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Abstract

We study epidemic spreading in complex networks by a multiple random walker approach. Each walker
performs an independent simple Markovian random walk on a complex undirected (ergodic) random
graph where we focus on Barabási-Albert (BA), Erdös-Rényi (ER) and Watts-Strogatz (WS) types. Both,
walkers and nodes can be either susceptible (S) or infected and infectious (I) representing their states of
health. Susceptible nodes may be infected by visits of infected walkers, and susceptible walkers may be
infected by visiting infected nodes. No direct transmission of the disease among walkers (or among nodes)
is possible. This model mimics a large class of diseases such as Dengue and Malaria with transmission
of the disease via vectors (mosquitos). Infected walkers may die during the time span of their infection
introducing an additional compartment D of dead walkers. Infected nodes never die and always recover
from their infection after a random finite time. This assumption is based on the observation that infectious
vectors (mosquitos) are not ill and do not die from the infection. The infectious time spans of nodes and
walkers, and the survival times of infected walkers, are represented by independent random variables.
We derive stochastic evolution equations for the mean-field compartmental populations with mortality of
walkers and delayed transitions among the compartments. From linear stability analysis, we derive the
basic reproduction numbers RM , R0 with and without mortality, respectively, and prove that RM < R0.
For RM , R0 > 1 the healthy state is unstable whereas for zero mortality a stable endemic equilibrium
exists (independent of the initial conditions) which we obtained explicitly. We observe that the solutions
of the random walk simulations in the considered networks agree well with the mean-field solutions for
strongly connected graph topologies, whereas less well for weakly connected structures and for diseases
with high mortality. Our model has applications beyond epidemic dynamics, for instance in the kinetics of
chemical reactions, the propagation of contaminants, wood fires, among many others.

Keyworkds. Epidemic spreading, compartment model with mortality, memory effects, random walks,
random graphs
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1 Introduction

Sudden or recurrent emergence of epidemics has been an everlasting thread to humanity. Highly infectious
and fatal diseases such as pestilence, typhus, cholera, and leprosy were among the main causes of death in
medieval times in Europe and until 20th century a major scourge of humanity [1]. This permanent challenge
has naturally driven interest in protective measures and predictive models.

The systematic mathematical study of epidemic spreading began only a century ago with the seminal
work of Kermack and McKendrick [2]. They were the first to introduce what we call nowadays a “compart-
ment model”. In their so called SIR-model the individuals are categorized in compartments susceptible - S,
infected - I, recovered (immune) - R characterizing their states of their health. Whereas standard SIR type
models are able to capture main features of a certain class of infectious diseases such as mumps, measles
and rubella, they fail to describe persistent oscillatory behaviors and spontaneous outbursts which are
observed in many epidemics.

A large amount of work still is devoted to compartmental models [3, 4] where an impressive field has
emerged [5, 6] and the interest was again considerably enhanced by the context of COVID-19 pandemics
[7]. Beside purely macroscopic models, the study of epidemic dynamics in complex networks has attracted
considerable attention [9, 10, 11]. In these works the importance of the graph topology for spreading
phenomena has been highlighted. In particular, Pastor-Satorras and Vespignani showed that for a wide
range of scale free networks no critical threshold for epidemic spreading exists [10]. The topological
features crucial for epidemic spreading include the small world property (short average network distances1)
and a high clustering coefficient measuring the existence of redundant paths between pairs of nodes
[25, 27].

Further interesting directions are represented by combinations of network science and stochastic
compartmental models [28, 16, 17, 29, 31]. Such models include Markovian and non-Markovian approaches
[36, 23, 37, 30, 35] where non-Markovianity is introduced by non-exponentially distributed sojourn times in
the compartments [33, 34]. In these works explicit formulae for the endemic equilibrium in terms of mean
compartmental sojourn times and the basic reproduction number are derived and numerically validated in
random walk simulations. A further non-Markovian model appeared recently [12] where non-Markovianity
comes into play by introducing an "age of infection" allowing individuals to recover when their infection
period exceeds a certain threshold, generalizing the initial idea of Kermack and McKendrick.

Other recent works emphasize the importance of spatial heterogeneity effects of infection patterns in
epidemic spreading phenomena [38] and the role of local clusters to generate periodic epidemic outbursts

1The network ‘distance’ of two nodes is the number of edges of the shortest path connecting them.

2



[39] and see [40] for a review of these effects. A cluster model to explain periodic behavior was introduced
a long time ago [41]. The role of the complex interplay of retardation (delayed compartmental transitions)
and fluctuations for oscillatory behavior has been investigated in one of our recent works [35].

The aim of the present paper is to study the spreading of a certain class of diseases in a population
of individuals (random walkers) moving on complex graphs aiming to mimic human mobility patterns in
complex environments such as cities, street, and transportation networks. Essential elements in our model
are the account for the mortality of infected individuals (random walkers) and an indirect transmission
pathway via vectors (detailed below).

The present paper is organized as follows. In Section 2 we establish a stochastic mean field model for
the evolution of the compartmental populations. The special case of zero mortality is considered in Section
3 where we obtain an explicit formula for the endemic equilibrium (stationary constant compartmental
populations for infinite time). In this way we identify a crucial parameter controlling the stability of
the healthy state having the interpretation of the basic reproduction number R0 (Section 4) where the
healthy state is stable for R0 < 1 and unstable for R0 > 1. A detailed proof of the stability of the endemic
state for R0 > 1 is provided in Appendix A.2. In Section 5 we analyze stability of the healthy state with
mortality and derive the basic reproduction number RM and prove that RM < R0, i.e. mortality reduces the
basic reproduction number. In Section 6 we test robustness of our mean field model under "complex real
world conditions" by implementing its assumptions into multiple random random walkers simulations on
Barabási-Albert (BA), Erdös-Rényi (ER) and Watts-Strogatz (WS) type graphs ([17, 16, 24] and Appendix
A.3). These graph types have different complexity and connectivity features with impact on the spreading.

2 Compartmental model with mortality

The goal of this section is to develop a mean field model for a certain class of diseases with indirect
infection transmission via vectors which includes Dengue, Malaria (transmission by mosquitos) or Pestilence
(transmission by fleas) and others [8, 9]. To that end we consider a population of Z random walkers
navigating independently on a connected (ergodic) graph. Each walker performs independent steps from
one to another connected node on the network (specified subsequently). We assume that walkers and nodes
are in one of the compartments, S (susceptible) and I (infected). In addition, walkers can be in compartment
D (dead) whereas nodes never die.

Let ZS(t), ZI(t) (NS(t), NI(t)) be the number of walkers (nodes) in compartments S and I, and ZD(t)
the non-decreasing number of walkers (in compartment D) died from the disease up to time t. We
consider Z = ZI(t) + ZS(t) + ZD(t) walkers (Z independent of time) and a constant number of nodes
N = NI(t) + NS(t). We assume at instant t = 0 the first spontaneous occurrence of the disease of a few
infected walkers ZI(0) ≪ Z or nodes NI(0) ≪ N (and no dead walkers ZD(0) = 0). We introduce the
compartmental fractions Sw(t) = ZS(t)

Z , Jw(t) = ZI(t)
Z , dw(t) = Zd(t)

Z for the walkers (normalized with respect

to Z) with Sw(t) + Jw(t) + dw(t) = 1, and Sn(t) = NS(t)
N , Jn(t) = NI(t)

N with Sn(t) + Jn(t) = 1. To limit the
complexity of our model we do not consider the demographic evolution, i.e. there are no natural birth and
dead processes. We denote with Aw(t), An(t) the infection rates (rates of transitions S → I) of walkers and
nodes, respectively. We assume the following simple bi-linear forms

Aw(t) = Aw[Sw(t), Jn(t)] = βwSw(t)Jn(t)

An(t) = An[Sn(t), Jw(t)] = βnSn(t)Jw(t)
(1)

with constant rate parameters βw, βn > 0 (independent of time). Aw(t) indicates the infection rate of
walkers where its dependence of Sw, Jn is telling us that susceptible walkers can be infected only by
(visiting) infected nodes. An(t) stands for the infection rate of nodes depending on Sn(t), Jw(t) indicating
that susceptible nodes can only be infected by (visits of) infected walkers. There are no direct transmissions
among walkers and among nodes. Infections of walkers (nodes) take place with specific transmission
probabilities in a contact of a node and a walker which are captured by (yet not identical with) the
transmission rate constants βw,n.

The infection time spans tw,n
I > 0 without mortality (waiting times in compartment I) of walkers and

nodes are assumed to be independent random variables drawn from specific distributions specified hereafter.
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As only admitted dead process we assume that infected walkers may die within the time span of their
infection. To capture this kind of mortality caused by the disease, we introduce a further independent
random variable tM > 0 which indicates the life span of an infected walker. Both the infection and life time
spans tw

I , tM are counted from the time instant of the infection. A walker survives the disease if tM > tw
I

and dies from it for tM < tw
I . With these assumptions, we give first a stochastic formulation of the evolution

equations

d

dt
Sw(t) = −Aw(t) + ⟨Aw(t − tw

I )Θ(tM − tw
I )⟩ + Jw(0)⟨δ(t − tw

I )Θ(tM − tw
I )⟩

d

dt
Jw(t) = Aw(t) − ⟨ Aw(t − tw

I )Θ(tM − tw
I ) ⟩ − Jw(0) ⟨ δ(t − tw

I )Θ(tM − tw
I ) ⟩ − d

dt
dw(t)

d

dt
dw(t) = ⟨ Aw(t − tM )Θ(tw

I − tM ) ⟩ + Jw(0)⟨δ(t − tM )Θ(tw
I − tM )⟩

d

dt
Sn(t) = −An(t) + ⟨An(t − tn

I )⟩ + Jn(0)⟨δ(t − tn
I )⟩

d

dt
Jn(t) = − d

dt
Sn(t)

(2)

where d
dtdw(t) indicates the (non-negative) mortality rate of walkers. We indicate with ⟨..⟩ average over

the contained (set of independent) random variables tw
I , tn

I , tM outlined hereafter and in Appendix A.1.
Θ(..) stands for the Heaviside function (58), and δ(..) for the Dirac’s δ-distribution. An epidemic always
starts from “natural” initial conditions Sw(0) = 1, Sn(0) = 1 (globally healthy state) where at t = 0
the first infections occur spontaneously and can be “generated” by adding the source terms Jw,n(0)δ(t)
to the infection rates of walkers and nodes, respectively. Equivalently, we introduce initial conditions
Sw,n(0) = 1 − Jw,n(0) (dw(0) = 0) with Jw,n(0) > 0 consisting typically of a few infected walkers and/or nodes
in a large susceptible population without dead walkers dw(0) = 0.

The interpretation of system (2) is as follows. The instantaneous infection rate Aw(t) governs the
transitions S → I of walkers (due to visits of infected nodes). The term ⟨ Aw(t − tw

I )Θ(tM − tw
I ) ⟩ describes

the rate of walkers recovering at time t and infected at t − tw
I , i.e. their infection time span has elapsed and

they survived as tM > tw
I (indicated by Θ(tM − tw

I ) = 1). Then ⟨ Aw(t − tM )Θ(tw
I − tM ) ⟩ captures the rate of

walkers infected at t − tM dying at at time t during the infection time span (indicated by Θ(tw
I − tM ) = 1 for

tw
I > tM ).

Remark I The infection time span of a walker (sojourn time in compartment I) is min(tw
I , tM ), i.e. tw

I if
tM > tw

I (where the walker survives the disease), and is tM if the walker dies within the infectious time span
(tM < tw

I ). tw
I is the walker’s infection time span without mortality (retrieved for tM → ∞). The probability

of persistence of a walker’s infection at time t, given the infection starts at time 0 is ⟨ Θ(tw
I − t)Θ(tM − t) ⟩

(see (7)). Note that Θ(tw
I − t)Θ(tM − t) = 1 only if t < min(tw

I , tM ), i.e. when the walker is in compartment
I. As a crucial element of our model, we will analyze the statistics of the walker’s infection time span
min(tw

I , tM ).

The initially infected walkers and nodes are as well subjected to the transition pathways, i.e. walkers either
recover (alive) with rate Jw(0)⟨δ(t − tw

I )Θ(tM − tw
I )⟩ or they die with rate Jw(0)⟨δ(t − tM )Θ(tw

I − tM )⟩, and
nodes always recover with rate Jn(0)⟨δ(t − tn

I )⟩. For t → ∞ these terms are evanescent thus the initial
conditions do not affect large time limits (endemic state for zero mortality). The importance of these terms
can be seen by setting βw,n = 0 (no infections). Without these terms the initially infected walkers and nodes
would stay infected forever, inconsistent with our assumptions.

The rate equations for the nodes can be interpreted in the same way as interplay of instantaneous
infections and delayed recovery without mortality. We emphasize that the evolution equations of the nodes
and walkers are non-linearly coupled by the implicit dependencies of the infection rates (1). In order to
derive an explicit representation of system (2), we need to have a closer look on the averaging procedures
and the involved distributions related to the independent random variables T = {tw

I , tn
I , tM } > 0 drawn from

specific probability density functions (PDFs) which we define by

Prob[T ∈ [τ, τ + dτ ] = K(τ)dτ, (3)
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with their respective PDFs (kernels) K(τ) = {Kw,n
I (τ), KM (τ)} which are normalized Prob[T > 0] =∫∞

0 K(τ)dτ = 1. Then recall the averaging rule for (suitable) functions f(T ) of the random variable T which
we use throughout the paper

⟨f(T )⟩ =
∫ ∞

0
K(τ)f(τ)dτ, (4)

see also Appendix A.1. An important case is ⟨δ(t − T )⟩ = K(t). Then by applying (4) we introduce the
persistence probabilities of walker’s (node’s) infection (without mortality)

Φw,n
I (t) = Prob(tw,n

I > t) = ⟨Θ(tw,n
I − t)⟩ =

∫ ∞

t
Kw,n

I (τ)dτ (5)

and the probability of walker’s survival up to time t (given tw
I = ∞)

ΦM (t) = Prob(tM > t) = ⟨Θ(tM − t)⟩ =
∫ ∞

t
KM (τ)dτ. (6)

The persistence probabilities fulfill the initial condition ΦM (0) = Φw,n
I (0) = 1 corresponding to the normaliza-

tion of the waiting time PDFs K(τ) = {Kw,n
I (τ), KM (τ)} and are vanishing at infinity ΦM (∞) = Φw,n

I (∞) = 0.
To evaluate the averages in (2) we will use the following quantities:

⟨δ(t − T )⟩ = K(t), T = {tw
I , tn

I , tM }

⟨Θ(tM − t)Θ(tw
I − t)⟩ = ⟨Θ(tM − t)⟩⟨Θ(tw

I − t)⟩ = Φw
I (t)ΦM (t)

bd(t) = ⟨δ(t − tM )Θ(tw
I − tM )⟩ = ⟨δ(t − tM )⟩⟨Θ(tw

I − t)⟩ = KM (t)Φw
I (t)

br(t) = ⟨δ(t − tw
I )Θ(tM − tw

I )⟩ = ⟨δ(t − tw
I )⟩⟨Θ(tM − t)⟩ = Kw

I (t)ΦM (t)

bd(t) + br(t) = Kw
I,M (t) = − d

dt
[⟨Θ(tM − t)⟩⟨Θ(tw

I − t)⟩] = − d

dt
[Φw

I (t)ΦM (t)]

∫ ∞

0
Kw

I,M (t)dt = 1

R(t) = ⟨Θ(t − tw
I )Θ(tM − tw

I )⟩ =
∫ t

0
br(τ)dτ =

∫ t

0
Kw

I (τ)ΦM (τ)dτ

D(t) = ⟨Θ(t − tM )Θ(tw
I − tM )⟩ =

∫ t

0
bd(τ)dτ =

∫ t

0
KM (τ)Φw

I (τ)dτ

R(t) + D(t) =
∫ t

0
Kw

I,M (τ)dτ =
∫ t

0
[bd(τ) + br(τ)]dτ = 1 − Φw

I (t)ΦM (t)

D(∞) + R(∞) = 1

⟨A(t − tI)Θ(tM − tI)⟩ = ⟨A(t − tI)ΦM (tI)⟩ =
∫ t

0
A(t − τ)ΦM (τ)KI(τ)dτ

⟨A(t − tM Θ(tw
I − tM )⟩ = ⟨A(t − tM )Φw

I (tM )⟩ =
∫ t

0
A(t − τ)Φw

I (τ)KM (τ)dτ

(7)

In these averages we make use of the independence of the waiting times tM , tw,n
I , and of causality of

A(τ) and the kernels K(τ) (i.e. A(τ), K(τ) = 0 for τ < 0). Of utmost importance are the "defective"
PDFs (DPDFs) bd,r(t) of death and recovery. "Defective" means that bd,r(t) are no proper PDFs since
they are not normalized to one, but rather to D(∞), R(∞) < 1, respectively. Consult [13] for a recent
account of defective distributions and related stochastic processes. They have the following interpretation.
bd(t)dt = KM (t)Φw

I (t)dt is the probability of transition I → D within [t, t + dt] of an infected walker (infected
at t′ = 0). br(t)dt = Kw

I (t)ΦM (t)dt is the probability of transition I → S within [t, t + dt] of a walker infected
at t′ = 0. Therefore,

Kw
I,M (t) = br(t) + bd(t) = − d

dt
⟨Θ(tM − t)Θ(tw

I − t)⟩ = − d

dt
[Φw

I (t)ΦM (t)] (8)
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is non-negative (as are Kw
I = − d

dtΦ
w
I ≥ 0, KM = − d

dtΦM ≥ 0) and is a proper well-normalized PDF of all
exits of walkers from compartment I (i.e. I → S + I → D). Without mortality (ΦM (t) = 1) this PDF retrieves
Kw

I,M (t) = Kw
I (t).

The quantities R(t), D(t) introduced in (7) have the following interpretation. R(t) is the probability that
a walker infected at instant 0 is at time t in compartment S (i.e. recovered prior or up to time t). D(t) is
the probability that a walker infected at instant 0 is at time t in compartment D (i.e. died prior and up to
time t). Important are the infinite time limits: R(∞) has the interpretation of the overall probability that an
infected walker survives the infection, and D(∞) is the overall probability for an infected walker to die from
the disease. We refer D(∞) also to as "overall mortality". It must not be confused with the infinite time
limit of dead walkers fraction dw(∞) which is different from D(∞) as we will see in details subsequently. A
small value D(∞) may cause a high value of dw(∞) for instance for short infectious periods where walkers
may be repeatedly infected.

In most cases not all infected walkers die from their disease (in an infinite observation time), hence
D(∞) < 1 (as bd is defective). D(∞) → 1 represents the limit of a fatal disease, and D(∞) → 0 a disease
without mortality. R(∞) < 1 (as br is defective) is the complementary probability with D(∞) + R(∞) = 1.

With these remarks, system (2) reads

d

dt
Sw(t) = −Aw(t) +

∫ t

0
Aw(t − τ)Kw

I (τ)ΦM (τ)dτ + Jw(0)Kw
I (t)ΦM (t)

d

dt
Jw(t) = d

dt

∫ t

0
Aw(τ)ΦM (t − τ)Φw

I (t − τ)dτ − Jw(0) [Kw
I (t)ΦM (t) + KM (t)Φw

I (t)]

d

dt
Sn(t) = −An(t) +

∫ t

0
An(t − τ)Kn

I (τ)dτ + Jn(0)Kn
I (t)

d

dt
Jn(t) = − d

dt
Sn(t).

(9)

The PDF (8) that a walker leaves compartment I (either by recovery or by death) allows to rewrite the
second equation of (9) as

d

dt
Jw(t) = Aw(t) −

∫ t

0
Aw(t − τ)Kw

I,M (τ)dτ − Jw(0)Kw
I,M (t). (10)

Worthy of closer consideration is the mortality rate of the infected walkers (representing the total mortality
– entry rate into the D compartment)

d

dt
dw(t) = − d

dt
(Sw(t) + Jw(t)) = ⟨ Aw(t − tM )Θ(tw

I − tM ) ⟩ + Jw(0)⟨δ(t − tM )Θ(tw
I − tM )⟩

=
∫ t

0
Aw(t − τ)KM (τ)Φw

I (τ)dτ + Jw(0)KM (t)Φw
I (t)

(11)

where clearly d
dtdw(t) ≥ 0. Integrating this relation yields the fraction dw(t) of dead walkers

dw(t) = 1 − Sw(t) − Jw(t)

=
∫ t

0
Aw(t − τ)⟨Θ(τ − tM )Θ(tw

I − tM )⟩dτ + Jw(0)⟨Θ(t − tM )Θ(tw
I − tM )⟩

=
∫ t

0
Aw(t − τ)D(τ)dτ + Jw(0)D(t).

(12)

An interesting quantity is the cumulative recovery rate of walkers (integrated entry rates of walkers into
the S compartment, see first equation in (2))

rw(t) =
∫ t

0
Aw(t − τ) ⟨Θ(τ − tw

I )Θ(tM − tw
I )⟩ dτ + Jw(0) ⟨Θ(t − tw

I )Θ(tM − tw
I )⟩

=
∫ t

0
Aw(t − τ)R(τ)dτ + Jw(0)R(t).

(13)

6



The quantity rw(t) records all recovery events of walkers up to time t, where individual walkers may suffer
repeated infections and recoveries. We observe that (see (7))

rw(t) + dw(t) =
∫ t

0
Aw(t − τ)[1 − Φw

I (τ)ΦM (τ)]dτ + Jw(0) (1 − Φw
I (t)ΦM (t)] . (14)

Relation (12) records all dead events of walkers up to time t. Since each walker may die only once, it
follows indeed that dw(t) ∈ [0, 1]. Contrarily, the quantity rw(t) is not restricted to this interval as walkers
may be repeatedly infected and recovered but due to mortality eventually only a finite number of times
(rw(∞) < ∞, see (18)). Mortality renders the chain of infection and recovery events transient (due to the
defective feature of br = Kw

I ΦM ). To shed more light on the behavior of rw(t) consider for a moment zero
mortality (R(∞) = 1) and t → ∞: We then have Aw(∞) = βwSe

wJe
n > 0 (shown in Section 3) thus rw(∞) = ∞

coming along with an infinite chain of recurrent infection and recovery events (as br(t) turns into the proper
non-defective PDF br = Kw

I ).
Using (7) we can rewrite (2) in equivalent integral form

Sw(t) = 1 − Jw(0) [ΦM (t)Φw
I (t) + D(t)] −

∫ t

0
Aw(τ)[ΦM (t − τ)Φw

I (t − τ) + D(t − τ)]dτ

Jw(t) = Jw(0)ΦM (t)Φw
I (t) +

∫ t

0
Aw(τ)ΦM (t − τ)Φw

I (t − τ)dτ

Sn(t) = 1 − Jn(t)

Jn(t) = Jn(0)Φn
I (t) +

∫ t

0
An(τ)Φn

I (t − τ)dτ

(15)

and with (redundant) Eq. (12) for the fraction of dead walkers. (15) is a self-consistent system since the in-
fection rates are implicit functions of susceptible and infected population fractions Aw(t) = Aw[Sw(t), Jn(t)],
An(t) = Aw[Sn(t), Jw(t)] (see (1)). Explore now the infinite time limit of (15) where it is convenient to
consider the Laplace transformed equations. We introduce the Laplace transform (LT, denoted with a hat)
of a function g(t) as

ĝ(λ) =
∫ ∞

0
g(t)e−λtdt

where λ denotes the (suitably chosen) Laplace variable. In order to retrieve infinite time limits we use the
asymptotic feature

g(∞) = lim
λ→0

λ ĝ(λ)
(

= lim
λ→0

∫ ∞

0
g(τ

λ
)e−τ dτ → g(∞)

∫ ∞

0
e−τ dτ

)
. (16)

Observing that the LT of Φw
I (t)ΦM (t) is λ−1[1 − K̂I,M (λ)] and D̂(λ) = λ−1b̂d(λ) where b̂d(0) = D(∞) (see (7)),

we arrive at

Jw(∞) = lim
λ→0

λĴw(λ) = [1 − K̂I,M (0)][Jw(0) + Âw(0)] = 0

Jn(∞) = lim
λ→0

λĴn(λ) = [1 − K̂n(0)][Jn(0) + Ân(0)] = 0

dw(∞) = lim
λ→0

λd̂w(λ) = D(∞)[Jw(0) + Âw(0)], Âw(0) = βw
∫∞

0 Sw(τ)Jn(τ)dτ

Sw(∞) = 1 − dw(∞)

Sn(∞) = 1

(17)

where Âw,n(0) =
∫∞

0 Aw,n(t)dt < ∞. In the same way one obtains

rw(∞) = R(∞)(Jw(0) + Âw(0)). (18)
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Since D(∞) is non-zero, the asymptotic values Sw(∞), dw(∞) depend on the initial condition Jw(0) and the
infection (rate) history. This is not any more true for zero mortality (D(∞) = 0) and considered in Section 3.
We define the overall probability PD that a walker dies (PR survives) the disease

PD = dw(∞)
rw(∞) + dw(∞) = D(∞), PR = 1 − PD = rw(∞)

rw(∞) + dw(∞) = R(∞) (19)

consistent with our previous interpretation of D(∞), R(∞), and the ratio

dw(∞)
rw(∞) = D(∞)

R(∞) . (20)

The quantities (19) and (20) depend only on the stochastic features of tw
I and tM . They are independent

of the infection rates and initial conditions and therefore of the topological properties of the network. In
addition, they also do not depend on the stochastic features of the node’s infection time span tn

I .

Markovian (memoryless) case Generally the system (9) contains the history of the process (memory)
which makes the process non-Markovian. The only exception is when all waiting times are exponentially
distributed, namely Φw

I (t) = e−ξw
I t, ΦM (t) = e−ξM t, Φn

I (t) = e−ξn
I t (⟨tw,n

I ⟩ = ξw,n
I )−1, ⟨tM ⟩ = (ξM )−1). Then (9)

takes with (15) the memoryless form

d

dt
Sw(t) = −βwSw(t)Jn(t) + ξw

I Jw(t)

d

dt
Jw(t) = βwSw(t)Jn(t) − (ξw

I + ξM )Jw(t)

d

dt
dw(t) = ξM Jw(t)

d

dt
Sn(t) = −βnSn(t)Jw(t) + ξn

I Jn(t)

d

dt
Jn(t) = βnSn(t)Jw(t) − ξn

I Jn(t).

(21)

Putting the left-hand sides to zero yields the stationary state

Jw(∞) = Jn(∞) = Aw(∞) = An(∞) = 0

Sw(∞) = 1 − dw(∞), dw(∞) = ξM

∫ ∞

0
Jw(τ)dτ

Sn(∞) = 1.

(22)

Let us check whether this result is consistent with (17). To this end, we integrate the second equation in
(21) knowing that Jw(∞) = 0 leading to

0 = Jw(0) +
∫ ∞

0
Aw(t)dt − (ξw

I + ξM )
∫ ∞

0
Jw(t)dt (23)

thus
∫∞

0 Jw(t)dt = 1
ξM +ξw

I
(Jw(0) + Âw(0)). Plugging this relation into (22) and accounting for D(∞) = ξM

ξw
I +ξM

recovers indeed the representation of expression (17).
For zero mortality ξM = 0 one can straight-forwardly obtain the constant endemic equilibrium values

Je
w, Je

n by setting the left-hand side of (21) to zero leading to subsequent Eq. (32) derived in Section 3 for
general waiting time distributions with finite means.

A few more words on waiting time distributions In our simulations we assume that the time spans
tw
I , tn

I , tM are independent random variables drawn from specific Gamma distributions. The advantage to
use Gamma distributions is that they may realize a large variety of shapes, see Fig. 1 for a few examples. To
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generate Gamma distributed random numbers we employ the PYTHON random number generator (library
numpy.random). Recall the Gamma distribution

Kα,ξ(t) = ξαtα−1

Γ(α) e−ξt, ξ, α > 0 (24)

where α is the so called ‘shape parameter’ and ξ the rate parameter (often is used the term ’scale parameter’
θ = ξ−1) and Γ(α) stands for the Gamma function. We also will subsequently use the LT of the Gamma PDF

K̂α,ξ(λ) =
∫ ∞

0
Kα,ξ(t)e−λtdt = ξα

(λ + ξ)α
(25)
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Figure 1: Left frame: Gamma distribution for four different cases: Weakly singular (at t = 0) [⟨t⟩ = 0.5,
ξ = 0.7], exponential [⟨t⟩ = 2, ξ = 0.5], broad [⟨t⟩ = 1.5, ξ = 4], and narrow [⟨t⟩ = 1.5, ξ = 30].
Right frame: Their Persistence (survival) probability distributions of Eq. (27) where the same color code is
used.

The Gamma PDF has finite mean ⟨t⟩α,ξ =
∫∞

0 tKα,ξ(t)dt = α
ξ and for α < 1 the Gamma-PDF is weakly

singular at t = 0 and α = 1 recovers exponential PDFs. For α ≤ 1 the Gamma PDF is completely monotonic
(CM) (see Appendix, (65) for a definition). For the range α > 1 the Gamma-PDF has a maximum at
tmax = α−1

ξ and becomes narrower the larger ξ (while keeping its mean α/ξ fixed), especially we can
generate sharp waiting times using the feature

lim
ξ→∞

Kα=ξT0,ξ(t) = δ(t − T0). (26)

We also will use subsequently the persistence probability of the Gamma distribution (see right frame of Fig.
1)

Φα,ξ(t) =
∫ ∞

t

ξαtα−1

Γ(α) e−ξtdt = Γ(α, ξt)
Γ(α) (27)

where Γ(α, x) indicates the upper incomplete Gamma function with Γ(α, 0) = Γ(α). (27) fulfills necessarily
the initial condition Φα,ξ(0) = 1 and is vanishing at infinity Φα,ξ(∞) = 0.

3 Endemic equilibrium for zero mortality

Here we consider the large time asymptotics of the compartment populations without mortality (Sw(t) +
Jw(t) = 1) where the self-consistent system (15) reads

Jw(t) = Jw(0)Φw
I (t) +

∫ t

0
Aw(t − τ)Φw

I (τ)dτ

Jn(t) = Jn(0)Φn
I (t) +

∫ t

0
An(t − τ)Φn

I (τ)dτ

(28)
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The endemic state emerging in the large time asymptotics does not depend on the initial conditions Jw,n(0)
as Φw,n

I (t) → 0. For what follows it is convenient to consider the LTs of (28) which read

Ĵw(λ) =
[
Jw(0) + Âw(λ)

] 1 − K̂w
I (λ)

λ

Ĵn(λ) =
[
Jn(0) + Ân(λ)

] 1 − K̂n
I (λ)

λ

(29)

where Φw,n
I (λ) = 1−K̂w,n

I (λ)
λ are the LTs of the persistence distributions, and Ŝw,n(λ) + Ĵw,n(λ) = 1

λ reflecting
constant populations of walkers and nodes. In order to determine the endemic equilibrium, we assume that
the mean infection time spans for the nodes and walkers exist

⟨tw,n
I ⟩ = lim

λ→0

1 − K̂w,n
I (λ)
λ

= − d

dλ
K̂w,n

I (λ)
∣∣∣∣
λ=0

=
∫ ∞

0
Φw,n

I (t)dt =
∫ ∞

0
τKw,n

I (τ)dτ < ∞ (30)

thus the admissible range of the Laplace variable is λ ≥ 0 (if chosen real). Now using (16) we obtain the
endemic equilibrium from Jw,n(∞) = limλ→0 λĴw,n(λ) where the initial conditions are wiped out at infinity

as K̂w,n(λ)
∣∣∣∣
λ=0

= 1. Assuming that the infection rates are constant in the endemic equilibrium we have

Aw,n(λ) ∼ Aw,n(∞)/λ, (λ → 0) and arrive at

Jw(∞) = Aw(∞) ⟨tw
I ⟩ , (Aw(∞) = βwSw(∞)Jn(∞))

Jn(∞) = An(∞) ⟨tn
I ⟩ , (An(∞) = βnSn(∞)Jw(∞)) (31)

thus
Jw(∞)

1 − Jw(∞) − βw⟨tw
I ⟩Jn(∞) = 0

Jn(∞)
1 − Jn(∞) − βn⟨tn

I ⟩Jw(∞) = 0.

(32)

One can see that the globally healthy state Jw,n(0) = 0 is also a solution of this equation. Beside that, only
solutions Jn(∞), Jw(∞) ∈ (0, 1) correspond to an endemic equilibrium. One gets

Jw(∞) = Je
w = βwβn⟨tw

I ⟩⟨tn
I ⟩ − 1

βn⟨tn
I ⟩[1 + βw⟨tw

I ⟩] = R0 − 1
R0

βw⟨tw
I ⟩

1 + βw⟨tw
I ⟩

Jn(∞) = Je
n = βwβn⟨tw

I ⟩⟨tn
I ⟩ − 1

βw⟨tw
I ⟩[1 + βn⟨tn

I ⟩] = R0 − 1
R0

βn⟨tn
I ⟩

1 + βn⟨tn
I ⟩

(33)

for the endemic equilibrium which is independent of the initial conditions Jw,n(0). It depends only on the
phenomenological rate constants βw,n and the mean infection time spans ⟨tw,n

I ⟩. We point out that the
endemic equilibrium (33) has exchange symmetry w ↔ n between walkers and nodes reflecting this feature
in the system (2) of evolution equations without mortality. The endemic values Je

w,n are within (0, 1), i.e.
existing only if R0 = βwβn⟨tw

I ⟩⟨tn
I ⟩ > 1. We interpret R0 as the basic reproduction number (average number

of new infections at t = 0 – nodes or walkers – due to one infected node or walker at t = 0). That this is
really the appropriate interpretation can be seen by the following somewhat rough consideration of the
infection rates at t = 0. Assume we have initially one single infected node Jn(0) = 1/N and no infected
walkers Sw(0) = 1. The expected number of walkers infected by this first infected node during its infectious
period tn

I is
⟨ZI(tn

I )⟩ ∼ ZAw(0)⟨tn
I ⟩ = Z⟨tn

I ⟩βw/N ∼ Z⟨Jw(tw
I )⟩.

The number of nodes getting infected by these ⟨ZI(tn
I )⟩ infected walkers during their infectious time tw

I is

NI(⟨tn
I ⟩ + ⟨tw

I ⟩) ∼ N⟨An(tn
I )⟩⟨tw

I ⟩ ∼ Nβn⟨Jw(tw
I )⟩ = βnβw⟨tn

I ⟩⟨tw
I ⟩ = R0.
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Hence R0 is the average number of infected nodes caused by the first infected node (with zero initially in-
fected walkers). Due to the exchange symmetry (nodes ↔ walkers) of the infection rates, this argumentation
remains true when we start with one infected walker and no infected nodes.

We infer that the globally healthy state is unstable for R0 > 1 where the endemic equilibrium (33) is
a unique stable fixed point and attractor for all initial conditions Jw,n(0). We will confirm this in the next
section by a linear stability analysis of the globally healthy state. The stability of the endemic state is
demonstrated in the next section with Appendix A.2.

Remarkable is the limit βw⟨tw
I ⟩ → ∞ (while βn⟨tn

I ⟩ are kept constant) where all walkers become infected

Je
w → 1 but not all nodes Je

n → βn⟨tn
I ⟩

1+βn⟨tn
I

< 1 and vice versa.
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Figure 2: Endemic states of infected walkers/nodes Jw,n(∞) = (R0 − 1)/(R0 + r) versus R0 for various
values of parameter r which has to be read r = βn⟨tn

I ⟩ (r = βw⟨tw
I ⟩) for the walker’s (node’s) endemic states.

We plot the endemic state in Fig. 2 versus R0 where positive values for Jw,n(∞) occur only for R0 > 1
which correspond to endemic states. Next we perform a linear stability analysis of the endemic and healthy
state where we will indeed identify R0 as crucial control parameter.

4 Stability analysis of endemic and healthy state without mortality

Here we are interested in the condition of spreading for zero mortality, or equivalently in the condition for
which the globally healthy state (endemic state) is unstable (stable). To check stability of the endemic fixed
point Sw

e = 1 − Jw
e , Jw

e , Sn
e = 1 − Jn

e , Jn
e we set

Sw(t) = Se
w + uweµt, Jw(t) = Je

w − uweµt

Sn(t) = Se
n + uneµt, Jn(t) = Je

n − uneµt

(34)

where uw, un are ‘small’ constant amplitudes. This ansatz accounts for the constant populations of nodes
and walkers. Then we have for the infection rates up to linear orders in the amplitudes

Aw(t) = βwSw(t)Jn(t) = βwSe
wJe

n + βw(uwJe
n − unSe

w)eµt

An(t) = βnSn(t)Jw(t) = βnSe
nJe

w + βn(unJe
w − uwSe

n)eµt

(35)

Plugging these relations in our evolution equations (2) without mortality, omitting two redundant equations
leads to the system µ + βwJe

n[1 − K̂w
I (µ)]; −βwSe

w[1 − K̂w
I (µ)]

−βnSe
n[1 − K̂n

I (µ)]; µ + βnJe
w[1 − K̂n

I (µ)]

 ·

 uw

un

 =

 0

0

 (36)
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where we have used ⟨e−µtw,n
I ⟩ = K̂w,n

I (µ) and the cases of δ-distributed tw,n
I are contained for K̂w,n

I (µ) =
e−µtw,n

I . We point out that in ansatz (35) we relax causality i.e. we admit Aw,n(t − τ) ̸= 0 for t − τ < 0 thus

⟨eµ(t−tw,n
I )⟩ = eµt⟨e−µtw,n

I ⟩ = eµtK̂w,n
I (µ). (37)

The solvability of this matrix equation requires the determinant to vanish leading to a transcendental
characteristic equation for µ

µ2 + µ
(
βwJe

n[1 − K̂w
I (µ)] + βnJe

w[1 − K̂n
I (µ)]

)
+ βwβn[1 − K̂w

I (µ)][1 − K̂n
I (µ)](Je

nJe
w − Se

nSe
w) = 0. (38)

Generally, a fixed point is unstable if solutions with positive real part of µ exist. Consider this first for the
globally healthy state Jn = 0, Jw = 0 for which Eq. (38) reads

G(µ) = 1 − βwβn
[1 − K̂w

I (µ)]
µ

[1 − K̂n
I (µ)]

µ
= 1 − βwβnΦ̂w

I (µ)Φ̂n
I (µ) = 0 (39)

where we notice that
[1−K̂w,n

I (µ)]
µ = Φ̂w,n

I (µ) are the LTs of the persistence probabilities of the infection time
spans. Consider this equation for µ → 0 and take into account (30) we arrive at

G(0) = 1 − βwβn⟨tw
I ⟩⟨tn

I ⟩. (40)

We observe that G(0) < 0 for R0 = βnβw⟨tw
I ⟩⟨tn

I ⟩ > 1. On the other hand, we have for µ → ∞ that
Φ̂w,n

I (µ) → 0 and hence
G(∞) = 1. (41)

One can hence infer from complete monotony of Φ̂w,n
I (µ) and therefore of Φ̂w

I (µ)Φ̂n
I (µ) (see Appendix A.2,

Eq. (65) for a precise definition), that d
dµG(µ) > 0 (µ ≥ 0) thus G(µ) = 0 has one single positive zero only

if G(0) < 0, i.e. for R0 > 1 which therefore is the condition of instability of the healthy state (spreading
of the disease). Conversely, for R0 < 1 the healthy state turns into a stable fixed point where there is no
spreading of the disease. In particular, the healthy state is always unstable (R0 = ∞) if at least one of mean
infection time spans ⟨tw,n

I ⟩ = ∞. This is true for fat-tailed kernels scaling as Kw,n
I (t) ∝ t−α−1 (α ∈ (0, 1)) for

t → ∞. We consider such a distribution briefly in subsequent section. We plot function G(µ) versus µ for
different R0 for Gamma-distributed tw,n

I in Fig. 3.
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Figure 3: G(µ) of (39) for a some Gamma distributed tw,n
I . Positive zeros of G(µ) exist only for R0 > 1

(instability of globally healthy state).

Now we consider the stability of the endemic state with Ge(µ) = 0 where from (38) this function reads

Ge(µ) = 1 − βwβnΦ̂w
I (µ)Φ̂n

I (µ) + βwJe
nΦ̂w

I (µ) + βnJe
wΦ̂n

I (µ) + βwβn(Je
w + Je

n)Φ̂w
I (µ)Φ̂n

I (µ) (42)
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with
Ge(0) = 1 − R0 + βw⟨tw

I ⟩Je
n + βn⟨tn

I ⟩Je
w + (Je

w + Je
n)R0

= R0 − 1.

(43)

On the other hand, Ge(∞) = 1 (as Φ̂w,n
I (∞) = 0) and from monotony of Ge(µ) follows that there is no positive

solution of Ge(µ) = 0 for R0 > 1. We plot Ge(µ) in Fig. 4 for different values of R0 and Gamma distributed
tw,n
I . In Appendix A.2 we complete the analytical proof that Ge(µ) > 0 for R0 > 1.
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Figure 4: Ge(µ) of (42) for different values of R0 where Ge(µ) > 0 for R0 > 1 (stability of the endemic state).

5 Stability analysis of the healthy state with mortality

An important question is, how mortality does modify the instability of the healthy state and the basic
reproduction number. To shed light on this question we perform a linear stability analysis of the healthy
state Sw,n = 1 where we set

Sw(t) = 1 + a eµt, Jw(t) = b eµt, dw(t) = −(a + b) eµt, Sn(t) = 1 − ceµt, Jn(t) = ceµt (44)

with Aw(t) = βwc eµt and An(t) = βnb eµt. Plugging this ansatz for µ ≥ 0 into three independent Eqs. of (2),
say the first, third and fourth one, and performing the averages (relaxing causality as previously) we arrive
at 

µ ; 0; βw[1 − b̂r(µ)]]

µ; µ ; βw b̂d(µ)

0 −βn[1 − K̄n
I (µ)] ; µ

 ·


a

b

c

 =


0

0

0

 . (45)

Putting the determinant of the matrix to zero yields the condition

µ2 − βnβw[1 − K̄n
I (µ)][1 − b̂r(µ) − b̂d(µ)] = 0 (46)

where the LTs b̂r(µ), b̂d(µ) of the DPDFs br,d(t) defined in (7) come into play. We are interested under
which conditions there is a positive solution (instability of healthy state) of (46). Since b̂r(0) = R(∞)
and b̂d(0) = D(∞) with R(∞) + D(∞) = 1 we see that µ = 0 is solution of (46). Recall from (7) that
bd(t) + br(t) = Kw

I,M (t) is the (properly normalized) PDF (8). Condition (46) then reads

GM (µ) = 1 − βnβw
[1 − K̄n

I (µ)]
µ

[1 − K̂w
I,M (µ)]
µ

= 0 (47)
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where
[1−K̂w

I,M (µ)]
µ is the LT of the persistence probability ΦM (t)Φw

I (t) of the walker’s infection, i.e. the
probability that t < min(tw

I , tM ) (see Remark I). For zero mortality we have Kw
I,M = Kw

I , (br = Kw
I and

bd = 0) retrieving condition (39). The mean sojourn time in compartment I with mortality yields

⟨min(tw
I , tM )⟩ = ⟨tw

IM ⟩ =
[1 − K̂w

I,M (µ)]
µ

∣∣∣∣
µ=0

=
∫ ∞

0
tKw

I,M (t)dt =
∫ ∞

0
ΦM (t)Φw

I (t)dt ≤
∫ ∞

0
Φw

I (t)dt = ⟨tw
I ⟩

(48)
where we arrive at

GM (0) = 1 − βnβw⟨tn
I ⟩⟨tw

IM ⟩. (49)

Relation (48) shows that ⟨tw
IM ⟩ ≤ ⟨tw

I ⟩ (equality only for zero mortality). On the other hand we have
GM (∞) = 1, so there is a positive solution of GM (µ) = 0 only if

RM = βnβw⟨tn
I ⟩⟨tw

IM ⟩ > 1 (50)

where RM is the basic reproduction number modified by mortality with RM ≤ R0 (equality only for zero
mortality). To visualize the effect of mortality on the instability of the healthy state we plot GM (µ) for a few
values of RM in Fig. 5. Increasing mortality turns an unstable healthy state into a stable one.
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Figure 5: We depict function GM of Eq. (47) for a few values of RM for exponentially distributed tw,n
I , tM .

The basic reproduction number RM is monotonously decreasing with increasing mortality parameter ξM

(see Fig. 6). The parameters are βw,n = 1, αw
I = 1, ξw

I = 1, αn = 1, ξn
I = 0.5 with R0 = 2 where here

⟨tI,M ⟩ = R0/(1 + ξM ).

In the random walk simulations we deal with Gamma distributed tw,n
I , tM where the persistence proba-

bilities are then normalized incomplete Gamma functions (27). To explore the effect of mortality for such
cases, we determine RM by numerical integration of (48) as a function of the mortality rate parameter
ξM and plot the result in Fig. 6 where one can see that RM is monotonous decreasing with mortality rate
ξM . We also include a case of a fat-tailed (Mittag-Leffler) distributed tw

I which we discuss hereafter. The
parameters in Fig. 6 are such that the zero mortality case occurs with R0 = 1 as the upper bound. The
essential feature is that RM decays monotonically with increasing mortality rate parameter ξM approaching
zero for ξM → ∞. Diseases with high mortality stabilize the healthy state even for ⟨tw

I ⟩ → ∞.
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Figure 6: Basic reproduction number RM of Eq. (50) versus mortality rate parameter ξM for Gamma
distributed tw,n

I , tM for various αM where we have set βn = βw = ⟨tw
I ⟩ = ⟨tn

I ⟩ = 1, (αw
I = ξw

I = 0.3) and
αM = 1, αw = ξw

I = 1 for the Markovian case which is recovered by Eq. (53).

Consider briefly the case where tM is exponentially distributed (i.e. αM = 1 in the Gamma distribution
of tM ) with ΦM (t) = e−ξM t. Then we have ⟨tw

IM ⟩ = Φ̂w
I (ξM ) thus

RM = βwβn⟨tn
I ⟩Φ̂w

I (ξM ). (51)

The zero mortality case is recovered for ξM = 0 with Φ̂w
I (0) = ⟨tw

I ⟩. For Gamma distributed tw,n
I this yields

RM = βwβn
αn

I

ξn
I ξM

(
1 − (ξw

I )αw
I

(ξM + ξw
I )αw

I

)
. (52)

where αw,n
I , ξw,n

I are the parameters of the respective Gamma distributions of the infection times of nodes
and walkers. The Markovian case where all waiting times are exponentially distributed is covered for
αw,n

I = 1 and yields

RM = βwβn

ξn
I (ξw

I + ξM ) (53)

containing the zero mortality case for ξM = 0.

Fat-tailed distributed tw
I :

Finally, an interesting case emerges if tw
I follows a fat-tailed distribution, i.e. Φw

I (t) ∝ t−α for t large
(α ∈ (0, 1)) and ⟨tw

I ⟩ = ∞, R0 = ∞. Let us have a look, how mortality is affecting this situation. Fat
tailed tw

I distributions describe diseases where the infectious periods are very long and the healthy state
without mortality is extremely unstable (R0 = ∞). Infected walkers can infect many nodes during their long
infection time spans. An important case of this class is constituted by the Mittag-Leffler (ML) distribution
Φw

I (t) = Eα(−ξw
I tα) where Eα(τ) indicates the Mittag-Leffler function, see [14, 15] and references therein

for representations and connections with fractional calculus. The ML function recovers the exponential for
α = 1 (E1(−τ) = e−τ ). Assuming exponential mortality ΦM (t) = e−ξM t one obtains with (51)

RM = βwβn⟨tn
I ⟩ (ξM )α−1

ξw
I + (ξM )α

, α ∈ (0, 1) (54)

containing the LT of the ML persistence probability distribution Φ̂w
I (λ) = λα−1/(ξw

I + λα). The essential
feature here is that RM is weakly singular at ξM = 0 with a monotonously decreasing ξα−1

M scaling law,
where the healthy state becomes stable for mortality parameters larger as ξM ≈ 1. We depict this case in
Fig. 6 for α = ξ = 0.3 (violet curve).
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6 Random walk simulations

The remainder of our paper is devoted to test the mean field model under "real world conditions" which we
mimic by Z = ZS(t) + ZI(t) + ZD(t) random walkers navigating independently on an undirected connected
(ergodic) graph. In our simulations we focused on Barabási-Albert (BA), Erdös-Rényi (ER) and Watts-
Strogatz (WS) graphs [29, 42, 43] (see Appendix A.3 for a brief recap) and implemented the compartments
and transmission pathway for walkers and nodes outlined in Section 2. A susceptible walker gets infected
with probability pw by visiting an infected node, and a susceptible node gets infected with probability pn at
a visit of an infectious walker. We assume that the infection probabilities pn,w are constant for all nodes
and walkers, respectively. They are related yet not identical with the macroscopic rate constants βw,n. A
critical issue is whether the simple bi-linear forms for the mean field infection rates (1) still capture well
the complexity of the spreading in such "real world" networks. One goal of the subsequent case study is to
explore this question.

We characterize the network topology by i = 1, . . . N nodes with the N ×N adjacency matrix (Aij) where
Aij = 1 if the pair of nodes i, j is connected by an edge, and Aij = 0 if the pair is disconnected. Further, we
assume Aii = 0 to avoid self-connections of nodes. We confine us to undirected networks where the edges
have no direction and the adjacency matrix is symmetric. The degree ki of a node i counts the number of
neighbor nodes (edges) of this node. Each walker z = 1, .., Z performs simultaneous independent random
steps at discrete time instants t = ∆t, 2∆t, . . . from one to another connected node. The steps from a node i

to one of the neighbor nodes are chosen with probability 1/ki, following for all walkers the same transition
matrix

Π(i → j) = Aij

ki
, z = 1, . . . , Z, i, j = 1, . . . , N (55)

which is normalized
∑N

j=1 Π(i → j) = 1. This is a common way to connect the network topology with simple
Markovian random walks [42, 24]. In the simulations the departure nodes at t = 0 of the walkers are
randomly chosen. The path of each walker is independent and not affected by contacts with other walkers
or by transition events from one to another compartment.

Case study and discussion In order to compare the epidemic dynamics of the mean field model and
random walk simulations we integrate the stochastic evolution Eqs. (2) numerically as follows. We average
the increments of the compartmental fractions in a generalized Monte-Carlo sense converging towards the
convolutions of the right hand side of (9) where we use the Monte-Carlo convergence feature

lim
n→∞

1
n

n∑
k=1

A(t − Tk) =
∫ t

0
A(t − τ)K(τ)dτ (56)

for random variables T drawn from PDFs K(τ). We perform this average for any time increment dt with
respect to all involved independent random time spans tw,n

I , tM (see Appendix A.1) and integrate the
averaged compartmental increments in a fourth order Runge-Kutta scheme (RK4). We use in the random
walk simulations and the Monte-Carlo (mean field) integration exactly the same (Gamma distributed)
random values (PYTHON seeds) for the tw,n

I , tM . The values of the infection rate parameters βw,n used in
the mean field integration are determined from Eq. (32) by plugging in the large time asymptotic values of
the random walk simulation with identical parameters (without mortality). The compartmental fractions in
the random walk simulations are determined by simply counting the compartmental populations at each
time increment ∆t of walker’s steps. The so determined rate parameters βw,n plugged into the mean field
integration depend in a complex manner on the infection probabilities pw,n and topology of the network. In
this way this information is also contained in the basic reproduction numbers with and without mortality.

We explore the spreading in random graphs of different complexity such as represented in Fig. 7. The
BA graph is small world with power law distributed degree (Appendix A.3) which means that there are
many nodes having a few connections, and a few (hub) nodes with a huge number of connections. The
average distance between nodes becomes small, as it is sufficient that almost every node is only a few links
away from a hub node. The ER graph is small world due to a broad degree distribution. The WS graph
with the choice of connectivity parameter m = 2 in Fig. 7 has long average distances and is large world.
Intuitively, one infers that a small world structure is favorable for spreading processes, a feature which was
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already demonstrated in the literature [9, 10]. In our simulations spreading in network architectures with
increased connectivity comes along with increased values of R0 and RM , respectively.

We identify the starting time instant (t = 0) of the evolution in the mean field model with the time
instant of the first infection of a walker in the random walk simulations. In all cases we start with a small
number of randomly chosen initially infected nodes NI(0) = 10 ≪ N (NI(0) ≈ 10) and no infected or dead
walkers. To reduce the numbers of parameters and to concentrate on topological effects we have put in
all simulations the transmission probabilities pw = pn = 1. We refer to [46] for the PYTHON codes2 and
animated simulation videos related to the present study.
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Figure 7: Barabási-Albert, Erdös-Renyi and Watts-Strogatz types with 300 nodes and connectivity parame-
ters used in some of the simulations. The WS graph for connectivity parameter m = 2 lacks the small world
property resembling a complex real world structure. The ER network has a broad degree distribution and
the small world property. The BA graph is for N → ∞ asymptotically scale-free with a power law degree
distribution and the small world feature where a large number of nodes have small degrees and a few (hub)
nodes with very large degrees. Almost all nodes are only a few links away from hub nodes.

2Free to download and non-commercial use.
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In order to visualize a typical spreading process, we depict in Fig. 8 a few snapshots in a Watt-Strogatz
graph with rather high overall mortality probability of D(∞) ≈ 16%. In this case a single infection wave
emerges where a large part of walkers gets repeatedly infected increasing their probability to die. This
leads to a very high fraction of eventually dead walkers dw(∞) ≈ 99% and small fraction Sw(∞) ≈ 1% of
surviving walkers corresponding to the stationary state (17) which is taken as soon as the disease gets
extinct Jw = Jn = 0. Fig. 8 shows that first the infection gains large parts of the network consistent to the
large value of RM observed in this case. After the first wave the disease gets extinct by the high mortality of
the walkers. A disease with a similar high mortality characteristics is for instance Pestilence. The process
of Fig. 8 is visualized in an animated video.
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Figure 8: Snapshots of spreading in a WS graph (Z = 2000 walkers, N = 2000 nodes, connectivity parameter
m = 2) and mortality parameter ξM = 0.4 with D(∞) ≈ 16%. The remaining parameters are the same as in
Fig. 10. One observes dw(∞) ≈ 0.99 and Sw(∞) ≈ 1% with only about 20 surviving walkers after extinction
of the disease. S walkers are in cyan color, I walkers red, D walkers invisible and nodes without walkers
are represented in black. Consult here an animated video of this process.
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Figs. 9 and 10 show the evolution in WS graphs with identical parameters and Gamma distributions of
tw,n
I , tM as in Fig. 8 but with different mortality rate parameter ξM and a much smaller overall mortality

D(∞) ≈ 1%. The different network connectivity leads to different values of βw,n and mean field solutions
in Figs. 9 and 10. In addition, the networks of Figs. 9 and 10 have different connectivity features. The
graph of Fig. 9 is small world (highly connected) whereas the WS graph in 10 is weakly connected and
large world. One observes in Fig. 9 that the infection numbers exhibit strong and immediate increases
followed by attenuated oscillations around the endemic equilibrium (for zero mortality) with high values
Je

w ≈ 0.9 and Je
n ≈ 0.95. The basic reproduction numbers with mortality are in both graphs only slightly

smaller as R0. This is due to a rather small overall mortality of D(∞) ≈ 0.01. This effect can also be seen
in the small overlap of the Gamma distributions of tw

I and tM in the histogram. Recall that a small value
of D(∞) does not necessarily mean small dw(∞) as this quantity depends also on the infection rates and
network topology (see (17)) and is sensitive to repeated infections. repeated infections may indeed play an
important role here as ⟨tw

I ⟩ = 8 is rather small.
In Fig. 10 the infections of the random walk simulations are increasing slower (red curves) compared

to Figs. 9. The structure with higher connectivity Fig. 9 shows excellent quantitative agreement of
random walk and mean field solutions for the walkers and nodes capturing well the attenuated oscillations,
especially for zero mortality. In the network with smaller connectivity of Fig. 10 the increase of the
infections is delayed compared to the mean field. On the other hand, for non-zero mortality the mean field
and random walk dynamics for the walkers diverge slightly with time. We infer that mortality may deviate
the infection rates from (1).

The comparison of the spreading in Figs.9, 10 shows clearly the role of the connectivity: The mean
field model captures better the spreading in networks with higher connectivity (short average distances
between nodes) and with low mortality. The following cases give further evidence for these observations.
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Watts Strogatz graph (connectivity parameter m = 8) 
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Figure 9: The plots show the evolution on WS graph with Z = 1000 walkers for connectivity parameter m = 8
and rewiring probability p = 0.7 (nx.connected_watts_strogatz_graph(N = 1000, m = 8, p = 0.7, seed = seed))
without mortality (left frame) and with mortality (right frame). tw,n

I , tM are Gamma distributed with the
parameters ⟨tM ⟩ = 14, ξM = 2, ⟨tw

I ⟩ = 8, ξw
I = 10, and ⟨tn

I ⟩ = 15, ξn = 105, see histogram. D(∞) ≈ 0.01 and
is determined by numerical integration of (7).
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WS graph, infected nodes red; timestep=15
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Figure 10: Evolution on WS graph with Z = 1000 walkers and N = 1000 nodes for the same parameters as
in Fig. 9 but with reduced connectivity parameter m = 2. The upper frame shows a snapshot (t = 15) of the
spreading in one random walk realization (susceptible walkers green, susceptible nodes black, infected
nodes red).
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Figure 11: Evolution on ER graph (nx.erdos_renyi_graph(N = 1000, p = 0.1, seed = seed)) with Z = 1000
walkers and small rewiring probability p = 0.1 (above the percolation limit pc = 0.01 to ensure a connected
structure). The parameters are ⟨tn

I ⟩ = 5, ξn
I = 10, ⟨tw

I ⟩ = 10, ξw
I = 0.05, ⟨tM ⟩ = 65, ξM = 1. The left upper

frame shows a snapshot of the evolution (same color code as in Fig. 10).

Next we explore the spreading on an ER graph in Fig. 11. The agreement of random walk simulations and
mean field model is impressive where this holds for both with and without mortality. One can see by the
degree distribution in Fig. 7 that for these connectivity parameters the graph is well connected and small
world giving strong evidence that the mean field approach is here well capturing the spreading dynamics.
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BA graph, infected nodes and walkers red, dead walkers green ; timestep=100
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Average over 10 random walk realisations on a BA-graph without mortality
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Average over 10 random walk realisations on a BA-graph with mortality
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Figure 12: Evolution on BA graph with Z = 50 walkers and N = 5000 nodes (nx.barabasi_albert_graph(N =
5000, m = 5, seed = seed)) with parameters ⟨tn

I ⟩ = 32, ξn
I = 104, ⟨tw

I ⟩ = 8, ξw
I = 104 (sharp tw,n

I ), tM = 500,
ξM = 10−3. The basic reproduction number RM is here only slightly smaller than R0 without mortality. The
left upper frame shows a snapshot of the evolution (same color code as in Fig. 11).

Finally we explore in Fig. 12 the dynamics on a BA network. In the right frame we have high overall
mortality of D(∞) ≈ 10% probability for a walker to die from an infection. In this example the disease
is starting to spread as RM ≈ 3.48 > 1 where only a single infection wave emerges which is extinct by
the high mortality. Recall that that RM > 1 is only telling us that the healthy state is unstable, i.e. that
the disease is starting to spread. It does not contain the information whether the spreading is persistent
or whether the disease is eventually extinct. To explore the role of topological features such as average
distances between nodes we perform the same simulation experiment with identical parameters and less
(N = 2100) nodes, i.e. higher density of walkers (Fig. 13).
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Figure 13: Evolution with the same parameters and number of walkers (Z = 50) as in Fig. 12 but less nodes
(N = 2100) for one random walk realization. We interpret the increase of RM and R0 due to more frequent
passages of susceptible walkers on infected nodes (higher infection rates).

The accordance of mean field model and random walk simulation is also in Fig. 13 indeed excellent.
We explain this by the fact that the BA network is a strongly connected structure with pronounced small
world property. The higher density of walkers lead to increased RM and R0 compared to Fig. 12. There is
also only a single infection wave occurring with a higher maximum value compared to Fig. 12. In both
cases (Figs. 12, 13, right frames) the infection waves are extinct by the high mortality of walkers where
stationary states (17) with dw(∞) ≈ 80% of dead walkers are taken. When we switch off mortality (left
frames), stable endemic states emerge more rapidly in Fig. 13 (case with higher density of walkers).

Further simulation experiments (not shown here) reveal that the mean field model and random walk
simulations exhibit excellent accordance when we further increase the attachment parameters m or the
density of walkers with otherwise identical parameters. For higher mortality the agreement becomes less
well and diverges with increasing observation time. This observation suggests that mortality modifies the
infection rates in the network for larger observation times. We leave this issue for future research.

Our overall finding from this case study is that the mean field approach (with infection rates (1)) is
particularly well suited to mimic spreading in strongly connected environments with pronounced small
world feature, but is less well for higher mortality.

7 Conclusions

We studied epidemic spreading in complex graphs where we focused on transmission pathway via vectors
mimicking the spreading of a certain class of diseases such as Dengue, Malaria or Pestilence and others.
We developed a stochastic compartment model for the walkers and nodes with mortality for the walkers.
For zero mortality we obtained the endemic equilibrium in explicit form (Eqs. (33)). Stability analysis of
the endemic and healthy states reveal the crucial control parameter for spreading, the basic reproduction
number. We obtained the basic reproduction numbers RM and R0 with and without mortality, respectively,
where we proved that RM ≤ R0, (relations (50) with (48)). For RM , R0 > 1 the healthy state is an
unstable fixed point where the endemic equilibrium exists for zero mortality as a unique stable fixed
point independent of the initial conditions. The basic reproduction numbers depend on the means of the
compartmental sojourn times in compartment I of the nodes and walkers and on the topology of the network
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captured by the mean field rate constants βw,n.
Our model has applications beyond epidemic dynamics, for instance in chemical reaction models [45].

An interesting question to explore in a follow-up project is whether our class of compartment models with
indirect transmission pathways may exhibit (for zero mortality) persistent oscillations (Hopf instabilities)
(See our brief discussion at the end of Appendix A.2.). An open problem also remains how large world
network topology may be included into such a mean field model, modifying the infection rates. Further
promising directions include an account for immune and incubation compartments, effects of mitigation
measures, vaccination among many others.

8 Acknowledgements

T.G. gratefully acknowledges to have been hosted at the Institut Jean le Rond d’Alembert in the framework
of an internship (stage M1 Physique no 28281) for the development of the PYTHON simulation codes and
participation in the present study.

A Appendix

A.1 Some basic notions

Here we recall briefly some basic notions used in the paper. The infection rates are a causal functions

A(t) = A(t)Θ(t) (57)

where Θ(t) indicates the Heaviside step function defined by

Θ(ζ) =


1, ζ ≥ 0

0, ζ < 0
(58)

with Θ(ζ) + Θ(−ζ) = 1 and in or definition Θ(0) = 1. Its derivative yields the Dirac δ-distribution d
dζ Θ(ζ) =

δ(ζ). We use throughout the paper mutually independent strictly positive random variables T1, . . . , Tn ∈ R+
The random variables Tj are assumed to follow their specific PDFs

Prob[Tj ∈ [u, u + du]] = ⟨ δ(u − Tj) ⟩ = Kj(u)du (59)

where the PDFs Kj are causal functions as a consequence of the positiveness of the Tj . Then applies the
averaging rule

⟨ f(t; T1, T2, . . . , Tn) ⟩ =
∫ ∞

0
. . .

∫ ∞

0
dt1 . . . dtnf(t; t1, t2, . . . , tn)K1(t1) . . . Kn(tn) (60)

for suitable functions f . For f(t; T1, T2, . . . , Tn) = g1(T1) . . . gn(Tn) using independence of the Tj this yields

⟨ g1(T1) . . . gn(Tn) ⟩ = ⟨ g1(T1), ⟩ . . . ⟨ gn(Tn) ⟩ .

Important cases emerge by applying (60) to exponentials〈
e−λ(T1+...+Tn)

〉
=
∫ ∞

0
e−λt ⟨δ(t − T1 − . . . − Tn)⟩ dt = K̂1(λ) . . . K̂n(λ), ℜ{λ} ≥ 0 (61)

In this relation the LTs of the PDFs come into play

K̂j(λ) =
∫ ∞

0
e−λtKj(t)dt (62)

where K̂j(λ)
∣∣∣∣
λ=0

= 1 reflects the normalization of PDFs (59). A further observation is

⟨δ(t − T1 − . . . − Tn)⟩ = (K1 ⋆ . . . ⋆ Kn)(t) (63)

where ⋆ stands for convolution (K1 ⋆ K2)(t) =
∫ t

0 K1(τ)K2(t − τ)dτ of the causal PDFs.
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A.2 Proof of stability of the endemic equilibrium

Here we develop the rest of the proof stability of the endemic equilibrium, i.e. we show that the function
(42) is strictly positive for µ > 0 with R0 −1 > 0. First, we observe that Φ̂w,n

I (µ) ≤ ⟨tw,n
I ⟩ with Φ̂w,n

I (0) = ⟨tw,n
I ⟩

and Φ̂w,n
I (∞) = 0. For our convenience, we introduce the functions

λw,n(µ) = Φ̂w,n
I (µ)
⟨tw,n

I ⟩
∈ (0, 1] (64)

which the LTs of the normalized Φw,n
I (t)/⟨tw,n

I ⟩ and which are by virtue of Bernstein’s theorem [44] com-
pletely monotonic (CM) with respect to µ, i.e.

(−1)n dn

dµn
λw,n(µ) ≥ 0, µ ∈ (0, ∞) (65)

inheriting this feature from the exponential e−µτ (t > 0). Therefore,

d

dµ
λw,n(µ) = − 1

⟨tw,n
I ⟩

∫ ∞

0
e−µttΦw,n

I (t)dt < 0

(as Φn,w
I (t) ∈ (0, 1]) exists thus λw,n(µ) is monotonously decreasing with µ with λw,n(0) = 1 ≥ λw,n(µ) > 0.

Further we observe in Eqs. (33) that Je
nβw⟨tw

I ⟩ = R0−1
1+βn⟨tn

I ⟩ , Je
wβn⟨tn

I ⟩ = R0−1
1+βw⟨tw

I ⟩ thus

R0(Je
n + Je

w) = (R0 − 1)
(

βn⟨tn
I ⟩

1 + βn⟨tn
I ⟩

+ βw⟨tw
I ⟩

1 + βw⟨tw
I ⟩

)

Then Ge(µ) reads

Ge(µ) = 1 + λw(µ)λn(µ)
{

−R0 + (R0 − 1)
(

βn⟨tn
I ⟩

1 + βn⟨tn
I ⟩

+ βw⟨tw
I ⟩

1 + βw⟨tw
I ⟩

)}

+(R0 − 1)
(

λw(µ)
1 + βn⟨tn

I ⟩
+ λn(µ)

1 + βw⟨tw
I ⟩

) (66)

Now we observe that λw(µ)λn(µ) ≤ λw,n(µ) thus a lower bound function H(µ) ≤ Ge(µ) is generated by
replacing λw,n(µ) → λw(µ)λn(µ) in the second line. Now it is sufficient to prove that 0 < H(µ). We hence
get for this lower bound function

H(µ) = 1 + λw(µ)λn(µ)
{

−R0 + (R0 − 1)
(

βn⟨tn
I ⟩

1+βn⟨tn
I ⟩ + βw⟨tw

I ⟩
1+βw⟨tw

I ⟩

)
+ (R0 − 1)

(
1

1+βn⟨tn
I ⟩ + 1

1+βw⟨tw
I ⟩

)}
= 1 + λw(µ)λn(µ)(R0 − 2)

= 1 − λw(µ)λn(µ) + (R0 − 1)λw(µ)λn(µ)

(67)

and with 1 − λw(µ)λn(µ) ≥ 0 and (R0 − 1)λw(µ)λn(µ) > 0 it follows that 0 < H(µ) < Ge(µ) concluding the
proof of stability of the endemic equilibrium.

A few remarks on the possibility of oscillatory (Hopf) instabilities of the endemic equilibrium
Let us briefly explore whether an oscillatory (Hopf) instability of the endemic equilibrium is possible. To
that end we write Ge(µ) as

Ge(µ) = 1 + σĝ(µ) ≥ 1 − ĝ(µ) (68)

where σ = ±1 and ĝ(µ) is a non-negative CM function (see Fig. 4) with maximum value ĝ(0) = |R0 − 2|.
Then the following two cases may occur.

Case (i) σ = −1; 0 < Ge(0) = R0 − 1 < 1 (1 < R0 < 2):
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Then ĝ(µ) can be represented as LT of a non-negative function g(t) and consider now µ = µ1 + iµ2
with µ1 ≥ 0 thus the real part of ĝ(µ1 + iµ2) can be written as

ℜg(µ1 + iµ2) =
∫ ∞

0
g(t)e−µ1t cos(µ2t)dt, µ1 ≥ 0 (69)

with ĝ(0) = 2 − R0 and clearly −ĝ(µ1) ≤ ℜg(µ1 + iµ2) ≤ ĝ(µ1). Therefore,

ℜGe(µ1 + iµ2) = 1 − ℜg(µ1 + iµ2) ≥ 1 − ĝ(µ1) ≥ 1 − ĝ(0) = R0 − 1 > 0. (70)

Hence in the range of case (i) 1 < R0 < 2 there is no oscillatory (Hopf) instability of the endemic state
possible3.

Case (ii) σ = +1; R0 − 1 > 1:

Here we have two pertinent ranges of R0. The first is the range (a) ĝ(0) = R0 − 2 < 1 (i.e. R0 < 3)
and the second one (b) is ĝ(0) = R0 − 2 > 1. Clearly in the range (a) (70) remains true and ℜGe(µ1 + iµ2)
strictly positive. Hence for 1 < R0 < 3 no Hopf instability is possible.
This changes in the range (b) since ĝ(0) = R0 − 2 > 1 thus ℜGe(µ1 + iµ2) = 1 + ℜg(µ1 + iµ2) may become
negative. Therefore, for R0 > 3 a Hopf instability of the endemic state becomes possible. However, the
possibility that ℜGe(µ1 + iµ2) = 0 is only necessary but not sufficient for a Hopf instability. One also needs
simultaneously that the imaginary part ℑGe(µ1 + iµ2) = 0 is vanishing for the same µ = µ1 + iµ2. In the
simulations performed for this paper, we did not observe persistent oscillations. We leave the exploration of
this issue for future research in a follow-up project.

A.3 A very brief recap of random graphs

Here we recall briefly some essential features of the three classes of random graphs, which we use in the
random walk simulations. For an extended outline, consult e.g. [18]. The three classes of random graph
models depicted herafter are motivated by the observation that complex random network structures are
encountered ubiquitously and crucially determine human and animal mobility patterns including epidemic
propagation.

(i) Erdös and Rényi (ER) graph The ER graph is one of the most basic variants of a random graph,
which was introduced in 1959 by Erdös and Rényi [20]. We use is the so-called G(N, p) variant of random
ER graph model (which is actually due to Gilbert [22]) which is generated as follows [25, 16]. Given are N

labeled nodes. Any pair of nodes is connected independently by an edge with uniform probability p. The
probability PN (k) that a node has 0 ≤ k ≤ N − 1 connections is given by a binomial distribution

PN (k) =
(

N − 1
k

)
pk(1 − p)N−1−k → ⟨k⟩k

k! e−⟨k⟩

where ⟨k⟩ = (N − 1)p ∼ Np denotes the average degree. For N → ∞ (while Np is kept constant) the
degree distribution PN (k) converges to a Poisson distribution representing the infinite graph limit of the
ER G(N, p)-model. Therefore, PN (k) is rapidly decaying with degree k, so the number of nodes with a
high number of connections is very small. In order to obtain in the G(N, p)-model a connected graph, it is
necessary that p > pc = logN

N is above the percolation limit [20, 24].

(ii) Watts-Strogatz (WS) network The WS graph model [21, 26, 25] starts with a ring of N nodes
where each node is connected symmetrically with a number m << N to left and right neighbor nodes
by an edge such that each node has 2m connections. In the second step, each of the connections i, j of
node i is replaced with probability p by a randomly chosen connection i, k uniformly among other nodes
avoiding self-connections and link duplication, so that each connection i, k is chosen only once. There are
two noteworthy limits for a WS graph. For p = 0 (no rewiring of links) we have a regular ring with constant

3A similar consideration of function G(µ) of (39) shows as well that the healthy state for R0 < 1 does not exhibit an oscillatory
instability.
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degree 2m for all nodes. In the limit p = 1 an ER graph is emerging with probability 2m/(N − 1) for a link.
The WS graph has the small-world property (short average distances between pairs of nodes) and a high
tendency to develop clusters of nodes [26].

(iii) Barabási-Albert (BA) graph The BA graph is generated by a preferential attachment mechanism
for newly added nodes [16, 17, 18, 19]. One starts with m0 nodes and adds new nodes. Any newly added
node is connected with m ≤ m0 existing nodes (m is referred to as the attachment parameter) where most
likely with nodes of high degrees. In this way nodes with high degree receive further links. This leads to an
asymptotically scale-free network with a power law degree-distribution

P (k) ∝ k−2−µ, µ ≈ 1.

As the decrease in this power law is relatively slow, there might exist quite a few nodes with many links
(hub nodes) and many nodes with few links. BA graphs are believed to mimic a large class of real-world
networks including the world wide web, citation-, social-, and metabolic networks.

Realizations of these three types of random graph types used in our multiple random walkers simulations
are shown in Fig. 7.
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