switches to controllers that minimizes flow set
delay. In this context, we propose, in this paper, a new method that dynamically computes the optimal number of controllers,
determines their optimal locations, and at the same time partitions the set of data plane switches into clusters and assigns them to
these controllers. First, we mathematically formulate the controller placement as an optimization problem, whose objectives are to
minimize the controller response time, that is the delay between the SDN controller and assigned switches, the Control Load (CL),
the Intra-Cluster Delay (ICD) and the Intra-Cluster Throughput (ICT). Second, we propose a simple yet computationally efficient
heuristic, called Deep Q-Network based Dynamic Clustering and Placement (DDCP), that leverages the potential of reinforcement
and deep learning techniques to solve the aforementioned optimization problem. Experimental results using ONOS controller show
that the proposed approach can significantly improve the network performances in terms of response time and resource utilization.

Key words: SDN, Controller placement, DQN, Clustering, ONOS

1. Introduction to control the whole network brought greater challenges to the
SDN controller’s processing capabilities in terms of scalability,
performance and reliability. To this end, the use of multiple con-
trollers is primordial, which can be achieved by two main strate-
gies: distributed controllers and replicated controllers. In the
replicated controllers strategy, several copies of the SDN con-
trollers have always the same information and keep the full state
of the network. Even the fast recovery time when a controller
fails, keeping the set of replicated controllers aware of every net-
working operation, can bring expensive overhead in terms of re-
source utilisation such as CPU, RAM and storage. On the other
hand, the distributed controllers strategy fragments the network
into smaller domains, each supervised by a dedicated controller.
The set of controllers supervising these domains communicate
to each other by their west/eastbound interfaces.

The distributed controllers strategy unveils several chal-
lenges that must be considered such as : i) the optimal number
of controllers needed for a given network topology, in such a
way that, each controller must be not overloaded neither under-

SDN is an emerging paradigm that allows dynamicity, au-
tomation, flexibility and centralized management of the under-
lying network contrary to traditional networks making it ideal to
designing Beyond 5G networks (B5G) that involve essentially
higher capacity and lower latency. SDN separates the control
plane that is responsible for making routing decisions and the
Forwarding Plane, that is only required to perform packet for-
warding according to the received routing strategies from the
control plane. This communication is enabled via Application
Programming Interfaces (APIs) such as the Representational
State Transfer (REST) on the northbound interface and Open-
Flow on the southbound interface. Even the separation of the
control and data planes brings technical benefits, it can cause
several drawbacks such as the number of controllers needed,
their optimal corresponding placement and which data plane de-
vices to be controlled by which controller.

With the advent of B5G networks, the network size grows

exponentially. Therefore, the deployment of a single controller

Email addresses: el _hocine.bouzidi@nokia.com (EL Hocine
Bouzidi), abdelkader.outtagarts@nokia-bell-labs.com (Abdelkader
Outtagarts), rami . langarQuniv-eiffel.fr; rami.langar@etsmtl.ca
(Rami Langar), rboutaba@uwaterloo.ca (Raouf Boutaba)

Preprint submitted to Elsevier

utilized, ii) the optimization of the controller placement is an-
other concern, as it widely impacts on several fronts such as flow
setup latency, resiliency and load balancing and iii) the cluster-
ing of the data plane devices in order to improve the intra-cluster
performances.

December 8, 2021

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license

https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1389128622000640

To this end, we propose, in this paper, a new approach
that determines, the optimal number of controllers, their opti-
mal placements as well as the optimal clustering of data plane
switches. To do so, we first mathematically formulate the con-
troller placement problem as an optimization one, whose objec-
tive is to minimize the controller response time, which corre-
sponds to the delay between the SDN controller and assigned
switches, the controller resource utilization, the ICD and the
ICT. As the formulated optimization problem is an NP-hard
problem [1], we first propose to model the problem as a Markov
Decision Process (MDP) and solve it by a Deep Q-Network
(DQN) approach. Then, we propose a simple yet efficient
heuristic, DDCP that dynamically interacts with the DQN agent
to solve the aforementioned optimization problem.

To the best of our knowledge, we are the first to propose and
validate such solution using DQN approach. The main contri-
butions of our paper can be summarized as follows:

o First, we mathematically model the controllers cluster-
ing and placement problem as an optimization problem
whose objective is to minimize the controller response
time, the controller resource utilization, the ICD and the
ICT.

e Second, we formalize our problem as MDP with appro-
priate states and actions, then propose using a DQN ap-
proach to solve it.

e Third, we propose simple yet efficient heuristic algorithm
called DDCEP, that takes as inputs the set of switches and
controllers, the trained DQN agent and outputs the opti-
mal clustering in both the control and data planes.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the state-of-the-art in several related research
topics and an overview of the DQN method. In Section 3, we
discuss the architecture of the proposed framework, describes
the problem formulation and presents our DQN-based heuristic.
Section 4 evaluates the proposed method. We finally conclude
this paper in Section 5.

2. Related Work and Overview

2.1. Related Work

In recent years, with the development of distributed con-
troller architecture such as DevoFlow [2], Kandoo [3], Hyper-
Flow [4], Onix [5], the problem of determining the number of
controllers and their placements in SDN has received consider-
able attention and attracted many researchers.

Authors in [6] presented a comprehensive survey on the con-
troller placement problem (CPP) in SDN. The objective of this
survey is to introduce the CPP in SDN and highlight its signif-
icance. Then, presenting the classical CPP formulation along
with its supporting system model as well as discussing a wide
range of the CPP modeling choices and associated metrics.

In [7], authors tackled the multi-controller placement issue
in SDN and proposed a new approach with network partition

technique. In this approach, the entire network is divided into
multiple subnetworks and for each subnetwork, one or more
controllers are deployed correspondingly. Specifically, the clus-
tering algorithm is leveraged to partition the network into sub-
networks and an optimized K-means algorithm is proposed to
shorten the maximum latency between the centroid and associ-
ated switches in the subnetwork. The authors optimized the K-
means algorithm for clustering to minimize the overall latency
of the network.

Authors in [8] considered node-to-controller latency for
their controller placement optimization. They presented POCO,
a framework for Pareto-based Optimal Controller placement
that provides operators with Pareto optimal placements with re-
spect to different performance metrics. This framework does
not segment the network into multiple domains by treating the
network as a whole and the controllers work collaboratively,
which requires frequent exchange of state information between
the controllers to achieve an accurate global state.

Authors in [9], defined a capacitated controller placement
problem (CCPP), taking into consideration the load of con-
trollers, and they introduced an efficient algorithm to solve the
problem. The objective is to reduce the number of controllers
and their loads. However, the placement is not based on these
criteria. Instead of considering the propagation delay between
the switches and the controller and ignoring the critical factor in
the actual network which is the switch weights, the authors in
[10] defined a new metric : total- flow-request-cost. This met-
ric takes into account the switch weights, switch-to-controller
routing costs, and inter controller routing costs, where the goal
of this metric is to minimize Packet-in messages cost from the
switch to the controller, and information exchange cost between
controllers.

In [11], authors first, considered the controller placement
problem from the perspective of energy consumption. Then,
they formulated the energy-aware controller placement problem
based on a Binary Integer Program (BIP), which has the latency
of paths and the load of controllers as constraints for minimizing
the energy consumption and proposed a genetic algorithm to
solve the formulated problem.

Authors in [12] investigated different approaches to deter-
mine the optimal number of controllers for deployment in a
given SDN network, by taking into account the latency objec-
tive. This study was followed by determining the optimal place-
ments of the SDN controllers.

In [13], [14], authors considered several parameters such as
the number of controllers, the location of controllers and the
set of switches of the network to achieve a high reliability. In
[14], authors introduced QoS-Guaranteed Controller Placement
problem, which is to place the minimum number of controllers
in the network such that the response time of controllers can
meet a given delay bound. Three heuristics was proposed for the
proposed approach: incremental greedy algorithm, primal-dual-
based algorithm and network partition-based algorithm. Results
show superiority of the proposed incremental greedy method on
the other two methods on all input topologies.

Recently, Machine Learning (ML) techniques have been
used widely to solve complicated decision-making complex

problems arising in Virtual Network Function (VNF) place-
ment and traffic engineering in SDN based networks. Authors
in [15] addressed the allocation of Virtual Network Function-
Forwarding Graph (VNF-FGs) for realizing network services.
First, they modeled the VNF-FG allocation problem as a MDP.
Then, they solved it by a DQN approach. Simulation results
clearly showed the effectiveness of the deep learning process,
where the performance of the proposed approach is improved
over time. In [16], authors proposed a simple heuristic algo-
rithm to identify the number of controllers and their locations in
SDN networks leveraging a learning automaton (LA) approach,
while ensuring that propagation latency from any node to its
closest controller does not exceed a threshold.

2.2. DDCP Key Assumptions and Ideas

Different from the approaches proposed in related works, we
propose in this paper the DDCP approach, by exploring the po-
tential of reinforcement learning techniques, such as DQN, for
the clustering and placement of controllers, while taking into
account four performance metrics: the Control Delay (CD), the
Control Load (CL), the Intra-Cluster Delay (ICD) and the Intra-
Cluster Throughput (ICT). The idea behind using a DQN ap-
proach to solve the clustering and controllers’ placement prob-
lem, is to use only one step (after training) to get the optimal
controllers placement as well as the corresponding data plane
domains of switches, while considering the four performance
metrics. The advantage of using DQN is the ability to improve
network performances, while maximizing or minimizing a cer-
tain reward. This reward can be modeled as an extensible func-
tion, taking into account several parameters (that will be listed
in the next section) and can be further extended after training.
Moreover, to overcome the problem of scalability and extensi-
bility presented in related works, we implement our DQN agent
in the knowledge plane, which is not part of the SDN archi-
tecture. This makes our DDCP approach independent of the
technology implemented in both the control and data planes.

Table 1 positions our proposal vs. the state-of-the-art ap-
proaches. Specifically, we highlight the added-values that our
DDCP scheme provides based on a set of critical performance
metrics, such as the CL, the CD, the ICD, the ICT, the number
of controllers (Nbr of CTRLs) and using or not a DQN agent to
solve the controller placement problem.

2.3. Deep Q-Network (DQON)

The Q-learning technique (QL) is basically based on an
autonomous agent that interacts with the environment by se-
quentially taking actions, while maximizing cumulative rewards
[20][21]. As shown in Fig. 1, this can be described as a MDP in
which the next state s;.; depends on the current state s; and
the selected action by the agent according to a specific state
transition probability distribution P(s;,a;, s;+1), which repre-
sents the probability of switching to state s;.; after action a;
in state s;. In QL, the agent senses the environment by identi-
fying the current state s; and then selects the action a; to exe-
cute. The environment subsequently feeds back a reward to the
agent, while updating the current state to the new state. Then,

Table 1: Added-value of our contribution

Ref CL | CD | ICD | ICT | Nbr of | DQN
CTRLs
[7] X 4 v X X X
[8] X v X X X X
[9] v X X X X X
[10] v X v X X X
[11] v X v X X X
[12] X X v X v X
[13] X v v X v X
[14] X v v X v X
[16] X v X 4 v X
[17] v v X X X X
[18] v v X X X X
[19] v 4 X X X X
DDCP v v v v v v

the trajectory of states, actions and rewards constitute a MDP:
S0, do, 10, S1, A1, 71... The objective is to learn the best policy
n(a;|s;), while maximizing the cumulative rewards of the cur-
rent and next states which can be written as follows::

n
R=Z¢iri+1 (e))
i=0

Where ¢ € [0,1] is a factor to discount future rewards.
Given a policy r, the expectation of accumulated rewards from
action g; in a state s; can be estimated by the Q-value func-
tion Q,(s;,a;) = E[R|s;,a;, w]. Thereafter, the best policy cor-
responds to the highest Q-value in each state: Q*(s;,a;) =
max; Q,(s;, a;). This function can be defined recursively accord-
ing to the Bellman equation as follows:

O, (si,a;) = ri + 0.0 (Si 41,8+ 1) 2)

Q-Network

Loss function L(8)

Q(s;,a,6) T+ y.max,,, Q'(5.:1,0141,6")
Take Action
Observe State Reward
Environment

Figure 1: Deep Q-Network (DQN) architecture [20][21]

The policy & can be improved by dynamically updating the
0, (s;, a;) as follows:

0,(si,a;) «— Q,(si,a;) +n.A 3)

A=ri+omaxy,, O (sit1,ai+1) — Qn(si,a;) 4)

Where 7 € [0, 1] is the learning rate, and the temporal differ-
ence (T D) error A corresponds to the correction for the Q-value
estimation. The QL technique stores and updates the Q-values
in look-up tables, which makes it slow to reach the best policy
when exploring the entire table if the number of possible states
becomes very large. This affects significantly the performance
of O-learning. To cope with this challenge, the DQN makes use
of Neural Networks (NN) to approximate the estimation of the
Q-value function. The DQN networks takes as input the state
vector. The output is a vector of action Q-values, and its corre-
sponding Loss function is constructed based on the mean square
deviation defined as follows :

L(8) = (TargetQ - Q(si, a;, 6)))° &)

TargetQ = r; + p.maxg, O(S;+1,a; 1 1,6;) (6)

Where 6; is the network parameter at iteration i. It is worth
noting that the convergence of the Loss function L(6;) is not sta-
ble when using only one Neural Network. To improve the con-
vergence stability, DQN adopts the method called Experience
Replay, which corresponds to creating two Neural networks,
that have the same architecture, with parameters 6 and ¢. The
first one is used to retrieve Q-values, while the second one in-
cludes all updates in the training. After C steps the target net-
work parameters 6" are updated. This mechanism is illustrated
in Fig. 1.

3. DDCP Approach

In this section, we present our approach for the clustering
and placement of controllers in SDN using DQN. Firstly, we
explain the overall framework. Thereafter, the problem formu-
lation and the Deep Q-Network Agent will be described.

3.1. DDCP Architecture

We design our framework according to the Knowledge-
Defined Networking (KDN) paradigm [22], by introducing the
knowledge plane to the conventional SDN paradigm, in which
we exploit the control plane to have a global view of the network
(cf. Fig. 2).

Fig. 2 presents our system architecture, which consists of
four planes: Data plane, Control Plane, Management Plane and
Knowledge Plane.

The data plane that consists of programmable forwarding
devices, in charge of data packet processing and forwarding.
These devices have no embedded intelligence to take decisions
and rely on the control plane to populate their forwarding tables

—————

Knowledge plane

]

i

]

Number of Controllers i
Controllers placements '
» DON Agentn{{} £ i
Determining the set of L
|

i

i

1

5

platform ; switches for each controller
]
Lo g Fentie St g e ! : __________________
I Northbound SDN Controller API
___ s (PR
Control plane i
________________________]
Master Mas?er Master |
Domain w, i i -D.‘"’_mam Weginosame=t Domain wy

- —

Y Data plane N)
| - St *: - .
@ S @ N (@
L N T ~ - i
RPN - ~gh @ S <)
s [S, = ,
x </ <

Domain wy Domain wy

Figure 2: DDCP Architecture

and update their configurations based on the OpenFlow proto-
col. Moreover, the data plane is divided into multiple domains
and each of them is supervised by a dedicated controller.

The control plane is considered as the brain of the SDN net-
work, which incorporates the whole intelligence by abstracting
the management and global view of the network in a set of dis-
tributed controllers in different locations. Each controller may
not have full control or knowledge of the network status and
has the responsibility for only a portion of the network (i.e., do-
main). It communicates with the other controllers through the
West/Eastbound interfaces.

The management plane ensures the correct operation and
performance of the network by collecting the network measure-
ment from the control plane Network Measurement module, in
order to provide network analytic. The collected statistics will
be analyzed and sent to the knowledge plane.

In order to not affect the control plane performances, the
process of deploying distributed controllers needs to be fully au-
tomated and can be ensured by the knowledge plane. This latter
exploits the control plane and the management plane by taking
the data from the LP as input to be fed to ML algorithms, which
will convert them to the form of knowledge. Precisely, it learns
the behavior of the network, by processing the collected statis-
tics, then determines the number of controllers, their locations
and the set of switches embedded in each controller’s domain,
by deploying a DQN agent. The output of the DQN agent is
transmitted to the control plane through the Northbound SDN
controller API.

In what follows, we present our controller placement prob-
lem formulation, then we detail the Deep Q-Network Agent.

3.2. Problem Formulation

We model the SDN network as an undirected graph G =
(V,E), where V = {v;} is the set of switches and |V| = k is the
number of switches and E is the set of edges (i.e., links between
switches). The control plane consists of a set of controllers
C = {¢;}, where |C| = n denotes the number of controllers. On
the other hand, the data plane is fragmented into a set of do-
mains W = {w;}, each domain w; = {v;},v; € V supervised by
a controller, and |W| = p denotes the number of domains. The
solution of our Controller Placement Problem (CPP) can be rep-
resented as a binary vector F' = (Fy, Fy, ..., F,) € R", where F;
is given by:

1, if controller c; is selected
F; = . @)
0, otherwise

Since our objective is to optimize the number of deployed
controllers, while guaranteeing the QoS requirements of all traf-
fic requests in the network, we define here-after four different
variables to compute the number of selected controllers: Con-
trol Load (CL), Control Delay (CD), Intra-Cluster Delay (ICD),
and Intra-Cluster Throughput (ICT).

3.2.1. Number of Selected Controllers

To determine the number of deployed controllers p (i.e., the
number of data plane domains), we first, define the variable R;.
representing the total flow request from switch () to controller
(7)) at time (7), which corresponds to the number of Packet-In
messages generated by the switch. It is worth noting that, the
Packet-In messages are generated and sent from switches to the
controller when there is no matching flow entries in their flow
tables. Secondly, we assume that the portion of resources con-
sumed by one flow request concerns essentially the CPU and
RAM, and can be written as follows:

o CPUflowl
"7 cPU;

RAM fi,,,
RAM,

®)

Where CPU; and RAM; correspond, respectively, to the
maximum capacity of CPU and RAM of the controller ¢;. As
CPU and RAM use different units, we divide them over their
corresponding maximum values to get normalized data. There-
fore, the number of selected controllers can be written as fol-
lows:

n k
p=),) R ©

i=1 j=1

3.2.2. Control Load (CL)

We define the CL as the load incurred by all the switches
belonging to the same domain. To this end, we use a decision
variable H . to determine the relationship between the controller
(i) and the switch (j) as follows:

Hl’ 1, if switc'h v; is controlled by c; at time ¢ (10)
710, otherwise
The load of the controller ¢; can be thus given by:
Z H! R, (11)

To avoid the overloading of some controllers and the under-
utilization of others, we balance the traffic load between the set
of selected p controllers. To this end, we determine the global
CL as follows:

Z ICL! ~ CLL,| (12)

Where C L;vg denotes the average of the CL of all selected p
controllers.

3.2.3. Control Delay (CD)
The CD corresponds to the average response time of the con-
troller ¢;, which is defined as follows:

CD! = PD} +2.CMD! (13)

Where PD! and CM D! are, respectively, the processing de-
lay and the communication delay of the controller ¢; at time
t. We used two times of the communication delay since the
Packet-In comes from the switch to the controller and returns
back to the switch. In this way, the global CD is determined as
the average of the CD of the set of selected controllers, which
can be written as follows:

1 &
=— > CD} (14)

According to [23], the processing delay is determined as fol-
lows:

1

@i =0

Where ¢; and 6; are, respectively, the capacity and the work-
load of the controller ¢;. The communication delay is deter-
mined as follows:

PD} = (15)

k

= ZH;J (16)

k t gt

q;

a7
j=1

Where ¢! denotes the number of switches supervised by the
controller ¢; and d! ; iy denotes the delay between the controller c;

and the switch v;. The latter is measured based on our previous
work in [24].

3.2.4. Intra-Cluster Delay (ICD)

This metric corresponds to the average value of the prop-
agation delays between all the switches belonging to the same
cluster i, which can be written as follows:

ICDf = Z A(Ve, vm)sjp(ve’ vm)
i

Ve EW;, Vi EW;

(18)

Where A(v,, v,,) denotes the delay between nodes v, and v,,

in the domain wj;, ¢; is the number of links of the cluster i, and

(Ve, Vi) 1s a decision variable representing the relationship be-
tween any two switches, which is defined as follows:

0
Ves Vi) =

if v, is connected to v,
. (19)
0, otherwise
Then, the global ICD of the set of p clusters is determined
as follows:

1 P
ICD' = ~ Z IcD; (20)
P i=1

3.2.5. Intra-Cluster Throughput (ICT)

This metric corresponds to how much data can be trans-
ferred by a specific data plane cluster (i) within a given time-
frame, which referred to us IC Ti’ . Then, the global ICT of the
set of p clusters is determined as follows:

1 P
ICT' = p Z ICT! 1)
i=1

3.3. Controller Placement and Switches Migration

We consider the controllers as images installed in different
servers located in different locations. In this way, the action of
controllers placement refers to instantiating a container from the
image in the corresponding server located in a specific location.
To this end, we consider ¢;, i € [1, n] as the instance of the con-
troller in the server or location i. Also, the deselection follows
the same logic by just deleting the instance or container c;.

It is worth noting that the clustering of control and data
planes as well as the placement of the controllers happen
when certain controllers are overloaded, while others are under-
utilized. Hence, we define in equation (22) the load balancing
factor between clusters, calculated as follows:

t
max(CL;)

Note that, finding new data plane clusters leads to migrating
a set of switches from old clusters controlled by specific con-
trollers to new clusters controlled by new controllers.

CLyjg = x 100 (22)

3.4. Proposed Optimization Model

The objective of our optimization model is to minimize the
aforementioned performance metrics including CL, CD, ICD
and ICT. This can be achieved as follows:

Minta cD' 4 Bx cr oy x Icop' o ICT!)
CDpax CLyax ICD o ICT g
)
Subject to :
Viel[l,pl:CL < M.F, (24)
YV (wiwy,) € W2 iw,Nw, =0 (25)
if controllers ¢; and ¢; are selected: ¢; # ¢; (26)
Wl =p 27
V(@D ell,pl’V jellkl: (dij <dij) = (H,;>H,;) (28)
Vjellkl:H; <F (29)
k
Viell,pl: () Hi;=0)= (F;=0) (30)
Jj=1
Vie[l,pl:CD! <oy (31)
V (Ver V) € V2 1 Aoy Vi) < 6 (32)

As the objective function involves different parameters with
different measurement units, we have divided each metric over
its corresponding maximum value to have a normalized objec-
tive function. Note that these maximum values are determined
by the network operator and correspond to physical character-
istics of involved network devices. Note also that @, 3, y, and p
are adjustable weighting factors determining the degree of im-
portance of the CD, the CL, the ICD and the ICT metrics, re-
spectively, such thata + 8 +7y +p = 1.

Constraint (24) forces all controllers to not be overloaded.
Constraint (25) means that all domains do not overlap and each
node belongs to only one domain. Constraint (26) forces the
set of controllers to be selected only once. Constraint (27) in-
sures that the number of selected controllers is the same as the
number of data plane domains. Constraint (28) is the mapping
constraint ensuring that a switch must be mapped to the closest
controller in terms of delay. Recall that, we refer to our work in
[24] to measure the delay between the switches in the data plane
as well as between the switches and their corresponding con-
trollers, where the delay is measured based on the times of send-
ing and receiving a specific packet probe from the controller to
the switches in the data plane. Constraint (29) means that a
switch is mapped to a controller if the latter exists and is se-
lected. Constraint (30) means that if there is no switch mapped
to a controller then the latter will be powered off. Constraint
(31) forces the CD metric to not exceed a certain threshold o,
and finally constraint (32) forces the links of each cluster to not
be delayed.

The formulated optimization problem is an NP-hard prob-
lem [1], where the optimal solution is very difficult to obtain
in general. To this end, we propose to solve it by modeling and
training a Deep Q-Network Agent, as will be detailed in the next
section.

Action = {C;, C3, C4} Action = {C;, C3, C5}
A3 o) a b
G Gy C‘3 C:t | \5/‘ c1 Cy C3 Cy “\LE/)
| ' i n=>5
1 4 7 1 L4 > U p=3
2 9 ! 9
S3 3 5 6 8 3 5 6] 8 sk | Ji=0
State = {{1,2,3},{4,5},{6,7,8,9}} State = {{1,2,3},{4,5,6},{7.,8,9}}
Action = {Cy, C3, C4, Cs} Action = {C;, C;, C4, C5}
A - -
4 c:1 s] c}3 c?, &—,/) c1 Cz C3 (.‘14 :{5/\\ o =
1 4 7 1 4 7 p=4
2 9 /i o B
S, 3 5 6 8 & e BB sy | =10
State = {{1,2,3},{4,5},{6,7},{8,9}} State = {{1,2},{3,4},{5,6,7},{8,9}}
* k%

Figure 3: Demonstration of the DQN State and Action spaces using a simple topology

3.5. Deep Q-Network Agent

To dynamically determine the optimal number of controllers
and their optimal placements while considering the propagation
delay between the switches and the controller, the controller re-
source utilization, the ICD and the ICT, we propose to model a
DQN Agent based on a MDP. In this way, the DQN agent inter-
acts with the environment through three signals: State, Action
and Reward.

3.5.1. State

The State S,, corresponds to the partitioning of the data
plane into p domains. To do so, we define it as a vector of
wy; (i € [1, p]), and can be written as follows:

St,p = [Wt,l’ Wiy s Wt,p]

Where w;; = [Ves oy Vinl, Y(Ve, Vi) € szi is a vector repre-

senting a cluster of switches, such that 37 |w,;| = k. Recall
that, k corresponds to the total number of switches in the data
plane.

Let S, denote the set of all states corresponding to a specific
value of p, written as follows:

Sp =[S Lps S2,p: ey STp,p]

Where T, corresponds to the number of states correspond-
ing to p clusters. It is worth noting that, the set of states are
constructed by respecting the set of constraints indicated in Sec-
tion 3.4.

3.5.2. Action
The action taken by the agent A,,, is characterized by a vec-
tor representing a selected set of p controllers from the available

n controllers, which is defined as follows:

Ar,p = [cr,l’ ceey Cr,p]’ vcr,i eC

Where r represents the action number. We denote the set of
all actions corresponding to a specific value of p as follows:

Ap = [Al,p, A2,p,) AR,,,p]

Where R, corresponds to the number of actions correspond-
ing to p clusters. It is worth noting that, the set of actions are
constructed by respecting the set of constraints (26) and (27)
indicated in Section 3.4. Recall that, constraint (26) avoids se-
lecting one controller for more that one cluster and constraint
(27) ensures that the number of controllers is the same as the
number of data plane domains.

3.5.3. Reward

The "Reward” function R of the agent consists in minimiz-
ing the normalized objective function defined in (23), and can
be thus written as follows:

CL
CLWIHX

ICD
ICDHMIX

ICT
ICTmax
(33)

CD
+ B X
CDmax

R=ax +7y X -pX

It is worth noting that the proposed DQN agent consists in
determining the best mapping between the set of states and the
set of actions, while maximizing 1/R (i.e., minimizing R).

In order to give more detail on the DQN design, we propose
to illustrate it graphically in a small topology with 9 switches in
the data plane and 5 controllers in the control plane, as shown
in Fig. 3. We can see that, when p = 3 the data plane is frag-
mented into three domains as well as only three controllers are

used to supervise each domain and the rest of controllers are not
instantiated. In this case, the state corresponds to the selected
three domains and the action corresponds to the selected three
controllers. When p = 4, we can see that the shapes of the state
and action vectors are changed, where four controllers from five
are selected for each action and the data plane is fragmented into
four domains.

Recall that, the number of controllers to be selected, corre-
sponds to the number of data plane domains or clusters, and can
take values from 1 to n, where n corresponds to the total number
of controllers in the control plane.

3.6. DDCP Heuristic

Algorithm 1: DDCP algorithm

1: procedure CLust(S ={S1,...,S,},A ={A,....,An})
2 Max_Reward <« 0

3 pe—1

4: while p < ndo

5: for each state € S|, do

6 Reward, Action < DQN(state, S ,,Ap)
7 if Reward > Max_Reward then

8 Max_Reward < Reward

9: Select_St « State
10 Select_Act « Action
11: Select.p < p
12: end if
13: end for
14: p—p+1
15: end while
16: return Select_St, Select_Act, S elect_p

17: end procedure
18: procedure MIGRATION(S elect_S't, S elect_Act)
19: if CL,,i; > Threshold then

20: for each CTRL € Select_Act do

21: for each Domain € Select St do

22: if Map(CTRL, Domain) then

23: for each Switch : s € Domain do
24: if CTRL old(s) # CTRL then
25: Remove(s, CTRL_ old)

26: Assign(s, CTRL)

27: end if

28: end for

29: end if

30: end for

31: end for

32: end if

33: end procedure

As the state S,, and action A,, take different forms or
shapes for each value of p, we propose to split the state space
(i.e., training data) based on p values. Then, we train the DQN
agent separately for each value of p (i.e., DQN(S,,, A,,)). In
this way, to determine the optimal number of controllers p and
the best mapping between the set of states (clusters of switches)

and the set of p controllers, we propose the DDCP heuristic (i.e.,
Algo. 1):

The DDCP algorithm consists of two main procedures:
Clust and Migration. The Clust procedure is called to deter-
mine the set of controllers and their corresponding placements
as well as the set of data plane clusters. It works as follows:
it takes as input the set of splitted states and the set of splitted
actions based on p: § = {S1,52,....5,},A = {A1,A, ..., An}.
Recall that, S, corresponds to the space of states where the
number of controllers as well as the number of data plane do-
mains is p. Then, by using the trained DQN Agent, it finds the
optimal State, Action corresponding to the maximum reward
(lines 4-15) iteratively for each sub-states S, € S,p € [1,n].
The output of the Clust procedure is the optimal number of
controllers to be deployed (S elect_p), their corresponding ID
(Select_ Act € Ageecip), and the corresponding set of switch
clusters (Select St € S sepecr_p) (line 16).

On the other hand, the Migration procedure is called when
the control plane load is not well-balanced (lines 19). In this
case, it takes as input the output of the Clust procedure (i.e.,
Select_p, Select_Act, Select_St). Then, it migrates the set of
switches to the new cluster if the new controller is different from
the old one (lines 20-31).

Note that, the Map function indicates if a switch in
Select_.St is mapped to a controller in Select_Act. The
CTRL_old represents the controller of a specific switch before
migration.

4. Performance Evaluation

In this section, we evaluate the efficiency of our proposed
approach. We start by presenting our experimental setup. Then,
we present the experimental results.

4.1. Experimental Setup

First, the control plane is deployed as a cluster of a set
of dockerized OpenFlow ONOS [22] controllers. Then, the
DQN agent is implemented based on Python [15] and docker-
ized on Docker Containers [16]. The latter interacts with the
control plane based on the ONOS Northbound API. The control
plane consists of 12 controllers. We used the network emulation
tool OpenvSwitch [23] to implement the experimental topology,
which consists of 32 nodes. To generate traffic among hosts, we
used Iperf [24]. The control plane Network Measurement mod-
ules collect statistics (latency, throughput, and per-flow size)
from the devices and report those time-series statistics to the
InfluxDb database [20]. Note that, to show the importance of
using DQN on a large space of states and actions, we augmented
the collected statistics by using data generated with Python.

Recall that, the DQN model consists of two neural networks,
designed to improve the convergence of the Cost Function in
(5). One neural network is called Q-Network to estimate the Q-
Values and the second one is called the QO-target to estimate the
target network, according to the mechanism shown in Fig. 1.

Table 2: DQN parameters

Name Value
Dense layers 2
Control plane capacity 10
Data plane capacity 32
Minimum number of switches per cluster 1
Maximum number of switches per cluster 13
Q-target network update frequency 200
Learning rate 0.01
Discounted factor 0.6
Mini-batch size 32
Final exploration rate 0.2
Memory size 2000 units
Number of episodes 1000

(a) State Space Size (b) Action Space Size

800 |
« 600014 @
2 S
s g 6001
‘5 4000 - =
3 3 400
£ 20001 o E
S 3 200 4
0 . B
[=3] [+] ~ (V=] [T} =t [+3] [+2] ~ [l=] s} =t
1} 1} Il [}] 1}] I I 1} I I
o a o a a a o a a. a o a

Figure 4: Number of States and Actions under different number of clusters p

We built and trained the DQN model by using the Tensor-
flow library [21], by deploying separately the two neural net-
works (i.e., Q-Network, Q-target), which have the same archi-
tecture. The DQN parameters are illustrated in Table 2. In par-
ticular, both the Q-Network and the Q-target consist of 2 dense
layers. The number of data plane switches is 32 and the number
of controllers in the control plane is 10.

Considering the implemented topology, and in order to not
have a huge state space size, the training data are built as fol-
lows: 1) the minimum and maximum number of switches in each
cluster are fixed to 1 and 13, respectively, ii) the clusters where
no link between the generated switches of a specific cluster are
ignored. On the other hand, the training data (i.e., the set of
States) can be classified based on p, as the State corresponds to
a vector of p sub-vectors. In this way, both the set of States and
the set of Actions are splitted based on p, as illustrated in Fig. 4.
Then, we trained separately a set of DQN agents according to
p. Recall that, we denoted the number of states corresponding
to p by T}, and the number of actions corresponding to p by R,
in Sections 3.5.1 and 3.5.2, respectively. This mechanism of
splitting the training data helps our proposed DDCP approach
to determine the best clustering of control and data planes, as
we need to go through the set of all trained DQN agents.

It is worth noting that, the global number of States and Ac-
tions is selected based on a set of parameters: 1) the global num-

ber of switches in the data plane (i.e., 32 switches in our case)
and the number of controllers in the control plane (i.e., 10 con-
trollers in our case), ii) the maximum and minimum capacity of
each cluster, and iii) the convergence of the Cost function, while
training the set of DQN agents based on p.

During the training phase, we adopt e-greedy method as ac-
tion selection method. The final exploration rate is fixed at 0.2,
while the Q-target parameters are copied from the Q-Network
every 200 steps. The learning rate and discounted factor are
fixed to 0.01 and 0.6, respectively, which correspond to 7 and
¢ parameters in equations (3) and (4). In addition, each train-
ing process corresponds to 1000 episodes. Finally, we fixed the
Threshold, indicated in Algorithm 1, to 30% to avoid overload-
ing the control plane, as will be justified in the next section.

4.2. Experimental Results

In order to evaluate the performance of our proposed DDCP
approach, we first determine the best DQN model based on
the reward function weighting factors. Then, we determine the
number of controllers (i.e., clusters) p to be deployed. To do
so, we compare our approach with the well-known K-means
clustering method. Then, we show the benefit of our approach
in term of data plane partitioning i.e., which switch assigned
to which cluster. Thereafter, we evaluate its performances in
terms of CD, CL, ICD and ICT metrics. Finally, we perform
a comparative analysis between our proposed DDCP approach
and three main schemes proposed in the literature: 1) Opti-
mal and Dynamic Controller Placement (ODCP) [17], 2) Dy-
namic SDN Controller Placement in Elastic Optical Datacenter
Networks (DSCP) [19], and 3) A Hierarchical K-means Algo-
rithm for Controller Placement in SDN-based WAN Architec-
ture (HKCP) [18].

As mentioned in equation (33), the reward function is com-
posed of four performance metrics (i.e., CD (CD?), CL (cLY,
ICD (ICD}) and ICT (ICT?)) weighted by four parameters «,
B, vy and p, respectively. These weighting factors play an im-
portant role to determine, in one side, the importance of each
performance metric, and on the other side the convergence of
the Loss function, shown in equation (5). To this end, we de-
pict, in Fig. 5, the average value of each performance metric
(i.e., CD, CL, ICD, ICT) after training the DQN agent under
different number of training episodes (1000 episodes in total),
while changing the weighting factors according to the follow-
ing strategies:

e §: this strategy considers only the control plane perfor-

mance metrics (i.e., CD and CL): a = %, B = %, Y =

0, p=0.

e S,: this strategy considers only the data plane perfor-

mance metrics (i.e., ICD and ICT): @« = 0, 8 =0, y =
1 1
P

e S5: this strategy considers delay-throughput performance
metrics (i.e., CD,ICD,ICT):a =1, 8=0,y=1, p=1.

e §4: this strategy gives importance to all performance met-

ey =L g1 1]
ricssa=3, =3, Y=5pPp= 7

(a) Control Delay (b) Control Load

3.5
2.0 3.0 4
=15 _ 254
=]
E 1.0 =204
0.5 1.5
0.0 : : : : 1.0 : : : :
51 5 53 54 51 5 53 54
c) ICD (d) ICT
(c) i)
13 A
12 A _ A4
7 3
E1 =
= 42
10 A
9 : : . . 40 : . : .
51 5 53 54 51 5 53 54

Figure 5: Impact of varying the reward function weighting factors «,3,y,p on
the CD, the CL, the ICD and the ICT metrics

From Fig. 5, we can see that considering only the data plane
performance metrics in strategy S, causes obviously high val-
ues of CD, CL and ICD, while decreasing the ICT metric. The
reason is that some controllers are overloaded and experiencing
congestion, while others are under-utilized. On the other hand,
strategy S 3 shows better performances compared to strategy S,
since the CD metric is taken into account. However, the control
load (CL) is still high compared to the two remaining strate-
gies (S and S4) since this metric is not taken into account in
the reward function of strategy S3. Considering the CL met-
ric in strategy S; improves the performances compared to the
two strategies S, and S 3. This shows the importance of balanc-
ing the load between the set of controllers in the control plane.
Finally, strategy S 4, which takes into account all performance
metrics (i.e., CD, CL, ICD and ICT), outperforms all others
strategies, showing high throughput, low intra-cluster delay, low
control delay, and low control load. Hence, according to these
results, we adopt strategy Sy (i.e., @ = i, B = i, y = }‘, p= %)
for our subsequent experiments.

Let us now determine the optimal number/range of con-
trollers (i.e., clusters) to be deployed p. To do so, we plot in
Fig. 6 the evolution of the reward and loss functions (as de-
fined in equations (33) and (5)) under different number of train-
ing episodes and using the aforementioned weighting factors by
adopting the strategy S 4. We compare in Fig. 6(a) the following
baselines:

® R4, Rs, R, R7, Rg, Ry: where R, corresponds to the reward
under the number of clusters p, p € [4..9].

Similarly, we compare in Fig. 6(b) the following baselines:

e (4,C5,C4,C7,Cs,Co: where C,, corresponds to the cost
under the number of clusters p, p € [4..9].

From Fig. 6 (b), we can see that the Loss function for all
studied baselines converges. On the other hand, we can observe

10

(a) Mean Reward

10

Rs

(b) Mean Cost

— G

T T T 1
400 600 800 1000

Number of episodes

T
200

Figure 6: Impact of varying the number of clusters and the controllers placement
while training the DQN agent

from Fig. 6 (a) that the mean reward increases while increasing
the number of clusters in the fist part of the range where p €
[4..6]. However, it starts to decrease in the second part of the
range where p € [7..9]. The increase in the first part reflects the
existence of new clustering configurations (i.e., based on link
latency) and controllers placement that lead to minimize the CD,
the CL and the ICD metrics. The decreasing in the second part
of the range of p, can be explained by the fact that the increase
in the number of controllers in the control plane impacts the
performances such as the CL metric. As a result, the number of
controllers or clusters to be deployed, according to our DDCP
approach, corresponds to that of the maximum reward, which is
equal to 6 in our experiments. Next, for the sake of comparison,
we take this range [4..6] for the variable p.

Let us now see the returned number of controllers p to be de-
ployed when using the well-known K-means clustering method.
Recall that K-means is widely used in network partition prob-
lems [25] and includes four main steps: 1) select p random
points as cluster centers called Centroids, 2) assign switches to
the closest cluster based on the latency of links and their loca-
tions, 3) recalculate the centroid for each cluster by computing
the average of the assigned switches, 4) repeat steps 2 and 3
until none of the cluster assignments change.

To determine the number of controllers to be deployed us-
ing the K-means algorithm, we refer to the Within Cluster Sum
of Squares (WCSS) method [26], which computes the distance
(i.e, delay in our case) between a centroid of a cluster and each
observation (i.e., switch in our case) based on which it assigns
the observation to the nearest cluster. To do so, we plot, in
Fig. 7, the WCSS method after training the K-means algorithm
for maximum 300 iterations under different number of clusters
of switches, where WCSS is determined as follows:

P wil

WCSS = Z‘ Z;(x,- -y’
i=1 j=

(34)

7000
—— WCSS of K-means

Selected Range of the

number of clusters "p" using DDCP
Selected Range of the

number of clusters "p" using K-means

6000
A
5000

4000

WCSS

3000

2000

1000 4

2 4 6 8 10 12
Number of clusters

Figure 7: WCSS of K-means models under different number of clusters

(35)

2
Xj = (Vsrc, Vdst» A(Vsrc, Vdst)): (Vsrc’ Vdst) €Ew;

Where x; represents a link in the domain w;, in which
Vgres Vase are data plane switches and A(v,., vay) 1S the delay be-
tween them, the y; denotes the centroid of the domain w;. In this
way, the WCSS method consists in clustering the set of points
x; in order to minimize the latency between switches.

From Fig. 7, we can see that the average controller response
time of WCSS continues to decrease, while increasing the
number of clusters, since the more we increase the number of
clusters, the more we have a small number of switches in each
cluster w;, which leads to minimizing the latency. However,
this can lead to overload the control plane due to the increase
of the number of controllers. To this end, we select the number
of clusters (i.e., controllers) when the WCSS starts to have low
values and be stable. Moreover, for the sake of comparison
using our approach (i.e., DDCP), we select a range of p values
when the WCSS converges. This leads us to choose the range
[7,8,9] for the number of clusters p based on the K-means
algorithm. This results in higher deployed clusters compared to
our DDCP approach, where the identified range of p is [4..6].

To further show the benefit of our DDCP approach in term of
data plane partitioning (i.e., which switch is assigned to which
cluster), we first compare it with the following baseline:

e Reduced DDCP, which corresponds to our proposed ap-
proach in which the data plane clustering is determined
by the K-means algorithm instead of the DQN agent,
and where the number of controllers to be deployed is
p € [4..6] (for the sake of comparison) and identified stat-
ically.

Fig. 8 and Fig. 9 depict the data plane devices allocated to
each cluster by using the Reduced DDCP and DDCP schemes,
respectively, under different values of p. It is noteworthy that,
we have used the p values in the range [4, 5, 6]. Also, the re-
ward function parameters of the DQN agent correspond to the
strategy S4 (i.e., @ = %, B= }‘, Y= i, p= %). We can see that,
when the number of clusters p is equal to 4, the allocation of
switches following the two schemes (i.e., Original DDCP and

Reduced DDCP) in Fig. 8(a) and 9(a) is completely different,

11

since the DDCP scheme is based on DQN that uses the previ-
ous clustering experiences, while the K-means method used in
the Reduced DDCP scheme, is based on recalculating the cen-
troid of each cluster for each step of the model training. When
p = 5 (cf. Fig. 8(b) and Fig. 9(b)), we can observe more sim-
ilarity, compared to those when p = 4, mostly in the last clus-
ter. When p = 6 (cf. Fig. 8(c) and Fig. 9(c)) the two schemes
achieve interestingly a close clustering result with a superiority
of the DDCP approach in terms of average CD, CL, ICD and
ICT metrics, as clearly depicted in Fig. 10. This convergence
in clustering can be explained by the fact that, as the K-means
considers only the clustering in the data plane, referring to the
DDCP approach to determine the number of clusters improves
the performances. However, it still causes some degradation
comparing to the DDCP approach since the controllers are iden-
tified statically in the reduced one, which increase the CD, the
CL and the ICD metrics, as clearly depicted in Fig. 10.

Finally, we perform, in the following, a comparative analy-
sis between our proposed DDCP approach and three main ap-
proaches proposed in the literature:

e ODCEP [17], which consists in using a quadratic program
to solve the controller placement problem and determines
the number of switches in each switch domain. After
solving the controller placement problem, it dynamically
migrates switches in case of controller overload.

DSCP [19], which is based on dynamically matching the
set of controllers to the set of data plane switches in order
to maximize the resource utilization. Moreover, it dynam-
ically balances the traffic load and deploys the controllers.

HKCP [18], which is a SDN network partitioning method
based on the hierarchical K-means algorithm. It considers
the latency between the switches and their controllers as
well as the load balancing between the set of controllers.

We used the same experimental topology, described in Sec-
tion 4.1, for all approaches. In addition, to have a fair compar-
ison, we have compared all approaches before and after switch
migration. Recall that the action that triggers the switch migra-
tion is the overloading of the control plane. To this end, we used
the following scenario:

We consider the set of controllers and data plane clusters
obtained by using our DDCP approach from Fig. 9, where the
number of clusters is 5 before switch migration. Then, we
force the switches to overload the set of controllers by send-
ing a high number of Packet_In. This will force the four studied
approaches (DDCP, ODCP, DSCP, and HKCP) to perform the
migration of some switches to new clusters and change the net-
work topology.

First, it is interesting to see the impact of varying the Thresh-
old defined in our DDCP approach in the switch migration pro-
cedure. To do so, we vary this parameter, denoted by Th,
between 10% and 40% and depict the number of migrated
switches in Fig. 11(a). Recall that CL,,;s, defined in equation
(22) and used in the switch migration procedure, refers to the

(a) Switches Clustering using K-means
with number of clusters (p = 4)
and DQN for Controllers placement

(b) Switches Clustering using K-means
with number of clusters (p = 5)
and DQN for Controllers placement

(c) Switches Clustering using K-means
with number of clusters (p = 6)
and DQN for Controllers placement

35 4 35 35 + €=16
Mean Control Delay=1.913 Mean Control Delay=1.044 Mean Control Delay=0.647 T Ry
/
.
30 4 30 4 30 4 ! >4 \\
Mean Control Load=2.919 Mean Control Load=2.744 Mean Control Load=2.078 \\) i
. ?
L
55| Mean ICD=12.341 25| MeanICD=11.87 55| Mean ICD=11.215 ~—=
i)
Mean ICT=43.736 \\ Mean ICT=43.95 4 Mean ICT=44.219 o b
4 C=! K] /
20 S 20 204 i
] v]]
4 15 : & 15 &
I o 4. i 15 4
i o'e i
\ L] !
C=2| v\ o0 / C=2
10 e S £ 10 4 T
’ ~ 7 & N 10 1
/ o Pl Y S o Devices(26,27,28,29,30,31,32)
// X // P e Devices(22,23,24,25) e Devices(6,7,8)
541 o b \ e Devices(1,2,3,6,7.5.4.8) 541 - | e Devices(9,10,11,12,13,14) e Devices(9,10,11,12,13,14)
! .o / e Devices(16,17,18,19,20,22,23,24,21,25) \ . / e Devices(1,2,3,6,7,5.4,8) 5 e Devices(15,16,17,18,19,20,21)
\\‘ % » / e Devices(9,10,11,12,13,15,14) \\‘ ~ 4 7 e Devices(26,27,28,29,30,31,32) e Devices(1,2,3,5.4)
M 7 e Devices(26,27,28,29,30,31,32) b < g e Devices(15,16,17,18,19,20,21) ® Devices(22,23,24,25)
07 E—— A Number of Controllers = 4 01 R A Number of Controllers = 5 N A Number of Controllers = 6
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Switch Switch Switch

Figure 8: Demonstration of the network clustering for the Reduced DDCP scheme

(a) Switches Clustering and Controllers placement
using only DQN with number of clusters (p = 4)

(b) switches Clustering and Controllers placement
using only DQN with number of clusters (p = 5)

(c) switches Clustering and Controllers placement
using only DQN with number of clusters (p = 6)

35 =10 35 4
- N
Mean Control Delay=1.733 ,/ . 8 :\\ Mean Control Delay=0.98
30 4 [st ! 30
Mean Control Load=2.809 Lle e H Mean Control Load=2.225
c=7 Vot |
5 | Mean ICD=12.172 A N |l 25/ MeanICD=11.621
/ se
/ ee
Mean ICT=43.948 i i Mean ICT=44.106
i P g | 204 .
20 1 "o
= \'\ LN] 1]]
S c=5 \ e ; i
H S . 7 H
’ 151 N BN . " 151
T

104 10 4

Devices(1.2,3,4,5)
Devices(6,7,8,9,10,11,12,13,14)
Devices(15,16,17,18,19,20,21,22,23,24)
Devices(25,26,27,28,29,30,31,32)
Number of Controllers = 4

IO

3541

Mean Control Delay=0.399

30 4
Mean Control Load=1.772

Mean ICD=10.081

Mean ICT=44.743 !

Switch

15 4

10

15
Switch

20 25 30 0 5 10

= e Devices(1,2.3,4)
Devices(1,2,3,4,5,6) e Devices(5,6,7)
Devices(7,8,9,10,11,12,13,14) o Devices(8,9,10,11,12,13,14)
Devices(15,16,17,18,19,20) 54 y e Devices(15,16,17,18,19,20,21)
Devices(21,22,23,24,25) i o Devices(22,23,24,25)
Devices(26,27,28,29,30,31,32) \e ; s Devices(26,27,28,29,30,31,32)
Number of Controllers = 5 ol il A Number of Controllers = 6
15 20 25 0 0 5 10 15 20 25 30
Switch Switch

Figure 9: Demonstration of the network clustering for the DDCP scheme

load balancing factor between clusters. The more this factor is
high, the more some controllers are overloaded compared to the
others. In this way, when CL,,;, exceeds the Threshold (T'h),
the migration process is triggered. From Fig. 11(a), we can ob-
serve that the number of migrated switches increases while de-
creasing Th, due to the difference in the load between the set
of controllers. However, giving small values to 7h may impact
network performances since the migration will happen more fre-
quently in this case, which increases the control delay, as shown
in Fig. 11(b). On the other hand, when T'% is high, the number of
switches to migrate is low. However, clusters will be unbalanced
in this case since some controllers will be overloaded compared
to the others. This results in increasing again but more signif-
icantly the control delay, as shown in Fig. 11(b). A trade-off
between the clusters’ load and the number of switches to mi-
grate is thus necessary. According to Fig. 11, this trade-off is
achieved when the Threshold is equal to 30%. Hence, in our
subsequent experiments, we fixed T/ to this obtained value.

12

Fig. 12 shows the average resource utilization in terms of
CPU and RAM before and after switch migration under all
schemes. First, we can observe that, the migration process
reduces considerably the average resource utilization for all
schemes. The gain is more significant when using our DDCP
approach, since it considers both control and data plane per-
formance metrics (i.e., CD, CL, ICD and ICT) in the reward
function when deploying a new cluster, as opposed to the other
schemes. Indeed, the DDCP approach shows a decrease in CPU
usage (respectively, RAM usage) of approximately 24% (re-
spectively, 28%). Compared to ODCP, DSCP, and HKCP, these
gains are reduced to 10%, 5%, and 7%, respectively, for the
CPU usage. On the other hand, for the RAM usage, these gains
are reduced to 10%, 7%, and 9%, respectively. However, we
note here that this implies an additional deployment of a cluster
(controller) in our DDCP approach since the number of clusters
after migration is increased to 6 in our experiment. In contrast,
the three other approaches ODCP, DSCP and HKCP keep us-

(a) Mean CD (b) Mean CL
3.5 4.0
30 ™ CD Reduced DDCP mmm CL Reduced DDCP
8 CD DDCP e CL DDCP
Fad 3 3.0
& 2.0 g
U —
a 2 I
5 197 E £ 251 E
20 (B ‘i B
[v] . l - 2.0 1 —
0.5
p=4 p=5 p=6 p=4 p=5 p=6
- (c) Mean ICD (d) Mean ICT
mmm |CF Reduced DDCP 45 | mmm |ICT Reduced DDCP
137 mmm |CF DDCP mmm |CT DDCP
& w45 A
E 121 o é I
= £
g .| II h . G o] i il
A uL .8l

Figure 10: Comparing dynamic clustering and placement based on DQN and
K-means methods

o (a) Number of migrated switches
L
£ 84
Z
297
£
N 44
o
@ 2
Q2
£
S0 T T T T T T
2 10% 15% 20% 25% 30% 35% 40%
Threshold
(b) Control Delay
n
E
E 0.6 ii
L]
fa)
S 0.4+
.
f=
S IL
0.2

5% 0% 35%

Threshold

10% 15% 20% 40%

Figure 11: Impact of varying the Threshold (7/) on the number of migrated
switches and control delay in the DDCP approach

(a) Max CPU Usage (%) (b) Max RAM Usage (%)

1101 Before Migration

Il After Migration

Before Migration

1907 o After Migration

100 4
90

,a-!; 90 — =
5
> gol i M I | s 801 x u
o
el B B : HH N
N R
LA MR .
50 - 50 -
ODCP DSCP HKCP DDCP ODCP DSCP HKCP DDCP

Figure 12: Average resource utilization before and after switch migration

13

Number of migrated switches

Number of migrated switches

oDCP DSCP HKCP DDCP

Figure 13: Comparison of number of migrated switches under ODCP, DSCP,
HKCP and DDCP schemes

ing the same number of clusters already defined by the network
operator.

Fig. 13 depicts the number of migrated switches for all
schemes. We can see that both ODCP and DDCP reduce the
number of migrated switches. On the other hand, this number is
higher in the two remaining approaches (i.e. DSCP and HKCP),
impacting thus the robustness of the network. In fact, having
a high number of switches to migrate increases the signalling
overhead, impacting thus the controllers’ load and the network
stability.

To further show the benefit of our DDCP approach, we
plot in Fig. 14 the delay-throughput performance metrics (i.e.,
CD, ICD and ICT) for all schemes. We can see that the
DSCP scheme increases the intra-cluster delay and decreases
the throughput, since those metrics are not considered when
clustering the network. On the other hand, both HKCP and
ODCP schemes show better performances, as they take into ac-
count additional parameters such as the delay between the con-
trollers. Finally, we can see that our DDCP approach outper-
forms all other schemes, showing higher throughput and lower
delay compared to the others, thanks to the use of the DQN
agent with a more complete reward function to solve the con-
trollers” placement problem. However, this comes at the ex-
pense of an additional deployment of a cluster/controller in the
control plane, as stated previously. It is worth noting that, as
several controllers need to be deployed in several locations, the
network will be more susceptible to different security challenges
and threats.

5. Conclusion

How many controllers to use in the control plane, where to
place them, which switch in the data plane must be controlled
by which controller represent challenging questions in SDN. To
address these important questions, we used optimization tech-
niques to determine the optimal number of controllers, their
optimal placements and the optimal clustering of data plane
switches. Because the formulated optimization problem is NP-
hard, a simple yet computationally efficient heuristic algorithm,
called DDCP, was proposed and implemented. Our approach
solution approach can be used as part of the knowledge plane to
optimize control and data plane operations, by deploying a DQN
agent that dynamically determines the optimal policy mapping

" (a) Mean ICD " (b) Mean Control Delay
0.8
= 14 'g
E o6
Epl 5
9 504
101 o2
ODCP DSCP HKCP DDCP ODCP DSCP HKCP DDCP
(c) Mean ICT
46
45 1
Wi
S 444
=
= 434
9]
421
a1

oDcp DSCP HKCP DDCP

Figure 14: Delay-Throughput metrics evaluation under ODCP, DSCP, HKCP
and DDCP schemes

the set of states (clusters of switches) to the set of actions (the
set of controllers in specific locations). Experimental results,
showed the effectiveness of our approach in identifying the ap-
propriate number of controllers to be deployed and the cluster-
ing of data plane switches around these controllers. Moreover,
our experiments showed that, the DQN agent outperforms the
well known K-means clustering method as well as three main
methods proposed in the literature by decreasing the control de-
lay, the control load, and the intra-cluster delay and increasing
the intra-cluster throughput. However, this comes at the expense
of an additional deployment of a cluster/controller in the control
plane.

Acknowledgement

This work was partially supported by the FUI SCORPION
project (Grant no. 17/00464).

References

[1] B.Heller, R. Sherwood, N. McKeown, The controller placement problem,
SIGCOMM Comput. Commun. Rev. 42 (4) (2012) 473-478. doi:10.
1145/2377677.2377767.

URL https://doi.org/10.1145/2377677.2377767

A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S. Baner-
jee, Devoflow: Scaling flow management for high-performance networks,
Vol. 41, 2011, pp. 254-265. doi:10.1145/2018436.2018466.

Y. Jimenez, C. Cervell6-Pastor, A. Garcia, On the controller placement for
designing a distributed sdn control layer, 2014, pp. 1-9. doi:10.1109/
IFIPNetworking.2014.6857117.

A. Tootoonchian, Y. Ganjali, Hyperflow: A distributed control plane for
openflow, 2010, pp. 3-3.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al., Onix: A distributed
control platform for large-scale production networks., in: OSDI, Vol. 10,
2010, pp. 1-6.

T. Das, V. Sridharan, M. Gurusamy, A survey on controller placement in
sdn, IEEE Communications Surveys Tutorials 22 (1) (2020) 472-503.

G. Wang, Y. Zhao, J. Huang, Q. Duan, J. Li, A k-means-based network
partition algorithm for controller placement in software defined network,
in: 2016 IEEE International Conference on Communications (ICC), 2016,

pp. 1-6.

(2]

3

—_

(4]
[5]

[6

[}

[7

—

14

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, M. Hoff-
mann, Heuristic approaches to the controller placement problem in large
scale sdn networks, IEEE Transactions on Network and Service Manage-
ment 12 (1) (2015) 4-17.

G. Yao, J. Bi, Y. Li, L. Guo, On the capacitated controller placement prob-
lem in software defined networks, IEEE Communications Letters 18 (8)
(2014) 1339-1342.

P. Tao, C. Ying, Z. Sun, S. Tan, P. Wang, Z. Sun, The controller placement
of software-defined networks based on minimum delay and load balanc-
ing, in: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure
Computing, 2018, pp. 310-313.

Y. Hu, T. Luo, N. C. Beaulieu, C. Deng, The energy-aware controller
placement problem in software defined networks, IEEE Communications
Letters 21 (4) (2017) 741-744.

L. Mamushiane, J. Mwangama, A. A. Lysko, Given a sdn topology, how
many controllers are needed and where should they go?, in: 2018 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2018, pp. 1-6.

M. Tanha, D. Sajjadi, J. Pan, Enduring node failures through resilient con-
troller placement for software defined networks, in: 2016 IEEE Global
Communications Conference (GLOBECOM), 2016, pp. 1-7.

T. Y. Cheng, M. Wang, X. Jia, Qos-guaranteed controller placement in
sdn, in: 2015 IEEE Global Communications Conference (GLOBECOM),
IEEE, 2015, pp. 1-6.

P. T. A. Quang, Y. Hadjadj-Aoul, A. Outtagarts, A deep reinforcement
learning approach for vnf forwarding graph embedding, IEEE Transac-
tions on Network and Service Management 16 (4) (2019) 1318-1331.

H. Mostafaei, M. Menth, M. S. Obaidat, A learning automaton-based con-
troller placement algorithm for software-defined networks, in: 2018 IEEE
Global Communications Conference (GLOBECOM), 2018, pp. 1-6.

N. Mouawad, R. Naja, S. Tohme, Optimal and dynamic sdn controller
placement, in: 2018 International Conference on Computer and Applica-
tions (ICCA), 2018, pp. 1-9. doi:10.1109/COMAPP.2018.8460361.
H. Kuang, Y. Qiu, R. Li, X. Liu, A hierarchical k-means algorithm for
controller placement in sdn-based wan architecture, in: 2018 10th Interna-
tional Conference on Measuring Technology and Mechatronics Automa-
tion (ICMTMA), 2018, pp. 263-267. doi:10.1109/ICMTMA.2018.
00070.

Y. Liu, H. Gu, X. Yu, J. Zhou, Dynamic sdn controller placement in
elastic optical datacenter networks, in: 2018 Asia Communications and
Photonics Conference (ACP), 2018, pp. 1-3. doi:10.1109/ACP.2018.
8596219.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, M. Riedmiller, Playing atari with deep reinforcement learning (12
2013).

V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
D. Hassabis, Human-level control through deep reinforcement learning,
Nature 518 (2015) 529-33. doi:10.1038/nature14236.

J. Hyun, J. W. Hong, Knowledge-defined networking using in-band net-
work telemetry, in: 2017 19th Asia-Pacific Network Operations and Man-
agement Symposium (APNOMS), 2017, pp. 54-57.

J. Little, S. Graves, Little’s Law, 2008, pp. 81-100. doi:10.1007/
978-0-387-73699-0_5.

E. H. Bouzidi, A. Outtagarts, R. Langar, Deep reinforcement learning
application for network latency management in software defined net-
works, in: 2019 IEEE Global Communications Conference (GLOBE-
COM), 2019, pp. 1-6. doi:10.1109/GLOBECOM38437.2019.9013221.
H. Al-Mohair, J. Mohamad-Saleh, S. A. Suandi, Hybrid human skin de-
tection using neural network and k-means clustering technique, Applied
Soft Computing 33 (05 2015). doi:10.1016/j.asoc.2015.04.046.
N. U. Roiha, Y. K. Suprapto, A. D. Wibawa, The optimization of the we-
blog central cluster using the genetic k-means algorithm, in: 2016 Inter-
national Seminar on Application for Technology of Information and Com-
munication (ISemantic), 2016, pp. 278-284.

E. H. Bouzidi, D. Luong, A. Outtagarts, A. Hebbar, R. Langar, Online-
based learning for predictive network latency in software-defined net-
works, in: 2018 IEEE Global Communications Conference (GLOBE-
COM), 2018, pp. 1-6. doi:10.1109/GLOCOM.2018.8648063.

EL Hocine Bouzidi

received the engineering degree in com-
puter science from the National School
of Computer Science of Algiers (ESI), in
2010, and the M.Sc. degree in computer
science in safe embedded and mobile sys-
tems from le CNAM, France, in 2016. He
received Ph.D. degree in telecom engi-
neering from Nokia Bell Labs and Gustave Eiffel University,
France, in 2021. He joined National School of Computer Sci-
ence of Algiers (ESI), as a System and Network Engineer, from
2012 to 2015. He joined Orange Lab, France, for his mas-
ter’s degree internship, as a software developer, in 2016. He
joined Nokia, France, as cloud packet core engineer, from 2021.
His research interests include B5G networks, networks resource
management, SDN and NFV.

Abdelkader Outtagarts

IEEE senior member is a senior re-
searcher and technical leader in NFV and
SDN orchestration, machine learning and
automation in Nokia Bell Labs. Abdelka-
der received the MSc and Ph.D. degrees
from the INSA de Lyon in France, in
1990 and 1994 respectively, on automa-
tion of energy systems. In 1999, he receives a MSc on software
engineering from Ecole de Technologie Supérieure of Montreal
in Canada. His professional experience of over 20 years, on in-
formation systems and telecommunications, energy efficiency,
software engineering, cloud computing, data mining, NFV mi-
cro services and SDN orchestration and automation, is mainly
acquired in France and Canada in R&D teams (Alcatel-Lucent,
Nextenso, Hydro-Quebec, UTILICASE and SCII Technology),
in research laboratories in Lyon (INSA), Montreal (ETS, CRIM)
and Nozay (Nokia Bell labs).

Rami Langar

(Member, IEEE) received the M.Sc. de-
gree in network and computer science '

from University Pierre and Marie Curie . q &=
(now Sorbonne University) in 2002, and e

the Ph.D. degree in network and com- \;

puter science from Telecom ParisTech, ‘ /h
Paris, France, in 2006. He was a Post- -4
Doctoral Research Fellow with the School of Computer Sci-
ence, University of Waterloo, Waterloo, ON, Canada, from
2006 to 2008, and an Associate Professor with LIP6, Univer-
sity Pierre and Marie Curie, from 2008 to 2016. He is cur-
rently a Full Professor affiliated with University Gustave Eiffel
(France) and ETS-Montréal (Canada). He is involved in many
European and National French research projects, such as ANR
5G-INSIGHT, ANR ABCD, FUI SCORPION, FUI ELASTIC
Networks, FUI PODIUM, MobileCloud (FP7), GOLDFISH
(FP7), etc. His research interests include resource manage-
ment in future wireless systems, cloud-RAN, network slicing in

15

5G/5G+/6G, software-defined wireless networks, mobile cloud
offloading, and green networking. He was a co-recipient of the
Best Paper Award from the IEEE/IFIP International Conference
on Network and Service Management 2014 (IEEE/IFIP CNSM
2014). He was the Chair of the IEEE ComSoc Technical Com-
mittee on Information Infrastructure and Networking (TCIIN)
from January 2018 to December 2019.

Raouf Boutaba

M’93-SM’01-F’12) received the M.Sc.
and Ph.D. degrees in computer science
from the Pierre and Marie Curie Univer-
sity, Paris, France, in 1990 and 1994, re-
spectively. He is currently a Professor of o
computer science with the University of "-»
Waterloo, Waterloo, ON, Canada. His re- pA
search interests include resource and service management in
networks and distributed systems. Dr. Boutaba is a Fellow of
the IEEE, the Engineering Institute of Canada, and the Cana-
dian Academy of Engineering. He served as a Distinguished
Speaker for the IEEE Computer and Communications Soci-
eties. He is the founding Editor-in-Chief of the IEEE TRANS-
ACTIONS ON NETWORK AND SERVICE MANAGEMENT
(2007-2010), and he is on the editorial boards of other jour-
nals. He was the recipient of several Best Paper Awards and
other recognitions, such as the Premier’s Research Excellence
Award, the IEEE Hal Sobol Award in 2007, the Fred W. Eller-
sick Prize in 2008, the Joe LociCero Award and the Dan Stokes-
bury Award in 2009, the Salah Aidarous Award in 2012, and the
McNaughton Gold Medal in 2014.

Elsevier Computer Networks
CRediT author statement for manuscript COMNET-D-21-00760 entitled:
“Dynamic Clustering of Software Defined Network Switches and Controller placement using Deep
Reinforcement Learning”

EL Hocine Bouzidi: Conceptualization, Methodology, Investigation, Software development

and integration, Writing- Original draft preparation.

Abdelkader Outtagarts: Data curation, Software, Supervision, Validation, Reviewing and
Editing.

Rami Langar: Supervision, Validation, Writing, Reviewing and Editing.

Raouf Boutaba: Validation, Reviewing and Editing.

Declaration of interests

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in
this paper.

OThe authors declare the following financial interests/personal relationships which
may be considered as potential competing interests:

Kind regards,
EL Hocine BOUZIDI, Abdelkader Outtagarts, Rami Langar and Raouf Boutaba

