
HAL Id: hal-04511870
https://hal.science/hal-04511870v1

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Adaptation of Loosely Coupled Systems across a
System of Small Uncrewed Aerial Systems

Theodore Chambers, Jane Cleland-Huang, Michael Vierhauser

To cite this version:
Theodore Chambers, Jane Cleland-Huang, Michael Vierhauser. Self-Adaptation of Loosely Cou-
pled Systems across a System of Small Uncrewed Aerial Systems. 12th International Workshop on
Software Engineering for Systems-of-Systems and Software Ecosystems, Apr 2024, Lisbon, Portugal.
�10.1145/3643655.3643882�. �hal-04511870�

https://hal.science/hal-04511870v1
https://hal.archives-ouvertes.fr

PREPRINT – accepted for publication at the 12th International Workshop
on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

Self-Adaptation of Loosely Coupled Systems across a System of

Small Uncrewed Aerial Systems

Theodore Chambers (University of Notre Dame; tchambe2@nd.edu)
Jane Cleland-Huang (University of Notre Dame; JaneHuang@nd.edu)
Michael Vierhauser (University of Innsbruck; Michael.Vierhauser@uibk.ac.at)
DOI: 10.1145/3643655.3643882

ABSTRACT

The use of small autonomous Uncrewed Aerial Systems (sUAS) for

Emergency Response requires rapid deployments into shared op-

erational environments. We refer to these as “Pop-upDroneZones”

(PuDZ), representing a System of Systems (SoS), in which individ-

ual systems provide services such as air traffic control, environ-

mental modeling, and support for sUAS autonomy. Each system

needs the ability to configure itself dynamically at the start of the

mission and adapt throughout the mission, in response to occur-

ring changes. However, system-level choreography at the SoS level

can be challenging, as it requires a global perspective of all individ-

ual systems, and a deep understanding of their inter-dependencies.

We, therefore, propose a publish-subscribe architecture that en-

ables the exchange of regional data between MAPE-K-enabled

systems in support of coordinated self-adaptation whilst main-

taining loose coupling between the interconnected systems. We

illustrate and validate our approach through several PuDZ-related

change scenarios in simulation and physical field tests.

1 Introduction

The increasing deployment of small autonomous Uncrewed Aerial
Systems (sUAS) for supporting emergency response missions [20]
demands new paradigms for ensuring rapid deployment and their
safe, secure, and reliable operation within the real world. Based on
emerging and unfolding situations in the field, missions need to
be planned, and sUAS subsequently deployed on the scene within
minutes or even seconds [16]. To address this problem, we are
developing a self-organizing, self-managing Pop-up Drone Zone
(PuDZ). PuDZ is implemented as a System of Systems (SoS), defined
by ISO/IEC/IEEE 21839 as a “set of systems or system elements
that interact to provide a unique capability that none of the con-
stituent systems can accomplish on its own” [13], and where each
system exhibits operational and managerial independence [18].
Many of the primary systems within the PuDZ infrastructure are
self-managed around a MAPE-K loop with capabilities to monitor
their environments, analyze any collected data, and then plan and
execute a course of actions supported by their individual inter-
nal knowledge base. Furthermore, systems can be dynamically
added, removed, or replaced by other systems within the SoS. An
overview of the PuDZ SoS is depicted in Fig. 1. It constitutes of
three main parts with varying degrees of managerial and oper-
ational independence: systems responsible for ATC (air traffic
control); an Environmental Digital Shadow (EDS) containing an
environmental model that serves as a representation of the real
world; several supporting infrastructure and global services in-

cluding runtime monitoring and policy management; and each
individual sUAS entering the PuDZ. There is a delicate balance
between system-level choreography and system independence.
On one hand, systems incorporate their own individual MAPE-K
loops and self-manage and/or self-adapt independently, while on
the other hand, internal adaptations in one system can have a
trickle-over effect on others, causing them to adapt in response.
Weyns and Andersson [31] have proposed three distinct high-level
architectures for deploying MAPE-K across an SoS, characterized
by local adaptations, cross-system (regional) monitoring, and col-
laborative adaptations.
In this paper, we present a solution inspired by, and augment-

ing, Weyns and Andersson’s earlier work, to support both SoS
and system-level adaptation. The SoS is monitored for compli-
ance with SoS policies, while at the system level co-adaptation is
supported across loosely-coupledmanaged systemswithin dynam-
ically adapting SoS. This is accomplished by connecting system-
level MAPE-K loops via a dedicated message bus. Each system
publishes topics of potential interest to other systems and sub-
scribes to topics that are relevant for its own purposes. Separating
the Monitor component into two parts ensures that both trusted
local data and potentially untrusted regional data is appropriately
handled. This approach differs from previously published pat-
terns of distributed self-adaptive systems [30] as it is designed
for deployment in an SoS where loosely coupled coordination
is highly valued, adding the notion of policies, and an SoS-level
MAPE-K loop. We illustrate the efficacy of our solution through a
series of examples, simulations, and field tests with physical sUAS
that the approach is effective for propagating diverse adaptation-
triggering changes across various systems in the SoS. This paper,
therefore, makes the following contributions: First, it extends
previous work on SoS self-adaptation, proposing an architecture

SoS Policy
Manager

M

Q

T

T
Runtime

Monitoring

PuDZ Air Leasing

Weather

Terrain

NOTAM

No-fly
Zones

Digital

Shadow

NASA UTM

A
T

C

Other
Systems

sUAS

Physical World

PuDZ SoS

E
D

S

P
u

D
Z

 S
e

rv
ic

e
s

Figure 1: The PuDZ Ecosystem includes infrastructure services, an environmental
digital shadow (EDS), air traffic control (ATC), and the sUAS that fly within the
ecosystem. Systems managed by MAPE-K are annotated with the cycle icon.

1

tchambe2@nd.edu
JaneHuang@nd.edu
Michael.Vierhauser@uibk.ac.at
http://dx.doi.org/10.1145/3643655.3643882

PREPRINT – 12th International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

Managed System

A P
local

re
g
io

n
a
l

M

re
g
io

n
a
l

local

M

SoS Message Bus

SoS Policy Manager

1

*

1

*

11

R

L

A P EMRMR
11

E
Managing System

S
o

S

Figure 2: TheMAPE-K Pattern for SoS, supporting two logical monitors responsible
for local (trusted) and regional (potentially untrusted) inputs.
for self-adaptation across an SoS that is characterized by loose
coupling between managed systems. Second, it describes a self-
organizing, self-managing PuDZ, representing a challenging, real-
life application in a rapidly emergent area of CPS deployment.
The remainder of the paper is laid out as follows. Section 2

presents our architecture for coordinating self-adaptation across
loosely coupled services in an SoS. Section 3 describes the PuDZ
SoS and the individual systems, while Section 4 describes cross-
system adaptation scenarios. Section 5 reports results of our pre-
liminary evaluation, Section 6 presents related work, and finally,
Section 7 draws conclusions and discusses future work.

2 A Distributed SoS Architecture

The MAPE-K feedback loop has been established as the default
reference model for self-adaptive systems, consisting of four main
phases: Monitoring, where information is collected, Analysis
to determine if adaptation is required, Planning where corre-
sponding actions are planned, and finally, Execution in which the
proposed plans are enacted [3].
To address different characteristics and architectures of man-

aged systems, prior work in the areas of self-adaptive systems has
explored a variety of patterns for decentralized control [32], in-
cluding cases in which self-adaptive systems are deployed across
different physical nodes connected by a network. These patterns
can be applied to a variety of tasks, depending on the operational
needs of the system. For example, the coordination control pat-
tern allows for greater scalability, as each phase of the MAPE-K
control loop acts as an individual decentralized node that executes
inter-phase interactions. This can offer improved flexibility for
a distributed SoS, but can create issues in preserving sequential
consistency or can cause message pile-up.

In addition, Weyns and Andersson explicitly discussed MAPE-K
SoS patterns [31] and identified a specific challenge related to the
decentralization of components that can carry interdependencies.
Their proposed SoS patterns are characterized by local, collabora-
tive, and regional approaches to self-adaptation. Local adaptations
rely on an entirely decentralized adaptation architecture. The in-
dividual MAPE-K loops do not interact with each other, but only
the respective systems do. With collaborative adaptations, not
only do the managed systems themselves interact with each other
but so do the feedback loops themselves. Finally, in the third
pattern regional monitoring/local adaptations, MAPE-K loops of
one system can collect additional runtime data from other parts

A P EM

A P EM A P EMRD

Regional
Data (RD)

RD

A

A

Sensor

Sensor

A P EM A P EMRD RDSensor

A P EM A P EMRDRD

(a) Internal self-adaptation in System A only

A P EM

A P EM A P EMRD

Regional
Data (RD)

RD

A

A

Sensor

Sensor

A P EM A P EMRD RDSensor

A P EM A P EMRDRD

(b) Events detected and analyzed in System A trigger self-adaptation in System B

A P EM

A P EM A P EMRD

Regional
Data (RD)

RD

A

A

Sensor

Sensor

A P EM A P EMRD RDSensor

A P EM A P EMRDRD

(c) Self-adaptation in System A trigger self-adaptation in System B.

A P EM

A P EM A P EMRD

Regional
Data (RD)

RD

A

A

Sensor

Sensor

A P EM A P EMRD RDSensor

A P EM A P EMRDRD

(d) Cyclic self-adaptation creates a closed-loop control system.

Figure 3: Patterns of loosely coordinated self-adaptation. Both sensors and Re-
gional Data (RD) serve as input for subsequent decision-making and adaptation.

of the SOS. This additional data is fed into the feedback loop and
used for the subsequent planning and adaptation process.
For our Pop-up Drone Zone, we face similar challenges where

(1) individual systems largely need to self-adapt independently
based on the input they receive from local sensors, services, or
other parts of the PuDZ SoS; and (2) information about changes
in the environment, or adaptations they have made need to be
propagated to other systems in the SoS as these changes could in
turn trigger subsequent adaptations in those systems.

2.1 Proposed SoS-PuDZ Architecture

To address these requirements, we have created and adopted our
own MAPE-K SoS architectural pattern that borrows concepts
from both decentralized SoS patterns and the IBM architectural
blueprint for autonomic computing [10]. Each MAPE-K managed
system implements the MAPE-K loop depicted in Fig. 2, with a
global SoS Policy Manager, responsible for ensuring information
integrity (cf. Section 2.3). The Monitor maintains two interfaces: a
mechanism for receiving information from neighboring systems,
and a mechanism for monitoring a locally managed system or
resource. During the monitoring phase of the model, the feedback
loop receives regional inputs via the Regional Monitor (M𝑅) and
local sensor data updates from its own managed system via the
Local Monitor (M𝐿). The primary difference is the degree of trust
placed in the input data. For example, while local data from
sensors should be validated to ensure it is within expected bounds;
its sources and their subsequent reliability are relatively well
known and the system places appropriate degrees of trust in the
data. On the other hand, regional data requires higher degrees of
validation to check its provenance and to decide whether it can be
safely utilized locally. Data from both monitors are collected and
filtered during runtime, and the analysis phase checks whether
internal or external adaptation is required, guided by the local
knowledge base. The planning phase then determines whether
to adapt, and if necessary identifies a new configuration based
on the policy/knowledge base, publishing regional outputs to

2

PREPRINT – 12th International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

the message bus and local actuator outputs to the local managed
system.

2.2 System Adaptation Patterns in an SoS

MAPE-K managed systems within an SoS adapt in several differ-
ent ways as depicted in the four adaptation patterns shown in
Fig. 3. In the first scenario (cf. Fig. 3a), System A receives data
from its internal sensors, and after analysis and planning, it adapts
accordingly. In the second scenario (cf. Fig. 3b) System A does not
adapt, however, it still publishes information to a regional data
topic to which System B is subscribed to. While no adaptations
have been performed in System A, the regional monitoring data
received from System A ultimately leads to B’s self-adaptation.
A similar example is shown in Fig. 3c, however, with the major
difference that in this case, both System A and System B adapt.
System A receives local sensor data and adapts in response. It
then publishes regional data which causes B to adapt. Finally,
for the last case, (cf. Fig. 3d) a dependency cycle is introduced
between two or more self-adaptive systems, meaning that adapta-
tions in one system trigger adaptions in another system, and vice
versa, thereby forming a cycle. Cycles are broken when the exe-
cution plan of one system no longer publishes data that triggers
adaptation.

2.3 The SoS as a Managed System

Weyns’ paper on SoS challenges suggested that a management
layer might be needed for managing quality requirements [31].
We include an “SoS Policy Manager” in our architectural solution
to achieve quality requirements and also as an orchestrator re-
sponsible for (1) vetting each system that requests entry to the SoS,
(2) monitoring system communication across the SoS to ensure
proper messaging protocols are followed, and (3) ensuring rules
such as “one and only one ATC must be active at all times” are
enforced. The SoS level policy manager receives input from its
Monitors via regional data, analyzes inputs for compliance against
its internal knowledge base, and finally plans and executes updates
to its current management protocols. Notably, the SoS-level Policy
Manager manages the SoS itself rather than a CPS, and has no
direct control over the systems apart from notifying them when
protocols are not followed, and potentially evicting them from
the system. This differs from centralized approaches in which a
single hub is responsible for maintaining SoS functionality [11].

3 Systems in the PuDZ System of Systems

Before discussing cross-system adaptation, we describe the con-
stituent systems, which serve as the fundamental building blocks
of the PuDZ SoS. For purposes of this paper, we focus on four
primary systems, each responsible for a critical part of sUAS co-
ordination, management, and planning (cf. Fig. 1). These systems
are (1) Air Traffic Control, which is responsible for managing
and leasing airspace to support safe operations of sUAS; (2) A
Digital Shadow, modeling information about the real world, such
as weather and terrain data; (3) the individual sUAS that operate
in the PuDZ, and finally; (4) the SoS Policy Manager responsible
for ensuring that cross-SoS policies are followed. Each of the
components subscribes to the bus to receive regional inputs and

publishes regional outputs to it. Regional inputs and outputs for
each system are summarized in Fig. 4 and described below.

Air TrafficControl (ATC) systems are responsible for authoriz-
ing sUAS’ flight requests including permission to take off and/or to
fly a specific route. The ATC is a vital system when multiple sUAS
operate in densely populated areas, share the airspace with air-
planes or helicopters, or generally operate (semi-)autonomously
as part of a mission. However, as depicted in Fig. 1, the PuDZ
includes two alternate services responsible for flight authoriza-
tion – the NASA-controlled sUAS Traffic Management System
(UTM) [1], and the PuDZ Air-Leaser which we have implemented
as part of the PuDZ system for use in more congested airspaces.
By SoS policy, one, and only one ATC system must be active at all
times to avoid conflicting clearances for sUAS that could result in
potentially dangerous situations or even collisions. The UTM is
an emergent technology that has been field-tested in the US Na-
tional Airspace. sUAS entering UTM-controlled areas will request
flight authorization directly from the UTM using its own services.
Furthermore, there are plans to extend the UTM to support lo-
cal ATC managers responsible for designated regions of airspace
such as an urban area or a PuDZ. This would allow an airspace
to transition from UTM to local control and back based on the
availability of a local ATC and current congestion levels, requir-
ing a clear hand-over process. The NASA UTM is not currently a
self-adapting system [1].

In contrast, the local air-leasing system that we have developed
is self-adapting. It accepts flight requests from an sUAS, and con-
verts the requested flight route (from A to B) into an air-tunnel
(represented by a long, potentially curved cylinder). When a flight
authorization request is received, the Air-Leaser generates the
air-tunnel and checks that the minimum separation distance from
currently authorized tunnels is greater or equal to the established
buffer zone. If this is the case, then the Air-Leaser authorizes the
flight, and otherwise, denies it. The Air-Leaser ensures that an
sUAS in full compliance to its policies will always have uniquely
assigned appropriately separated airspace while in flight. In addi-
tion, it can perform smart flight assignments by offering alternate
routes if a current route is unavailable, and can switch modes to
grid-based routing when the airspace becomes overly congested.

The Air-Leaser maintains a model of the airspace and currently
allocated air-tunnels. It accepts flight authorization requests via
regional inputs, monitors for changes reported by other systems,
and publishes its status when activated or deactivated during a
UTM handover. Internally, its adaptations focus on its internal
flight planning methods such as direct or grid-based routing.
The Environmental Digital Shadow System: The concept

of Digital Twins follows the idea of building a digital model of the
real, physical world and is often used in Industry 4.0 and Cyber-
Physical Production Systems [21], as well as Smart Cities [24]. It
can be seen as a system/entity on its own, linked to the physical
system [15].
The Digital Shadow, in turn, relies on one-way data flow from

the physical world to its digital counterpart, meaning that changes
in the “real world” can be observed and modeled in the virtual
environment [15, 4]. With PuDZ, we leverage this idea, introduc-

3

PREPRINT – 12th International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

SoS Message Bus

Regional Inputs

Managed sUAS

- Weather advisories
- SoS services

added/removed
- Air-lease approvals
- SoS alerts
- Policy changes

Local Inputs

Regional Outputs

Local Outputs

- GPS Coordinates
- sUAS Attitude and

Velocity
- Flight data (e.g.,

Vibe, MagY2)
- Video

- Status (e.g., GPS
coords,Velocity)

- sUAS faults (e.g.,
erratic flight)

- Flight authorization
request

- ESC commands
- Gimbal controls
- Camera activation

M
A

P
E

-
K

The sUAS is managed around a state machine,
and self-adaptation is primarily between states
(e.g., Search → Survey, FlyTo → RTL)

SoS Message Bus

Regional Inputs

Managed AirLeaser

- Flight requests
- Weather advisories
- DroneZone

boundary & no-fly
zone updates

- Policy changes

Local Inputs

Regional Outputs

Local Outputs

- Currently authorized
air-tunnels

- Current state
(grid-based, direct)

- Current flight zone
constraints

- Flight authorizations
and denials

- Air-Lease service
activ./deactivation
announcement

- Current mode

- Flight assignment
mode switches

- Activ./deactivate
UTM

- Reset air-tunnel
buffers

M
A

P
E

-
K

The Air-Leaser dynamically maintains a record of
leased air-tunnels, and self- adapts between
route management models (e.g., direct vs. grid)

SoS Message Bus

Regional Inputs

Environmental Digital Shadow (EDS)

- Changes in Drone-
Zone boundaries
specified by humans
via PuDZ GUI.

- Policy changes

Local Inputs

Regional Outputs

Local Outputs

- Weather data from
remote services
and local sensors

- FAA Flight
advisories

- Terrain map data

- Weather advisories
- No-fly zones
- Terrain data
- Obstacle data (e.g.,

pylons)

- Terrain coordinates
- Raw weather (wind,

precipitation,
temperature,
visibility)

- No-fly zones

M
A

P
E

-
K

The EDS maintains a digital shadow of the real
world, which self-adapts in response to real-world
conditions and boundary changes from humans

Figure 4: Local and Regional inputs and outputs, and self-adaptation capabilities summarized for three PuDZ SoS Systems.

ing an Environmental Digital Shadow System (EDS). EDS utilizes
several external services to acquire awareness of its enclosed en-
vironment and applicable regulatory constraints. For example, it
calls upon (1) weather services to identify, for example, tempera-
ture, wind at various altitudes, and visibility, (2) mapping services
to build a model of the terrain and to identify tall buildings, (3)
airspace services to identify airspace restrictions related to light-
ing, no-fly zones, and any other information, and (4) a database
listing standard flight regulations (e.g., FAA and local by-laws)
and points of contact, such as local air-traffic-control towers. The
EDS implements an internal MAPE-K loop to monitor for changes
in the environment, analyze the changes, and ultimately plan and
execute actions to update its internal model of the environment.
For example, the EDS can be in either passive or active weather
reporting modes. When weather is stable without extreme con-
ditions, it simply maintains weather models internally (passive
mode) whilst monitoring the weather for changes. When weather
conditions indicate the need to switch to active mode, it plans and
then executes a mode change that includes a weather-appropriate
broadcasting strategy over regional data.

Individual sUAS: In general, a PuDZ supports an open, closed,
or hybrid environment. In a closed setting, all sUAS are managed
directly by the PuDZ meaning that the SoS includes specialized
services for dispatching, managing, monitoring, and coordinating
sUAS; whereas in an open setting, sUAS are managed externally
by third-party operators. Regardless of their management type,
all sUAS must (1) communicate with the PuDZ manager over the
established radio network or via a general web service, (2) peri-
odically report GPS coordinates, altitude, velocity, and remaining
flight time, (3) fully comply to the ATC air-leasing protocols and
(4) report any detected problems using a standard protocol when
feasible.
Each sUAS is equipped with onboard computation capabili-

ties and is capable of self-adaptation using an onboard MAPE-K
loop. At the start of each mission, each sUAS receives a mission
specification that it uses to initialize and internally configure its
mission-specific state machine. Throughout the mission, it re-
ceives mission-related updates via a system-wide MQTT message
broker and utilizes its onboard sensors to monitor the environ-

ment (e.g., for geolocation, computer vision, and flight-controller
status). The sUAS continually analyzes this data and based on poli-
cies and rules embedded in its internal knowledge base, it plans
and ultimately executes self-adaptations, e.g., flying slower due
to poor visibility, or switching from ‘search’ to ‘tracking’ modes
upon detecting a person.

The SoS Policy Manager has an entirely different role com-
pared to the other constituent systems. It takes a supervisory role
with its main responsibility to check that SoS policies are followed
by all other systems. While its managing system incorporates
the capabilities of MAPE-K, there are two major differences: it
lacks local inputs and has no actual execution capabilities with
respect to its “managed” system beyond notifying when policies
are not followed and blocking the system’s engagement in the SoS.
This can be attributed to its primary purpose, its responsibility
for the overall SoS policies, rather than individual systems, or
(physical) components. Examples of its responsibilities include (1)
ensuring that one, and only one, ATC system is active at all times,
(2) ensuring that all active systems comply with communication
protocols, and (3) adjusting required security protocols when op-
erating in high-risk environments. Its regional inputs, therefore,
contain information on services that are activated or deactivated
at runtime, and topics from the SoS Message Bus related to the
defined policies. These, and any other established SoS policies are
monitored, and several measures can be taken when a policy is
violated.

While the “managed” system is the SoS itself, the Policy Man-
ager may also internally configure its policies based on the sys-
tem’s current state. For example, it may update policies when
a non-managed sUAS enters the PuDZ, or in conjunction with
the SoS security service, it might activate new policies such as
increased levels of encryption, associated with a HIGH SECURITY

state if the SoS is under attack or operating in a higher-risk urban
area. Such changes in policies, announced as regional data to
the SoS, are likely to trigger internal self-adaptation of individual
systems such as sUAS or the Air-Leaser.

4

PREPRINT – 12th International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

Compass interference error

Increased throttle interferes
with compass (detected by

correlation between
magnetometer readings

and throttle.

Figure 5: Compass interference is detected in real-time [12]

4 Loosely-coupled, coordinated Adapta-

tion

We now discuss cross-SoS coordination and show how our ap-
proach supports a variety of different adaptation scenarios. The
SoS-PuDZ architecture connects regional data produced by the
(E)xecution of one MAPE-K managing system and consumed
by the regional (M)onitor of a different MAPE-K managing sys-
tem using the publish-subscribe architecture. This allows each
self-adaptive system to publish and subscribe to relevant topics,
empowering software engineers to design, implement, and deploy
each individual system independently. New services joining the
SoS must identify topics published by other services that are of
interest to them – potentially supporting their own self-adaptive
behavior, and to decide what topics the new system should publish
in order to comply with SoS policies and/or be useful to other
systems.

4.1 Coordinated Self-Adaptation of SoS

Scenario 1 – sUAS Fault Triggered: We illustrate cross-system
self-adaptation with an example in which the sUAS system and
Air-Leaser both self-adapt following Pattern C in Fig. 3, where
self-adaptation in one system triggers self-adaptation in another.
We describe the scenario in terms of the trigger and its resulting
adaptation in the sUAS system, the regional data produced by the
sUAS system and consumed by the Air-Leaser.
– Initial Trigger: To increase safety of flight operations, the on-
board autopilot software monitors multi-variate time series data
produced by the flight controller throughout the flight, and ana-
lyzes the data to detect common flight faults such as vibration, loss-
of-signal, and compass interference. It does this by subscribing
to the sUAS’ inbuilt uORB, an asynchronous messaging API used
for inter-process communication in the PX4 flight controller [22].
The data is collected as a continual multi-variate time series, and
the onboard anomaly detection module analyzes the data in close
to real-time to detect common types of runtime anomalies at
runtime [12]. Detection can be performed either using a heuris-
tic approach or a deep-learning solution such as LSTM (Long
short-term memory) [9].
In our example, as depicted in Fig. 5, a “compass interference”

error is detected when a correlation exists between magnetometer
readings and increased throttle. Specifically, the onboard anomaly
detector monitors two attributes of l2-norm (i.e.,

√︁
𝑆𝑢𝑚𝑂𝑓 𝑀𝑎𝑔𝑠 ,

where 𝑆𝑢𝑚𝑂𝑓 𝑀𝑎𝑔𝑠 = 𝑀𝑎𝑔𝑋 2 + 𝑀𝑎𝑔𝑌 2 + 𝑀𝑎𝑔𝑍 2) and throttle
(CTUN.ThO). This is a serious flight problem, as compass interfer-

ence can prevent the sUAS from finding the right bearings to fly
to a waypoint, and can result in a fly-away situation.
– sUAS Autopilot Self-Adaptation: In our example, the compass in-
terference is detected, and, therefore, the sUAS plans a mitigation
that could allow it to return home safely. Instead of completing its
mission, it generates a new flight route that returns it directly to
its home location at reduced velocity in order to reduce electrical
interference caused by high throttle values. The sUAS executes its
new plan by requesting a flight route from the Air-Leaser system
and flying home once the route is approved.
– Regional Data: As part of executing its self-adaptation, the sUAS
publishes the following announcement: \drone-failure\BLUE\
ErraticFlight as regional data. The Air-Leaser subscribes to
(monitors) all \drone-failure messages and, therefore, becomes
aware that BLUE is experiencing a problem that might cause
erratic flight.
– Self-Adaptation of Air-Leaser: The Air-Leaser analyses the cur-
rent positions of all sUAS, and then plans and executes an adapta-
tion strategy which causes it to switch from NORMAL to EMERGENCY

operating mode. This includes adapting its internal safety poli-
cies to create a larger buffer around BLUE, temporarily halting
new flight assignments, directing all flights to avoid airspace in
the vicinity of BLUE, and prioritizing the monitoring of status
messages from BLUE. Assuming a successful operation, when
sUAS-BLUE completes its flight and has landed at its home loca-
tion, the respective information is published, and the Air-Leaser
can yet again adapt its internal behavior switching back to its
normal operation mode.

4.2 Cross-System Adaptation Scenarios

We describe two additional scenarios to provide further examples
of loosely coordinated self-adaptation across PuDZ.

Scenario 2 – Weather triggered: The EDS continually monitors the
current environmental conditions to maintain an internal weather
model. If a sudden rain storm approaches, the EDS analyzes the
data it receives from services and sensors to determine the impact
upon the PuDZ, plans a corresponding adaptation of the digital
shadow model (e.g., by transitioning to “stormy conditions” state),
and executes the plan by updating the model and broadcasting a
weather alert via its regional outputs. The Air-Leaser is subscribed
to weather-related announcements, and, therefore, receives the
alert and self-adapts to accommodate the encroaching weather
system, for example by increasing separation distances between
sUAS. Similarly, individual sUAS could also receive weather alerts
and make independent self-adaptation decisions according to their
own capabilities. These could include landing to wait out the
storm, or directly querying the EDS for additional data in order
to plan a flight path that avoids extreme wind gusts at higher
altitudes.

Scenario 3 – Air-Leaser activated: Our last example focuses on
the role of the SoS Policy Manager which manages policies such
as “One and only one ATC shall be active at all times”. The
Policy Manager checks that the Air-Leaser complies with UTM
routines for hand-overs to local ATCs, and blocks air-leasing

5

PREPRINT – 12th International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

requests until the air-leaser publishes a hand-over certificate
(i.e., \ATC\airleaser\[UTM Certificate ID]). The SoS Policy Man-
ager’s monitor receives this regional announcement, and analyzes
its authenticity by querying UTM directly for confirmation. If
the UTM confirms the hand-over, the Policy Manager publishes
\ATC\airleaser \activated; however, if UTM refutes the hand-
over, the SoS Policy Manager plans a response and executes a
solution such as blocking the ATC which has claimed authoriza-
tion to manage ATC. Finally, if no response is received from UTM,
the Policy Manager temporarily blocks the Air-Leaser, intercepts
all Air-Leaser messages, and responds with \ATC\DOWN. When and
if the Policy Manager confirms that the hand-over has been suc-
cessful it publishes \ATC\UTM\activated.

5 Preliminary Evaluation in the Field

We now address our primary research question “To what extent
does the proposed architecture support an extensive set of cross-
system self-adaptation scenarios in the PuDZ SoS?” through a
series of simulations and field tests.
5.1 Test and Validation Platform

All tests were run using our existing multi-sUAS DroneResponse
platform [25, 26, 2, 8] and four Hexacopters equipped with PX4-
compatible flight controllers, and Jetson NX onboard computation
units. All systems were connected over a mesh radio with access
to the internet via a multi-provider mobile access point. The mes-
sage broker was implemented using Mosquitto MQTT. Frequent
status messages were sent at Quality of Service (QoS) level 0 (i.e.,
delivered at most once) whilst regional data messages were sent
at QoS level 2 (i.e., delivered exactly once). The Air-Leaser was
implemented in Python, as a micro-service. It transforms each
flight path into a 3D line segment that contains a self-adaptive
radius – a protective extension surrounding the requested line
segment that replicates an “air tunnel”. Flights are authorized if a
requested route maintains minimum separation distance from all
other routes.
We used two different Ground Control Stations (GCS) for our

experiments. QGroundControl [23], is an open-source centrally
controlled system that communicates directly with sUAS flight
controllers via the mavlink protocol. DroneResponse’s GCS is
extremely lightweight. It transmits mission data as JSON specifica-
tions to the sUAS; however, flight control and self-adaptation are
all managed by an onboard autonomous pilot system. The autono-
mous pilot was developed using Mavros, a ROS-based package
that provides communication drivers with the PX4 flight con-
troller. It uses the SMACH hierarchical state machine library to
transition between mission-related states (e.g., from searching to
tracking) when an event occurs such as detection of a victim, and
to adapt to failsafe states when error conditions occur such as a
geofence breach.
The EDS system retrieves data from two external services in-

cluding MapBox for generating a 3D map, and the USA Federal
Aviation Authority’s LAANC (Low Altitude Authorization and
Notification Capability) for modeling airspace classes and no-fly
zones. Self-adaptation is limited to updates in temporary no-fly

zones. Weather-related services have not yet been integrated.

5.2 Physical and Simulation Test Environments

During the development of our sUAS platform (SoS) in which it op-
erates, we executed many hundreds of tests. For purposes of this
evaluation, we selected a subset of those tests that demonstrated
self-adaptation across one or more systems. Individual tests were
first run in the simulator using Gazebo [19] to validate the func-
tionality and to address basic bugs (e.g., jerky flights, state transi-
tion failures), and then run outside with physical sUAS where new
bugs often emerged. Table 1 lists the selected tests, categorizing
each one by its respective coordination pattern (cf. Fig. 3), iden-
tifying the triggering and coordinating systems, and specifying
whether it was conducted as a physical field test or a simulation.

T1 (Pattern A): During each flight, each sUAS self-adapts across its
mission-specific states. Most state transitions occur when simple
events are detected (e.g., a waypoint is reached, a victim is detected,
or a geofence is breached).
T2 (Pattern A): The Computer Vision (CV) pipeline was activated.
The sUAS was assigned a route to fly in SEARCH mode. Its onboard
CV detected a person (“found” event) and the sUAS self-adapted
into SURVEY mode.
T3 (Pattern B) sUAS-A detects the person, announces “person
found”. sUAS-B self-adapts from SEARCH to SURVEY mode. Multiple-
sUAS coordination has been tested in simulations, and mimicked
in the physical world by sending an MQTT message to sUAS-B
with the coordinates of the detected person.
T4 (Pattern A): The GCS was deactivated during flight. The sUAS
failed to receive a heartbeat and transitioned to FAILURE mode,
where it autonomously adapted between hover, RTL, and mission
mode with the goal of completing the mission safely.
T5 (Pattern C): This test simulated the EDS adaptation, message
passing between EDS and Air-Leaser via MQTT, and subsequent
adaptation of the Air-Leaser to increase spacing between flights.
The Air-Leaser’s performance was validated with physical sUAS
under varying buffer sizes.
T6 (Pattern C): Air-Leaser adaptions from direct routing to a grid-
based pattern were evaluated in simulation at various levels of
congestion to demonstrate the benefits of adapting. Simulations
were run in a low-fidelity environment.
T7 (Pattern C): We developed a Runtime Monitor to collect and
analyze time series data from the PX4 flight controller. It was
validated for detecting runtime vibration anomalies in Gazebo
with transitions into failsafe states (e.g., HOVER, LAND), but can also
run on a physical sUAS.
T8 (Pattern C): We validated that the PuDZ boundaries could
be resized, and that the sUAS and Air-Leaser self-adapt to work
within the expanded region.
T9 (Pattern C): Throughout the course of our tests, ill-formed
mission specifications were consistently rejected. Originally, the
specifications were analyzed by each sUAS; however, we created
and validated a module that will be run by the SoS Policy Manager.
This test is valid only for “closed” PuDZ systems.
T10 (Pattern C):Due to human error, an sUAS violated the geofence
without a failsafe action defined. It flew off-course and ascended
above the legal limit of 400ft AGL. We retroactively created a

6

PREPRINT – 12th International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

Table 1: Test Cases Executed. =Triggering system, #=Collaborating system, (PTN A,B,C)=Patterns per Fig. 3, Mode: (S)=Simulation only, (P)=Physical field tests +
simulations, (R)=Retroactively fixed but not tested. Systems: AL=Air-Leaser, SoS Pol= Policy Manager, Run.Mon = Runtime Monitor

T# Description of Self-Adaptive Events
PTN Test

Triggering System AL EDS
sUAS sUAS

GCS
SoS Run.

A-C Mode A B Pol. Mon

T1 Mission state transition during normal oper. A P sUAS (Auton. Pilot)
T2 sUAS-A detects and tracks a person A P sUAS (Comp.

Vision)

T3 sUAS-A detects and sUAS-B tracks person B P sUAS (Comp.
Vision)

 #

T4 sUAS misses heartbeat from GCS A P sUAS (Monitor)
T5 EDS and Air-Leaser adapt due to high winds C S/P EDS (Weather) # # #
T6 Air-leaser adapts to grid layout C S Air-Leaser # # #
T7 Compass interference onboard sUAS C S sUAS (Analytics) #
T8 Human requests extended PuDZ Boundaries C S EDS (boundaries) # # #
T9 Ill-formed mission detected. Mission aborted C P SoS Policy Manager # # #
T10 sUAS hits geofence & flies off course C R Runtime Monitor # #

Test data available at: https://github.com/SAREC-Lab/PuDZ

runtime monitor to detect excessive altitudes and publish an alert
triggering self-adaptive responses.

5.3 Summary of Test Results & Discussion

These tests demonstrate the viability of the SoS PuDZ architecture.
DroneResponse requirements were elicited as part of an exten-
sive participatory design process with emergency responders [2],
and each identified self-adaptation scenario was readily speci-
fied in terms of the regional inputs and outputs of the systems in
which the scenario was enacted. We not only demonstrated single-
system self-adaptation, but the diverse simulations and physical
field tests validated six diverse scenarios representing loosely cou-
pled cross-system self-adaptation (i.e., T5–T10). The adaptation
scenarios were triggered by five unique systems, each of which
published regional output data that was ultimately consumed and
acted upon by other systems. Our Scenarios represented three of
our four patterns from Fig. 3, namely Patterns A, B, and C. Our
SoS-PuDZ solution achieves loose coupling primarily through the
use of the publish-subscribe architectural pattern; however, this
can potentially cause bottlenecks during message surges. We par-
tially mitigated this weakness by utilizing QoS level 0 for status
messages where the loss of occasional messages is not a problem,
and level 2 for other messages, such as those announcing weather
alerts, or requesting flight authorization, as these require delivery
guarantees but do not have hard real-time constraints. We did not
observe any latency issues between services on the ground and
sUAS.
5.4 Threats to Validity

Our work is subject to two primary threats to validity. First,
while we have performed hundreds of hours of functional tests
in the field, we have not yet validated the system in its entirety.
However, the physical tests that we have conducted focused on
highly complex parts of the system such as using CV onboard the
sUAS, geolocating the detected person, and circling the person for
surveillance purposes, all using MQTT and the mesh radio. Taken
together, the tests provide strong evidence that the architecture
is suitable for loosely-coupled, cross-system independent self-
adaptation.

Second, as described, SoS are characterized by operational and

managerial independence [18]; however, our system represents
a mix of systems. Several are entirely independent (e.g., NASA
UTM), while others contain multiple subsystems. For example, the
EDS represents a system of independently managed services (e.g.,
LAANCs, MapBox, Weather services), and the core sUAS system is
built around the independently managed PX4 OSS. However, with
respect to the sUAS, we also ran tests using the independently
managed QGroundControl to demonstrate PuDZ SoS as an open
system. Furthermore, the core SoS services support both open and
closed models and are agnostic to the inner design of each system,
the only constraint being the ability to publish and subscribe to
the PuDZ message broker following standard message protocols.

6 Related Work

The paper has already discussed related work by Weyns et al. on
patterns of MAPE-K applications [32] and its application to SoS
scenarios [31]. We, therefore, focus on other areas of related work.
Self-Adaptive Systems: Jahan et al. [14] presented a framework
for dynamically maintaining functional and security concerns in
autonomous systems. Like our approach, they ensured coordina-
tion between multiple MAPE-K feedback control loops, including
a traditional MAPE-K loop augmented by a MAPE-SAC loop for
security-related assurance cases. Vromant et al. [29] used intra-
loop and inter-loop coordination of multipleMAPE loops to jointly
perform adaptations.
Systems of Systems: As part of our own previous work in the
domain of SoS, we have created ReMinds, a Runtime Monitoring
Framework andMonitoring Model for Systems of Systems [27, 28].
However ReMinds does not implement a full MAPE-K control loop,
and relies upon manual changes and adaptations once violations
of specified requirements are detected. Maia et al. [17] modeled
normal and exception case scenarios for SoS adaptations, and
transformed them into a formal specification to ensure that global
requirements always hold. In contrast, we focused on system-
level coordination and self-adaptation rather than on detailed
models of scenarios. Bucchiarone et al. [7] presented a framework
for adaptations in “Service-based Collective Adaptive Systems”,
which like our approach, emphasized the need for simultaneous
self-adaption of collaborating systems; however, each system

7

https://github.com/SAREC-Lab/PuDZ

PREPRINT – 12th International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems 2024

needed to be modeled as a domain object, which enacted its own
MAPE-K loop at runtime and relied upon collective planning.
Multi-Agent and UAV Systems: In the domain of UAV systems,
Bozhinoski et al. [5] used a collective adaptation engine to man-
age adaptations of UAV-based systems. Like our approach, they
relied on multiple MAPE-K loops to perform collective adapta-
tion at runtime. However, while their approach supported the
adaptation of multiple UAVs, it did not integrate diverse external
services providing data such as weather or terrain information in
adaptation planning and execution. Braberman et al. [6] presented
MORPH, a reference architecture for self-adaptation using the
MAPE-K loop to support mission planning for UAVs. It included
layers for goal management, strategy management, and strategy.
While these approaches facilitate both local and collaborative
self-adaptation, with PuDZ we emphasize the SoS characteris-
tics, going beyond coordination and control of multiple sUAS,
and considering environmental aspects (such as weather), as well
as external services (e.g., no-fly zones) that affect collaborative
adaptation decisions.

7 Conclusion

In this paper, we have presented an architecture for supporting
self-adaptation across loosely coupled services in an SoS leverag-
ing and augmenting ideas from earlier work on self-adaptation
in SoS. Our approach places the following requirements upon
systems joining the SoS. Self-adaptive systems within the SoS
should be capable of dynamically reconfiguring and/or adapting
themselves utilizing their own local sensor data as well as regional
data to trigger the adaptation. Furthermore, they are expected
to be ‘good citizens’ and publish regional outputs that might be
useful and relevant to other systems. The SoS Policy Manager
hereby serves as a higher-level authority for ensuring compliance
with global SoS policies. Our simulations and field tests have
demonstrated the overall viability of the SoS PuDZ architecture
to support self-adaptation of diverse constituent systems. Future
work will focus on more holistic, longer-duration, tests in the
field to validate additional aspects of the PuDZ solution, such as
more complex adaptations, weather-related updates to the EDS
in the real world, and additional security and runtime monitoring
services.

References

[1] N. Aeronautics and S. A. (NASA). Unmanned Aircraft System (UAS) Traffic Manage-
ment (UTM). https://utm.arc.nasa.gov, 2023. [Accessed 01-12-2023].

[2] A. Agrawal, S. J. Abraham, B. Burger, C. Christine, L. Fraser, J. M. Hoeksema, S. Hwang,
E. Travnik, S. Kumar, W. J. Scheirer, J. Cleland-Huang, M. Vierhauser, R. Bauer, and
S. Cox. The next generation of human-drone partnerships: Co-designing an emergency
response system. In Proc. of CHI Conf. on Human Factors in Computing Systems, pages
1–13, New York, 2020. ACM.

[3] P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and analyzing MAPE-K feedback
loops for self-adaptation. In 10th Int. Symp. on Software Engineering for Adaptive and
Self-Managing Systems, pages 13–23. IEEE, 2015.

[4] T. Bergs, S. Gierlings, T. Auerbach, A. Klink, D. Schraknepper, and T. Augspurger. The
concept of digital twin and digital shadow in manufacturing. Procedia CIRP, 101:81–84,
2021.

[5] D. Bozhinoski, A. Bucchiarone, I. Malavolta, A. Marconi, and P. Pelliccione. Leveraging
collective run-time adaptation for UAV-based systems. In Proc. of the 42th Euromicro
Conf. on Software Engineering and Advanced Applications, pages 214–221. IEEE, 2016.

[6] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel. Morph: A reference
architecture for configuration and behaviour self-adaptation. In Proc. of 1st Int’l WS
on Control Theory for Software Engineering, pages 9–16, New York, 2015. ACM.

[7] A. Bucchiarone, M. De Sanctis, and A. Marconi. Decentralized dynamic adaptation for
service-based collective adaptive systems. In Proc. of the Service-Oriented Computing–
ICSOC 2016 Workshops, pages 5–20. Springer, 2017.

[8] J. Cleland-Huang, A. Agrawal, M. Vierhauser, M. Murphy, and M. Prieto. Extending
MAPE-K to support human-machine teaming. In Proc. of the International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pages 120–131.
ACM/IEEE, 2022.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[10] IBM. An architectural blueprint for autonomic computing. IBMWhite Paper, 31(2006):1–
6, 2006.

[11] C. Ingram, R. Payne, S. Perry, J. Holt, F. O. Hansen, and L. D. Couto. Modelling patterns
for systems of systems architectures. In Proc. of the 2014 IEEE International Systems
Conference, pages 146–153, 2014.

[12] M. N. A. Islam, Y. Ma, P. A. Granadeno, N. V. Chawla, and J. Cleland-Huang. RESAM:
requirements elicitation and specification for deep-learning anomaly models with ap-
plications to UAV flight controllers. In Proc. of the 30th IEEE International Requirements
Engineering Conference, pages 153–165. IEEE, 2022.

[13] ISO/IEC . ISO/IEC/IEEE 21839:2019 Systems and software engineering — System of
systems (SoS) considerations in life cycle stages of a system. https://www.iso.org/
standard/71955.html, 2019. [Last accessed 01-01-2023].

[14] S. Jahan, I. Riley, C. Walter, R. F. Gamble, M. Pasco, P. K. McKinley, and B. H. C. Cheng.
Mape-k/mape-sac: An interaction framework for adaptive systems with security
assurance cases. Future Generation Computer Systems, 109:197–209, 2020.

[15] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn. Digital twin in man-
ufacturing: A categorical literature review and classification. IFAC-PapersOnLine,
51(11):1016–1022, 2018.

[16] S. Ljungblad, Y. Man, M. A. Baytaş, M. Gamboa, M. Obaid, and M. Fjeld. What
matters in professional drone pilots’ practice? an interview study to understand the
complexity of their work and inform human-drone interaction research. In Proc. of
the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA,
2021. Association for Computing Machinery.

[17] P. H.Maia, L. Vieira, M. Chagas, Y. Yu, A. Zisman, and B. Nuseibeh. Cautious adaptation
of defiant components. In Proc. of the 34th IEEE/ACM International Conference on
Automated Software Engineering, pages 974–985. IEEE, 2019.

[18] M. W. Maier. Architecting principles for systems-of-systems. Systems Engineering:
The Journal of the International Council on Systems Engineering, 1(4):267–284, 1998.

[19] Open Robotics. Gazebo. https://gazebosim.org/home, 2023. [Last accessed 01-01-2023].
[20] P. Petrides, P. Kolios, C. Kyrkou, T. Theocharides, and C. Panayiotou. Disaster preven-

tion and emergency response using unmanned aerial systems. In Smart cities in the
Mediterranean, pages 379–403. Springer, 2017.

[21] F. Pires, A. Cachada, J. Barbosa, A. P. Moreira, and P. Leitão. Digital twin in industry 4.0:
Technologies, applications and challenges. In Proc. of the 17th Int’l Conf. on Industrial
Informatics, volume 1, pages 721–726. IEEE, 2019.

[22] PX4. Open Source Flight Controller. https://px4.io, 2021. [Accessed 01-12-2023].
[23] QGroundControl. Ground Control Station. http://qgroundcontrol.com, 2021. [Last

accessed 01-11-2021].
[24] T. Ruohomäki, E. Airaksinen, P. Huuska, O. Kesäniemi, M. Martikka, and J. Suomisto.

Smart city platform enabling digital twin. In Proc. of the 2018 International Conference
on Intelligent Systems, pages 155–161. IEEE, 2018.

[25] M. Vierhauser, S. Bayley, J. Wyngaard, W. Xiong, J. Cheng, J. Huseman, R. R. Lutz, and
J. Cleland-Huang. Interlocking safety cases for unmanned autonomous systems in
shared airspaces. IEEE Trans. Software Eng., 47(5):899–918, 2021.

[26] M. Vierhauser, M. N. A. Islam, A. Agrawal, J. Cleland-Huang, and J. Mason. Hazard
analysis for human-on-the-loop interactions in suas systems. In Proc. of 29th ACM
Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of
Software Engineering, pages 8–19, New York, 2021. ACM.

[27] M. Vierhauser, R. Rabiser, P. Grünbacher, C. Danner, and S. Wallner. Evolving systems
of systems: Industrial challenges and research perspectives. In Proc. of the First Int’l
WS on Software Engineering for Systems-of-Systems, pages 1–4, 2013.

[28] M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner, and H. Zeisel.
Reminds: A flexible runtime monitoring framework for systems of systems. Journal of
Systems and Software, 112:123–136, 2016.

[29] P. Vromant, D. Weyns, S. Malek, and J. Andersson. On interacting control loops in self-
adaptive systems. In Proc. of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pages 202–207, 2011.

[30] M. Weißbach, P. Chrszon, T. Springer, and A. Schill. Decentrally coordinated exe-
cution of adaptations in distributed self-adaptive software systems. In Proc. of 11th
International Conference on Self-Adaptive and Self-Organizing Systems, pages 111–120.
IEEE, 2017.

[31] D. Weyns and J. Andersson. On the challenges of self-adaptation in systems of systems.
In Proc. of the First International Workshop on Software Engineering for Systems-of-
Systems, pages 47–51, 2013.

[32] D.Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Ander-
sson, H. Giese, and K.M. Göschka. On Patterns for Decentralized Control in Self-Adaptive
Systems, pages 76–107. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

8

https://utm.arc.nasa.gov
https://www.iso.org/standard/71955.html
https://www.iso.org/standard/71955.html
https://px4.io
http://qgroundcontrol.com

