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Abstract

Under parametric insurance, the indemnity is a function of a publicly-observable

parameter vector correlated with the loss incurred by the policyholder. The pa-

rameter vector yields a loss index, which is the best estimate of the loss, the basis

risk being the random difference between the actual loss and the loss index. We

show that the design of optimal parametric insurance depends on whether the

parameter vector and the basis risk are independently distributed or not, and

we analyze how it is affected by the attitude toward risk of the policyholder.

∗CREST-Ecole Polytechnique and Square Research Center
†CREST-Ecole Polytechnique.
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1 Introduction

Parametric insurance consists in conditioning the indemnity paid to the policyholder

not on the financial value of the losses incurred, but on publicly observable information

correlated with these losses. This information may be parametric stricto sensu, as for

instance in crop insurance when the payment to the farmer depends on average rainfall

in a specific area during a given period. It may also take the form of a modeled-loss

index reflecting a specific risk exposure. This is the case in property insurance when

the payout depends on the policyholder’s expected loss calculated on the basis of the

wind speed of a hurricane measured at various points along its path, or according to

the magnitude and epicenter of an earthquake.

The main advantage of parametric insurance is to eliminate the moral hazard issue

and to avoid the claim-handling costs associated with the assessment of policyholders’

actual losses. The primary concern is the basis risk retained by the policyholder, i.e.

the fact that the parametric insurance trigger does not exactly match his actual losses.

Parametric insurance covers are offered by direct insurers and they are also widely used

as triggers in alternative risk transfer mechanisms, particularly catbonds. They now

play an important role in the coverage of agriculture climate-related risks (particularly

in developing countries) and of property catastrophic risks, and they tend to spread

over a larger range of risk lines. Given this growing role, understanding the drivers

of optimal parametric insurance is an objective of prime importance in the theory of

insurance markets.

In what follows, we will analyze parametric insurance as the optimal solution to a

risk-sharing problem with public and private information. Public information takes the

form of a multi-dimensional parameter vector, and the issue then is how it should be

used to define the indemnity paid to the policyholder. The basis risk is the difference

between the loss incurred (which is private information of the policyholder) and the

conditional expected loss based on this public information, which will be called the
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loss index.

While the context of imperfect information on incurred losses is often implicit

in the approach to parametric insurance, several important issues emerge when the

problem is explicitly stated in that way. Firstly, should the parametric insurance

payout be a function of the loss index (i.e., the best estimate of the loss based on the

parameter vector), or should it depend on the parameter vector itself? Secondly, how

can we characterize the optimal parametric indemnity schedule? In particular, does

it look like commonly observed policies, such as index-based deductible contracts, or

is it different? Thirdly, under which conditions does a change in public information

affecting the basis risk improve the effi ciency of the risk-sharing mechanism? Fourthly,

does the usual relationship between insurance demand and risk aversion extend to

the case of parametric insurance? As we will see, the answers to these questions

depend heavily on whether the parameter vector and the basis risk are independently

distributed or not.

It is in the area of agriculture risk management that parametric insurance has been

most widely studied. Without being exhaustive, this includes the analysis of area-yield

crop insurance by Miranda (1991) and Barnett and al. (2005), the interaction with

the poverty issue in lower-income countries by Barnett and Mahul (2007), Chantarat

et al. (2007), Chantarat et al. (2013) and Skees (2008), the effect of insurance on

the adoption of new technologies by Mobarak and Rosenzweig (2013), Carter et al.

(2016), Biffi s and Chavez (2017) and Biffi s et al. (2022), and the statistical analysis

of the basis risk by Carter et al. (2017), Kusuma et al. (2018), and Clement et

al. (2018). The design of optimal parametric insurance in a microeconomic setting

hitherto has received much less attention. As we will see below, this is an issue logically

related to the insurance demand problem with background risk, as studied by Gollier

(1996). Clarke (2016) analyses parametric insurance in an expected utility setting,

with the main conclusion that the basis risk may make it unattractive for strongly

risk-averse policyholders. Bryan (2019) considers the case where the policyholder may
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be ambiguity averse. Teh and Woolnough (2019) analyze how parametric triggers can

be compared, and they determine a partial order ranking for any risk averse individual.

Hott and Regner (2023) study how a risk-averse farmer optimally combines parametric

insurance, indemnity insurance and savings in a two-period model.

The rest of the paper is organized as follows. Section 2 presents our general setting:

the risk-averse policyholder has private information on his actual loss and public infor-

mation takes the form of a parameter vector that defines the set of feasible parametric

insurance contracts. We define the loss index and the basis risk, and we highlight

the specificity of index-based insurance. Section 3 and 4 characterize the optimal

parametric insurance, depending on whether the basis risk and the parameter vector

are independent random variables or not, respectively, and we show that conclusions

strongly differ in both cases. We particularly focus attention on the shape of the in-

demnity schedule, and on how it is affected by the policyholder’s attitude toward risk,

characterized by risk aversion and prudence. Section 5 analyzes how a more accurate

information provided by the parameter vector reduces the basis risk and improves

the effectiveness of parametric insurance. Section 6 concludes, and Section 7 includes

complementary results and the proofs.

2 Setting

2.1 Model

Let (Ω,F ,P) be a probability space, with states of the world ω ∈ Ω. We consider a

risk-averse individual who incurs a state-contingent loss : his risk exposure is defined

by random variable X(.) : Ω → [0, x] with loss X(ω) in state ω, where x is the

maximum possible loss (with possibly x = +∞). The state of the world - and thus

the loss X(ω) - is privately observed by the individual. However, in each state ω, a

signal Y (ω) ∈ S is publicly observed, where S ⊂ Rn is a measurable vector space.
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The multivariate random variable Y (.) : Ω → S defines a multi-dimensional state-

dependent public information Y (ω), that will be called the parameter vector in what

follows. Parametric insurance consists in conditioning the insurance payout on the

parameter vector Y (ω) rather than on the loss X(ω).

Hence, a parametric insurance contract is defined by an indemnity function I(.) :

S → R+ that specifies the insurance payout I(y) as a function of parameter vector

y. When the individual purchases such a parametric cover at price P (the insurance

premium), his random final wealth is

Wf = w0 −X + I(Y )− P,

where w0 is his initial wealth. The individual’s attitude toward risk is characterized

by a twice-differentiable von Neumann-Morgenstern utility function u, such that u′ >

0, u′′ < 0, and his expected utility is written as

Eu(Wf ) = Eu(w0 −X + I(Y )− P ). (1)

We will follow the usual approach to the analysis of insurance demand, by assuming

that the insurance premium is proportional to the expected indemnity.1This is written

as

P = (1 +m)EI(Y ), (2)

where m is the loading factor, with m ≥ 0 reflecting all costs incurred by insurers

for assuming the risk I(Y ).2 An optimal parametric insurance contract maximizes

Eu(Wf ) with respect to P and I(.) subject to the pricing rule (2).

1See Schlesinger (2013).
2In practice, parametric insurance is often subsidized by governments or international institutions,

and the insurance premium may even be lower that the expected indemnity (i.e., m may be nega-

tive). The price of parametric insurance is indeed often used as a policy instrument, for instance

when smallholder farmers face severe liquidity constraints that prevent them from purchasing crop

insurance. We here restrict attention to the case of competitive insurance markets where insurers’s

costs are reflected in loaded premiums.
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Let Y (Ω) ⊂ S be the set of possible parameter vectors. Let us define Z(.) : Y (Ω)→

R+ by

Z(y) = E[X(ω) | Y (ω) = y] for all y. (3)

In what follows, Z(y) is called the loss index associated with parameter vector y.

Hence, the loss index Z(y) is the conditional expected value of the loss when parameter

vector y is observed, and we denote Z = Z(Y ) the corresponding random variable,

with Z ∈ [z, z] ⊂ [0, x].

We also define ε̃(.) : Ω→ R by

ε̃(ω) = X(ω)− Z(Y (ω)) for all ω, (4)

with

E[̃ε(ω) | Y (ω) = y] = 0 for all y.

Thus, ε̃(ω) is the difference between the true loss X(ω) and the loss index Z(Y (ω)) in

state ω, and it is called the basis risk. In other words, the basis risk ε̃ is a zero-mean

random variable corresponding to the difference between the loss X and its conditional

expected value Z = Z(Y ).

Frequently, under parametric insurance, the indemnity paid to the policyholder is

a function of the loss index Z(y) induced by parameter vector y, and not a function

of the parameter vector y itself. We will refer to such a case as index-based insurance.

Hence, a parametric insurance contract defined by {P, I(.),S} is index-based when

there exists J(.) : [z, z]→ R+, such that I(y) = J(Z(y)) for all y ∈ S.

We have X = Z + ε̃ and an optimal index-based insurance contract maximizes

Eu(Wf ) = Eu(w0 − Z − ε̃+ J(Z)− P ), (5)

with respect to P and J(.), subject to

P = (1 +m)EJ(Z). (6)
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Interestingly, this is formally equivalent to searching for the optimal cover of an indi-

vidual with insurable risk exposure Z and non-insurable background risk ε̃ as studied

by Gollier (1996).

As will be set out in detail below, the characterization of an optimal parametric

insurance contract strongly depends on whether or not the parameter vector Y and

the basis risk ε̃ are stochastically independent. The assumptions underlying these two

cases become particularly clear when Ω is a finite-dimensional vector space and the

parameter vector Y (ω) observed in state ω is a publicly observable subvector of ω.

Consider this case and assume that Ω = Ω1 × Ω2, with ω = (ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2

and let (Ω1,F1,P1) and (Ω2,F2,P2) two probability spaces, with F = F1⊗F2. Assume

further that S = Ω1 and Y (ω) = ω1, meaning that the parameter vector coincides with

component ω1 of state vector ω.

When X(ω) depends additively on ω1 and ω2, i.e., X(ω) = X1(ω1) + X2(ω2), and

P = P1 × P2, i.e., (Ω,F ,P) is a product probability space combining (Ω1,F1,P1) and

(Ω2,F2,P2), we have

Z(Y (ω)) = X1(ω1) + EX2,

and

ε̃(ω) = X(ω)− Z(Y (ω)) = X2(ω2)− EX2,

which does not depend on the observable parameter vector Y that only reveals ω1. In

that case, the parameter vector Y and the basis risk ε̃ are independently distributed.

Conversely, if the observable and non-observable components of the state vector ω =

(ω1, ω2) affect the loss X(ω) either non-additively or in a non-independent way, then

generically Y and ε̃ are not independent.

2.2 Applications

We may illustrate the above through the cases of crop insurance and hurricane insur-

ance. In each case, we assume Ω = Ω1×Ω2, with ω = (ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2, with
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S = Ω1 and Y (ω1) = ω1.

2.2.1 Crop insurance

Consider the case of a farmer facing uncertain meteorological circumstances and other

hazards affecting his crop. Here, w0 is the harvested crop value under optimal con-

ditions, and loss X is the decrease in this value due to adverse events. Assume that

the parameter vector corresponds to the intensity of daily precipitations from planting

to harvesting, publicly observed through satellite data. Hence, ω1 and ω2 correspond

to information about raining and to other farm-specific random events (e.g., pest at-

tack, local flood or hail storm), respectively. Assuming that there are 180 days from

plantation to harvest gives Ω1 = S = R180+ , and ω1 = (ω11, ..., ω
180
1 ) where ωi1 is the

precipitation intensity on day i = 1, ..., 180, and Z(y) is the expected decrease in crop

yield under w0 when the raining trajectory y = (y1, ..., y180) has been observed. An

index-based crop insurance contract would specify the indemnity paid to the farmer,

as a function of Z(y).3 In this example, Y and ε̃ are independent random variables

if the rainfall trajectory and other hazards affect the crop yield independently and

additively, and generically they are not otherwise.

2.2.2 Hurricane insurance

Consider an individual located in an area subject to hurricanes, with property at risk

w0. The track of a hurricane is characterized by the longitude and latitude coordinates

of its center, and by the speed and direction of wind. Assume that satellite imagery

provides this four-dimension information m times along the path of the hurricane. We

have ω1 = (ω11, ..., ω
m
1 ) ∈ Ω1 = S = R4m+ where ωi1 ∈ R4+ is the information provided

3As a practical illustration of the construction of a yield index using rainfall data, see for instance

Omondi et al. (2021): they analyze how expected crop growth in Kenya depends on satellite weather

data, including onset days, rainfall depths, dry spells, and rainfall occurrence for four crop growth

stages.
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by satellite data, with i = 1, ...,m. Furthermore, ω2 corresponds to local factors that

may affect damages from a hurricane, e.g., seasonal tidal range favoring storm surge or

torrential rains triggering landslides. A vulnerability model then relates the data on

the hurricane track (i.e., ω1) and the potential damages incured in a given territory,

thereby leading to the loss index Z(y).4 Here, if the hurricane track and seasonal or

local factors affect damages to property independently and additively, then Y and ε̃

are independently distributed, and this is not the case otherwise.

3 Independent basis risk

This section focuses attention on the case where parameter vector Y and basis risk

ε̃ are independent random variables (in short, the basis risk is independent), which

implies that the loss index Z and the basis risk ε̃ are also independent.5 Let us define

indirect utility v(w) by

v(w) ≡ Eε̃u(w − ε̃),

with v′ > 0, v′′ < 0. When Y and ε̃ are independent, we may write

Eu(Wf ) = EY [Eε̃u(w0 − Z(Y ) + I(Y )− P − ε̃)]

= EY [v(w0 − Z(Y ) + I(Y )− P )],

This is analogous to the standard approach to risk analysis under independent back-

ground risk: when facing a zero-mean independent background risk ε̃, the individual’s

attitude toward the risk affecting his insurable wealth is the same as if there were no

background risk and his utility function were v(.) instead of u(.). In other words, in that

case, the optimal parametric insurance contract maximises EY [v(w0−Z(Y )+I(Y )−P )]

4Typically, hurricane vulnerability models show that wind produces damages when their speed

exceeds a threshold that depends on the property at risk, and over this threshold property damages

may increase rapidly with wind speed. See Katz (2002), Pielke (2007), Nordhaus (2010) and Emanuel

(2011).
5Note that the inverse property does not hold unless Z−1(.) is single-valued.
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with respect to I(.) and P , subject to (2). This is very similar to a standard opti-

mal insurance problem, with random loss Z(Y ) and utility function v(w), the only

difference being that the insurance payout depends on the determinants of the loss

Y ∈ S rather than on the loss itself Z(Y ) ∈ R+. It is very intuitive and confirmed

by the proof of the following proposition that two parameter vectors y1, y2 ∈ Y such

that Z(y1) = Z(y2) should lead to the same indemnity. Thus, the optimal contract is

index-based and it maximizes

Eu(Wf ) = Ev(w0 − Z + J(Z)− P ),

with respect to P and J(.), subject to (3). This corresponds to a standard insurance

demand problem with utility function v(.), in which the loss would be Z ∈ [z, z] and

not X ∈ [0, x]. We know that the optimal solution to such a problem is a straight

deductible contract, unless there is no loading, in which case full insurance would

be optimal. When Z is the indemnity trigger with deductible z0, full insurance and

partial insurance correspond to z0 = z and z0 > z, respectively.6 This is summarized

in Proposition 1.

Proposition 1 If Y and ε̃ are independently distributed, then the optimal parametric

insurance contract is index-based. The insurance payout J(Z) is equal to the condi-

tional expected loss Z if m = 0, and it provides full coverage of conditional expected

losses above a deductible z0 > z if m > 0. In other words, J(Z) = max{Z − z0, 0},

with z0 = z if m = 0 and z0 > z if m > 0.

The analogy with the optimal insurance problem under an independent background

risk allows us to answer the simple but controversial following question: considering two

individuals with the same risk exposureX and the same publicly observable parameter

vector Y , does the more risk averse one purchase more parametric insurance? Put

differently, does the standard result according to which more risk aversion means more

insurance demand (when m > 0), also applies in the case of parametric insurance?

6Since X = Z + ε̃ ≥ 0 and Eε̃ = 0, we necessarily have z > 0 when the basis risk is independent.
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To answer this question, consider two individuals indexed by h = 1, 2, with utility

functions u1(w) and u2(w), indirect utility functions v1(w) and v2(w), and optimal

deductibles z01 and z02, respectively. According to standard results in the theory of

insurance demand, the larger the index of absolute risk aversion, the larger the demand

for insurance, and thus, under constant loading, the lower the deductible. Let us denote

Au(w) = −u′′(w)/u′(w) and Av(w) = −v′′(w)/v′(w) the Arrow-Pratt index of absolute

risk aversion, for direct and indirect utility function u(.) and v(.), respectively. The

question we are asking is whether Au2(w) > Au1(w) for all w implies z02 < z01. Since

the optimal deductible maximizes the policyholder’s expected indirect utility, we know

that z02 < z01 if Av2(w) > Av1(w) for all w. Consequently, the larger the degree of

risk aversion (for utility function u), the larger the demand for parametric insurance

if Au2(w) > Au1(w) implies Av2(w) > Av1(w).

When this last property holds, we say that the background risk preserves compar-

ative risk aversion in the sense of Arrow-Pratt. It has been shown in the literature on

background risks that additional assumptions are required for this to be true. This

is the case, in particular, when h = 1 and/or h = 2 displays nonincreasing risk aver-

sion. This is also true if one reinforces the comparison of risk aversion by following

the approach of Ross (1981).7 Hence, either by postulating decreasing absolute risk

aversion, or by comparing risk aversion in the manner of Ross, we may conclude that

the existence of an independent background risk preserves comparative risk aversion.

When at least one of these two assumptions hold, we say that risk aversion is strongly

comparable. The following Proposition states that, in such a setting, the more risk

averse the individual, the larger his demand for parametric (index-based) insurance.

7h = 2 is said to be more risk averse than h = 1 in the sense of Ross (1981), if there exists a

positive scalar λ and a decreasing and concave function g such that u2(w) = λu1(w)+ g(w) for all w.

It can be shown that comparative risk aversion in the sense of Ross (1981) implies comparative risk

aversion in the sense of Arrow-Pratt, i.e., Au2(w) > Au1(w), but the reverse is not true. When h = 2

is more risk averse than than h = 1 in the sense of Ross, then Av2(w) > Av1(w). See Propositions 24

and 25 in Gollier (2004).
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Proposition 2 When risk aversion is strongly comparable, the optimal index-based

insurance coverage J(Z) = max{Z − z0, 0} is increasing in risk aversion (i.e., the

larger the risk aversion, the lower the deductible z0) if m > 0, and it is equal to the

conditional expected loss J(Z) = Z independently from risk aversion when m = 0.

It is also worth emphasizing the ambiguous effect of a greater or lesser basis risk

on the demand for parametric insurance, when the parameter vector and the basis risk

are independently distributed. The analogy with insurance demand under independent

background risk shows that, for a given random loss index Z, a larger independent

basis risk ε̃ in the sense of Rothschild and Stiglitz (1970)8 leads the risk-vulnerable

individual to purchase more parametric insurance, i.e., to choose a lower deductible

z0.9 However, this is no more the case if the increase in the size of the background

risk ε̃ corresponds to a less accurate loss index Z, the risk exposure X = Z + ε̃ being

unchanged. In that case, as illustrated in the simulations below, the increase in the

basis risk reflects a decrease in the quality of the parametric insurance cover, and this

may lead the individual to purchase less parametric insurance, i.e., to choose a larger

deductible z0.10

These conclusions are illustrated below by simulations where the individual displays

8In what follows, when lotteries are compared, the increasing-risk criterion is always in the sense

of Rothschild and Stiglitz (1970).
9Risk vulnerability corresponds to the case where an exogenous zero-mean background risk raises

the aversion to another independent risk. As shown by Eeckhoudt et al. (1996), risk vulnerability

occurs when absolute risk aversion is decreasing and convex with wealth. There is also risk vulnera-

bility when absolute risk aversion and absolute prudence are both decreasing, a case called standard

risk aversion by Kimball (1993).
10The accuracy of the loss index refers to the informational content of the underlying parameter

vector. Under the comparative accuracy criterion defined in Section 5, the more accurate this infor-

mation, the lower the basis risk and the larger the expected utility associated with optimal parametric

insurance, these conclusions being true whether the parameter vector and the basis risk are indepen-

dent or not. However, as will be shown, a lower basis risk per se is not the guarantee of a better

index-based parametric insurance.
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CARA preferences, i.e. u(w) = − exp(−ρw) with ρ > 0 the index of absolute risk

aversion, and where Z and ε̃ are independently and normally distributed, with ε̃ ∼

N (0, σ2ε) and Z ∼ N (µ, σ2z), and thusX ∼ N (µ, σ2z+σ2ε).
11 We calibrate the loss index

and the basis risk by assuming σ2 ≡ σ2z + σ2ε = 8002 with R2 = σ2z/σ
2 and 1 − R2 =

σ2ε/σ
2 measuring the accuracy of the index and the size of the basis risk, respectively.

Other calibration parameters include initial wealth w0 = 50, 000 and expected loss

µ = 5, 000. The gains from parametric insurance are measured as (ce − cen)/cen,

where ce and cen denote the certainty equivalent of final wealth, with and without

parametric insurance, respectively.

In Figures 1a and 1b, the accuracy of the loss index is fixed, and the size of the basis

risk is 1−R2 = 0.3. The index of absolute risk aversion ρ varies from 0.0002 to 0.004

and the loading factor m varies from 0.05 to 0.30. In accordance with Proposition 2,

Figure 1a shows that the optimal deductible z0 is decreasing with risk aversion, and

as expected it is also increasing with the loading factor. Figure 1b shows that the

certainty equivalent gains range from 0 to 14%: the larger the loading, the lower the

gains from insurance. Higher levels of risk aversion also increase gains since coverage

is more valuable for more risk averse individuals.

In Figures 2a and 2b, the size of the basis risk 1 − R2 varies from 0 to 0.8 and

m varies from 0.05 to 0.30, while the index of absolute risk aversion is now fixed and

equal to ρ = 0.0021, the middle of the previous interval. Figure 2a shows that the

optimal deductible increases with basis risk, indicating that, for a given loss exposure

X, individuals purchase less parametric insurance when the loss index is less accurate

and basis risk increases. As expected and highlighted in Figure 2b, the gain from

parametric insurance is decreasing in basis risk and loading.12

11Gaussian distributions are used for the sake of computational simplicity, although they have

infinite support.
12For the sake of readability, the axis in Figure 2b have been reversed.
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4 Dependent basis risk

4.1 Optimal indemnity schedule

When Y and ε̃ are dependent random variables (in short, the basis risk is dependent),

the optimal parametric insurance contract maximizes

Eu = EY {Eε̃[u(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y]},

with respect to I(.) and P , subject to (2). Proposition 3 characterizes the optimal

solution to this problem when u′′′ > 0, i.e. the individual is prudent.

Proposition 3 When u′′′ > 0, the optimal parametric-insurance indemnity schedule is

written as I(Y ) = max{Ẑ(Y )− ẑ0, 0}, where the trigger is the adjusted risk Ẑ(Y ) such

that Ẑ(Y ) > Z(Y ). For any y1, y2 ∈ S such that I(y1), I(y2) > 0, if the conditional

probability distribution of ε̃ corresponds to a larger basis risk when Y = y2 than when

Y = y1, then Ẑ(y2)− Z(y2) > Ẑ(y1)− Z(y1).

In the case of a dependent basis risk, the optimal parametric insurance contract is

not index-based, except in the particular case considered in Corollary 1 below. The

first part of Proposition 3 states that the optimal parametric cover of the prudent

policyholder is written as a straight deductible contract, in which the trigger is an

adjusted random loss Ẑ(Y ) larger than the expected loss Z(Y ) and the deductible is

ẑ0, hence with indemnity I(Y ) = max{Ẑ(Y ) − ẑ0, 0}.13 Further characterizing the

indemnity schedule I(Y ) requires to be more specific about the relationship between

the loss adjustment Ẑ(Y ) − Z(Y ) and the parameter vector Y . The second part of

13The proof of Proposition 3 shows that the optimal indemnity schedule I(Y ) = max{Ẑ(Y )− ẑ0}

maximizes the policyholder’s expected utility in a problem where the risk exposure is Ẑ(Y ) without

basis risk. Note however that the increase of risk exposure from Z(Y ) to Ẑ(Y ) affects the optimal

deductible ẑ0, hence an ambiguous effect of the basis risk on the optimal indemnity I(Y ). See

Eeckhoudt et al. (1991) on the effect of an increase in risk exposure on optimal insurance with

deductible.
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the proposition shows that Ẑ(Y ) − Z(Y ) depends on the relation between Y and

the size of the basis risk. Considering two parameter vectors y1 and y2 in S, if the

conditional distribution of the basis risk is more risky when Y = y2 than when Y = y1,

then the loss adjustment is larger in the first case than in the second. In that sense,

and perhaps paradoxically, a larger conditional basis risk stimulates the demand for

parametric insurance.14

Corollary 1 Assume that the conditional distribution of ε̃ given Y = y only depends

on Z(y). Then, when u′′′ > 0 the optimal parametric insurance is index-based and it

is written as I(Y ) = max{ξ(Z(Y ))− ẑ0, 0}, with ξ′ > 1 (respect. ξ′ < 1) if an increase

in Z(Y ) makes the conditional distribution of ε̃ more risky (respect. less risky).

Corollary 1 states a direct consequence of the second part of Proposition 3. If

the conditional distribution of the basis risk is more risky when the expected loss is

larger, then the increase in the insurance payout is larger than the increase in expected

loss, which corresponds to a vanishing deductible, as established by Gollier (1996) in

his study of optimal indemnity insurance with basis risk. In the opposite case, the

indemnity schedule entails an increasing deductible.15

14We may consider a simple version of our model, in which X ∈ {0, L} and S = {0, 1}, with L a

single-valued possible loss. X and Y are assumed to be positively correlated, and an indemnity I is

paid when Y = 1. One may check that Y and ε̃ are not independently distributed in this case (see

subsection 7.1 of the appendix for details). Clarke (2016) considers this binary model in the case of

constant absolute or relative risk aversion, and he simulates the variations of the optimal indemnity

I when the risk aversion parameter changes. He shows that I may not be uniformly increasing with

risk aversion, which establishes by a counterexample that Proposition 2 is no more valid when the

parameter vector and the basis risk are not independently distributed.
15Proposition 3 and Corollary 1 may be illustrated by considering the case of constant absolute risk

aversion u(w) = − exp(−ρw), with a Gaussian basis risk ε̃(y) 7→ N (0, σε(y)2) for all y ∈ S, where

ε̃(y) ≡ ε̃|Y=y. In that case, simple calculations yield Ẑ(y) = Z(y) + ρσε(y)
2/2 for all y ∈ S. When Y

and ε̃ are independent, we have σε(y) = σε for all y, and Proposition 3 is equivalent to Proposition

1 with ẑ0 = z0 + ρσε
2/2. When Y and ε̃ are not independent, the risk adjustment Ẑ(y) − Z(y) is
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Assuming that the basis risk only depends on expected loss is very restrictive and,

in general, the optimal parametric indemnity schedule I(Y ) cannot be written as a

function of Z(Y ). In other words, in general the optimal parametric insurance contract

is not index-based and, in that case, characterizing this indemnity schedule requires

additional assumptions about the informational content of the parameter vector. To do

so, we may consider the case where parameter vector Y is splitted in two components,

one affecting the expected loss and the other being related with the basis risk. Let

us write Y = (Ya, Yb), with Ya ∈ Sa ⊂ Rna , Yb ∈ Sb ⊂ Rnb , na + nb = n and S =

Sa × Sb. We assume that component Ya is a suffi cient statistic for the expected loss

Z(Y ), while only component Yb may be correlated with the basis risk ε̃. Proposition 4

considers this case and shows how the two components of the parameter vector should

be combined in order to provide the optimal coverage.

Proposition 4 If Z(ya) = E[X | Y = (ya, yb)] for all ya ∈ Sa, yb ∈ Sb, and Ya and

ε̃ are independently distributed, then the optimal parametric insurance is written as

I(Y ) = max{Z(Ya)−z0(Yb), 0}, where payout I(Y ) is equal to the excess of the expected

loss Z(Ya) above a deductible z0(Yb) that depends on component Yb of the parameter

vector. Furthermore, when u′′′ > 0, if the conditional probability distribution of ε̃

corresponds to a larger basis risk when Yb = yb2 than when Yb = yb1, then z0(yb2) <

z0(yb1).

Proposition 4 provides conditions under which the optimal parametric insurance

contract entails full coverage of expected loss Z(Ya) above a deductible z0(Yb). Fur-

thermore, the larger the basis risk conditionally on Yb, the lower the deductible. The

proportional to the conditional variance σε(y)2, which illustrates the second part of Proposition 3 in

the case of a Gaussian distribution. When the distribution of ε̃(y) only depends on Z(y), there exists

a function σε(.) : R+ → R+ such that σε(y) = σε(Z(y)) for all y. In this case, the optimal contract is

index-based and, with the notation of Corollary 1, we may write ξ(Z(y)) = Z(y)+ρσε(Z(y))
2/2,with

ξ′ > 1 if σ′ε > 0 and ξ′ < 1 if σ′ε < 0 : there is a vanishing deductible in the first case, and an

increasing deductible in the second.
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intuition is simple. Proposition 4 assumes that Z(Y ) only depends on subvector Ya

and that the conditional probability distribution of ε̃ may only depend on the other

subvector Yb. Hence, conditionally on Yb, the basis risk ε̃ and the expected loss Z(Ya)

are independently distributed. Consequently, as in Proposition 1, conditionally on

Yb, the optimal insurance entails full coverage of the expected loss Z(Ya) above a de-

ductible that depends on Yb. Under prudence, the larger the conditional basis risk ε̃|Yb ,

the lower the deductible z0(Yb), and thus the larger the coverage of expected losses

Z(Ya).16

4.2 An illustrative example

For illustrative purposes, consider the case of a risk-averse firm facing a double risk

of property loss and price uncertainty. To be concrete, assume that the firm is an

electrical energy supplier with normal output q in kWh per year, sold at unit price

p, as specified in long-term contracts with customers.17 Accidents due to meteorolog-

ical uncertainty may induce repair costs, as for example when electricity pylons are

blown over or offshore windmills are damaged when a hurricane hits power plants. For

simplicity, it is assumed that these property damages do not affect the firm’s yearly

output (i.e., repair does not entail significant production delay) and we denote ˜̀ the
repair costs, with ˜̀= `(Ya) + η̃a where Ya ∈ Sa is a random vector of publicly ob-

servable meteorological data and η̃a is a zero-mean random variable, Ya and η̃a being

independently distributed. The actual output is q(1+ η̃b) where η̃b is a zero-mean ran-

dom variable, pairwise independent from Ya and η̃a. The difference qη̃b between actual

and normal outputs results from all factors that may affect electricity production for

16Interestingly, this is reminiscent of the precautionary motive of the prudent insured highlighted

by Schlesinger (2013), whose intuition was provided by Eeckhoudt & Schlesinger (2006), and which

states that uncertainty about uninsurable losses exacerbates insurance demand.
17This presumably reflects purchasers’risk-aversion. Equivalently, we may assume that electricity

output is sold at spot price, the electricity supplier being able to hedge its price risk at actuarial price

through forward exchange contracts.
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privately observed reasons, such as technological failures, delivery delays by subcon-

tractors or wind speed outside accident risk, in the case of a wind farm. It is sold or

purchased in a centralized spot market, at publicly observable price Yb ∈ Sb = R+, Yb
and η̃b being also independent, with zero-mean net proceeds qη̃bYb. Production costs

(apart from repair costs) are fixed and denoted C.

The firm’s profit is written as q(p + η̃bYb) − `(Ya) − η̃a − C, which corresponds

to previous notations with w0 = qp − C and X = `(Ya) + η̃a − qη̃bYb. In other

words, initial wealth w0 is the difference between normal turnover and fixed cost,

while loss X is the sum of repair cost and net purchases in the spot market. We have

E[η̃bYb] = 0 because η̃b and Yb are independently distributed with Eη̃b = 0, which gives

E[X | Ya, Yb] = `(Ya) = Z(Ya) and ε̃ = X − Z(Ya) = η̃a + qη̃bYb.

We deduce from Proposition 4 that the optimal parametric cover is a straight

deductible contract, where the trigger is the expected repair cost `(Ya) under meteo-

rological data Ya and the deductible z0(Yb) depends on the electricity spot price Yb.

Furthermore, ε̃|Yb=yb2 is more risky than ε̃|Yb=yb1 if yb2 is larger than yb1. Hence, if the

electricity supplier is prudent, the larger the spot price, the lower the deductible.18

5 Comparing information structures

The accuracy of the loss index reflects the informational content of the parameter

vector, and many practical debates about parametric insurance are related to this

accuracy and to its effect on the basis risk and on the effi ciency of parametric insurance.

Indeed, (Y,S) defines an information structure because observing signal y ∈ S implies

ω ∈ O(y) = Y −1(y), with P ={O(y), y ∈ S} a partition of Ω. In other words, one

knows that ω is in O(y) when parameter vector y is observed.

As explicitly formulated in Definition 1 below, an information structure is more

accurate than another one when it corresponds to a finer partition P of Ω, which

18See the appendix (subsection 7.2) for an illustrative simulation of this example.
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corresponds to a partial order among information structures. In particular, when Ω

is a finite-dimensional vector space and Y (ω) is a publicly observable subvector of

ω, extending this subvector (i.e., observing more components of ω) leads to a finer

partition of Ω, and thus to a more accurate information structure.19

Definition 1 Information structure (S1, Y1) is more accurate than information struc-

ture (S2, Y2), when, for all y2 ∈ S2, there exists a set K(y2) ⊂ S1 such that

O2(y2) = ∪y1∈K(y2)O1(y1),

with {K(y2), y2 ∈ S2} a partition of S1.

In Definition 1, partition P1 = {O1(y1), y1 ∈ S1} induced by (S1, Y1) is finer than

partition P2 = {O2(y2), y2 ∈ S2} induced by (S2, Y2): each set O2(y2) belonging to P2
is the union of a number of sets {O1(y1), y1 ∈ K(y2)} belonging to P1. Equivalently, as

shown in Lemma 1, we may express y2 as a function of y1 through a function y2 = Φ(y1)

such that K(y2) = Φ−1(y2).

Lemma 1 Information structure (S1, Y1) is more accurate than information structure

(S2, Y2) if and only if there exists a function Φ(.) : S1 → S2, such that

Y2(ω) = Φ(Y1(ω)) for all ω ∈ Ω.

Information structure (S1, Y1) weakly dominates information structure (S2, Y2) if

the optimal parametric-insurance contract based on (S1, Y1) is weakly prefered to the

optimal contract based based on (S2, Y2), for any increasing concave utility function.

Dominance is strong if, in addition, optimal expected utility is stricly larger for at

least one utility function.

19For instance, in parametric crop insurance, information yielded by ground-based sensors may be

added to weather satellite data. However, ground-based remote sensing is costly, and thus there is a

trade-off between the costs and benefits of using such an additional information.
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Proposition 5 Assume that (S1, Y1) is more accurate than (S2, Y2). In that case,

(S1, Y1) weakly dominates (S2, Y2). Furthermore, assume that there exist positive-

probability sets A2 ⊂ S2, A11(y2),A21(y2) ⊂ K(y2) ⊂ S1 with A11(y2) ∩ A21(y2) = φ for

all y2 ∈ A2, such that (i): X(ω1) > X(ω2) if Y 1(ω1) ∈ A11(y2) and Y 1(ω2) ∈ A21(y2)

for y2 ∈ A2, and (ii): For some concave utility function u(.), we have I∗2 (y2) > 0 when

y2 ∈ A2, where I∗2 (.) : S2 → R+ is the optimal indemnity schedule under information

structure (S2, Y2). Then (S1, Y1) strongly dominates (S2, Y2).

Proposition 5 is cumbersome, but its intuition is simple. Obviously, when (S1, Y1)

is more accurate than (S2, Y2), then any indemnity schedule I2(Y2) based (S2, Y2)

can be replicated by another indemnity schedule I1(Y1) = I2(Φ(Y1)) based on (S1, Y1),

hence the weak dominance property. More specifically, in its second part, Proposition 5

postulates that there exists a positive-probability set A2 ⊂ S2 such that any parameter

vector y2 ∈ A2 is the image of subsets A11(y2) and A21(y2) ⊂ S1 by function Φ(.).

Hence, information structure (S1, Y1) separates the states ω leading to A11(y2) from

those leading to A21(y2), which cannot be done through (S2, Y2). Assume that the

policyholder’s loss is larger in the first case than in the second one, and start from the

optimal parametric insurance contract based on Y2. Increasing the insurance payout

when y1 ∈ A11(y2) and decreasing it when y1 ∈ A21(y2), while keeping the expected

payment unchanged, increases the risk-averse policyholder’s expected utility for an

unchanged insurance premium. This is possible when the utility function is such that

the optimal parametric insurance contract based on (S2, Y2) provides positive coverage

when y2 ∈ A2.20

In Proposition 6, we consider two information structures (S1, Y1) and (S2, Y2), with

their loss index and basis risk Z1, ε̃1 and Z2, ε̃2, respectively. Since they correspond to

20Note that the optimal parametric insurance contract may be index-based under (S2, Y2) while

being dominated by a non-index based contract under (S1, Y1). In particular, increasing the insurance

payout when y1 ∈ A11(y2) and decreasing it when y1 ∈ A21(y2)may transform an index-based indemnity

function I∗2 (.) into another one that is no more index-based.
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the same risk exposure X, we have

Z1 + ε̃1 = Z2 + ε̃2 = X. (7)

Proposition 6 Assume that (S1, Y1) is a more accurate information structure than

(S2, Y2). Then ε̃2 is more risky than ε̃1, and Z1 is more risky than Z2.

Proposition 6 shows that a more accurate information takes the form of smaller

basis risk and more risky loss index, the increasing-risk criterion being in the sense of

Rothschild-Stiglitz (1970), in both cases. A completely uniformative parameter vector

would lead to a constant loss index Z = EX equal to the unconditional expected

loss, while the variations of an informative loss index reproduce the change in incurred

losses more or less precisely. When the information structure is more accurate, the

parameter vector provides a more precise information on the state, and the index

reproduces more closely the changes in the loss, with less residual uncertainty, hence

a more variable (more risky) loss index and a lower basis risk.

Propositions 5 and 6 show that a more accurate information structure simulta-

neously provides a better optimal parametric insurance coverage and a smaller basis

risk. Therefore, the question naturally arises as to whether a decrease in the basis risk

(reflecting a change in the underlying information sructure) is a suffi cient condition

for the dominance of the new information structure over the previous one. The answer

to this question is in fact negative, even in the case of independent basis risk. This is

illustrated in the following example, presented in more detail in the appendix (subsec-

tion 7.3).21 Consider Z1 and Z2 two loss indices distributed in the same support [z, z],

with 0 < z < z < x, with independent basis risks ε̃1 and ε̃2 distributed in [−z, x− z],

with densities fε̃1(ε) and fε̃2(ε), respectively.
22 We know from Proposition 1 that an

21This ties in with the conclusion of Teh and Woolnough (2019) that higher correlation between

loss and index does not necessarily equate to a better index.
22It is shown in the appendix that, when Z1 and Z2 have a common support [z, z], their underlying

information structures (S1, Y1) and (S2, Y2) cannot be compared by the accuracy criterion.
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index-based straight deductible contract is optimal in each case, and we denote z∗0i(m)

the optimal deductible as a function of the loading factor m when parametric insur-

ance is based on loss index Zi. Let mi be the upper bound of the loading factor under

which the policyholder purchases insurance, thus with z∗0i(m) < z if m < mi, and

z∗0i(mi) = z. It can be shown that mi satisfies∫ x−z

−z
u′(w0 − z − ε)fε̃i(ε)dε− (1 +mi)

∫ x

0

u′(w0 − x)fX(x)dx, (8)

which may be interpreted, the absence of insurance being a statu quo, as an equality

between cost and benefit of providing a small positive coverage when Zi = z. Assume

that the policyholder is prudent, and that ε̃2 is more risky than ε̃1 with Eε̃1 = Eε̃2 = 0.

Equation (8) then gives m1 < m2. When m = m1, the policyholder is willing to

purchase parametric insurance based on Z2 while he would prefer to remain uninsured

if Z1 were used. When m is slightly lower than m1, he is willing to purchase insurance

whatever the index and, by a continuity argument, when m is close to m1, his optimal

expected utility is higher with Z2 than with Z1, although the basis risk is larger.

6 Conclusion

Reframing the parametric insurance problem in an imperfect information setting brings

about new insights into the design of optimal coverage. The most important conclusion

that emerges in this context is the fact that optimal parametric insurance depends on

the stochastic relationship between the parameter vector and the basis risk. If they are

independently distributed, then, with some caveats such as the strong comparability

criterion used in Proposition 2, important results of insurance demand theory extend

to the parametric insurance setting. As we have seen, this follows from the similar-

ity with the insurance demand problem under independent background risk. Under

constant loading, a straight deductible contract triggered by the loss index is optimal.

Furthermore, the amount of insurance demand of two individuals who face the same

risk exposure depend on their respective degrees of risk aversion.
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Conclusions are far less simple when the parameter vector and the basis risk are

not independently distributed, a case that may be more relevant in many concrete

situations. The reason is simple: if two parameter vectors leading to the same loss

index correspond to different distributions of the basis risk, then they provide different

information on the loss, and this should be reflected in the optimal insurance coverage.

In that case, the optimal parametric insurance is generally not index-based. In other

words, the insurance payout should depend on the parameter vector itself, and not

only on the best estimate of the loss that can be infered from this information.

Once said that, this raises questions about, at least, two issues: the structure of the

optimal indemnity schedule and the relationship between the attitude toward risk and

the demand for insurance. With respect to the first question, we have shown that the

optimal indemnity schedule corresponds to a straight deductible contract applied to an

adjusted expected loss exposure. When the policyholder is prudent, the larger the ba-

sis risk conditionally on the parameter vector, the larger the risk adjustment. In other

words, if the conditional basis risk increases when we move from a parameter vector

to another one, then the risk adjustment should be larger in the second case than in

the first one. This adjustment takes a more simple form when the parameter vector

can be splitted in two independently distributed subvectors, affecting the expected

loss and the conditional basis risk, respectively. In that case, the optimal indemnity

schedule takes the form of a conditional deductible, and the larger the conditional

basis risk, the lower the conditional deductible. Concerning the relationship between

the attitude toward risk and the demand for parametric insurance, risk aversion and

prudence codetermine the demand for parametric insurance, and, contrary to the case

where the basis risk and the loss index are independently distributed, a lower degree

of risk aversion does not necessarily means a lower demand for insurance with a lower

premium, if this risk aversion effect is more than compensated by a larger degree of

prudence. In other words, risk aversion and the downside risk aversion that character-

izes prudence may go in opposite direction, which invalidates the usual comparative
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static analysis of insurance choices.

Finally, parametric insurance should also be appraised from a risk-sharing effi ciency

standpoint, and this depends on the accuracy of the parameter vector and the induced

basis risk. Increasing this accuracy usually means measuring additional parameters,

but this may be costly. Trading-off the benefits from a more accurate information

with the costs of collecting this information is part and parcel of the design of optimal

parametric insurance.

7 Appendix

7.1 Binary model

As Clarke (2016), we may consider the case where the possible loss is single-valued

X ∈ {0, L} with S = {0, 1}, and joint probabilities as follows:

Y = 0 Y = 1

X = 0 π00 π01

X = L π10 π11

with

P[X = L | Y = 1] =
π11

π01 + π11
,

P[X = L | Y = 0] =
π10

π00 + π10
.

We assume P[X = L | Y = 1] > P[X = L | Y = 0], which holds if

π11
π01

>
π10
π00

. (9)

Parametric insurance provides a payout I when Y = 1. Clarke (2016) considers the

CARA and CRRA classes of utility functions, and he shows that the optimal indemnity

I∗ may be non-monotonic with respect to the coeffi cient of absolute or relative risk

aversion γ. More precisely, he shows that either I∗(γ) = 0 for all γ ∈ (0,∞), or
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I∗(γ) = 0 for all γ < γ1, I
∗(γ) is strictly increasing for all γ1 < γ < γ2 and I

∗(γ) and

strictly decreasing for all γ2 < γ < ∞ for some γ1 < γ2 < ∞. In words, the optimal

coverage is increasing and then decreasing with risk aversion, so the most risk averse

individual does not necessarily purchase more insurance.

We may write

Z(0) = L
π10

π10 + π00
Z(1) = L

π11
π11 + π01

,

with Z(1) > Z(0) from (9), and

ε̃|Y=0 =

 −L π10
π10+π00

with probability π00
π10+π00

L π00
π10+π00

with probability π10
π10+π00

,

and

ε̃|Y=1 =

 −L π11
π11+π01

with probability π01
π11+π01

L π01
π11+π01

with probability π11
π11+π01

.

which shows that the distribution of ε̃ differs according to whether Y = 0 or Y = 1:

hence Y and ε̃ are not independent. Because of that, Proposition 2 is not valid, and the

optimal insurance payout may not be increasing with respect to risk aversion. In fact,

when the loss index and the basis risk are not independently distributed, the optimal

parametric covers results from the interaction between risk aversion and prudence, as

shown in Proposition 3.

Some intuition of this interaction may be obtained as follows. Conditionally on

X = 0, the net expected transfer from the insurer to the policyholder is

T 0 =
π01

π00 + π01
I − P,

and the actual net transfer is

T̃0 =

{
I − P with prob. π01

π00+π01

−P with prob. π00
π00+π01

,

with P = (1 +m)(π01 + π11)I. Similarly, in state X = L, the net expected and actual

transfers to the policyholder are

TL =
π11

π10 + π11
I − P,
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and

T̃L =

{
I − P with prob. π11

π10+π11

−P with prob. π10
π10+π11

,

respectively. We have TL > T 0 because of (9), meaning that, on average, the payment

received by the policyholder is larger when X = L that when X = 0. Because of

this first effect, as in a standard insurance demand problem, the larger the degree

of absolute risk-aversion, the larger the optimal average indemnity, obtained through

an increase in I. However, the actual transfer T̃0 or T̃L(conditionally on X = 0 or

L, respectively) is uncertain, and we may have Var(T̃L) > Var(T̃0). In that case,

because this uncertainty on the conditional payment (as measured by its variance) is

larger in the loss state than in the no-loss state, the downward risk aversion inherent

in prudence creates a countervailing effect that reduces insurance demand. Under

CARA and CRRA preferences, when parameter γ increases, the coeffi cient of absolute

prudence also increases. The countervailing effect reflecting prudence becomes stronger

and it may dominate the risk aversion effect, hence a possible decrease in insurance

demand.

7.2 Optimal conditional deductible: simulation

For the sake of illustration, Table 1 displays the results of simulations of the optimal

conditional-deductible contract, in the case of the electricity supplier considered in

sub-section 4.2. We postulate CARA preferences and normal distributions for η̃a and

η̃b, and we assume that electricity spot price Yb takes only two values yb2 (high) and

yb1 (low) with equal probability, with z0(yb1) (left) and z0(yb2) (right) in each cell.

We assume yb2 = δpb2 and yb1 = δpb1, with pb2 > pb1, where parameter δ calibrates

the variability of Yb.23 When δ = 0 (first column), we have yb1 = yb2 = 0, and

23The calibration of parameters is as follows: q = 1, p = 0.1, pb1 = 0.096, pb2 = 0.104. We also

assume C = 0.6pq = 0.06 and EX = 0.4, w = 0.016, σa = 100EX/q = 1.6 and σb = 0.3σa = 0.48,

where σa and σb are the standard deviation of η̃a and η̃b, respectively.
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the two deductibles are therefore identical. When δ > 0, the deductible depends on

the observed value of Yb, with a higher degree of basis risk, captured by the higher

(conditional) variance V(ε̃|Yb = ybi) = σ2a + δ2q2p2biσ
2
b when i = 2 than when i = 1. In

accordance with Proposition 4, we have z0(yb1) > z0(yb2) when δ > 0.24

7.3 Better insurance with higher basis risk: an example

Assume that X is distributed in an interval [0, x] with density fX(x). Consider two

loss indices Z1 and Z2 with density function fZi (z) and c.d.f. FZi(z) for loss index Zi,

with i = 1 or 2. These loss indices are distributed in the same support [z, z], with

0 < z < z < x, with independent basis risks ε̃1 and ε̃2, respectively, also distributed in

the same support [−z, x− z]. We assume that ε̃2 is more risky than ε̃1 in the sense of

24The increase in δ increases both the lower price yb1 and the upper price yb2, but it also accen-

tuates the difference between the two prices, with two consequences. First, the variance of the basis

risk variable ε̃ increases, as reflected by the decreasing values of the R2. In the case of a prudent

policyholder, this should result in a lower deductibles. We do observe this effect for z0(yb1) but not

for z0(yb2) that increases with δ. This is because the difference between the two states yb1 and yb2 is

also accentuated, with more additional variance in the state where the electricity price is high than

in the state where it is low. As a consequence, the prudent policyholder requires a higher deductible

in the less risky state in order to afford a significantly lower deductible in the riskier state.
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Rothschild and Stiglitz (1970). We also assume fZ1(z) = fZ2(z) > 0 and we denote f

this common value of the loss-index densities at the top of the support of Z1 and Z2.

From Proposition 1, in both cases the optimal parametric insurance contract is an

index-based straight deductible policy. Let Ui(z0,m) be the policyholder’s expected

utility when parametric insurance is based on loss index Zi with deductible z0 ∈ [z, z]

and loading m. We have

Ui(z0,m) =

∫ z0

z

[∫ x

0

u(w0 − x− P̂i(z0,m))f iX(x | z)dx

]
fZi(z)dz

+

∫ z

z0

[∫ x

0

u(w0 − x− P̂i(z0,m) + z − z0)f iX(x | z)dx

]
fZi(z)dz,

for i = 1 or 2, where f iX(x | z) is the conditional density function of X when Zi = z,

and

P̂i(z0,m) = (1 +m)

∫ z

z0

(z − z0)fZi(z)dz

is the insurance premium when index Zi is used.

Let z∗0i(m) = arg max{Ui(z0,m), z0 ∈ [z, z]} be the optimal deductible under loss

index Zi as a function of the loading factor, for i = 1, 2, and let m1 = sup{m > 0 |

z∗01(m) < z}. We assume that z0 −→ U1(z0,m) is unimodal in the neighbourhood of

z, and thus z∗01(m) is uniquely defined and continuous when m is close to m1, with

z∗01(m1) = z and z∗01(m) < z when m < m1.

Let ∆U(z0,m) = U2(z0,m)− U1(z0,m), with ∆U(z,m) < 0 and ∆U(z,m) = 0 for

all m. A simple calculation yields

∂Ui(z0,m)

∂z0
= −

∫ z

z0

[∫ x

0

u′(w0 − x− P̂i(z0,m) + z − z0)f iX(x | z)dx

]
fZi(z)dz

−P̂ ′i (z0,m)Eu′i(z0,m),

where

P̂ ′i (z0,m) = −(1 +m)[1− FZi(z0)],
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and

Eu′i(z0,m) =

∫ z0

z

[∫ x

0

u′(w0 − x− P̂i(z0,m))f iX(x | z)dx

]
fZi(z)dz

+

∫ z

z0

[∫ x

0

u′(w0 − x− P̂i(z0,m) + z − z0)f iX(x | z)dx

]
fZi(z)dz.

This gives
∂Ui(z0,m)

∂z0 |z0=z
= 0 for all m, (10)

for i = 1 and 2, and thus

∂[∆U(z0,m)]

∂z0 |z0=z
= 0 for all m. (11)

We have z∗01(m) < z when m < m1 and thus the unimodal function z0 −→ U1(z0,m) is

decreasing in the neighbourhood of z in that case. Using (10) then yields ∂2U1(z0,m)/∂z20 >

0 when z0 is close to z and m < m1. Symmetrically, we have ∂2U1(z0,m)/∂z20 < 0

when z0 is close to z and m > m1, and by continuity we deduce

∂2U1(z0,m1)

∂z20 |z0=z
= 0. (12)

Since X and ε̃i are independent, and X conditionally on Zi = z is distributed in

[z − z, x], we may write

∂2Ui(z0,m)

∂z20 |z0=z
= f

[∫ x

z−z
u′(w0 − x)f iX(x | z)dx− (1 +m)Eu′i(z)

]
= fAi(m) for all m,

where[

Ai(m) =

∫ x−z

−z
u′(w0 − z − ε)fε̃i(ε)dε− (1 +m)

∫ x

0

u′(w0 − x)fX(x)dx,

and where fε̃i(ε) denotes the density function of ε̃i. Assume that the policyholder is

prudent (i.e. u′′′ > 0). We then have A2(m) > A1(m) because ε̃2 is more risky than

ε̃1, with A1(m1) = 0, and A2(m) > A1(m) > 0 when m < m1. Hence, we have

30



∂2[∆U(z0,m)]

∂z20 |z0=z
= f [A2(m)− A1(m)] > 0, (13)

when m < m1. We deduce from equations (10) and (12) that, when m < m1, function

z0 −→ ∆U(z0,m) has a local minimum in [z, z] at z0 = z with ∆U(z0,m) > 0 when

z0 is smaller than (and close to) z. When m is close to m1, z∗01(m) is close to z. The

definition of z∗02(m) implies U2(z∗02(m),m) ≥ U2(z
∗
01(m),m), and thus we may write

U2(z
∗
02(m),m)− U1(z∗01(m),m) ≥ U2(z

∗
01(m),m)− U1(z∗01(m),m)

= ∆U(z∗01(m),m)

> 0,

when m is smaller than (and close to) m1. In that case, the optimal expected utility

is higher when parametric insurance is based on Z2 rather than on Z1, although ε̃2 is

more risky than ε̃1.

Remark 1 It has been assumed that Z1 and Z2 are distributed in the same support

[z, z], and for this reason the underlying information structures (S1, Y1) and (S2, Y2)

cannot be compared by the accuracy criterion. To show this, assume a contrario that

(S1, Y1) is more accurate than (S2, Y2) and denote [zi, zi] ⊂ [0, x] the support of Zi.

With the notation of Definition 1, we may write:

z2 = inf{E[X(ω) | ω ∈ O2(y2)], y2 ∈ S2}

= inf{E[X(ω) | ω ∈ ∪y1∈K(y2)O1(y1)], y2 ∈ S2}

> inf{inf{E[X(ω) | ω ∈ O1(y1)], y1 ∈ K(y2)}, y2 ∈ S2}

= inf{E[X(ω) | ω ∈ O1(y1)], y1 ∈ S1} = z1.

Similarly, we have z2 < z1. Hence the supports of Z1 and Z2 differ, the one corre-

sponding to the less accurate information structure being included in the other.
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7.4 Proof of Proposition 1

Let I∗(.) : S →R+, P ∗ the optimal indemnity schedule and premium, with optimal

expected utility u∗ = Ev(w0 − Z + I∗(Y ) − P ∗). Define J(.) : Z(Y (Ω)) → R+ by

J(z) = EY [I∗(Y ) | Z(Y ) = z]. Using u′′ < 0 allows us to write

u∗ = EZ [EY [v(w0 − z + I∗(Y )− P ∗) | Z = z]]

≤ EZ [v(w0 − z + EY [I∗(Y ) | Z = z]− P ∗) | Z = z]

= Ev(w0 − Z + J(Z)− P ∗) = u,

with strict inequality if I∗(.) is not index-based in a positive-probability event. Fur-

thermore, we have

EJ(Z) = EZ [EY [I∗(Y ) | Z = z]] = EI∗(Y ),

P ∗ = (1 +m)EI∗(Y ) = (1 +m)EJ(Z).

Thus, the index-based contract J(.), P ∗ is feasible, with higher expected utility than

I∗(.), P ∗, hence a contradiction. The rest of the proof results from the optimality of a

straight deductible contract with loss Z, under constant loading and utility function

v(.).

7.5 Proof of Proposition 2

The Proposition directly follows from the analysis of comparative risk aversion when

there is an independent background risk: see Proposition 24 and 25 in Gollier (2004).

7.6 Proof of Proposition 3

Let λ be a Lagrange multiplier associated with constraint (2). The first-order optimal-

ity conditions are written as

E[u′(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y]− λ(1 +m)

{
≤ 0 for all y ∈ S
= 0 if I(y) > 0

,

E[u′(w0 − Z(Y )− ε̃+ I(Y )− P )] = λ.
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Using E[̃ε | Y = y] = 0 for all y and u′′′ > 0 yields

E[u′(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y] > u′(w0 − Z(y) + I(y)− P ).

Let Ẑ(y) be defined for all y by

E[u′(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y] = u′(w0 − Ẑ(y) + I(y)− P )

with Ẑ(y) > Z(y) from u′′ < 0, u′′′ > 0. Hence, the optimality conditions may be

rewritten as

u′(w0 − Ẑ(y) + I(y)− P )− λ(1 +m)

{
≤ 0 for all y ∈ S
= 0 if I(y) > 0

,

E[u′(w0 − Ẑ(Y ) + I(Y )− P )] = λ.

Let ẑ0 defined by u′(w0 − ẑ0 − P ) = λ(1 +m). We have I(y) = Ẑ(y)− ẑ0 if I(y) > 0,

which implies Ẑ(y) > ẑ0 and Ẑ(y) ≤ ẑ0 if I(y) = 0, and thus we may write

I(y) = max{Ẑ(y)− ẑ0, 0] for all y ∈ S.

Let y1, y2 ∈ S with I(y1), I(y2) > 0. Denote ∆Z1 = Ẑ(y1) − Z(y1) > 0 and

∆Z2 = Ẑ(y2)−Z(y2) > 0. Assume that the conditional distribution of ε̃ is more risky

when Y = y2 than when Y = y1, and suppose ∆Z2 ≤ ∆Z1. The optimality conditions

give

u′(w0 − Ẑ(y1) + I(y1)− P ) = u′(w0 − Ẑ(y2) + I(y2)− P ) = λ(1 +m),

or, equivalently

E[u′(w0−Z(y1)− ε̃+I(y1)−P ) | Y = y1] = E[u′(w0−Z(y2)− ε̃+I(y2)−P ) | Y = y2].

We have I(y1) = Ẑ(y1) − ẑ0 = Z(y1) − ẑ0 + ∆Z1 and I(y2) = Ẑ(y2) − ẑ0 = Z(y2) −

ẑ0 + ∆Z2. Hence, the last equation may be rewritten as

E[u′(w0 + ∆Z1 − ẑ0 − ε̃− P ) | Y = y1] = E[u′(w0 + ∆Z2 − ẑ0 − ε̃− P ) | Y = y2],
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or

E[u′(w + ∆Z1 −∆Z2 − ε̃) | Y = y1] = E[u′(w − ε̃) | Y = y2],

where w = w0 + ∆Z2 − ẑ0 − P . However, we have

E[u′(w + ∆Z1 −∆Z2 − ε̃) | Y = y1] ≤ E[u′(w − ε̃) | Y = y1]

< E[u′(w − ε̃) | Y = y2],

where the first inequality comes from ∆Z1 ≥ ∆Z2 and u′′ < 0, and the second from

the fact that ε̃|Y=y2 is more risky than ε̃|Y=y1 and u
′′′ > 0. This is a contradiction.

7.7 Proof of Corollary 1

The Corollary directly follows from the second part of Proposition 3.

7.8 Proof of Proposition 4

The first-order optimality conditions are

E[u′(w0 − Z(ya)− ε̃+ I(y)− P ) | Yb = yb]− λ(1 +m)

{
≤ 0 for all y ∈ S,
= 0 if I(y) > 0,

,

E[u′(w0 − Z(Ya)− ε̃+ I(Y )− P )] = λ.

where y = (ya, yb). Let us define U(w, yb) ≡ Eε̃[u(w− ε̃) | Yb = yb],with U ′w > 0,U ′′w2 <

0. This allows us to rewrite the optimality conditions as

U ′w(w0 − Z(ya) + I(y)− P, yb)− λ(1 +m)

{
≤ 0 for all y ∈ S
= 0 if I(y) > 0

E[U ′w(w0 − Z(Ya) + I(Y )− P ), Yb] = λ.

When I(y) > 0, we have I(y) = Z(ya) − z0(yb), where z0(yb) is defined by U ′w(w0 −

z0(yb) − P, yb) = λ(1 + m). Furthermore, when I(y) = 0 we have Z(ya) < z0(yb).

Patching up these two cases yields

I(y) = max{0, Z(ya)− z0(yb)} for all y = (ya, yb).
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Let ε̃1 and ε̃2 be random variables distributed as ε̃ given ỹb = yb1 and yb2,respectively,

and assume that ε̃2 is more risky than ε̃1. We have

U ′w(w0 − z0(ybh)− P, ybh) = λ(1 +m) for h = 1, 2.

When h = 2, this may be rewritten as

Eu′(w0 − z0(yb2)− ε̃2 − P ) = λ(1 +m).

Since ε̃2 is more risky than ε̃1, we may write ε̃2 ≡ ε̃1 + η̃,where random variable η̃ is

such that E[η̃ | ε̃1 = ε1] = 0 for all ε1. When u′′′ > 0, we have

Eu′(w0 − z0(yb2)− ε̃2 − P ) = Eε̃1 [Eη̃[u′(w0 − z0(yb2)− ε1 − η̃ − P ) | ε̃1 = ε1]]

> Eε̃1u′(w0 − z0(yb2)− ε̃1 − P )

= U ′w(w0 − z0(yb2)− P, yb1).

We deduce

U ′w(w0 − z0(yb2)− P, yb1) < U ′w(w0 − z0(yb1)− P, yb1),

and using U ′′w2 < 0 gives z0(yb2) < z0(yb1).

7.9 Proof of Lemma 1

Assume Y2(ω) = Φ(Y1(ω)) for all ω. Let y2 ∈ S2. We have

O2(y2) = {ω ∈ Ω s.t. Y2(ω) = y2}

= {ω ∈ Ω s.t. Φ(Y1(ω)) = y2}

= {ω ∈ Ω s.t. Y1(ω) ∈ Φ−1(y2)}

=
⋃

y1∈K(y2)

O1(y1),

with K(y2) = Φ−1(y2). Hence {K(y2), y2 ∈ S2} is a partition of S1, and thus (S1, Y1)

is more accurate than (S2, Y2).
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Conversely, assume that (S1, Y1) is more accurate than (S2, Y2), i.e.

O2(y2) =
⋃

y1∈K(y2)

O1(y1),

with {K(y2), y2 ∈ Y2} a partition of Y1. Let Φ(.) : S1 → S2 defined by Φ(y1) = y2 if

y1 ∈ K(y2) for all y2 ∈ Y2. For all ω there exists y1 ∈ Y1 such that Y1(ω) = y1, i.e.

ω ∈ O1(y1). We have O1(y1) ⊂ O2(y2) with y1 ∈ K(y2), and thus O1(y1) ⊂ O2(Φ(y1))

from the definition of Φ(.), which implies Y2(ω) = Φ(y1) = Φ(Y1(ω)).

7.10 Proof of Proposition 5

Under information structure (Si, Yi), for i = 1 or 2, the optimal contract {P ∗i , I∗i (.)}

maximizes

Eu(w0 −X + Ii(Yi)− Pi),

with respect to Pi and Ii(.) : Si → R+ subject to

Pi = (1 +m)EIi(Yi),

with optimal expected utility

u∗i = Eu(w0 −X + I∗i (Yi)− P ∗i ).

Consider the indemnity schedule I1(.) : S1 → R+ defined by I1(y1) = I∗2 (Φ(y1)) for

all y1 ∈ S1. In any state of nature ω, the insurance payout is the same for I1(.) and

I∗2 (.). Hence, the contract {P ∗2 , I1(.)} is feasible under information structure (S1, Y1)

with expected utility u1 = u∗2, and thus we have u
∗
1 ≥ u∗2, hence the weak dominance

of (S1, Y1) over (S2, Y2).

Furthermore, replacing (S2, Y2) by (S1, Y1) allows us to increase the insurance in-

demnity I1(y1) above I∗2 (Φ(y1)) when y1 ∈ A11(y2) and simultaneously to decrease

I1(y1) under I∗2 (Φ(y1)) when y1 ∈ A21(y2). This can be done for all y2 ∈ A2 in such a

way that the expected insurance payout is unchanged when Y 1(ω) ∈ A11(y2)∪A11(y2).
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Furthermore I1(y1) is kept equal to I∗2 (Φ(y1)) if y1 /∈ {A11(y2) ∪ A11(y2),y2 ∈ A2}.This

change increases the insurance payout in states with higher losses and reduces this

payout in states with lower losses, starting from an initial solution I1(.) where these

payouts are equal, and the insurance premium is unchanged. Because of the concavity

of the utility function, this induces an increase in expected utility, with u∗1 > u∗2, hence

the strong dominance of (S1, Y1) over (S2, Y2).

7.11 Proof of Proposition 6

Assume that (S1, Y1) is more accurate than (S2, Y2). Using (7) gives ε̃2 = ε̃1 + η̃ where

η̃ = Z1(Y1)− Z2(Y2). We may write

Z2(Y2) = E[Z1(Y1) | Y1 ∈ K(Y2)]

where K(.) is defined as in Definition 1. Hence, we have

E[η̃ | ε̃1 = ε1] = E[Z1(Y1) | ε̃1 = ε1]− E[Z1(Y1) | Y1 ∈ K(Y2), ε̃1 = ε1]. (14)

Let F1(y1 | ε1) and F2(y2 | ε1) be the c.d.f. of Y1 and Y2, respectively, conditionally

on ε̃1 = ε1. Let also F1(y1 | y2, ε1) be the c.d.f. of Y1 conditionally on Y2 = y2 and

ε̃1 = ε1. We have

E[Z1(Y1) | ε̃1 = ε1] =

∫
y1∈S1

Z1(y1)dF1(y1 | ε1)

=

∫
y2∈S2

{∫
y1∈K(y2)

Z1(y1)dF1(y1 | y2, ε1)
}
dF2(y2 | ε1)

= E[Z1(Y1) | Y1 ∈ K(Y2), ε̃1 = ε1],

for all ε1. Using (14) then gives E[η̃ | ε̃1 = ε1] = 0 for all ε1, which shows that ε̃2 is

more risky than ε̃1. Furthermore, we have

Z2(y2) = E[X | Y2 = y2]

= E[X | Y1 ∈ K(y2)]

= E[Z1(Y1) | Y1 ∈ K(y2)],
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for all y2. Consequently, we may write

z2 =

∫
y1∈K(Z−12 (z2))

Z1(y1)dF1(y1 | Y1 ∈ K(Z−12 (z2))), (15)

for all z2 ∈ im(Z2), where F1(y1 | Y1 ∈ K(Z−12 (z2))) is the distribution function of Y1

conditionally on Y1 ∈ K(Z−12 (z2)). We have

Y1 ∈ K(Z−12 (z2)))⇔ Z2(Φ(Y1)) = z2,

for all z2 ∈ im(Z2). Using Y2 = Φ(Y1) and (15) yields

E[Z1 | Z2(Φ(Y1)) = z2] = z2 for all z2 ∈ im(Z2),

or equivalently Z1 = Z2 + η̃Z with

E[η̃Z | Z2 = z2] = 0 for all z2 ∈ im(Z2)

which shows that Z1 is more risky than Z2.
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