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A SMOOTHING EFFECT FOR THE FRACTIONAL SCHRÖDINGER
EQUATIONS ON THE CIRCLE AND OBSERVABILITY

PAUL ALPHONSE AND NIKOLAY TZVETKOV

Abstract. We show that, after a renormalisation, one can define the square of the
modulus of the solution of the fractional Schrödinger equations on the circle with data
in Sobolev spaces of arbitrary negative index. As an application, we obtain observability
estimates with rough controls.

1. Introduction and main results

We consider the fractional Schrödinger equation on the circle

(Sα) i∂tu+ |Dx|αu = 0, (t, x) ∈ R× T,

where T = R/2πZ and α > 1 is a positive real number. In this equation, the operator
|Dx|α is the Fourier multiplier defined on S′(T) = (C∞(T))′ by

̂|Dx|αf(n) = |n|αf̂(n), n ∈ Z, f ∈ S
′(T),

where ·̂ denotes the Fourier transform on S′(T), given by

f̂(n) = (2π)−1〈f, e−inx〉S′(T),C∞(T), n ∈ Z.

When α is an even integer |Dx|α is simply the differential operator (−1)α/2∂αx . For every
u0 ∈ S′(T), the unique solution in C(R,S′(T)) of the equation (Sα) with initial datum

u|t=0 = u0,

naturally denoted eit|Dx|αu0, is given by the exponential sum

(1.1) (eit|Dx|αu0)(x) =
∑

n∈Z

û0(n) e
it|n|αeinx.

Our goal in this work is to describe a remarkable smoothing property enjoyed by (1.1) and
its application to observability estimates.

1.1. Smoothing effect. For every function u0 ∈ S′(T) and every N ≥ 1, we denote by
ΠNu0 the truncation of the function u0 at the energy level N , that is,

(1.2) (ΠNu0)(x) =
∑

|n|≤N

û0(n) e
inx.

Of course ΠNu0 ∈ C∞(T). For σ ∈ R, we define the operator 〈Dx〉σ on S′(T) as

̂〈Dx〉σf(n) = 〈n〉σ f̂(n), n ∈ Z, f ∈ S
′(T),

where 〈n〉 = (1 + n2)1/2. We can therefore define the Sobolev spaces Hσ(T) via the norm

‖f‖Hσ(T) = ‖〈Dx〉σf‖L2(T) .

Let u0 ∈ L2(T). Then, ignoring the time oscillations, it follows directly from (1.1) that

〈Dx〉σ(eit|Dx|αu0) ∈ C(R,H−σ(T)),

and that

(1.3) 〈Dx〉σ(eit|Dx|αu0) = lim
N→+∞

〈Dx〉σ(eit|Dx|αΠNu0) in L∞(R,H−σ(T)).
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Suppose that σ > 0. Then, the convergence (1.3) is too weak to imply a convergence

of nonlinear expressions of 〈Dx〉σ(eit|Dx|αΠNu0). For instance, there is no hope to make
converge the sequence of C∞(R × T) functions

(1.4)
∣∣〈Dx〉σ(eit|Dx|αΠNu0)

∣∣2,
simply because their zero Fourier coefficients (in x) equal the numbers

‖ΠNu0‖2Hσ(T),

which is a sequence of positive numbers which diverges as soon as u0 ∈ L2(T) is such that
u0 /∈ Hσ(T). Remarkably, this is the only obstruction to the convergence of (1.4), as shown
by the next statement which is the first main result in this paper.

Theorem 1.1. Let α > 1 be a positive real number and u0 ∈ L2(T). For every σ > 0, the

following limit exists in S′(R× T)

:
∣∣〈Dx〉σ(eit|Dx|αu0)

∣∣2: = lim
N→+∞

(∣∣〈Dx〉σ(eit|Dx|αΠNu0)
∣∣2 − ‖ΠNu0‖2Hσ(T)

)
.

Moreover,

:
∣∣〈Dx〉σ(eit|Dx|αu0)

∣∣2:∈W−s1,∞(R,H−s2(T)),

with

s1 =
2σ

α− 1
and s2 =





2σ when σ > 1
4 − 1

4α ,

1

2
− 2σ

α− 1
when σ ≤ 1

4 − 1
4α .

We refer to Remark 2.2 where the functional space W−s1,∞(R,H−s2(T)) is defined.

The result of Theorem 1.1 says that the sequence (1.4) converges after a renormalization.
Let us mention that a renormalization of similar spirit is used in the study of nonlinear
PDE in the presence of singular randomness (see [9]) or in the classical work in quantum
field theory (see [6]). The key difference between Theorem 1.1 and [6, 9] is that in the proof
of Theorem 1.1, we pass into the limit in a singular nonlinear expression thanks to time
oscillation effects while in [6, 9] one passes to the limit in a singular nonlinear expression
thanks to random oscillation effects. Interestingly, for quadratic expressions in both cases
(random or time oscillations), the only obstruction comes from the zero Fourier coefficient.

The result of Theorem 1.1 also says that the sequence (∂x|〈Dx〉σ(eit|Dx|αΠNu0)|2)N
converges in S′(R × T). In other words, for u0 ∈ L2(T), we may give a sense of the

distribution ∂x|〈Dx〉σ(eit|Dx|αu0)|2 for every σ ∈ R.

In Theorem 1.1 we only deal with a quadratic expression of (1.1). It would be interesting
to understand how the result extends to higher degree polynomials. In the case of random
oscillations, such an analysis is performed in [6].

1.2. Observability. The second main result in this paper is the following one, dealing
with the observability properties of the equation (Sα).

Theorem 1.2. Let α > 1, T > 0 be a positive time and b ∈ L1(T) \ {0} be a non-negative

function. There exists a positive constant Cb,T > 0 such that for every u0 ∈ L2(T),

(1.5) ‖u0‖2L2(T) ≤ Cb,T

∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αu0)(x)
∣∣2 dxdt.

The observability properties of type (1.5) of Schrödinger equations on tori Td have been
widely studied, mostly in the non-fractional case α = 2 when b = 1ω and ω ⊂ Td is an open
set. Among all this literature, the two articles [2, 4] are exceptions, since they consider
more general controls b ∈ L1(T) as in the present paper. Theorem 1.2 is in particular a
generalization of [2, Lemma 2.4] to the fractional case α > 1. On the other hand, the
paper [2] allows to treat the two-dimensional case. Our proof basically follows the strategy
of [2]. However, the techniques used in order to prove Lemma 3.2 are different from [2].
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Indeed, the article [2] relies on an approach based on results of propagation of singularities
via the notion of semiclassical defect measure. The present paper, as for it, combines the
smoothing effect stated in Theorem 1.1 (not in its full strength) with an ergodic argument,
which is simplified to a projection argument when b ∈ L2(T) (including the interesting case
where b = 1ω and ω ⊂ T is a measurable set with positive measure). Besides, we hope
that our approach will allow us to deal with dispersive equations on higher dimensional
tori Td.

It should also be mentioned that the observability properties of fractional Schrödinger
equations have been studied in a very general geometric setting in the paper [5], with
localized functions of the form b = 1ω with ω an open subset of the ambient manifold. In
the particular case d = 1 of the circle T and when α > 1, which is the context of the present
article, [5, Theorem 1] states an observability estimate for the equation (Sα) in any positive
time T > 0. In addition, let us mention that the assumption α > 1 in Theorem 1.2 cannot
be relaxed. Indeed, we know from [5, Theorem 1] that on the one hand, in the situation
where α = 1, the observability properties of the equation (S1) are linked to the so-called
Geometric Control Condition on ω ⊂ T. On the other hand, in the setting 0 < α < 1,
the very same result [5, Theorem 1] states that the set ω ⊂ T has to be dense so that an
observability estimate holds.

Acknowledgements. We are grateful to Sebastian Herr for an interesting discussion on
the smoothing properties of fractional Schrödinger equations. N.T. was partially supported
by the ANR project Smooth ANR-22-CE40-0017.

2. Smoothing estimates

In this section, we give the proof of Theorem 1.1.

2.1. Prolegomena. We therefore consider α > 1 a positive real number, σ > 0 and
u0 ∈ L2(T). Recall that the projectors ΠN are defined in (1.2). First notice that the
conservation of mass property of the equation (Sα) implies

Π0

(∣∣〈Dx〉σ(eit|Dx|αΠNu0)
∣∣2) =

∥∥〈Dx〉σ(eit|Dx|αΠNu0)
∥∥2
L2(T)

= ‖ΠNu0‖2Hσ(T).

As a consequence, the elements of the sequence

(2.1)
(∣∣〈Dx〉σ(eit|Dx|αΠNu0)

∣∣2 − ‖ΠNu0‖2Hσ(T)

)
N≥0

,

can be written in the following way

∣∣〈Dx〉σ(eit|Dx|αΠNu0)
∣∣2 − ‖ΠNu0‖2Hσ(T) = Π⊥

0

(∣∣〈Dx〉σ(eit|Dx|αΠNu0)
∣∣2).

We therefore deduce that for every test function ϕ ∈ S(R× T), we have
∫

R

∫

T
ϕ(t, x)

(∣∣〈Dx〉σ(eit|Dx|αΠNu0)(x)
∣∣2 − ‖ΠNu0‖2Hσ(T)

)
dxdt

=

∫

R

∫

T
ϕ(t, x)Π⊥

0

(∣∣〈Dx〉σ(eit|Dx|αΠNu0)
∣∣2)(x) dxdt

=

∫

R

∫

T
(Π⊥

0 ϕ)(t, x)
∣∣〈Dx〉σ(eit|Dx|αΠNu0)(x)

∣∣2 dxdt.

The convergence of the sequence (2.1) in S′(R × T) and the regularity of the limit

: |〈Dx〉σ(eit|Dx|αu0)|2 : will therefore be a consequence of the following bilinear smooth-
ing estimates.
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Proposition 2.1. For every σ > 0, there exists a positive constant cσ > 0 such that for

every test function ϕ ∈ S(R × T) and for every initial data u0, v0 ∈ H−σ(T),
∣∣∣∣
∫

R

∫

T
(Π⊥

0 ϕ)(t, x)(e
it|Dx |αu0)(x)(eit|Dx |αv0)(x) dxdt

∣∣∣∣
≤ cσ‖ϕ‖W s1,1(R,Hs2 (T))‖u0‖H−σ(T)‖v0‖H−σ(T),

with

s1 =
2σ

α− 1
and s2 =





2σ when σ > 1
4 − 1

4α ,

1

2
− 2σ

α− 1
when σ ≤ 1

4 − 1
4α .

Remark 2.2. The functional space W s1,1(R,Hs2(T)) appearing in the above statement
is defined by

W s1,1(R,Hs2(T)) =
{
ϕ ∈ S

′(R× T) : 〈Dt〉s1ϕ ∈ L1(R,Hs2(T))
}
,

and is endowed with the following norm

‖ϕ‖W s1,1(R,Hs2 (T)) =

∫

R
‖〈Dt〉s1ϕ(t, ·)‖Hs2 (T) dt.

For every s ∈ R, the operator 〈Dt〉s is defined on S′(R) by

Ft(〈Dt〉sf)(τ) = 〈τ〉sFt(f)(τ), τ ∈ R, f ∈ S
′(R),

where Ft denotes the Fourier transform with respect to the time variable t ∈ R. Moreover,
let us introduce the following space

W−s1,∞(R,H−s2(T)) =
{
ϕ ∈ S

′(R× T) : 〈Dt〉−s1ϕ ∈ L∞(R,H−s2(T))
}
,

equipped with the norm

‖ϕ‖W−s1,∞(R,H−s2 (T)) = sup
t∈R

‖〈Dt〉−s1ϕ(t, ·)‖H−s2 (T).

By classical arguments, we have the following duality in norm

‖ϕ‖W−s1,∞(R,H−s2 (T)) = sup
‖ψ‖

Ws1,1(R,Hs2(T))
≤1

∣∣∣∣
∫

R×T
ϕ(t, x)ψ(t, x) dxdt

∣∣∣∣.

Before proving Proposition 2.1, let us check that Theorem 1.1 is a consequence of this
result. Let u0 ∈ L2(T) and ϕ ∈ S(R× T). In order to simplify the writing, we set

uN (t, x) = 〈Dx〉σ(eit|Dx|αΠNu0)(x), (t, x) ∈ R× T,

and also

cN (u0) =

∫

R

∫

T
(Π⊥

0 ϕ)(t, x)
∣∣〈Dx〉σ(eit|Dx|αΠNu0)(x)

∣∣2 dxdt

=

∫

R

∫

T
(Π⊥

0 ϕ)(t, x)|uN (t, x)|2 dxdt.

Recall that we first aim at proving that the sequence (cN (u0))N converges. By combining
the following decomposition

|uN1 |2 − |uN2 |2 = uN1uN1 − uN2uN2 = uN1(uN1 − uN2) + uN2(uN1 − uN2),

and the bilinear estimate given by Proposition 2.1, we get that for every N1, N2 ≥ 0,

|cN1(u0)− cN2(u0)| .ϕ (‖ΠN1u0‖L2(T) + ‖ΠN2u0‖L2(T))‖ΠN1u0 −ΠN2u0‖L2(T)

. ‖u0‖L2(T)‖ΠN1u0 −ΠN2u0‖L2(T) −→
N1,N2→+∞

0.

This proves that the sequence (cN (u0))N is a numerical Cauchy sequence, which therefore
converges. As a consequence, the sequence (2.1) converges in S′(R × T). Moreover, by
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Proposition 2.1, its weak limit :|〈Dx〉σ(eit|Dx|αu0)|2: satisfies the following bound for every
test function ϕ ∈ S(R× T),

∣∣〈:
∣∣〈Dx〉σ(eit|Dx|αu0)

∣∣2:, ϕ
〉
S′,S

∣∣ . ‖ϕ‖W s1,1(R,Hs2 (T)).

This immediately shows that

:
∣∣〈Dx〉σ(eit|Dx|αu0)

∣∣2:∈W−s1,∞(R,H−s2(T)),

as explained in Remark 2.2.

2.2. Bilinear estimates. We now give the proof of Proposition 2.1. Let us consider σ > 0,
ϕ ∈ S(R× T), u0, v0 ∈ L2(T) be fixed functions, and write

u0(x) =
∑

n∈Z

ane
inx, v0(x) =

∑

n∈Z

bne
inx, x ∈ T,

and

(Π⊥
0 ϕ)(t, x) =

∑

n∈Z\{0}

cn(t)e
inx, (t, x) ∈ R× T.

A straightforward integration in space first shows that
∫

T
(Π⊥

0 ϕ)(t, x)(e
it|Dx |αu0)(x)(eit|Dx |αv0)(x) dx =

∑

n+n1−n2=0,
n 6=0

cn(t)an1bn2e
it(|n1|α−|n2|α).

The integration in time then makes the Fourier transform of the coefficients cn appear as
follows ∫

R
cn(t)e

it(|n1|α−|n2|α) dt = ĉn(|n2|α − |n1|α).

Thus, the term we aim at estimating is given by
∫

R

∫

T
(Π⊥

0 ϕ)(t, x)(e
it|Dx |αu0)(x)(eit|Dx |αv0)(x) dx =

∑

n+n1−n2=0,
n 6=0

ĉn(|n2|α − |n1|α)an1bn2 .

Notice that since n 6= 0 in the above sum, we have n1 6= n2. There are then two cases to
consider for the integers n1 and n2.

⊲ Resonant case. In the case where n1 = −n2, we get n = −2n1 and Cauchy-Schwarz’
inequality gives the following bound

∑

n+n1−n2=0,
n 6=0, n1=−n2

|ĉn(|n2|α − |n1|α)||an1 ||bn2 | =
∑

n1∈Z

|ĉ−2n1(0)||an1 ||b−n1 |

≤ sup
n1∈Z

〈n1〉2σ |ĉn1(0)|
∑

n1∈Z

|an1 ||b−n1 |
〈2n1〉2σ

. sup
n1∈Z

〈n1〉2σ |ĉn1(0)|‖u0‖H−σ(T)‖v0‖H−σ(T).

Moreover, the above supremum can be estimated by noticing that for every n1 ∈ Z,

〈n1〉2σ |ĉn1(0)| ≤ 〈n1〉2σ sup
τ∈R

〈τ〉s|ĉn1(τ)| ≤
∫

R
〈n1〉2σ |〈Dt〉scn(t)|dt

≤
∫

R
‖〈Dt〉sϕ(t, ·)‖H2σ (T) dt = ‖ϕ‖W s,1(R,H2σ(T)),

where we set s = 2σ/(α−1) > 0. This value for s > 0 will be justified later, while studying
the non-resonant case. We therefore deduce that∑

n+n1−n2=0,
n 6=0, n1=−n2

|ĉn(|n2|α − |n1|α)||an1 ||bn2 | ≤ ‖ϕ‖W s,1(R,H2σ(T))‖u0‖H−σ(T)‖v0‖H−σ(T).
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⊲ Non-resonant case. In the other situation where n1 6= −n2, we write

∑

n+n1−n2=0,
n 6=0, n1 6=−n2

|ĉn(|n2|α − |n1|α)||an1 ||bn2 | ≤
∑

n+n1−n2=0,
n 6=0, n1 6=−n2

Γn
|an1 ||bn2 |

〈|n1|α − |n2|α〉s
,(2.2)

where s = 2σ/(α − 1) > 0 is the same as before, and where we set

(2.3) Γn = ‖〈τ〉sĉn(τ)‖L∞(R), n ∈ Z.

In order to treat the sum in the right-hand side of the estimate (2.2), we need to establish
the following lemma.

Lemma 2.3. For every real numbers x, y ∈ R, we have

||x|α − |y|α| ≥ 1

2α−1
(|x|+ |y|)α−1||x| − |y||.

Proof. It sufficient to consider the case where x, y ≥ 0. Since α > 1, we can write

xα − yα =

∫ 1

0

d

dt
(tx+ (1− t)y)α dt =

∫ 1

0
α(tx+ (1− t)y)α−1(x− y) dt.

We therefore get that

|xα − yα| =
(∫ 1

0
α(tx+ (1− t)y)α−1 dt

)
|x− y|

≥
(∫ 1

0
αmin(t, 1− t)α−1 dt

)
(x+ y)α−1|x− y|

=
1

2α−1
(x+ y)α−1|x− y|.

This is the expected estimate. �

We then deduce from Lemma 2.3 that when n1 6= n2, we have

||n1|α − |n2|α| & (|n1|+ |n2|)α−1||n1| − |n2||,

and since ||n1| − |n2|| ≥ 1, we get that

〈|n1|α − |n2|α〉2 & ||n1|α − |n2|α|2

& (|n1|+ |n2|)2(α−1)||n1| − |n2||2

& (1 + |n1|2 + |n2|2)α−1〈|n1| − |n2|〉2

& 〈n1〉α−1〈n2〉α−1〈|n1| − |n2|〉2.

The parameter s > 0 is chosen in order to satisfy s(α − 1)/2 = σ. We therefore deduce
that the sum we are studying is bounded in the following way

∑

n+n1−n2=0,
n 6=0, n1 6=−n2

|ĉn(|n2|α − |n1|α)||an1 ||bn2 | ≤
∑

n1,n2∈Z
n1 6=±n2

Γn1−n2

〈|n1| − |n2|〉s
|an1 |
〈n1〉σ

|bn2 |
〈n2〉σ

.

In order to alleviate the writing, let us set

Kn1,n2 =
Γn1−n2

〈|n1| − |n2|〉s
, ãn1 =

|an1 |
〈n1〉σ

and b̃n2 =
|bn2 |
〈n2〉σ

.
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We deduce from Cauchy-Schwarz’ inequality that

∑

n1,n2∈Z
n1 6=±n2

Kn1,n2 ãn1 b̃n2 =
∑

n2∈Z

( ∑

n1∈Z
n1 6=±n2

Kn1,n2 ãn1

)
b̃n2

≤
( ∑

n2∈Z

( ∑

n1∈Z
n1 6=±n2

Kn1,n2 ãn1

)2)1/2( ∑

n2∈Z

b̃2n2

)1/2

=

( ∑

n2∈Z

( ∑

n1∈Z
n1 6=±n2

Kn1,n2 ãn1

)2)1/2

‖v0‖H−σ(T).

We need to introduce two new notations still in order to alleviate the writting

A1 = sup
n1∈Z

∑

n2∈Z
n2 6=±n1

Kn1,n2 and A2 = sup
n2∈Z

∑

n1∈Z
n1 6=±n2

Kn1,n2 .

The above double sum is also controlled with Cauchy-Schwarz’ inequality as follows

∑

n2∈Z

( ∑

n1∈Z
n1 6=±n2

Kn1,n2 ãn1

)2

≤
∑

n2∈Z

( ∑

n1∈Z
n1 6=±n2

Kn1,n2

)( ∑

n1∈Z
n1 6=±n2

Kn1,n2 ã
2
n1

)

≤ A2

∑

n1∈Z

ã2n1

( ∑

n2∈Z
n2 6=±n1

Kn1,n2

)

≤ A1A2‖u0‖2H−σ(T).

It remains to study A1 and A2. Since these two terms are similar, we only focus on A1.
To that end, we consider a non-negative number λ ≥ 0 such that λ+ s > 1/2. Let n1 ∈ Z
be fixed. We deduce once more from Cauchy-Schwarz’ inequality that

∑

n2∈Z
n2 6=±n1

Kn1,n2 =
∑

n2∈Z
n2 6=±n1

Γn1−n2

〈|n1| − |n2|〉s
≤

( ∑

n2∈Z
n2 6=±n1

〈n1 − n2〉2λΓ2
n1−n2

)1/2

×
( ∑

n2∈Z
n2 6=±n1

1

〈|n1| − |n2|〉2s〈n1 − n2〉2λ
)1/2

.

There are now two terms to treat. On the one hand, it follows from the definition (2.3) of
the Γn and Minkowski’s integral inequality that

(∑

n∈Z

〈n〉2λΓ2
n

)1/2

=

(∑

n∈Z

〈n〉2λ‖〈τ〉sĉn(τ)‖2L∞(R)

)1/2

≤
(∑

n∈Z

〈n〉2λ‖〈Dt〉scn‖2L1(R)

)1/2

= ‖〈n〉2λ〈Dt〉scn‖l2nL1
t
≤ ‖〈n〉2λ〈Dt〉scn‖L1

t l
2
n
= ‖ϕ‖W s,1(R,Hλ(T)).

On the other hand, the second term can be bounded by noticing that ||n1|−|n2|| ≤ |n1−n2|
and writing

∑

n2∈Z
n2 6=±n1

1

〈|n1| − |n2|〉2s〈n1 − n2〉2λ
≤

∑

n2∈Z

1

〈|n1| − |n2|〉2(s+λ)
.

∑

l∈Z

1

〈l〉2(λ+s) .
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Since λ + s > 1/2, the above sum is finite. We therefore deduce that the term A1 is
bounded as follows

A1 .λ,s ‖ϕ‖W s,1(R,Hλ(T)).

A similar estimate holds for the other term A2, with a similar proof. In a nutshell, we get
that

∑

n+n1−n2=0,
n 6=0, n1 6=−n2

|ĉn(|n2|α − |n1|α)||an1 ||bn2 | .s,λ ‖ϕ‖W s,1(R,Hλ(T))‖u0‖H−σ(T)‖v0‖H−σ(T).

The proof of Proposition 2.1 is now ended.

3. Observability estimates

The aim of this section is to prove Theorem 1.2. Let α > 1 be a positive real number
and b ∈ L1(T) \ {0} be a non-negative function. The strategy consists in four steps:

1. Proof of the following L∞
x L

2
t Strichartz estimate

∥∥eit|Dx|αu0
∥∥
L∞(T,L2(0,T ))

≤ CT ‖u0‖L2(T).

2. Proof of the following weak observability estimate

‖u0‖2L2(T) ≤ Cb,T

(∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αu0)(x)
∣∣2 dxdt+ ‖u0‖2H−α(T)

)
.

3. Proof of the following unique continuation result
(
beit|Dx|αu0 = 0 on (0, T ) × T

)
=⇒ u0 ≡ 0 on T.

4. Removing the H−α-norm in the above weak observability estimate.

Steps 2,3 and 4 are now very classical and had been used to study the observability prop-
erties of Schrödinger-type equations on tori, see [3] for a review. Steps 3 and 4 are known
as the Bardos–Lebeau–Rauch uniqueness-compactness argument. The L∞

x L
2
t Strichartz

estimate presented in Step 1, crucial for dealing with the case b ∈ L2(T), has been first
introduced in the paper [1] in the non-fractional case α = 2.

3.1. Step 1: Strichartz type estimate. As a preliminary, let us first prove a L∞
x L

2
t

estimate for the solutions of the equation (Sα), which is an adaptation of [1, Proposition
2.1] to the fractional case. A key feature of this estimate is that it does not encounter

derivative losses as does e.g. the L4
t,x Strichartz estimates for eit|Dx|α obtained in [8].

Lemma 3.1. For every positive time T > 0, there exists a positive constant CT > 0 such

that for every initial datum u0 ∈ L2(T),
∥∥eit|Dx|αu0

∥∥
L∞(T,L2(0,T ))

≤ CT ‖u0‖L2(T).

Proof. Setting cn = û0(n), we begin by developing the L∞
x L

2
t norm we aim at estimating

∥∥eit|Dx|αu0
∥∥2
L∞(T,L2(0,T ))

= sup
x∈T

∫ T

0

∣∣∣∣
∑

n∈Z

cne
it|n|αeinx

∣∣∣∣
2

dt

= sup
x∈T

∑

n1,n2∈Z

(∫ T

0
eit(|n1|α−|n2|α) dt

)
ei(n1−n2)xcn1cn2 .

There are then two cases to consider for the integers n1 and n2 in the above sum.

⊲ Resonant case. In the situation where n1 = ±n2, we directly get that

sup
x∈T

∑

n1,n2∈Z
n1=±n2

(∫ T

0
eit(|n1|α−|n2|α) dt

)
ei(n1−n2)xcn1cn2 .T

∑

n1∈Z

|cn1 |2 = ‖u0‖2L2(T).
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⊲ Non-resonant case. In the case where n1 6= ±n2, we begin by writing that

sup
x∈T

∑

n1,n2∈Z
n1 6=±n2

(∫ T

0
eit(|n1|α−|n2|α) dt

)
ei(n1−n2)xcn1cn2 ≤

∑

n1,n2∈Z
n1 6=±n2

|cn1 ||cn2 |
||n1|α − |n2|α|

.

By using anew Lemma 2.3, we obtain the following bound for the above denominator

||n1|α − |n2|α| & (|n1|+ |n2|)α−1||n1| − |n2|| ≥ ||n1| − |n2||α.
Cauchy-Schwarz’ inequality then implies that

∑

n1,n2∈Z
n1 6=±n2

|cn1 ||cn2 |
||n1|α − |n2|α|

.
∑

n1,n2∈Z
n1 6=±n2

|cn1 ||cn2 |
||n1| − |n2||α

=
∑

n1,n2≥0
n1 6=n2

|cn1 ||cn2 |+ |c−n1 ||cn2 |+ |cn1 ||c−n2 |+ |c−n1 ||c−n2 |
|n1 − n2|α

.

( ∑

l∈N\{0}

1

lα

)
‖u0‖2L2(T).

Notice that the above sum is finite since α > 1. This ends the proof of Lemma 3.1. �

3.2. Step 2: estimate with error term. We now derive the following weak observability
estimates from the smoothing estimates stated in Proposition 2.1.

Lemma 3.2. For every positive time T > 0, there exists a positive constant Cb,T > 0 such

that for every u0 ∈ L2(T),

‖u0‖2L2(T) ≤ Cb,T

(∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αu0)(x)
∣∣2 dxdt+ ‖u0‖2H−α(T)

)
.

Proof. Arguing by contradiction, we consider a sequence (un,0)n in L2(T) such that
‖un,0‖L2(T) = 1 and satisfying

(3.1)

∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αun,0)(x)
∣∣2 dxdt+ ‖un,0‖2H−α(T) ≤

1

n
.

Setting un(t) = eit|Dx|αun,0, we aim at proving that the sequence (un)n satisfies that for
all ψ ∈ C∞

0 (0, T )

(3.2)

∫ T

0
ψ(t)‖un(t)‖2L2(T) dt −→

n→+∞
0.

This would end the proof of Lemma 3.2. Indeed, the conservation of mass of the equation
(Sα) would then imply that

∫ T

0
ψ(t)‖un(t)‖2L2(T) dt =

∫ T

0
ψ(t)‖un,0‖2L2(T) dt =

∫ T

0
ψ(t) dt −→

n→+∞
0.

This convergence of course cannot hold for all functions ψ ∈ C∞
0 (0, T ).

⊲ Step 2.1. First of all, let us prove that for every x0 ∈ T,

(3.3)

∫ T

0

∫

T
ψ(t)(τx0b)(x)|un(t, x)|2 dxdt −→

n→+∞
0,

where the translation operator τx0 is defined for every function in f ∈ L1(T) by

(τx0f)(x) = f(x− x0), x ∈ T.
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To that end, we will widely use the fact that for every smooth function ϕ ∈ C∞(T), we get
from the smoothing estimates stated in Proposition 2.1 applied with σ = α, u0 = v0 = un,0
and the tensorized test function ψ ⊗ ϕ that

(3.4)

∣∣∣∣
∫ T

0

∫

T
ψ(t)(Π⊥

0 ϕ)(x)|un(t, x)|2 dxdt
∣∣∣∣ .ψ,ϕ ‖un,0‖2H−α(T) −→

n→+∞
0 by (3.1).

Let us consider a sequence (bj)j in C∞(T) that converges to the function b in L1(T), and
write
∣∣∣∣
∫ T

0

∫

T
ψ(t)(b − τx0b)(x)|un(t, x)|2 dxdt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫

T
ψ(t)(bj − τx0bj)(x)|un(t, x)|2 dxdt

∣∣∣∣

+

∣∣∣∣
∫ T

0

∫

T
ψ(t)(b− bj − τx0(b− bj))(x)|un(t, x)|2 dxdt

∣∣∣∣.

There are now two terms to treat. On the one hand, we deduce from the convergence (3.4)
with the functions ϕ = bj − τx0bj , which satisfy Π⊥

0 ϕ = ϕ, that the following convergence
holds for every integer j ≥ 0

∫ T

0

∫

T
ψ(t)(bj − τx0bj)(x)|un(t, x)|2 dxdt −→

n→+∞
0.

On the other hand, we deduce from the L∞
x L

2
t Strichartz estimate stated in Lemma 3.1

that ∣∣∣∣
∫ T

0

∫

T
ψ(t)(b− bj − τx0(b− bj))(x)|un(t, x)|2 dxdt

∣∣∣∣ .ψ ‖b− bj‖L1(T),

since the functions un,0 are normalized in L2(T). We therefore deduce that

lim sup
n→+∞

∣∣∣∣
∫ T

0

∫

T
ψ(t)(b− τx0b)(x)|un(t, x)|2 dxdt

∣∣∣∣ . ‖b− bj‖L1(T) −→
j→+∞

0.

Recalling from (3.1) that we also have
∫ T

0

∫

T
ψ(t)b(x)|un(t, x)|2 dxdt −→

n→+∞
0,

this proves that the convergence (3.3) actually holds. Notice that in the very particular
case where b = 1ω and ω ⊂ T is an open set, we directly conclude to the convergence (3.2)
by covering the circle T with a finite number of open sets of the form τx0ω with x0 ∈ T.
The L∞

x L
2
t Strichartz estimate is in fact not necessary in this case, since it suffices to apply

the convergence (3.4) with the functions ϕ = f − τx0f , where f ∈ C∞(T) is a smooth
function such that supp f ⊂ ω.

⊲ Step 2.2. In order to derive the convergence (3.2) from (3.3) when b ∈ L1(T), we need
to establish the following approximation result.

Lemma 3.3. For every function f ∈ L1(T), we have

1 ∈ vect{τx0f : x0 ∈ T} ⇐⇒ f̂(0) 6= 0,

the closure being taken with respect to the L1(T) topology.

Proof. The necessary part of this statement follows from the fact that

∀x0 ∈ T, τ̂x0f(0) =

∫

T
(τx0f)(x) dx =

∫

T
f(x) dx = f̂(0).

Concerning the sufficient part, we can assume without lost of generality that f̂(0) = 1.
Let us consider α ∈ R \ 2πQ. In order to simplify the writing, we will use the following
notation for every positive integer n ≥ 1 and g ∈ L1(T)

Sn(g) =
1

n

n−1∑

k=0

τkαg ∈ vect{τx0g : x0 ∈ T}.
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We consider a sequence (fj)j in L2(T) that converges to the function f in L1(T), and we
write

‖1− Sn(f)‖L1(T) ≤ ‖1− Sn(fj)‖L1(T) + ‖Sn(fj)− Sn(f)‖L1(T)

≤ ‖1− Sn(fj)‖L2(T) +
1

n

n−1∑

k=0

‖τkαfj − τkαf‖L1(T)

≤ |1− f̂j(0)| + ‖f̂j(0)− Sn(fj)‖L2(T) + ‖fj − f‖L1(T).

Moreover, a classical consequence of von Neumann’s ergodic theorem [7, Theorem 5.1]
implies that for every integer j ≥ 0,

‖f̂j(0)− Sn(fj)‖L2(T) −→
n→+∞

0.

This implies that

lim sup
n→+∞

‖1− Sn(f)‖L1(T) ≤ |1− f̂j(0)| + ‖fj − f‖L1(T) ≤ 2‖fj − f‖L1(T) −→
j→+∞

0.

The proof of Lemma 3.3 is therefore ended. It should be noted, however, that in the par-
ticular case where f ∈ L2(T), the above ergodic argument can be simplified to a projection
argument. Indeed, let us introduce the following notation

F = vect{τx0f : x0 ∈ T} ⊂ L2(T).

Let ϕ ∈ F be the orthogonal projection of the constant function 1 onto the closed vector
space F . Since 1− ϕ ∈ F⊥, we get in particular that

∀x0 ∈ T, 0 = 〈1− ϕ, τx0f〉L2(T) =
∑

n∈Z

1̂− ϕ(n)f̂(n)einx0 .

This formula shows that the function x0 7→ 〈1 − ϕ, τx0f〉L2(T) belongs to the space C(T).
We therefore deduce that

∀n ∈ Z, 1̂− ϕ(n)f̂(n) = 0.

Since f̂(0) 6= 0, we get that ϕ̂(0) = 1. Moreover, ‖ϕ‖L2(T) ≤ 1, and we conclude that
ϕ = 1, implying that 1 ∈ F as expected. We were not able then to pass directly to the
case where f ∈ L1(T) with an approximation argument. This is the reason why we made
use of von Neumann’s ergodic theorem. �

We can now prove (3.2). Since the assumptions on the function b imply that b̂(0) 6= 0,
we deduce from Lemma 3.3 that there exists a sequence (bj)j with

bj ∈ vect{τx0b : x0 ∈ T},
satisfying that

bj −→
j→+∞

1 in L1(T).

Let us now write
∣∣∣∣
∫ T

0

∫

T
ψ(t)|un(t, x)|2 dxdt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫

T
ψ(t)(1 − bj)(x)|un(t, x)|2 dxdt

∣∣∣∣

+

∣∣∣∣
∫ T

0

∫

T
ψ(t)bj(x)|un(t, x)|2 dxdt

∣∣∣∣.

The first term can be treated as follows by using anew Lemma 3.1
∣∣∣∣
∫ T

0

∫

T
ψ(t)(1 − bj)(x)|un(t, x)|2 dxdt

∣∣∣∣ .ψ ‖1− bj‖L1(T).

Moreover, as a consequence of (3.3), we get that for every j ≥ 0,
∫ T

0

∫

T
ψ(t)bj(x)|un(t, x)|2 dxdt −→

n→+∞
0.
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We therefore deduce that

lim sup
n→+∞

∣∣∣∣
∫ T

0

∫

T
ψ(t)|un(t, x)|2 dxdt

∣∣∣∣ . ‖1− bj‖L1(T) −→
j→+∞

0.

This ends the proof of Lemma 3.2. �

3.3. Step 3: unique continuation. Let us now consider the following vector space

Nb,T =
{
u0 ∈ L2(T) :

√
beit|Dx|αu0 = 0 on (0, T )× T

}
.

In this subsection, we prove the following unique continuation result.

Lemma 3.4. For every positive time T > 0, we have

Nb,T = {0}.
Proof. Let us begin by checking that the vector space Nb,T is invariant under the action
of the operator |Dx|α, with moreover

(3.5) ∃c > 0,∀u0 ∈ Nb,T , ‖|Dx|αu0‖L2(T) ≤ c‖u0‖L2(T).

Let u0 ∈ Nb,T and ε ∈ (0, T ). We also consider the function uε = ε−1(eiε|Dx|αu0 − u0).
Since uε ∈ Nb,T/2 when 0 < ε < T/2, we deduce from Lemma 3.2 applied at time T/2 that

(3.6) ‖uε‖L2(T) ≤ Cb,T/2‖uε‖H−α(T).

Moreover, Plancherel’s theorem and the dominated convergence theorem imply that

‖uε‖H−α(T) → ‖|Dx|α〈Dx〉−αu0‖L2(T) ≤ ‖u0‖L2(T) as ε→ 0+.

Indeed, on the one hand, the following convergence holds for every n ∈ Z,

〈n〉−α|ûε(n)| =
∣∣∣∣
eiε|n|

α

û0(n)− û0(n)

ε〈n〉α
∣∣∣∣ =

|n|α
〈n〉α

∣∣∣∣
eiε|n|

α − 1

ε|n|α
∣∣∣∣|û0(n)| −→

ε→0+

|n|α
〈n〉α |û0(n)|.

On the other hand, we have the following domination from the mean value theorem for
every ε > 0 and n ∈ Z,

〈n〉−α|ûε(n)| ≤ |û0(n)|.
In particular, the sequence (uε)ε is bounded in H−α(T). This fact combined with the
estimate (3.6) implies that the sequence (uε)ε is also bounded in L2(T) and therefore
weakly converges in this space up to extracting. Since the sequence (uε)ε also converges
to i|Dx|αu0 in S′(T), the aforementionned weak limit is noting but the function i|Dx|αu0,
which therefore belongs to L2(T). Plancherel’s theorem and the dominated convergence
theorem then implies that

‖uε‖L2(T) → ‖|Dx|αu0‖L2(T) as ε→ 0+.

As a consequence, the sequence (uε)ε converges strongly to the function i|Dx|αu0 in L2(T).
The expected estimate (3.5) is then obtained by passing to the limit as ε → 0+ in
(3.6). Moreover, since uε ∈ Nb,T−δ when 0 < ε < δ and that the strong convergence
in L2(T) implies almost everywhere pointwize convergence up to extraction, we deduce
that |Dx|αu0 ∈ Nb,T−δ for every δ ∈ (0, T ). This implies that the function |Dx|αu0 also
belongs to Nb,T . Hence, the vector space Nb,T is invariant under the action of the linear
operator |Dx|α.

Notice that the estimate (3.5) implies that the unit ball of Nb,T is bounded in Hα(T),
and is therefore relatively compact by Rellich’s theorem. This implies that the vector space
Nb,T is finite-dimensional by Riesz’ theorem. As a consequence, since the linear operator
|Dx|α : Nb,T → Nb,T is bounded and in the situation where Nb,T 6= {0}, there exists λ ∈ C
and u ∈ Nb,T \ {0} such that |Dx|αu = λu. The function u not being identically equal
to zero on T, we deduce by passing to the Fourier side that there exists n ∈ Z such that
λ = |n|α, and that the function u is actually given by

u(x) = c1e
inx + c2e

−inx, x ∈ T,
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with c1, c2 ∈ C such that c1c2 6= 0. Moreover, since u is an eigenfunction of the operator
|Dx|α and u ∈ Nb,T , we get that the function u vanishes on {b > 0}, a measurable set with
positive measure, which is absurd. As a consequence, we have Nb,T = {0} as expected. �

3.4. Step 4: removing the H−α-norm. We are now in position to end the proof of
Theorem 1.2. We argue once again by contradiction by considering a sequence (un,0)n in
L2(T) such that ‖un,0‖L2(T) = 1 and satisfying

(3.7)

∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αun,0)(x)
∣∣2 dxdt ≤ 1

n
.

The sequence (un,0)n being bounded in L2(T), there exists a function u0 ∈ L2(T) such
that, up to extracting, the sequence (un,0)n converges weakly to u0 in L2(T) and strongly
in H−α(T), by Rellich’s theorem. Notice that the weak convergence

∀t ∈ [0, T ],
√
beit|Dx|αun,0 ⇀

n→+∞

√
beit|Dx|αun,0 in L2(T),

is a consequence of the following computations, where ϕ ∈ L2(T),

〈
√
beit|Dx|αun,0, ϕ〉L2(T) = 〈un,0, e−it|Dx|α

√
bϕ〉L2(T)

−→
n→+∞

〈u0, e−it|Dx|α
√
bϕ〉L2(T) = 〈

√
beit|Dx|αu0, ϕ〉L2(T).

We therefore deduce from results on weak convergence, Fatou’s lemma and (3.7) that
∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αu0)(x)
∣∣2 dxdt ≤

∫ T

0
lim inf
n→+∞

∫

T
b(x)

∣∣(eit|Dx|αun,0)(x)
∣∣2 dxdt

≤ lim inf
n→+∞

∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αun,0)(x)
∣∣2 dxdt = 0.

Keeping the notations of Section 3.3, this proves that u0 ∈ Nb,T , and therefore u0 ≡ 0 by
Lemma 3.4. We finally deduce from Lemma 3.2 that

‖un,0‖2L2(T)︸ ︷︷ ︸
=1

≤ Cb,T

(∫ T

0

∫

T
b(x)

∣∣(eit|Dx|αun,0)(x)
∣∣2 dxdt

︸ ︷︷ ︸
−→

n→+∞

0

+ ‖un,0‖2H−α(T)︸ ︷︷ ︸
−→

n→+∞

0

)
.

This is of course absurd, and the proof of Theorem 1.2 is ended.
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