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ABSTRACT
The Computationally Complete Symbolic Attacker (CCSA) ap-
proach to security protocol verification relies on probabilistic logics
to reason about the interaction traces between a protocol and an
arbitrary adversary. The proof assistant Sqirrel implements one
such logic. CCSA logics come with cryptographic axioms whose
soundness derives from the security of standard cryptographic
games, e.g. PRF, EUF, IND-CCA. Unfortunately, these axioms are
complex to design and implement; so far, these tasks are manual, ad
hoc and error-prone. We solve these issues by providing a formal
and systematic method for deriving axioms from cryptographic
games. Our method relies on synthesizing an adversary against
some cryptographic game, through the notion of bi-deduction. Con-
cretely, we define a rich notion of bi-deduction, justify how to
use it to derive cryptographic axioms, provide a proof system for
bi-deduction, and an automatic proof-search method which we
implemented in Sqirrel.
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1 INTRODUCTION
Computer systems are being used for increasingly many appli-
cations in our digitalized societies: messaging, payments, voting,
etc. All these applications involve communication protocols which
use cryptographic primitives to ensure various security proper-
ties. Proving the security of protocols is both notoriously difficult
and very important, given their wide deployment and their use
in critical applications. It has been the topic of intense research
over the past decades. In this paper, we are concerned with obtain-
ing formal proofs of protocol designs. We thus consider high-level
models, leaving aside the implementation details even though they
can be the source of many exploits at the software and hardware
levels (e.g. [1, 35]). We also ignore the inner workings of crypto-
graphic primitives, treating them as black boxes ensuring some
functionality while preventing unwanted behaviors, which can of
course hide other vulnerabilities (e.g. [3]). Importantly, these ab-
stractions do not trivialize the analysis of protocols (e.g. see [4, 17]
for striking attacks found at this level of abstraction, and [11] for a
state of the art).

We seek to obtain security guarantees in the cryptographers’
standard model for provable security, also known as the computa-
tional model. In that setting, protocols and adversaries are modeled
as Polynomial-time Probabilistic Turing Machines (PPTMs). We
consider a general class of security properties, expressed as indistin-
guishability between two protocols — typically, a real protocol and
an ideal one corresponding to an obviously correct but non-practical
implementation of the target application. To prove such protocol

indistinguishabilities, we rely on cryptographic assumptions, which
are properties of cryptographic primitives, also expressed as indis-
tinguishabilities. The notion of cryptographic game, articulating the
interactions of some unknown adversary with either a full protocol
or an isolated primitive, thus plays a central role.

Proofs in the computational model typically proceed by “game
hopping” [44]: one repeatedly reduces the indistinguishability of
some game to that of another one (up to a negligible probability). For
instance, protocol indistinguishability may be reduced in this way
to the lower-level indistinguishabilities on primitives. This is gener-
ally too complex to be fully formalized, and the usual pen-and-paper
proofs leave gaps that often hide errors. To overcome this difficulty,
mechanized verification tools have been developed. For instance,
CryptoVerif [18] automates common game-hopping transforma-
tions, Owl [29] allows to prove integrity and confidentiality prop-
erties by typing, while other tools (Easycrypt [15], CryptHOL [16],
SSProve [2]) allow reasoning through (probabilistic and relational)
program logics.

More recently, Bana and Comon [10] have proposed an alterna-
tive approach to prove the computational security of a protocol,
which abstracts away the quantitative details about probabilities
and security parameters, allowing to reason purely symbolically
on the structure of messages. They design a first-order logic — the
CCSA logic — where terms are interpreted as PPTMs computing
messages, and a predicate ®𝑢 ∼ ®𝑣 corresponds to computational
indistinguishability. The security properties of cryptographic prim-
itives are reformulated as formulas in that logic — called cryp-
tographic axioms — whose soundness directly derives from the
indistinguishability of the associated cryptographic games: in other
words, cryptographic assumptions become logical axioms. The se-
curity of a protocol is then expressed as a formula, which must be
shown to be a logical consequence of the relevant cryptographic
axioms. Several proofs have been carried out using this approach,
first by hand [9, 22, 36, 43] and later using the proof assistant Sqir-
rel [5, 6, 8, 26], which relies on enriched CCSA logics that notably
internalize the notions of protocol and execution traces. Initially
proposed as a CCSA meta-logic [5], the logic behind Sqirrel is
now a more general, higher-order CCSA logic [8].

Example 1. The PRF cryptographic assumption on a keyed hash
function h roughly states that hashes h(_, k) using a secret key k
are indistinguishable from random values. More precisely, it can be
expressed as the indistinguishability of two games G0 and G1, where
the key k is initially sampled, and the adversary is provided with
two oracles: the hashing oracle allows to compute hashes of chosen
messages in both G0 and G1; the challenge oracle returns the hash
of its input in G0, but a fresh sampling in G1. To avoid irrelevant
distinguishing attacks, both oracles reject inputs that have already
been used. This game is an equivalent variant of the standard one for
PRF, which will facilitate its translation into a CCSA axiom.
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In the original CCSA logic, random samplings of the protocol are
represented by special constants called names, and other function
symbols represent PPTMs that cannot access these samplings. The PRF
assumption is expressed through the following axiom scheme [22]:

®𝑢, h(𝑣, k) ∼ ®𝑢, if (∧𝑚∈𝐻 𝑣 ≠𝑚) then nfresh else h(𝑣, k)

Here, ®𝑢 and 𝑣 must be closed terms (i.e. terms without free variables);
𝐻 is the set of all terms 𝑚 such that ℎ(𝑚, k) is a subterm of ®𝑢, 𝑣 ;
the name k must only occur as a hashing key; and the name nfresh
must have a single occurrence. All these conditions guarantee that
there exists a PPTM acting as an adversary in the PRF game which
computes ®𝑢 and 𝑣 , using the game’s hashing oracle to compute h(𝑚, k)
for each𝑚 ∈ 𝐻 . From this we can build another adversary that tests
whether 𝑣 ≠ 𝑚 for all𝑚 ∈ 𝐻 , calls the challenge oracle on 𝑣 if this
is the case, and otherwise calls the hashing oracle on 𝑣 . It will thus
obtain h(𝑣, k) in G0 and the above if-then-else term in G1. If a PPTM
could distinguish the two sides of the PRF axiom with non-negligible
probability, we would thus have an adversary with non-negligible
advantage in the PRF game. That is, the cryptographic assumption
implies the soundness of our axiom scheme.

In the enriched CCSA logics behind Sqirrel, formulating ax-
iom schemes becomes much more complex because some formulas
and terms are recursively defined over the execution trace, which
makes it impossible to determine statically e.g. the subterms of the
form h(𝑚, k). Much of the complexity of designing these logics
goes into determining precise-enough over-approximations of sets
of occurrences, and incorporating these approximations into sound-
ness arguments. These issues are exacerbated with more complex
cryptographic assumptions, e.g. indistinguishability under chosen-
ciphertext (IND-CCA1) [8, App. D]. This source of complexity has
caused errors both in the theory and implementation of Sqir-
rel, which currently relies on tedious verifications of the various
syntactic side conditions, and does not allow the user to control
approximations. Moreover, adding new cryptographic axioms to
Sqirrel currently requires writing OCaml code (the language
Sqirrel is implemented in), a time-consuming task that requires
an in-depth understanding of both the theoretical framework and
its implementation, putting it out-of-reach of all but the most ex-
pert users. This is the problem we aim to address in this work.

Soundness of Cryptographic Axioms. There is a fundamental con-
nection between cryptographic games and the corresponding CCSA
axioms: a CCSA axiom ®𝑢0 ∼ ®𝑢1 is valid under some cryptographic
assumption represented by a game G = (G0,G1) whenever the
terms ®𝑢0 and ®𝑢1 can be computed by an adversary interacting with
G. More precisely, there must exist a single PTIME program S
(the simulator) such that S produces ®𝑢𝑖 when interacting with G𝑖
for both 𝑖 ∈ {0, 1}. Until now, all soundness proofs of CCSA ax-
ioms have been proved manually, by exhibiting (on paper) such a
simulator S. This has been done in an ad hoc fashion, for a few
cryptographic axioms and games (ind-cca1, euf-cma. . . ).

Interestingly, some work has already been initiated to mechanize
the proofs of existence of simulators, albeit with a different aim in
mind. In [6], the notion of bi-deduction is introduced: a judgment
( ®𝑣0, ®𝑣1) ▷ ( ®𝑢0, ®𝑢1) holds if there exists a deterministic PTIME pro-
gram S computing ®𝑢𝑖 when given ®𝑣𝑖 as input, for both 𝑖 ∈ {0, 1}.
The connection is quite clear: if (∅, ∅) ▷ ( ®𝑢0, ®𝑢1) holds then ®𝑢0 ∼ ®𝑢1

is a valid CCSA formula. Unfortunately, the simulator S that can
be obtained using the approach of [6] is very limited: first, no inter-
action (through oracle calls) with an external game is supported;
and second, the simulator S is always a simple loop-free (no while
or for loops, no recursion) and deterministic program. This restricts
the judgements that can be derived, as more complex bi-deduction
properties require more involved simulators. In particular, the sim-
ulators constructed in the manual proofs of soundness of Sqirrel
cryptographic axioms [5, 8] are all completely out-of-scope.

Contributions. In this paper, we propose a formal framework for
systematically deriving cryptographic axioms in the higher-order
CCSA logic of Sqirrel. To that end:

i) We significantly adapt the notion of bi-deduction introduced
in [6] by enriching the computational capabilities of the simulator
S witnessing a bi-deduction judgement:
• We allow probabilistic PTIME programs. This requires to
carefully track — using symbolic constraints — which names
correspond to adversarial computations and which belong to
the game and, more generally, to carefully relate — through
a probabilistic coupling — the random samplings performed
in the logic and in the computations involving the game.
• We provide access to oracles of a cryptographic game G.
Our approach supports games with an internal persistent
state, whose properties can be tracked by extending the bi-
deduction judgements with Hoare pre- and post-conditions.
For instance, in the case of the PRF game, the state is used
to keep track of which messages have been hashed, and the
assertion that some message has not been hashed before will
resurface in a conditional surrounding calls to the challenge
oracle, corresponding to the ad hoc condition over elements
of 𝐻 in Example 1.

ii) We formally show that our improved notion of bi-deducibility
is expressive enough to derive sound cryptographic axioms in our
logic, and we provide a proof system for establishing bi-deducibility.
Our proof system notably features an induction rule that can deal
with the recursively defined observables of protocols.

iii) We design a heuristic proof-search algorithm for establishing
bi-deduction in a fully automated (albeit incomplete) manner, which
is capable of finding complex proofs by induction. We implement
this algorithm in Sqirrel, and validate our approach on several
case studies.

Outline. We provide an overview of our approach in Section 2.
Section 3 presents the needed background on Sqirrel’s higher-
order CCSA logic, and on cryptographic games and adversaries.
We develop in Section 4 our central contributions: bi-deduction
w.r.t. a cryptographic game and a rich proof system for deriving
bi-deducibility. Section 5 presents a proof-search procedure for this
system.We report in Section 6 on some case studies performed with
an extension of Sqirrel implementing this procedure. Finally, we
discuss related works in Section 7. Our extension and case studies
have been merged into the main branch of the tool [27].

2 OVERVIEW
We shall start with a high-level description of the key notions in
our work, building on an example security property for a simple
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protocol. The Hash Lock protocol relies on on a keyed hash function
h(_, _), and involves participants 𝑇1,𝑇2, . . . where each 𝑇𝑖 owns a
secret hashing key k𝑖 to be used across an unbounded number of
sessions. For its 𝑗 th session, participant 𝑇𝑖 inputs 𝑥 and outputs
⟨n𝑖, 𝑗 , h(⟨n𝑖, 𝑗 , 𝑥⟩, k𝑖 )⟩, where ⟨n𝑖, 𝑗 , 𝑥⟩ is a pair combining a session-
specific nonce, i.e. a fresh random sampling, and the input 𝑥 .

We model an execution of the protocol along an arbitrary execu-
tion trace, given as a finite sequence of timestamps. Each timestamp
in the trace corresponds to an elementary interaction between the
adversary and some participant, where some 𝑇𝑖 inputs a message
from the adversary and outputs its answer. The timestamp where
participant 𝑇𝑖 plays its session 𝑗 will be represented by T(𝑖, 𝑗). All
timestamps must be of this form, except for the initial timestamp,
noted init, and the special value undef used to represent timestamps
not present in the trace. We let pred be the predecessor function on
timestamps that are present in the trace. We finally model the exe-
cution using three mutually recursive functions: input(𝑡) represents
the input provided to the protocol at time 𝑡 ; output(𝑡) the protocol
output at that time; and frame(𝑡) the sequence of all outputs up to
time 𝑡 , included. As usual, we consider an active adversary that
fully controls the network: it can read, intercept and even modify
all messages exchanged by honest participants. The inputs of the
protocol are then always the result of an adversarial computation,
which we represent with the function att(_). Our functions can
then be defined as follows:

frame(init) = input(init) = output(init) = empty

frame(t) = ⟨frame(pred(t)), output(t)⟩
input(t) = att(frame(pred(t))) (when init < t)
output(T(i,j)) = ⟨n𝑖, 𝑗 , h(⟨n𝑖, 𝑗 , input(T(i,j))⟩, k𝑖 )⟩

Using these functions, it is then possible to express security
properties of the protocol as logical formulas. We are interested
in proving that Hash Lock ensures a form of key secrecy: when
outputting the hash keyed by key k the protocol doesn’t reveal any
information about k to the adversary. More formally, we would
like to show that, at any point of an interaction of the adversary
with the protocol, the adversary cannot distinguish a new hash
h(⟨n𝑖0, 𝑗0 , input(T(𝑖0, 𝑗0))⟩, k𝑖0 ) from a randomly sampled value. In the
CCSA approach, the adversary interacting with the protocol and
attempting to distinguish two scenarios is split in several parts: the
computation of the inputs represented by att(_) on the one hand,
and the implicit distinguisher in the computational indistinguisha-
bility predicate ∼ on the other. We thus encode our property by
explicitly passing the knowledge obtained through the protocol
execution (i.e., the frame) to the distinguisher. We seek to verify,
for an arbitrary 𝑡0 = T(𝑖0, 𝑗0) and for a fresh name nfresh:

frame(pred(𝑡0)), output(𝑡0) ∼ frame(pred(𝑡0)), ⟨n𝑖0, 𝑗0 , nfresh⟩ (1)

To prove Eq. (1), we need a pseudo-randomness assumption on
h: we rely on the PRF assumption of Example 1, which we define
more precisely using the games of Fig. 1. Function h is said to be a
PRF when the advantage of any PPTM in distinguishing 𝐺0 and𝐺1
is negligible, i.e. for any PPTM A, the probability��𝑃𝑟 (AG0 () = 1) − 𝑃𝑟 (AG1 () = 1)

��

Initialization (G0 and G1):
𝑘

$←; ℓhash ← []; ℓchallenge ← [];
Hash and challenge oracles for game Gb ( b ∈ {0; 1}):

oracle hash(𝑥 ) :=
{
ℓhash ← 𝑥 :: ℓhash;

return (if 𝑥 ∉ ℓchallenge then h(𝑥, 𝑘 ) else zero)
}

oracle challenge(𝑥 ) :=
{
𝑟

$←;
𝑣 ← if 𝑥 ∉ ℓhash ∪ ℓchallenge then

if b then h(𝑥, 𝑘 ) else 𝑟
else zero ;

ℓchallenge ← 𝑥 :: ℓchallenge;

return 𝑣
}

Remark: Queries to both oracles are logged in the lists ℓhash and
ℓchallenge to avoid repeated queries that would make the
assumption trivially unfeasible.

Figure 1: Games for the PRF cryptographic assumption.

is asymptotically smaller than any [−𝑘 for 𝑘 ≥ 0, where [ is the
security parameter — here, [ is the size of the key k.

2.1 Cryptographic Reductions
We are going to prove our security property using a cryptographic
reduction to the PRF game. More precisely, assuming a PTIME
adversary A against the target indistinguishability of Eq. (1) we
build a PTIME adversary B against the PRF game (G0,G1) of Fig. 1
such that B is the composition A ◦ S of the adversary A with a
simulator S computing the terms appearing on the left or right side
of the security formula in Eq. (1) — depending on whether S has
access to the oracles G0 or G1. Roughly, S satisfies:

SG0 () =
(
frame(pred(𝑡0)), output(𝑡0)

)
SG1 () =

(
frame(pred(𝑡0)), ⟨n𝑖0, 𝑗0 , nfresh⟩

)
Thus,A’s advantage against Eq. (1) is exactlyB’s advantage against
the PRF game (G0,G1), which we assumed negligible.

The simulator S is described in a slightly beautified and simpli-
fied imperative language in Fig. 2. On lines 2–16, S computes the
term frame(pred(𝑡0)).

Since frame is defined mutually recursively with input and output,
S computes simultaneously all three functions for all timestamps
in {init; . . . ; pred(𝑡0)}. Concretely, S uses three identically named
arrays input, output, and frame indexed by timestamps, which are
being filled by the for loop starting on line 2, following the recursive
definition of input, frame and output.

In our setting, the simulator’s and game’s randomness is early-
sampled: the simulator and game both have access to tagged random
tapes from which they extract their random values; these tapes are
implicitly sampled before the execution starts. On line 7, the simu-
lator performs a random sampling n $←TS [offsetn (i, j) ]: this actually
reads an early-sampled random tape at a position determined by
the tag TS (indicating a simulator sampling) and an offset associated
to the name n𝑖, 𝑗 being simulated.

Our notion of oracle call is also adapted to fit with the logic.
On line 9 the simulator computes h(⟨n𝑖0, 𝑗 , input(T(𝑖0, 𝑗0))⟩, k𝑖0 ) us-
ing the oracle call G.hash(⟨n𝑖0, 𝑗 , input[ T(𝑖0, 𝑗0) ])⟩) [offsetk (i0)]. In
addition to passing the message to be hashed as an argument, the
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1 (∗ Recursively compute input, output and frame using the hash oracle. ∗)
2 for each 𝑡 ∈ [ init; 𝑡0 [ {
3 match 𝑡 with
4 | init→ input[𝑡 ] ← empty; output[𝑡 ] ← empty; frame[𝑡 ] ← empty
5 | T(i,j)→
6 input[𝑡 ] ← att(frame[pred 𝑡 ])
7 n $← TS [offsetn (i, j) ] (∗ pre−sampled value access ∗)
8 if i = i0 then {
9 x← G.hash(⟨ n, input[𝑡 ] ⟩)[offsetk (i0 ) ] (∗ oracle call ∗)
10 } else {
11 k $← TS [offsetk (i) ] (∗ pre−sampled value access ∗)
12 x← h(⟨ n, input[𝑡 ] ⟩, k)
13 }
14 output[𝑡 ] ← ⟨ n, x ⟩
15 frame[𝑡 ] ← ⟨ frame[pred 𝑡 ], output[𝑡 ] ⟩
16 }
17

18 (∗ Use the challenge oracle to compute output(𝑡0 ) or ⟨n𝑖0, 𝑗0 , nfresh ⟩. ∗)
19 input[𝑡0 ] ← att(frame[pred 𝑡0 ])
20 n $← TS [offsetn (i0, j0 ) ]
21 output'← ⟨ n, G.challenge(⟨ n, input[𝑡0 ] ⟩)[offsetk (i0 ), offsetnfresh ()] ⟩
22 return (frame[pred 𝑡0 ], output')

Figure 2: Reduction to the PRF assumption.

simulator specifies here where the oracle should read the key: al-
though this value is usually understood as being sampled when the
game initializes, this is irrelevant in our early-sampled semantics;
of course, our model forbids that the simulator calls oracles with
inconsistent values for the key’s offset, and the simulator cannot
read the random tape at this position. This unusual setup will be
useful, again, to help track the relationship between the samplings
and the names that are being simulated.

On line 18, frame[pred(𝑡0)] has been properly computed and
can be used to compute in output' a value which will be output(𝑡0)
on the left and ⟨n𝑖0, 𝑗0 , nfresh⟩ on the right. This is done using the
challenge oracle G.challenge, passing the offsets for the key and
the fresh sampling. Crucially, the call to the challenge oracle returns
the expected value because the input ⟨n𝑖0, 𝑗0 , input(𝑡0)⟩ has never
been queried to the hash oracle, except with negligible probability.
Indeed, the hash oracleG.hash has only been queried on the values:

H def
=

{
⟨ni,j, input(𝑡)⟩ | 𝑡 = T(i, j) < 𝑡0

}
and the probability that a collision occurs between ⟨n𝑖0, 𝑗0 , input(𝑡0)⟩
and a value inH is bounded by:

|H | × Pr(n𝑖0, 𝑗0 = n𝑖, 𝑗 ) (for (i, j) ≠ (i0, j0))

This is negligible since H is a set of constant size w.r.t. [, and
since the names n𝑖0, 𝑗0 and n𝑖, 𝑗 are independent uniform random
samplings in an exponentially large set.

2.2 Cryptographic Reductions by Bi-deduction
We now informally describe how our approach allows to infer such
a simulator by significantly extending the notion of bi-deduction
introduced in [6]. First, let us present what is (mono-)deduction:
we say that terms ®𝑣 can be deduced from terms ®𝑢 if there exists
a polynomial-time simulator S such that S(®𝑢) = ®𝑣 . Optionally, S

may be given access to the oracles of a game G, in which case we
must have SG (®𝑢) = ®𝑣 .

Bi-deduction. In bi-deduction, the initial knowledge ®𝑢 and the tar-
get ®𝑣 are replaced by pairs of vectors of terms, respectively #(®𝑢0; ®𝑢1)
and #(®𝑣0; ®𝑣1), called bi-terms, which typically represent messages
in the left and right scenarios of an indistinguishability. We use a
dash # to distinguish pairing of the left and right scenarios from
the standard pairing that can appear in the terms ®𝑢0, ®𝑢1, ®𝑣0, ®𝑣1. For
example, the indistinguishability in Eq. (1) can be represented by

#(frame(pred(𝑡0)), output(𝑡0); frame(pred(𝑡0)), ⟨n𝑖0, 𝑗0 , nfresh⟩)

or, alternatively,

frame(pred(𝑡0)), #(output(𝑡0); ⟨n𝑖0, 𝑗0 , nfresh⟩)

by factorizing common parts of the left and right terms. Informally,
we say that #(®𝑢0; ®𝑢1) bi-deduces #(®𝑣0; ®𝑣1) with access to the pair of
games (G0,G1), which we write

#(®𝑢0; ®𝑢1) ▷(G0,G1 ) #(®𝑣0; ®𝑣1)

if there exists a single polynomial-time simulator S such that
SG0 (®𝑢0) = ®𝑣0 and SG1 (®𝑢1) = ®𝑣1. The cryptographic reduction
argument of Section 2.1 is captured by the rule:

∅ ▷(G0,G1 ) #( ®𝑣0; ®𝑣1)
®𝑣0 ∼ ®𝑣1

Bi-deduce (2)

To prove the soundness of this rule, assume that its conclusion
does not hold: then the adversary A against ®𝑣0 ∼ ®𝑣1 can be com-
posed with the simulator S witnessing ∅ ▷(G0,G1 ) #( ®𝑣0; ®𝑣1) to
obtain a adversary B = A ◦ S against the games (G0,G1). Thus,
S is a sub-procedure of the adversary B against the cryptographic
game (G0,G1) we are reducing to — this is why it is crucial that the
same simulator S is used for both side of the bi-deduction judge-
ment. Note that this rule requires that the input of the bi-deduction
premise is empty: non-empty inputs #(®𝑢0; ®𝑢1) will be useful later,
e.g. to support transitivity and inductive reasoning steps in our
proof system for bi-deduction.

Proof system. We design a proof system for our extended notion
of bi-deduction, which we use as justification of a syntax-directed
proof-search procedure. This procedure is heuristic, and can be used
to automatically derive bi-deduction judgements and through them
build simulators like the one described in Fig. 2. The bi-deduction
rules of our proof-system allow to build simulators piece-by-piece in
a compositional way, using the simulators provided by the premises
of a rule as sub-procedures of the simulator being built to justify
the rule’s conclusion. We describe next a few simplified and infor-
mal rules of our proof system, and show how they can be used to
automatically infer simulators. In the rules presented below, we
omit the games and write ▷ instead of ▷(G0,G1 ) . Also, bi-terms
will be annotated by a sharp # in sub-script, e.g. ®𝑢#, ®𝑣# and ®𝑤# are
all bi-terms. Finally, rules come with an associated (informal) pro-
gram showing how the simulators provided by the premises are
composed to obtain the simulator for the conclusion.

The transitivity rule allows to decompose a bi-deduction ®𝑢# ▷
®𝑣#, ®𝑤# into a bi-deduction of ®𝑣# followed by a bi-deduction of ®𝑤#
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with ®𝑣# as additional input:

®𝑢# ▷ ®𝑣# ®𝑢#, ®𝑣# ▷ ®𝑤#

®𝑢# ▷ ®𝑣#, ®𝑤#

S(®𝑢) := ®𝑣 ← S1 (®𝑢);
®𝑤 ← S2 (®𝑢, ®𝑣)

Coming back to Fig. 2, this rule allows to combine the simulator S1
(lines 2–16) of ∅ ▷ frame(pred(𝑡0)) with the simulator S2 (lines 19–
21) of frame(pred(𝑡0)) ▷ #(output(𝑡0); ⟨n𝑖0, 𝑗0 , nfresh⟩) to obtain the
full simulator of Fig. 2 which proves the equivalence in Eq. (1).

The name rule lets the simulator sample a random value directly:

®𝑢# ▷ n𝑖
S(®𝑢) := xn

$←TS [offsetn (i) ]

For example, this rule allows to infer the three simulators line 7,
line 11 and line 20 in Fig. 2.

The oracle rule allows the simulator to call any oracle of the
game G ∈ {G0,G1} on any input it can compute. For instance, in
the case of the hash oracle of the PRF game of Fig. 1:

®𝑢# ▷ ®𝑣#
®𝑢# ▷ h(®𝑣#, ki)

S(®𝑢) := ®𝑣 ← S1 (®𝑢);
xh ← G.hash(®𝑣)[offsetk (i) ]

This is the rule justifying the oracle call on line 9 of Fig. 2.

Randomness usage. The addition of these rules creates two issues:
i) We should not be able to use the oracle rule twice on two
different keys ki and kj, since the PRF game only supports
hashing with a single and fixed key.

ii) We should not be allowed to sample a name in the simulator
(through the name rule) and use this name to represent a
sampling in the game (through the oracle rule).

We solve these issues by equipping our bi-deduction judgement
with a system of name constraints that allow to track the usage
of randomness by the simulator. Our constraint systems notably
allow us to express: consistency conditions on the secret keys of
the game, ensuring that oracle calls are always asked to use the
same offset for the same secret key; ownership of random samplings,
preventing the simulator from directly accessing random values
that are used as secret keys by the game. Concretely, constraint
systems are recorded in bi-deduction judgements, and their validity
is deferred until the end of the bi-deduction derivation. E.g. the
name and bi-deduction rule Bi-deduce roughly look like this:

{(n𝑖 , TS)} ⊢ ®𝑢# ▷ n𝑖

⊢ Valid(C) C; ∅ ▷ #( ®𝑣0; ®𝑣1)
®𝑣0 ∼ ®𝑣1

Here, (n𝑖 , TS) records that n𝑖 has been sampled by the simulator, and
Valid(C) is a standard Sqirrel formula — that can be discharged
to the user — ensuring that the constraint system C is valid.

Stateful games. Recall that the oracles of the PRF game are
guarded by conditions involving the logs ℓhash and ℓchallenge. E.g.,
the value ⟨ni0,j0 , input(T(i0, j0))⟩ sent to the challenge oracle at the
end of the simulator (line 21 of Fig. 2) must not have been already
queried to the hash oracle hash — except with negligible probabil-
ity. As discussed in the previous section, proving this requires to
establish a property on the game’s internal memory, namely that
the set of previously hash values is of the form:{

⟨ni,j, input(𝑡)⟩ | 𝑡 = T(i, j) < T(i0, j0)
}

To account for that, we equip our bi-deduction judgement with
a Hoare-style pre-condition 𝜑 and post-condition 𝜓 to track the
memory state of the game. Putting everything together, we shall
use bi-deduction judgements that are roughly of the form:

C, (𝜑,𝜓 ) ⊢ #(®𝑢0; ®𝑢1) ▷(G0,G1 ) #(®𝑣0; ®𝑣1)
Informally, this judgement states that there exists a simulator S
using randomness as prescribed by the name constraints C such
that, for any 𝑖 ∈ {0; 1}, the execution of S on input ®𝑢𝑖 starting from
a game G in the initial state satisfying 𝜑 computes ®𝑣𝑖 and leaves
the game G in a final state satisfying𝜓 .

Discussion. The notion of bi-deductionwe introduce in this paper
supports simulators whose capacities go beyond what was possible
using the basic bi-deduction of [6]. In particular, we consider simula-
tors that are probabilistic programs with access to stateful oracles. As
shown in the example presented above, supporting these features
requires to extend bi-deduction in two non-trivial ways: we record
the randomness usage of the simulator using name constraints (see
Section 4.1) and we use Hoare-style pre- and post-condition to track
the state of the game’s internal memory (see Section 4.2). While
the latter extension is standard in program logics, the former is a
novel contribution of this paper.

3 DEFINITIONS
We now describe the essential parts of our formal setup: the higher-
order CCSA logic (Section 3.1) and formal definitions of crypto-
graphic games and adversaries (Section 3.2) with an early-sampling
semantics and tailored samplings and oracle calls that will facilitate
relating imperative programs and logical terms. We shall use colors
to help distinguishing types, logical and computational notions.

3.1 Higher-Order CCSA Logic
We recall the main features of the indistinguishability logic of [8]
(details can be found in Appendix A).This is a first-order logic over
higher-order terms with a probabilistic semantics. More precisely,
models of the logic interpret terms as random variables sharing
the same sample space. The logic features predicates capturing
specific properties of the random variable interpretations of terms:
most notably, 𝑡1 ∼ 𝑡2 holds when the advantage of any PPTM in
distinguishing 𝑡1 from 𝑡2 is negligible.

Types. We assume a set of base types B, e.g. bool, message, int.
A type, denoted by 𝜏 , is either a base type 𝜏b ∈ B or 𝜏1 → 𝜏2 where
𝜏1 and 𝜏2 are types. A type 𝜏 is interpreted in a type structure M
as an [-indexed collections of sets (J𝜏K[

M
)[∈N, in such a way that

J𝜏1 → 𝜏2K
[

M
= J𝜏1K

[

M
→ J𝜏2K

[

M
. We require that JboolK[

M
= {0, 1}.

Terms. We consider simply-typed _-terms, using variables in X:
𝑡 ::= 𝑥 | (𝑡 𝑡) | _(𝑥 : 𝜏). 𝑡 (when 𝑥 ∈ X)

A term is typed, according to standard rules, w.r.t. an environment E,
which is a sequence of: declarations of the form (𝑥 : 𝜏), which states
the existence of a variable 𝑥 of type 𝜏 ; and definitions of the form
(𝑥 : 𝜏 = 𝑡), which introduces a new variable with a fixed meaning.
Recursive definitions are allowed, subject to a well-foundedness
condition [8]. We write E ⊢ 𝑡 : 𝜏 when 𝑡 has type 𝜏 in E, and we
only consider well-typed terms, modulo 𝛼-renaming.
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Models. Amodel M for an environment E, which we writeM : E,
extends an identically named type-structure M to interpret well-
typed terms as random variables on the interpretation of their
types. The modelM first specifies, for every [, a sample space TM,[ ,
whose elements are pairs 𝜌 = (𝜌a, 𝜌h) of random tapes given by
finite bitstrings: 𝜌a will be used to model adversarial randomness
while 𝜌h will be used for honest random samplings. Given a type 𝜏 ,
RVM (𝜏) is the set of [-indexed families of random variables from
TM,[ to J𝜏K[

M
:

RVM (𝜏)
def
=

{
(𝑋[ )[∈N | 𝑋[ : TM,[ → J𝜏K[

M
for every [

}
For each variable (𝑥 : 𝜏) introduced in E, the model M provides
an interpretation M(𝑥) ∈ RVM (𝜏). This is then lifted naturally
to interpret any term 𝑡 of type 𝜏 in E into J𝑡K[,𝜌

M:E ∈ RVM (𝜏). If
E contains a (possibly recursive) definition 𝑥 : 𝜏 = 𝑡 , we have
J𝑥K[,𝜌

M:E = J𝑡K[,𝜌
M:E for any model M : E. Details may be found in [8].

Builtins and local formulas. For convenience, we assume that
environments declare some builtin symbols, and we restrict to
models where they are interpreted as expected. Builtins include

∧,∨,⇒ : bool→ bool→ bool ¬ : bool→ bool

=𝜏 : 𝜏 → 𝜏 → bool ∀𝜏 , ∃𝜏 : (𝜏 → bool) → bool (for each 𝜏)

and their interpretation notably satisfies:
J=𝜏 K[,𝜌

M:E (𝑎, 𝑎
′ ) = 1 ∈ JboolK[

M
iff. 𝑎 = 𝑎′ (𝑎, 𝑎′ ∈ J𝜏K[

M
)

J∀𝜏 K[,𝜌
M:E (𝑓 ) = 1 ∈ JboolK[

M
iff. 𝑓 (𝑎) = 1 for all 𝑎 ∈ J𝜏K[

M

We generally omit type subscripts and use standard infix notations:
we may write, for example, ∀𝑥 : 𝜏. 𝑓 (𝑥) ⇒ 𝑥 = 𝑔(𝑥) when
𝑓 : 𝜏 → bool and 𝑔 : 𝜏 → 𝜏 . Hence terms of type bool can be seen
as formulas, which we call local formulas. The semantics of a local
formula is a family of boolean random variables in RVM (bool).

Names. A crucial ingredient in the CCSA approach is to have
symbols representing random samplings. We let N ⊆ X be a set
of symbols called names. A name n ∈ N can only be declared
in an environment, and must have a type of the form 𝜏0 → 𝜏

where the index type 𝜏0 must be finite, which we write finite(𝜏0):
concretely, J𝜏0K

[

M
must be finite for all [. We restrict to models

where names have a specific interpretation: all name instances
(n0 𝑖0) of a given type 𝜏 must correspond to the same probability
distribution; moreover, two distinct instances (n0 𝑖0) and (n1 𝑖1)
(i.e. the name symbols are distinct or 𝑖0 ≠ 𝑖1) must correspond to
independent random variables. For convenience, we allow a name
to have a base type: the semantical assumptions on it are then the
same as if it were indexed over unit.

Example 2. To model the Hash Lock protocol of Section 2, we would
use names n : index × index → message, k : index → key and
nfresh : message.

Global Formulas. The higher-order CCSA logic is a first-order
logic over our higher-order terms. To avoid confusion with the local
formulas, noted 𝜑 , the actual formulas of the logic are called global
and noted 𝐹 . We also distinguish connectives, e.g. global conjunc-
tion is noted ∧̃. We introduce next some useful global predicates.

For any term 𝑡 of base type, adv(𝑡) states that the interpretation
of 𝑡 can be computed by a PPTM which can only access the ad-
versarial random tape:M |= adv(𝑡) iff. there exists a PPTMM s.t.

M(1[ , 𝜌a) = J𝑡K[,𝜌
M:E for all [ ∈ N and 𝜌 = (𝜌a, 𝜌h) ∈ TM,[ . The def-

inition is extended naturally to terms 𝑡 of type 𝜏1b → . . .→ 𝜏𝑘b → 𝜏b
by requiring the existence of a PPTM taking arguments as inputs.
E.g. adv(nfresh) never holds since names are sampled from the hon-
est random tape, and we require that adv(att) holds in any model.

For any boolean term 𝑡 , the atoms [𝑡]e and [𝑡] state, respectively,
that 𝑡 is exactly true and overwhelmingly true:

M |= [𝑡]e iff J𝑡K[,𝜌
M:E = 1 for all [ ∈ N, 𝜌 ∈ TM,[

M |= [𝑡] iff Pr𝜌∈TM,[
(J𝑡K[,𝜌

M:E = 0) is negligible in [

Finally, for ®𝑡 = 𝑡1, . . . , 𝑡𝑛 and ®𝑡 ′ = 𝑡 ′1, . . . , 𝑡
′
𝑛 such that 𝑡𝑖 and

𝑡 ′
𝑖
have the same base type for every 𝑖 , the atom ®𝑡 ∼ ®𝑡 ′ states

that ®𝑡 and ®𝑡 ′ are computationally indistinguishable. More precisely,
M |= ®𝑡 ∼ ®𝑡 ′ holds when, for any PPTMD, the following quantity is
negligible in [:��� Pr

𝜌∈TM,[

(
D(1[ , J®𝑡 K[,𝜌

M:E , 𝜌a ) = 1
)
− Pr

𝜌∈TM,[

(
D(1[ , J ®𝑡 ′ K[,𝜌

M:E , 𝜌a ) = 1
) ���

Following standard notations from first-order logic, we write
E,Θ |= Θ′ if all models w.r.t. E of the formulas of Θ are also models
of the formulas of Θ′. A formula 𝐹 w.r.t. E is valid when E, ∅ |= 𝐹 .
We shall use sequents of the form E,Θ ⊢ 𝐹 . This sequent is valid
when E,Θ |= 𝐹 .

Example 3. If 𝑡 is a term such that any free variable 𝑥 of 𝑡 is a name
other than n or such that adv(𝑥) holds, then the random variables
J𝑡K[

M:E and JnK[
M:E are independent. If we further assume that the

sample space associated to n is large enough, then [𝑡 ≠ n] is valid.

3.2 Cryptographic Games
We now describe our formal definitions of cryptographic games
and adversaries. As shown in Section 2, we use a minor variation
on the standard notions from cryptography, in order to facilitate
relating samplings in the logical and computational settings.

3.2.1 Syntax. We assume a set of program variables Xp, and an
intrinsic typing associating to each variable 𝑣 ∈ Xp a base type —
we do not need a higher-order programming language. The library
of our language, denoted by Lp, is a set of typed function symbols
disjoint from Xp representing built-in functions shared with the
logic — i.e. we will have Lp ⊆ E.

We form well-typed expressions from Xp, Lp, and a special
constant b of type bool. This constant will denote the side we are
in when describing a left or right cryptographic game. Formally:

𝑒1, . . . , 𝑒𝑛 ∈ Expr ::= 𝑒1 𝑒2 | 𝑣 | 𝑓 | b (𝑣 ∈ Xp, 𝑓 ∈ Lp)

Games. Cryptographic games set up some data (e.g. randomly
sample keys) and provide functionalities through oracles to compute
over this data, possibly changing it. Computations performed by
oracles are described by simple programs written in a standard de-
terministic While language. As explained before, we are interested
in pairs of games (G0,G1) that are assumed to be indistinguishable;
such pairs will be described by a single game G using the special
variable b, i.e. G𝑖 is obtained from G when b = 𝑖 .

Definition 1. A game G = (O, decls) is a finite set of oracle names
O, and a sequence of declarations decls according to the syntax given
in Fig. 3. Declarations contain, in order, sequences of:

1) initialization of variables, either:
6



decl_var ::= 𝑣 ← 𝑒 (𝑣 ∈ Xp, 𝑒 ∈ Expr)
decl_sample ::= 𝑣 $← (𝑣 ∈ Xp)
decl_oracle ::= oracle 𝑓 (®𝑣) := {decl_sample∗; p; return 𝑒}

(𝑓 ∈ O, ®𝑣 ∈ X∗p , 𝑒 ∈ Expr, p a program)

decls ::= decl_sample∗; decl_var∗; decl_oracle∗

Figure 3: Syntax of games defined over oracle names O.

p1, . . . , p𝑛 ::= 𝑣 ← 𝑒

| 𝑣 $← T[𝑒]
| 𝑣 ← 𝑂 𝑓 (®𝑒 ) [ ®𝑒𝑔 ; ®𝑒𝑙 ]
| abort

| skip
| p1; p2
| if 𝑒 then p1 else p2
| while 𝑒 do p

Figure 4: Syntax of programs.

• 𝑣𝑔 $←, which initializes the global random variable 𝑣𝑔 ;
• or 𝑣 ← 𝑒 , which assigns the evaluation of expression 𝑒 to 𝑣 .

2) oracle 𝑓 (®𝑣) := {𝑣𝑙1
$←; . . . ; 𝑣𝑙

𝑘

$←; p; return 𝑒}, which defines
an oracle 𝑓 ∈ O with inputs ®𝑣 that initializes a sequence of local
random variables 𝑣𝑙1, . . . , 𝑣

𝑙
𝑘
, then executes a simple program p and

finally returns 𝑒 . We assume that p never modifies the values of the
random global variables (e.g. 𝑣𝑔 above), and the random local variables
of any oracle (e.g. 𝑣𝑙1, . . . , 𝑣

𝑙
𝑘
above).

We require that a game provides a single definition for each oracle
name 𝑓 ∈ O. Given one such definition, we let:

𝑓 .args def
= ®𝑣 𝑓 .loc$

def
= (𝑣𝑙1, . . . , 𝑣𝑙𝑘 ) 𝑓 .prog def

= p 𝑓 .expr def
= 𝑒

We also let 𝑓 .glob$ be the vector of all global random variables that
are used in the oracle 𝑓 .

The PRF game shown in Fig. 1 is an instance of this notion of
game. Note that the restriction to simple programs (which cannot
perform random samplings nor oracle calls) in the body of oracles
is without loss of generality.

For the rest of the article, we fix an arbitrary game G.

Adversaries. To model game adversaries, we extend simple pro-
grams with random samplings and oracle calls. As illustrated with
the simulator of Fig. 2, we follow a style that fits well with our logic.

To this end, we use tagged random samplings from eagerly sam-
pled tapes, where each tag in Tag = {TA, TS, TG} represents a source
of randomness used during the execution of the simulator S:
• TA is for random samplings performed by S that will corre-
spond to samplings in 𝜌a;
• TS is for random samplings by S that will correspond to
samplings in 𝜌h;
• TG is for the game (oracle) randomness thatS cannot directly
access, and which will correspond to samplings in 𝜌h.

Our syntax for programs, given in Fig. 4, extends the standard
While language constructs with random samplings and oracle calls.
The instruction 𝑣 $← T[𝑒], where 𝑣 : 𝜏 ∈ Xp, T ∈ Tag, and 𝑒 is
of type int, samples a value of type 𝜏 using the randomness from
random source T read at offset 𝑒 , and stores it into 𝑣 . The instruction
𝑣 ← 𝑂 𝑓 (®𝑒) [ ®𝑒𝑔; ®𝑒𝑙 ] is an oracle call, where the variable 𝑣 receives

the call’s result, 𝑓 is the oracle being called, ®𝑒 are the oracle inputs,
and ®𝑒𝑔, ®𝑒𝑙 have type int. These integers let the adversary control the
offsets at which the oracle reads its randomness — the adversary
controls the randomness offsets, but cannot read nor write these
random bits itself. We distinguish the global offsets ®𝑒𝑔 used for the
global random variables of the game from the local offsets ®𝑒𝑙 used
for the local random variables of the oracles. As each oracle call
must use fresh randomness for local samplings, our semantics will
forbid the adversary from re-using local integer offsets. Similarly,
global offsets will have to be consistent from one call to the next,
as the game’s global variables must be sampled only once.

3.2.2 Semantics. The semantics of a program interacting with a
game will be parameterized by a model M of Lp specifying the
semantics of types and library functions, the values of the security
parameter and the side b, a program random tape, and an initial
memory. We only provide below the key elements of its definition;
full details may be found in Appendix B.

A memory ` ∈ MemM,[ w.r.t. a type structure M and [ is a
function that associates to any variable 𝑣 ∈ Xp of type 𝜏 a value
` (𝑣) ∈ J𝜏K[

M
. As usual, ` [𝑣 ↦→ 𝑎] is the memory such that (` [𝑣 ↦→

𝑎]) (𝑣) = 𝑎 and (` [𝑣 ↦→ 𝑎]) (𝑣 ′) = ` (𝑣 ′) for any variable 𝑣 ′ ≠ 𝑣 .
A program random tape𝔭 ∈ 𝔓 is a set of infinite bitstrings𝔭[𝑇, 𝜏],

one for each 𝑇 ∈ Tag and type 𝜏 , each one structured in fixed-size
blocks used to sample values in 𝜏 . We note 𝔭|[,M

𝑇,𝜏
[𝑘] the 𝑘th such

block.
Finally, the evaluation LpM[,𝔭G,M,𝑖,` ∈ MemM,[ ∪ {⊥} of a program

p against G𝑖 (i.e. when b = 𝑖) in memory ` and using the program
random tape 𝔭 is either the memory obtained by executing p, or ⊥
if the execution does not terminate. For the sake of conciseness, we
write LpM[,𝔭` whenM, 𝑖 and G are clear from context.

3.2.3 Adversaries and Security. To define the security of a crypto-
graphic game, we need to define which programs constitute valid
adversaries. We require adversaries do not read nor write the game’s
internal variables nor the special side constant b, do not access tapes
tagged TG, and properly use randomness offsets when invoking ora-
cles: local offsets must be fresh, and global offsets must be consistent
across oracle calls. More details are given in Appendix B.6.

Definition 2. We use a special variable res to store the return value
of a program. A game G is secure in a compatible model M if for any
PTIME adversary p, the following quantity is negligible in [:�� Pr𝔭 (

LpM[,𝔭G,M,0,`0 [res] = 1
)
− Pr𝔭

(
LpM[,𝔭G,M,1,`1 [res] = 1

) ��
where `𝑖 = `𝑖init

[,𝔭

M
for any 𝑖 ∈ {0, 1} is the initial memory of the

game (seeAppendix B.3 for details).

4 BI-DEDUCTION
We now develop our central concept: bi-deduction in presence of
a cryptographic game. We will deal with several pairs of objects,
where each component is involved in the deduction on one side
𝑖 ∈ {0, 1} of the games. We introduce special notations for such
pairs, following the style of [18].

Definition 3 (Bi-objects, 𝑢#, #(_; _)). We call bi-term a pair of
terms 𝑢# = #(𝑢0;𝑢1). We will similarly define and manipulate several
kinds of bi-objects: for instance, we call (local) bi-formula a pair of
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local formulas 𝑓# = #(𝑓0, 𝑓1;). We allow ourselves to factorize common
parts of a bi-term (or any bi-object) by pushing the # downwards: e.g.
𝑓 (#(𝑢; 𝑣), 𝑔(#(𝑠; 𝑡))) denotes #(𝑓 (𝑢,𝑔(𝑠)); 𝑓 (𝑣, 𝑔(𝑡))).

We shall follow the intuitions given in Section 2, and derive
a formal definition of bi-deduction for which we can prove that
bi-deducibility entails indistinguishability. We start by introducing
two necessary preliminary ingredients: constraints on the usage of
random tapes, and assertions for describing the game’s memory at
a point of the simulator’s computation.

4.1 Name Constraints
Our simulators can perform random samplings, either directly or
indirectly through oracle calls. Names in the bi-deduction judge-
ment will be used in both cases to represent such computations. For
example, in the PRF game using key k, a simulator may compute
h(𝑚, k) through an oracle call (assuming that𝑚 is computable) but
it may also compute h(𝑚, s) explicitly when s and k are distinct
names (by drawing s and computing the application of h itself). The
two situations must be distinguished, as a simulator is forbidden
from accessing the game’s random samplings directly.

We introduce name constraints to keep track of how names are
used in bi-deduction. We will make use of the following set of tags:

TAGconstr = {T𝑆 , TlocG } ∪ {T
glob
G,𝑣 | 𝑣 ∈ G.gs}

Tag T𝑆 indicates that a name corresponds to a random sampling of
the simulator; TlocG corresponds to an oracle’s local sampling; finally,
T
glob
G,𝑣 corresponds to the global sampling of variable 𝑣 in the game.

Definition 4. A name constraint is a tuple 𝑐 = ( ®𝛼, n, 𝑡,𝑇 , 𝑓 ) where
®𝛼 are variables in X whose types are tagged finite, n is a name, 𝑡 is a
term, 𝑇 ∈ TAGconstr, and 𝑓 is a local formula. A constraint system
C is a list of name constraints.

Intuitively, a constraint expresses that, for any arbitrary instan-
tiation of the variables ®𝛼 such that 𝑓 holds, the name n is used at
index 𝑡 as specified by tag𝑇 . Variables ®𝛼 are bound in the constraint.
Accordingly, constraints are considered modulo renaming of these
variables and, when we consider several constraints jointly, we
implicitly assume that their bound variables are disjoint. We do not
require that free variables of 𝑡 and 𝑓 are all bound by ®𝛼 .

Formally, we define the multiset N[,𝜌C,M
def
=

⋃
𝑐∈C N

[,𝜌

𝑐,M
where:

N[,𝜌

( ®𝛼,n,𝑡,𝑇 ,𝑓 ),M
def
= {⟨n, J𝑡K[,𝜌

M𝜎
,𝑇 ⟩ | dom(𝜎 ) = ®𝛼, J𝑓 K[,𝜌

M𝜎
= true}

This interpretation of constraint systems supports a natural notion
of constraint subsumption: we write E,Θ |= C ⊆ C′ when for any
M such that M : E |= Θ, for any [ and 𝜌 , we have the multiset
inclusion N[,𝜌C,M ⊆ N

[,𝜌

C′,M.

Example 4. The system [({𝑖}, n, 𝑖, TglobG,𝑣 , 𝑓 ), ({𝑖}, n, 𝑖, T𝑆 , 𝑓
′)] ex-

presses that: for every value of 𝑖 for which 𝑓 holds, (n 𝑖) represents
the global sampling of the variable 𝑣 of the game; and for every value
of 𝑖 for which 𝑓 ′ holds, (n 𝑖) represents a sampling performed by
the simulator. For this to make sense, we expect the formulas 𝑓 and
𝑓 ′ to be mutually exclusive, i.e. [∀𝑖 .¬(𝑓 ∧ 𝑓 ′)]e should be valid.
Otherwise, there would exists a valuation 𝑣 of 𝑖 such that the index 𝑣
of the name n would be tagged both as a simulator’s and a game’s

sampling, which cannot happen in a valid interaction between the
simulator and the game.

We define a validity criterion for constraint systems that captures
when the usage of names is consistent. First, name-tag associations
must be functional: no name is associated to two different tags.
Second, the local samplings must be fresh: the associated names
do not occur anywhere else. Third, a globally sampled variable
must be associated to a unique name. These three conditions must
hold whenever the conditions 𝑓 hold, and are defined formally as
local formulas in Fig. 5. We finally define the validity of a constraint
system C as the exact truth of all conditions on all pairs of constraint
occurrences:

Valid(C) def= [
∧

𝑐1,𝑐2∈C
Fun(𝑐1, 𝑐2 ) ∧ Fresh(𝑐1, 𝑐2 ) ∧ Unique(𝑐1, 𝑐2 ) ]e

As expected, Θ |= Valid(C′) and Θ |= C ⊆ C′ imply Θ |=
Valid(C). The validity condition relies on the exact truth predicate,
in other words we require our simulator to always behave correctly
w.r.t. randomness usage. Importantly, we never require that names
are distinct but only that their indices are distinct. The former
would be too strong: we certainly do not rule out the possibility
that a simulator, performing a random sampling by itself, happens
to obtain the same value as a game’s random sampling.

We will make use of bi-systems of constraints C#. In practice,
they will be pairs of lists of the same length, so we view them as lists
of bi-constraints. We define Valid(C#) as Valid(C1) ∧̃ Valid(C2).

4.2 Assertion Logic
As explained in Section 2, we need to keep track of the game’s
memory during the simulator’s computation. We shall thus equip
our bi-deduction judgement with pre- and post-conditions, relying
on an abstract assertion language — a possible concrete instance of
it will be taken in our implementation.

We thus assume an arbitrary language of assertions, with a no-
tion of well-typedness w.r.t. environments, and a notion of satisfac-
tion: given some environment E, an assertion 𝜑 that is well-typed
w.r.t. E, a model M : E, a security parameter [, a random tape
𝜌 and a memory `, we write M, [, 𝜌, ` |=𝐴 𝜑 to denote that 𝜑 is
satisfied by the left-hand side elements. Note that an assertion 𝜑
can specify properties of both the game’s memory ` and logical
values, including names, thanks to 𝜌 . This allows, e.g., to have an
assertion expressing that the value of a particular name Jn 𝑡K[,𝜌

M:E
does not belong to some list stored in the game’s memory `.

We assume that assertions support propositional connectives,
and that local formulas can be seen as assertions. Satisfaction for
these constructs should behave as expected, e.g. M, [, 𝜌, ` |=𝐴 𝑓 iff.
J𝑓 K[,𝜌

M:E = 1; and M, [, 𝜌, ` |=𝐴 𝜑 ⇒ 𝜓 iff. M, [, 𝜌, ` |=𝐴 𝜑 implies
M, [, 𝜌, ` |=𝐴 𝜓 .

4.3 Bi-deduction Judgement
We now have all the ingredients to form our bi-deduction judge-
ment. Defining its semantics, though, requires a little more work.

Definition 5. Let 𝑢1#, . . . , 𝑢
𝑚
# , 𝑣# be a sequence of bi-terms of base

types.We say that a program pwith distinguished variables𝑋1, . . . , 𝑋𝑚
and res computes ®𝑢# ▷ 𝑣# w.r.t.M, [,𝔭, 𝜌, ` and side 𝑖 ∈ {0, 1} when:

`′ [res] = J𝑣𝑖K
[,𝜌

M:E with `′ = LpM[,𝔭
M,𝑖,` [𝑋𝑘 ↦→J𝑢𝑘

𝑖
K[,𝜌
M:E ]1≤𝑘≤𝑚

8



Fun(𝑐1, 𝑐2)
def
= ∀ ®𝛼1∀ ®𝛼2 . 𝑓1 ∧ 𝑓2 ⇒ 𝑡1 ≠ 𝑡2 when 𝑇1 ≠ 𝑇2 and n1 = n2, and Fun(𝑐1, 𝑐2)

def
= ⊤ otherwise

Fresh(𝑐1, 𝑐2)
def
= ∀ ®𝛼1∀ ®𝛼2 . 𝑓1 ∧ 𝑓2 ⇒ 𝑐1 ( ®𝛼1) ≠ 𝑐2 ( ®𝛼2) ⇒ 𝑡1 ≠ 𝑡2 when 𝑇1 = 𝑇2 = TlocG , n1 = n2, and Fun(𝑐1, 𝑐2)

def
= ⊤ otherwise

Unique(𝑐1, 𝑐2)
def
=


∀ ®𝛼1∀ ®𝛼2 . 𝑓1 ∧ 𝑓2 ⇒ 𝑡1 = 𝑡2 when 𝑇1 = 𝑇2 ∈ {TglobG,𝑣 | 𝑣 ∈ G.gs}, n1 = n2

∀ ®𝛼1∀ ®𝛼2 . 𝑓1 ∧ 𝑓2 ⇒ ⊥ when 𝑇1 = 𝑇2 ∈ {TglobG,𝑣 | 𝑣 ∈ G.gs}, n1 ≠ n2
⊤ otherwise

where 𝑐𝑖 = ( ®𝛼𝑖 , n𝑖 , 𝑡𝑖 ,𝑇𝑖 , 𝑓𝑖 ) for i 𝑖 ∈ {1; 2}; and we let 𝑐1 ( ®𝛼1) ≠ 𝑐2 ( ®𝛼2) be a shorthand for ⊤ if 𝑐1 and 𝑐2 are distinct occurrences, and ®𝛼1 ≠ ®𝛼2
otherwise.

Figure 5: Constraint validity conditions.

In this context, `′ is the final memory of the computation.

Naively, one may then say that a bi-deduction𝑢# ▷ 𝑣# holds w.r.t.
a gameGwhen there exists a simulator p againstGwhich computes
𝑢# ▷ 𝑣# w.r.t. anyM, [, 𝜌,𝔭, ` and 𝑖 . While it makes sense to quantify
universally over M, [, ` and 𝑖 , doing the same for 𝔭 and 𝜌 would
be meaningless, resulting in an unfeasible notion of bi-deduction.
Intuitively, we can only expect the semantics of program p and
𝑣𝑖 to coincide if they agree on the parts of the tapes that are read.
Crucially, these parts will be described by the constraint system
associated to the considered bi-deduction. For example, if we need
a name k to correspond to the PRF game’s (globally sampled) key
key, it is necessary that the tapes 𝜌 and 𝔭 coincide on positions
corresponding to, resp., k (for 𝜌) and key (for 𝔭).

In order to define this relation between logical and program
random tapes, we assume a mapping from (semantic) names to
offsets in program random tapes: for each environment E, for each
name symbol n : 𝜏 ′ → 𝜏 declared in E, for each M : E, [ ∈ N

and 𝑎 ∈ J𝜏 ′K[
M
, we assume an offset 𝑂M,[ (n, 𝑎) ∈ N, such that

(1[ , 𝑎) ↦→ 𝑂M,[ (n, 𝑎) is injective and PTIME computable — this
actually corresponds to the offsetn (𝑎) library function in the simu-
lator of Fig. 2.

Definition 6. Let C be a constraint system and M a model, both
w.r.t. E. For any [ ∈ N, we define R[C,M as the relation between TM,[

and program random tapes 𝔓 such that 𝜌 R[C,M 𝔭 holds when 𝜌a
is a prefix of 𝔭[TA, bool] and for all (n, 𝑎, T) ∈ N[,𝜌C,M, JnK[,𝜌

M:E (𝑎) =
𝔭|[T [𝑂M,[ (n, 𝑎)].

Couplings between logical and program tapes. Constraining the bi-
deduction ∅# ▷ 𝑣# by C will guarantee that there exists a program
𝑝 which computes ∅ ▷ 𝑣# w.r.t. any tapes 𝔭, 𝜌 that are related by
R[C,M, i.e. (omitting the initial memory):

for all 𝑖 ∈ {0, 1} and 𝜌 R[C,M 𝔭, L𝑝M[,𝔭
M,𝑖
[res] = J𝑣𝑖K

[,𝜌

M:E .

In order to be able to lift the equality above to an equality over
distributions (required in computational indistinguishability), i.e. to
show that for any possible value 𝑥 ,

Pr𝔭∈𝔓
(
L𝑝M[,𝔭

M,𝑖
[res] = 𝑥

)
= Pr𝜌∈TM,[

(
J𝑣𝑖K

[,𝜌

M:E = 𝑥
)

(3)

we rely on the standard notions of probabilistic coupling and lifting
(as in [13]). We only present the main intuitions here; see Appen-
dix C.3for details. Consider some distributionC over pairs of logical
and program tapes in TM,[ ×𝔓. The left marginal of C is the distri-
bution over TM,[ obtained by extracting the logical tape 𝜌 from a

pair of tapes (𝜌,𝔭) sampled according to C. The right marginal of
C is similar, except that it extracts the program tape 𝔭. A distribu-
tion C is said to be a probabilistic coupling of TM,[ and 𝔓, which
we write C : TM,[ ⊲⊳ 𝔓, if its left and right marginals follow the
same distributions as the distributions endowing, resp., TM,[ and
𝔓. When C : TM,[ ⊲⊳ 𝔓, we thus have, for any 𝑥 :

Pr𝜌∈TM,[

(
J𝑣𝑖K

[,𝜌

M:E = 𝑥
)
= Pr(𝜌,𝔭) ∈C

(
J𝑣𝑖K

[,𝜌

M:E = 𝑥
)

(4)

Pr𝔭∈𝔓
(
L𝑝M[,𝔭

M,𝑖
[res] = 𝑥

)
= Pr(𝜌,𝔭) ∈C

(
L𝑝M[,𝔭

M,𝑖
[res] = 𝑥

)
(5)

where the top (resp. bottom) equation follows from the left (resp.
right) marginal property of C.

Assume that we can build a coupling C : TM,[ ⊲⊳ 𝔓 contained
in R[C,M (roughly, this means that C only samples pairs of tapes
related by R[C,M). Then Eq. (3) holds. Indeed:

Pr𝜌∈TM,[

(
J𝑣𝑖K

[,𝜌

M:E = 𝑥
)

= Pr(𝜌,𝔭) ∈C
(
J𝑣𝑖K

[,𝜌

M:E = 𝑥
)

(Eq. (4))

= Pr(𝜌,𝔭) ∈C
(
L𝑝M[,𝔭

M,𝑖
[res] = 𝑥

)
(C contained in R[C,M)

= Pr𝔭∈𝔓
(
L𝑝M[,𝔭

M,𝑖
[res] = 𝑥

)
(Eq. (5))

Couplings from constraint systems. Given a constraint system
C, we would like to build a coupling that is contained in R[C,M. It
turns out that this cannot always be achieved: counter-examples
arise when a constraint 𝑐 = ( ®𝛼, n, 𝑡, T, 𝑓 ) features a condition 𝑓

(or an index 𝑡 ) that depends on the name n 𝑡 introduced in the
constraint (see Example 9, Appendix C for an explicit counter-
example). Such pathological cases are however irrelevant for our
use of constraint systems, and we rule them out by introducing in
Appendix C.3the notion of well-formed constraint system. Given
a valid and well-formed constraint system, we are then able to
build the desired coupling. Roughly, this is done step by step: well-
formedness ensures that there exists an order in which to sample
the names corresponding to constraints such that, when processing
a constraint 𝑐 , we are able to compute 𝑓 and 𝑡 using the already
sampled parts of the tape; then, if 𝑓 holds, we sample the segments
of the logical and program tapes determined by n, 𝑡 and T (validity
ensures that these segments are not yet sampled). Once all con-
straints are processed, the rest of the tapes is sampled using the
relevant probability distributions.

The following key lemma establishes that any well-formed and
valid constraint system C can be used to build a coupling contained
in R[C,M (see proof in Appendix C.5).
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Lemma 1. Let C be a well-formed constraint system w.r.t.M, [ such
that M |= Valid(C). Then, there exists a coupling C : TM,[ ⊲⊳ 𝔓

contained in R[C,M.

This lemma will be key to justify our Bi-deduce rule, which
involves a bi-deduction judgment with empty inputs. However,
the notion of well-formedness needs to be adapted to arbitrary
bi-deductions: the general notion of well-formedness is relative to
the input terms.

Bi-deduction. Wefinally define our intricate notion of bi-deduction.

Definition 7. A bi-deduction judgement is of the form:

E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷G 𝑣#
where G is a game, E is an environment, Θ is a set of global formulas,
C# is a constraint bi-system, the pre-condition 𝜑# and post-condition
𝜓# are bi-assertions, the inputs ®𝑢# is a vector of bi-terms and 𝑣# is a
bi-term.

It is valid when, for any type structure M0, there exists a PTIME
program p against G such that for any model M : E extending M0
in such a way that M |= Θ ∧̃ Valid(C#), p is an adversary and for
any [ ∈ N, 𝑖 ∈ {0, 1}, C# is well-formed w.r.t. M, [ relatively to ®𝑢#
and for any tapes 𝜌 R[C,M 𝔭, and for any ` such that M, [, 𝜌, ` |=𝐴
𝜑𝑖 , p computes ®𝑢# ▷ 𝑣# w.r.t. M, [,𝔭, 𝜌, `, 𝑖 and the corresponding
final memory `′ is such that M, [, 𝜌, `′ |=𝐴 𝜓𝑖 . Moreover, we require
that the computation of 𝑝 relies on global samplings 𝐺$ and local
samplings 𝐿$ such that

𝐺$ ⊆ { 𝑂M,[ (n, 𝑎) | ⟨n, 𝑎, T
glob
G,𝑣 ⟩ ∈ N

[,𝜌

𝑐,M
, 𝑐 ∈ C }

and 𝐿$ ⊆ { 𝑂M,[ (n, 𝑎) | ⟨n, 𝑎, TlocG ⟩ ∈ N[,𝜌
𝑐,M

, 𝑐 ∈ C }.

Note that, while the general structure of the previous defini-
tion is guided by the need to derive indistinguishabilities from
bi-deducibilities (as proved formally in the next theorem), some
aspects of the definition are not necessary for this goal but ease
compositional proofs of bi-deduction through our proof system.
This is the case for the conditions on local and global samplings,
which make it easy to compose programs while preserving the fact
that they are adversaries against G (see Appendix D.3for its proof).

Theorem 1. Let E be an environment, Θ a set of global formulas,
and 𝜑# be a bi-assertion such that, for allM : E satisfying Θ, for all
𝑖 ∈ {0, 1}, [, 𝜌 , we haveM, [, 𝜌, `𝑖init

[,𝜌

M
(G) |=𝐴 𝜑𝑖 . The following rule

is sound w.r.t. models where G is secure, for any C#, #( ®𝑣0; ®𝑣1) and𝜓#:
Bi-deduce
E,Θ ⊢ Valid(C#) E,Θ, C#, (𝜑#,𝜓#) ⊢ ∅ ▷G #( ®𝑣0; ®𝑣1)

E,Θ ⊢ ®𝑣0 ∼ ®𝑣1

4.4 Proof System
We now present the proof system we designed for bideduction.
Our proof rules are guided by the structure of the term to be bi-
deduced. To enable expressive rules, it is useful to consider vectors
of conditional terms. We will thus consider bi-deductions of the
form ®𝑢 ▷ ((𝑓1, if 𝑓1 then 𝑡1), . . . , (𝑓𝑛, if 𝑓𝑛 then 𝑡𝑛)), 1 noted more
conveniently ®𝑢 ▷ ((𝑡1 | 𝑓1), . . . , (𝑡𝑛 | 𝑓𝑛)) or even ®𝑢 ▷ ®𝑡 when
1Here, (if 𝑓 then 𝑡 ) is syntactic sugar for (if 𝑓 then 𝑡 else witness𝜏 ) where 𝜏 is the
type of 𝑡 andwitness𝜏 is an arbitrary symbol of type 𝜏 (whose existence is guaranteed,
as all types are inhabited).

the conditions are irrelevant, using ®𝑡 to denote conditioned terms.
We present below an overview of the rules of our proof system,
providing in Appendix D . the full set of proof rules as well as
soundness arguments and an example derivation.

We shall use two operations on constraint systems. First, the
concatenation of bi-constraint systems is defined as #(C10 ;C

1
1 ) ·

#(C20 ;C
2
1 ) = #(C10 · C

2
0 ;C

1
1 · C

2
1 ). Note that the validity of the con-

catenation of two systems carries over to each of them. Second,
we define the generalization

∏
𝑥 .C# of C# over 𝑥 as the system

C# where 𝑥 is added to the vector of bound variables in all basic
constraints of C0 and C1. The validity of

∏
𝑥 .C# implies that of C#.

We show a selected set of rules in Fig. 6, which we describe below.
First, our proof system features rules for basic simulator construc-
tions: Dup, Refl, FA and If-then-else. More interestingly, a central
rule of our proof system is Transitivity, which corresponds to
composing simulators. To see why it is valid, consider a modelM of
Θ and Valid(C1# · C2# ), and the simulators p𝑎 and p𝑏 provided by the
premises. The simulator justifying the bi-deduction in conclusion
will be (p𝑎 ; p𝑏 ): additional inputs of the second simulator will be
computed by the first one. We can show that this program is also
an adversary for the game, and satisfies the conditions on local
and global offsets imposed by the bi-deduction semantics. A crucial
point here is that, because C1# · C2# is valid, the freshness conditions
for local samplings on the separate executions of p𝑎 and p𝑏 imply
the same thing for their sequential composition. Similarly, this va-
lidity implies that global samplings are consistent across the two
executions. The well-formedness of C1# · C2# (relatively to ®𝑢#) does
not follow from that of the sub-systems; to prove it, we rely on the
specific context of this rule, including the existence of a simulator
for the first bi-deduction premise (see Appendix D.2.1 for details)..

In order to represent unbounded collections of objects to bi-
deduce, we extend the bi-deduction judgement beyond terms of
base type, allowing order-1 types when the argument types are
enumerable — this is captured by the type restriction enum, cf.
Appendix D.1.. This does not change the semantics of bi-deduction:
we simply view these functions as an explicit representation of
their graph. This extension notably brings in the Lambda and In-
duction rules of Fig. 6, the latter allowing proofs of bi-deduction
by induction. In both cases, we require the pre- and post-conditions
to coincide: this is because the underlying simulator computation
iterates the computation of the simulator corresponding to the
premise; the condition on the game’s memory must be invariant
through this iteration. In the induction rule, the type restriction
well-founded𝜏 (<) states that (J𝜏K[M, J<K[

M,E ) is well-founded.
Two rules introduce new constraints in their conclusion. The

first rule, Name, allows a simulator to sample a name. The second
rule is for oracle calls, and requires a preliminary definition before
we introduce it in Proposition 1. An oracle triple for an oracle 𝑓 ,
written {𝜑#}𝑣# ← 𝑂 𝑓 (®𝑡#) [®𝑘#; ®𝑟#]{𝜓#} is formed from: assertions 𝜑#
and𝜓# for the pre- and post-conditions, an output term 𝑣#, input
terms ®𝑡#, and terms ®𝑘# and ®𝑠# for the global and local randomness
offsets of the oracle. We require that the offsets are of the form
®𝑘# = (k𝑣 𝑜𝑣♯)𝑣∈ 𝑓 .glob$ and ®𝑟# = (r𝑣 𝑠𝑣♯)𝑣∈ 𝑓 .loc$ , where k𝑣 and r𝑣
are names. Such a triple is valid, when the oracle called with the
specified parameters in a memory satisfying 𝜑#, returns 𝑣# in a
memory satisfying𝜓# (details in Appendix D.2.4)..
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Dup
E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ ®𝑣#, ®𝑡#
E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ ®𝑣#, ®𝑡#, ®𝑡#

Transitivity
E,Θ, C1# , (𝜑#, 𝜑 ′# ) ⊢ ®𝑢# ▷ ®𝑡#
E,Θ, C2# , (𝜑 ′#,𝜓# ) ⊢ ®𝑢#, ®𝑡# ▷ ®𝑣#
E,Θ, C1# · C2# , (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ ®𝑡#, ®𝑣#

Refl

E,Θ, ∅, (𝜑#, 𝜑# ) ⊢ ®𝑢#, 𝑡# ▷ 𝑡#
FA
E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ ®𝑣#, (𝑡1# | 𝑓# ), . . . , (𝑡𝑛# | 𝑓# )

E,Θ ⊢ adv(𝑔)
E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ ®𝑣#, (𝑔 𝑡1# . . . 𝑡𝑛# | 𝑓# )

If-then-else
E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷
®𝑣#, (𝑏# | 𝑓# ), (𝑡# | 𝑓# ∧ 𝑏# ), (𝑡 ′# | 𝑓# ∧ ¬𝑏# )

E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ ®𝑣#, (if 𝑏# then 𝑡# else 𝑡 ′# | 𝑓# )
Lambda
(E, 𝑥 : 𝜏 ),Θ, C#, (𝜑#, 𝜑# ) ⊢ ®𝑢#, 𝑥 ▷ (𝑡# | 𝑓# )
E, 𝑥 : 𝜏 ⊢ 𝑡# : 𝜏b 𝜏b ∈ B enum(𝜏 )

E,Θ,∏(𝑥 :𝜏 ) .C#, (𝜑#, 𝜑# ) ⊢ ®𝑢# ▷ (_ (𝑥 : 𝜏 ) .𝑡# | 𝑓# )

Induction
(E, 𝑥 : 𝜏 ),Θ, C#, (𝜑#, 𝜑# ) ⊢ ®𝑢#, (_ (𝑦 : 𝜏 ) .if 𝑦 < 𝑥 then 𝑡 [𝑥 ↦→ 𝑦 ] | 𝑓# ), 𝑥 ▷ (𝑡# | 𝑓# )
E, 𝑥 : 𝜏 ⊢ 𝑡# : 𝜏b 𝜏b ∈ B finite(𝜏 ) fixed(𝜏 ) E,Θ ⊢ well-founded𝜏 (<) ∧̃ adv(<)

E,Θ,∏(𝑥 :𝜏 ) C#, (𝜑#, 𝜑# ) ⊢ ®𝑢# ▷ (_ (𝑥 : 𝜏 ) .𝑡# | 𝑓# )
Name

E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ (𝑡# | 𝑓# )
E,Θ, C# · { (∅, 𝑛, 𝑡#, T𝑆 , 𝑓# ) }, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷ (𝑛 𝑡# | 𝑓# )

Figure 6: Selected set of rules.

Proposition 1. Let G be a game and 𝑓 ∈ O one of its oracles. The
following rule is sound w.r.t. the class of models satisfying G, using
the notations introduced above:

Oracle𝑓
E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷G ®𝑤#, (®𝑡# | 𝐹# ), ( ®𝑜# | 𝐹# ), (®𝑠# | 𝐹# )

Θ |= {𝜓# ∧ 𝐹#}𝑣# ← 𝑂 𝑓 (®𝑡# ) [ ®𝑘#; ®𝑟# ] {\#}
E,Θ, C′#, (𝜑#, \# ) ⊢ ®𝑢# ▷G ®𝑤#, (𝑣# | 𝐹# )

with C′# =
C# ·

∏
𝑣∈𝑓 .glob$

(∅, k𝑣, 𝑜𝑣♯,T
glob
G,𝑣 , 𝐹# ) ·

∏
𝑣∈𝑓 .loc$

(∅, r𝑣, 𝑠𝑣♯,TlocG , 𝐹# )

®𝑜# = (𝑜𝑣♯ )𝑣∈𝑓 .glob$ and ®𝑠# = (𝑠𝑣♯ )𝑣∈𝑓 .glob$

4.5 Examples
We illustrate how our proof system operates using two examples.

Example 5. Using the PRF game of Fig. 1, we should have that:

(∅, ∅) ▷ ℎ(𝑛, k), #(h(𝑚, k); nfresh)
for any adversarial messages 𝑛,𝑚 such that 𝑛 and 𝑚 are always
distinct, i.e. [𝑛 ≠𝑚]e.

If 𝑛 and𝑚 are two names n and m, we cannot guarantee that they
are always distinct. However, we have the following:

(∅, ∅) ▷ h(n, k), if n ≠ m then #(h(m, k); nfresh)
Here, the challenge oracle is only called in the then branch, when
n ≠ m does hold. The ability to propagate information from term-
level conditionals to assertions is crucial to verify such bi-deductions.

Example 6. We are going to show the indistinguishability

h(n, k), h(m, s), h(m, k) ∼ h(n, k), h(m, s), nfresh (6)

using bi-deduction w.r.t. the PRF game of Fig. 1, where n, k,m, s are
distinct names of type 𝜏 . We are going to show that:

(1) the first and last terms can be computed using oracle calls;
(2) and that the middle term is just a function application.

For Item 2, we require that h is an adversarial function symbol. To
be able to carry out the simulation strategy of Item 1, we need to
ensure that n ≠ m, which we do using the trick of Example 5. First,
we assume that the type 𝜏 is a large type: essentially, this means that
independent names with output type 𝜏 have a negligible probability

of collision. This assumption is captured by the large(𝜏) hypothe-
sis introduced in [5]. Under this hypothesis, it can be shown that
large(𝜏) |= n ≠ m ∼ 𝑡𝑟𝑢𝑒 and thus, using the rewriting rule of [5],
that the indistinguishability in Eq. (6) is implied by the formula:

h(n, k), h(m, s), if n ≠ m then h(m, k)
∼ h(n, k), h(m, s), if n ≠ m then nfresh

Let’s take the hypotheses Θ = adv(h), large(𝜏).
For the sake of simplicity, we instantiate assertions by sets of mem-

ories: thus, roughly, satisfiability is set membership and implication
is set inclusion. Consider the following assertions:

𝜑0 =
{(
𝑙hash ↦→ [] ; 𝑙challenge ↦→ []

)}
𝜑 =

{(
𝑙hash ↦→ [n] ; 𝑙challenge ↦→ []

)}
where [] is the empty list and [n] is the list containing a single
element n. We have:

Θ |= {𝜑0} h(n, k) ← 𝑂hash (n) [k; .] {𝜑},

and, using Name to compute n, we get the bi-deduction judgment:

Θ,
(
(n, T𝑆 ,⊤), (k, T

glob
G,k ,⊤)

)
, (𝜑0, 𝜑) ⊢ ∅ ▷ h(n, k).

All the name constraints in this example have no bound variables
and are for names n, k, s,m which are not indexed. Thus, we use
a shorter syntax for constraints, and write (name, T, 𝑓 ) instead of
(∅, name, ∅, T, 𝑓 ).

Then, using Name, Dup and FA, we also get that:

Θ,
(
(m, T𝑆 ,⊤), (s, T𝑆 ,⊤)

)
, (𝜑, 𝜑) ⊢ ∅ ▷ h(m, s) .

Finally, we have:

{𝜑 ∧ n ≠ m} #(h(m, k); nfresh) ← 𝑂challenge (m) [k; nfresh] {𝜓 }

for a certain𝜓 . As before, using the rules If-then-else, Oracle𝑓 for
𝑓 = challenge and Name, we have that:

Θ,
(
(n, T𝑆 ,⊤), (m, T𝑆 ,⊤), (m, T𝑆 , n ≠ m)

(k, TglobG,k , n ≠ m), (nfresh, TlocG , n ≠ m)
)
, (𝜑,𝜓 ) ⊢

∅ ▷ if n ≠ m then #(h(m, k); nfresh).
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By transitivity, we get the final judgement:

E,Θ, C, (𝜑0,𝜓 ) ⊢ ∅ ▷
h(n, k), h(m, s), if n ≠ m then #(h(m, k); nfresh)

where C is the following constraint system:

{ (n, T𝑆 ,⊤) , (k, TglobG,k ,⊤) , (m, T𝑆 ,⊤),
(s, T𝑆 ,⊤) , (n, T𝑆 ,⊤) , (m, T𝑆 ,⊤),

(m, T𝑆 , n ≠ m), (k, TglobG,k , n ≠ m), (nfresh, TlocG , n ≠ m) }

Then Valid(C) is easily verified, and the proof is done.

5 PROOF SEARCH AND IMPLEMENTATION
We now describe the specification, heuristic and design choices of
our proof-search procedure — called search▷ — for bi-deduction, as
well as its implementation in our extension of Sqirrel [27]. Our
extension allows users to specify arbitrary games, and bi-deduction
verification is made available to the users through a tactic crypto
based on search▷, which takes as input the game to be used and
some (optional) initial constraints. Upon success, the tactic reduces
the equivalence to be proved to proof obligations corresponding to
missing parts of the constructed bi-deduction derivation.

Scope. Our goal is for search▷ and crypto to reach the expressivity
level of Sqirrel legacy cryptographic tactics, while being able to
tackle new cryptographic games. Crucially, legacy cryptographic
tactics, as well as crypto, are not expected to apply in complex
scenarios: a typical Sqirrel proofs consists in modifying the proof-
goal using its indistinguishability logic [8] to pave the way for the
application of a cryptographic game. Furthermore, since Sqirrel
is an interactive proof assistant, we aim for crypto to have a low
running time (i.e. a few seconds). This led to the following design
choice: search▷ does not backtrack and does not handle induction.
The former limitation is partially alleviated by a careful design of
our heuristics, and the latter with ad hoc pre-processing in the
implementation (described later).

Proof-search. Our procedure take as input a partial bi-deduction
judgment which it tries to complete into a valid judgement. That is,
given an environment E, hypotheses Θ, inputs ®𝑢#, a bi-constraint
system C# well-formed relatively to ®𝑢#, a pre-condition 𝜑#, and
outputs ®𝑣#, search▷ looks for additional hypotheses Θ′, constraints
C′# , and a post-condition𝜓#, such that the following bi-deduction
judgement is valid:

E,Θ ∪ Θ′, C# · C′#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#
Heuristic. The procedure proceeds by backwards proof search, ap-
plying rules whose conclusion matches ®𝑣# and recursing on the
rule premises. It greedily applies the oracle rule, but avoids us-
ing it in scenarios where name constraints added by the oracle
rule would trivially lead to an unsatisfiable constraint system. E.g.,
search▷ will not apply the oracle rule if doing so would associate
a name with a global tag T

glob
G,𝑣 when this tag is already associated

to a different name. When the status of a name w.r.t. constraints
does not necessarily allow to use an oracle, search▷ rewrites the
term to deduce in order to conditionally apply the oracle. For ex-
ample, in the PRF game using name k 𝑖 as the key, we can only

obtain h(𝑚, k 𝑗) using the hash oracle when 𝑖 = 𝑗 (assuming that
𝑚 is not in the logs). In that case, search▷ rewrites the term into
if 𝑖 = 𝑗 then h(𝑚, k 𝑖) else h(𝑚, k 𝑗), and uses the bi-deduction
rule for conditionals, to conclude using the hash oracle in the case
where 𝑖 = 𝑗 , and by computing the message explicitly otherwise
(adding the constraint that k 𝑗 is a simulator name when 𝑗 ≠ 𝑖).

Implementation. In addition to an implementation of search▷, the
crypto tactic comeswith a new syntax to declare arbitrary games, an
instantiation of the assertion logic, and a pre-processing technique
to handle recursive terms. Our implementation of the assertion
logic only supports sets of messages, which allows to handle, e.g.,
the sets of hashed messages in the PRF game of Fig. 1. As we shall
see, this suffices to support the games corresponding to legacy cryp-
tographic axioms, as well as some new (standard) games. Extending
the assertion logic beyond that is left to future work.

We designed a pre-processing technique to handle recursive
terms. When crypto is called on a equivalence ®𝑣0 ∼ ®𝑣1, it first
tries to show that all recursive sub-terms of ®𝑣0 ∼ ®𝑣1 can be bi-
deduced by induction. To do so, it generates a partial bi-deduction
sub-goal corresponding to the premise of the induction rule, and
calls search▷ on this partial sub-goal until it completes into a bi-
deduction judgement with a fixed-point assertion on the game’s
memory (i.e. 𝜑# = 𝜓#). Then, crypto calls search▷ on the initial
bi-deduction sub-goal #( ®𝑣0; ®𝑣1), knowing (by transitivity) that all
recursive sub-terms of #( ®𝑣0; ®𝑣1) can be bi-deduced. At the end of
its execution, a standard proof-obligation is generated to guaran-
tee that the constraint system returned by search▷ is valid. See
Appendix E.1 for more details on how recursion is handled.

6 CASE STUDIES
Our implementation has allowed us to validate our approach on
several promising case studies, which we briefly describe below.
These case-studies are available with the source code of the tool
(in sub-directory case-studies-ccs/), as well as in HTML files
that allow to replay the runs of Sqirrel on each example without
installing the tool.

The file hash-lock.sp presents the Sqirrel proof of our run-
ning example, i.e. strong secrecy for the Hash Lock protocols, de-
rived from the PRF game as in our examples.

We then illustrate how our crypto tactic can eventually replace
existing tactics, on the example of the Basic Hash protocol, which
is proved unlinkable in existing case studies using the EUF and
PRF legacy tactics. We adapt the same arguments using cryptowith
both EUF and PRF games in file basic-hash.sp. This shows that
our bi-deduction verification is already powerful enough for real
examples, though there is some work to be done to make it as easy
to use as legacy crypto tactics.

We show, obviously, that our approach is not limited to cryp-
tographic assumptions already supported by Sqirrel. In the file
private-authentication.sp we prove anonymity of the Private
Authentication protocol [20] using a previously unsupported cryp-
tographic assumption, CPA$, which roughly states the indistin-
guishability between an encryptedmessage and a fresh random sam-
pling. In the file nsl.sp, we prove a key result about the Needham-
Schroeder-Lowe public-key protocol [38], which crucially relies on
the CCA2 game that was previously unsupported in Sqirrel.
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Legacy cryptographic tactics in Sqirrel can only handle #(_; _)
in indistinguishabilities, and not in the protocols. Interestingly,
crypto does not have this limitation: in global-cpa.sp, we prove
the equivalence between two protocols outputting different values
(of the same length) using crypto on the CPA game; such equiva-
lences are often useful when reasoning about protocols.

7 RELATEDWORK AND DISCUSSION
We compare our work to different approaches in the area of pro-
gramming languages and formal methods for cryptography in Sec-
tion 7.1, 7.2 and 7.3, and discuss trust assumptions in Section 7.4.

7.1 Mechanizing cryptographic reductions
Different techniques have been used to obtain formal mechanized
proofs of cryptographic arguments.

Program logics. Techniques [2, 15, 16] relying on imperative
program logics, the most prominent one being the probabilistic
relational Hoare Logic, encode the cryptographic design and secu-
rity property under study as a stateful and sequential imperative
program. Then, the cryptographic arguments proving this program
security can be captured by program logics. These approaches are
very expressive, but current tools only support the manual appli-
cation of cryptographic games: to reduce the security of a design
Π to a game G, one has to explicitly write a simulator S such that
Π = SG. We do not have this limitation.

Often, these approaches embed their program logic in an ex-
pressive ambient logic, e.g. SSProve [2] is a Coq framework, and
EasyCrypt [15] implements a higher-order ambient logic. While
Squirrel’s local logic is also a higher-order logic, its (current) global
logic is less expressive than, e.g., Easycrypt’s ambient logic, because
it relies on asymptotic rather than concrete security — though re-
cent work [7] blurs this demarcation. This is deliberate: Squirrel
aims to capture higher-level arguments, with a focus on proto-
cols, which are notoriously laborious to analyze in pRHL-based
tools. Because of this, past Squirrel developments have required less
mathematical libraries than proofs dealing with crypto primitives.

Game transformations. CryptoVerif [18] is the only tool that au-
tomatically finds cryptographic reductions without being restricted
to a fixed set of built-in assumptions. CryptoVerif directly manip-
ulates cryptographic games which are iteratively modified using
an ad hoc set of game transformations implemented in the tool.
Because of its lack of logical foundations, CryptoVerif does not
support generic mathematical reasoning. In particular, proof obliga-
tions resulting from the application of a cryptographic assumption
cannot be discharged to the user as we do, limiting the tool’s ex-
pressiveness. Moreover, CryptoVerif can only handle assumptions
of the form (G0,G1) where G0 is a stateless game and G1 features
monotonous state (in the form of global write-once tables). Our
approach does not suffer from such a restriction from a theoretical
point-of-view: arbitrary stateful operations can be handled by using
a suitable assertion logic.

Property-specific approaches. There has been some number of
works which aim at automating cryptographic proofs for a fixed
target security property and a restricted class of programs, e.g. to
show that padding-based encryption schemes are IND-CCA2 [12],

to prove that block-cipher modes are IND-CPA [39] or AEAD [31],
or to analyze the EUF-MAC security of structure preserving sig-
natures [14]. Another similar previous work is Owl [29], which
uses a type-based approach to prove reachability properties under
a fixed set of cryptographic assumptions (IND-CPA, RO, . . . ). The
restrictions on the class of programs, assumptions and target secu-
rity properties allow these approaches to be highly automated and
efficient, but make them unsuitable as general-purpose frameworks
to mechanize cryptographic reductions.

Other CCSA-based approach. CryptoVampire [32] is a recent tool
designed to prove trace properties of security protocols using the
CCSA framework. CryptoVampire aims for a higher level of au-
tomation than Squirrel, by encoding the security of a protocol as a
first-order logic task that is then discharged to first-order theorem
provers (e.g. Vampire [37]). Because CryptoVampire relies on the
standard CCSA crypto axioms, it suffers from the issue we address
in this paper.

7.2 Deduction problem
The deduction problem has been extensively studied in the litera-
ture, albeit in different settings. E.g. [21, 24, 42] study this problem
in Dolev-Yao models, hence they only consider adversaries with
very restricted computing capabilities and which do not have access
to any oracles. In [23], the authors rely on a deduction predicate
with a computational semantics, which they use to prove some
security properties. However, this work is mostly interested in
non-deducibility rather than deducibility, and they only consider
adversaries without access to any oracles.

7.3 Component-based synthesis
Component-based synthesis consists in automatically generating
code implementing a given target API, starting from a source API.
While our problem could be reformulated in this setting (the target
API is the protocol under study, the source API is the cryptographic
game), existing CBS techniques are (to the best of our knowledge)
unsuitable for our setting, either because the code they can syn-
thesize is too simple for our simulators (e.g. [30, 33] only support
loop-free programs) or because they are test-driven and do not
provide formal guarantees on the produced code (e.g. [28, 41]).
More generally, while the problem of program synthesis has been
extensively explored by the programming language community,
it is usually done with different goals in mind, and under differ-
ent design constraints. We are not aware of any work allowing to
synthesize recursive and probabilistic programs interacting with
stateful APIs in an automated fashion, which is what we need here.

7.4 Trust Assumptions
In order to trust a Squirrel proof, one has to trust several com-
ponents. At a theoretical level, one first has to trust proof rules.
In particular, on has to trust the rules that encode cryptographic
assumptions, which is problematic due to their complexity. Our
work improves on this by replacing the trust placed in crypto-
graphic rules by trust in the bi-deduction proof rules, and in the
cryptographic games on which bi-deduction is instantiated. The
latter might still be considered problematic, in particular when
non-standard variants of cryptographic games are used to ease
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bi-deduction. An interesting perspective in that respect would be to
verify formally that the security of the game variants does follow
from that of standard games. This can be done by translating the
non-standard game to a formal framework where it may be proved
from the standard game: that framework could be Squirrel itself
(the game would be translated as a protocol) or another tool such
as CryptoVerif or EasyCrypt. The latter option would be similar to
the recent work on cv2ec [19], which allows to verify CryptoVerif
game transformations in EasyCrypt.

Trust is not only placed in theoretical systems, but also in (parts
of) the software that implements these systems: the trusted code
base (TCB). In the case of Squirrel, the TCB is essentially the whole
code base. The same holds for CryptoVerif or EasyCrypt, but foun-
dational frameworks such as SSProve [2] and CryptHOL [16] clearly
have a much smaller TCB. In order to improve on this, it would
be desirable that Squirrel tactics actually build proof objects from
elementary rules; these proof objects could then be verified by a
small kernel, as is the case in e.g. Coq, or even by an independent
software. In the case of our crypto tactic, the current implemen-
tation determines whether a proof exists, but does not build it; if
proof search produced a proof object, we would not have to trust
the correctness of the proof search algorithm, but could verify its
output a posteriori.

To go even further, the proof checker itself could be verified,
and integrated in a larger proof development carried out in a foun-
dational proof assistant such as Coq or Isabelle, where Squirrel’s
elementary proof rules could also be proved sound. Reaching this
level of trust would require significant efforts, which do not seem
justified at this point. This should be re-evaluated when Squir-
rel reaches a mature and more stable state, and allows proofs of
industrial-scale protocols such as TLS or Signal.

8 CONCLUSION
In order to systematically derive indistinguishabilities from cryp-
tographic games in the tool Sqirrel, we have designed a strong
notion of bi-deduction, a bi-deduction proof system, and we have
implemented an automated proof search procedure for it. We vali-
dated this procedure on several case studies.

This promising development calls for several future works. Much
work is obviously left to encapsulate bi-deduction verification into
user-friendly crypto tactics, and to improve the performance and
precision of our verification procedure. We will also push our im-
plementation on larger case studies, including ones using complex,
currently unsupported cryptographic assumptions, e.g. from elec-
tronic voting. From a theoretical point of view, our bi-deduction
relies on an exact semantics (i.e. the simulator must compute the
target terms with probability 1) which complicates bi-deduction
proofs because it does not allow the (otherwise ubiquitous) reason-
ing up-to overwhelming equality; we will explore several ways to
relax this limitation.

ACKNOWLEDGMENTS
This work received funding from the France 2030 programmanaged
by the French National Research Agency under grant agreement
No. ANR-22-PECY-0006.

REFERENCES
[1] 2013. CVE-2014-0160 aka. the Heartbleed bug. Available from MITRE. http:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
[2] Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder,

ThéoWinterhalter, Catalin Hritcu, Kenji Maillard, and Bas Spitters. 2021. SSProve:
A Foundational Framework for Modular Cryptographic Proofs in Coq. In CSF.
IEEE, 1–15.

[3] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy: How Diffie-
Hellman Fails in Practice. In 22nd ACM Conference on Computer and Communica-
tions Security.

[4] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar, Giancarlo
Pellegrino, and Alessandro Sorniotti. 2013. An authentication flaw in browser-
based single sign-on protocols: Impact and remediations. Computers & Security
33 (2013), 41–58.

[5] David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos, and Solène
Moreau. 2021. An Interactive Prover for Protocol Verification in the Compu-
tational Model. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021. IEEE, 537–554.

[6] David Baelde, Stéphanie Delaune, Adrien Koutsos, and Solène Moreau. 2022.
Cracking the Stateful Nut: Computational Proofs of Stateful Security Protocols
using the Squirrel Proof Assistant. In CSF. IEEE, 289–304.

[7] David Baelde, Caroline Fontaine, Adrien Koutsos, Guillaume Scerri, and Théo
Vignon. 2024. A Probabilistic Logic for Concrete Security. In 2024 IEEE 37th
Computer Security Foundations Symposium (CSF). IEEE Computer Society, Los
Alamitos, CA, USA, 484–499.

[8] David Baelde, Adrien Koutsos, and Joseph Lallemand. 2023. A Higher-Order
Indistinguishability Logic for Cryptographic Reasoning. In LICS’23. ACM. https:
//inria.hal.science/hal-03981949 to appear.

[9] Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. 2018. Formal Analysis of
Vote Privacy Using Computationally Complete Symbolic Attacker. In ESORICS
(2) (Lecture Notes in Computer Science, Vol. 11099). Springer, 350–372.

[10] Gergei Bana and Hubert Comon-Lundh. 2014. A Computationally Complete
Symbolic Attacker for Equivalence Properties. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM,
609–620.

[11] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,
Kevin Liao, and Bryan Parno. 2021. SoK: Computer-Aided Cryptography. In 2021
IEEE Symposium on Security and Privacy (SP). 777–795.

[12] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine
Lakhnech, Benedikt Schmidt, and Santiago Zanella Béguelin. 2013. Fully auto-
mated analysis of padding-based encryption in the computational model. In CCS.
ACM, 1247–1260.

[13] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco,
and Pierre-Yves Strub. 2015. Relational Reasoning via Probabilistic Coupling. In
LPAR (Lecture Notes in Computer Science, Vol. 9450). Springer, 387–401.

[14] Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov, Benedikt Schmidt,
and Mehdi Tibouchi. 2016. Strongly-optimal structure preserving signatures
from Type II pairings: synthesis and lower bounds. IET Inf. Secur. 10, 6 (2016),
358–371.

[15] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
2011. Computer-Aided Security Proofs for the Working Cryptographer. In
CRYPTO (Lecture Notes in Computer Science, Vol. 6841). Springer, 71–90.

[16] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. 2020. CryptHOL:
Game-Based Proofs in Higher-Order Logic. J. Cryptol. 33, 2 (2020), 494–566.

[17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017. Verified
models and reference implementations for the TLS 1.3 standard candidate. In
2017 IEEE Symposium on Security and Privacy. IEEE, 483–502.

[18] Bruno Blanchet. 2008. A Computationally Sound Mechanized Prover for Security
Protocols. IEEE Trans. Dependable Secur. Comput. 5, 4 (2008), 193–207.

[19] Bruno Blanchet, Pierre Boutry, Christian Doczkal, Benjamin Grégoire, and Pierre-
Yves Strub. 2024. CV2EC: Getting the Best of Both Worlds. In 2024 IEEE 37th
Computer Security Foundations Symposium (CSF). IEEE Computer Society, Los
Alamitos, CA, USA, 283–298.

[20] Michael Burrows, Martin Abadi, and Roger Needham. 1990. A Logic of Authenti-
cation. ACM Trans. Comput. Syst. 8, 1 (feb 1990), 18–36.

[21] Sergiu Bursuc, Hubert Comon-Lundh, and Stéphanie Delaune. 2014. Deducibility
constraints and blind signatures. Inf. Comput. 238 (2014), 106–127.

[22] Hubert Comon and Adrien Koutsos. 2017. Formal Computational Unlinkability
Proofs of RFID Protocols. In CSF. IEEE Computer Society, 100–114.

[23] Hubert Comon-Lundh, Véronique Cortier, and Guillaume Scerri. 2013. Tractable
Inference Systems: An Extension with a Deducibility Predicate. In CADE (Lecture
Notes in Computer Science, Vol. 7898). Springer, 91–108.

14

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://inria.hal.science/hal-03981949
https://inria.hal.science/hal-03981949


[24] Hubert Comon-Lundh and Vitaly Shmatikov. 2003. Intruder Deductions, Con-
straint Solving and Insecurity Decision in Presence of Exclusive or. In LICS. IEEE
Computer Society, 271.

[25] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL. ACM, 238–252.

[26] Cas Cremers, Caroline Fontaine, and Charlie Jacomme. 2022. A Logic and an
Interactive Prover for the Computational Post-Quantum Security of Protocols. In
SP. IEEE, 125–141.

[27] The Squirrel development team. 2024. The Squirrel Prover repository. https:
//github.com/squirrel-prover/squirrel-prover/.

[28] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017.
Component-based synthesis for complex APIs. In POPL. ACM, 599–612.

[29] J. Gancher, S. Gibson, P. Singh, S. Dharanikota, and B. Parno. 2023. OWL: Compo-
sitional Verification of Security Protocols via an Information-Flow Type System.
In 2023 2023 IEEE Symposium on Security and Privacy (SP) (SP). IEEE Computer
Society, Los Alamitos, CA, USA, 1130–1147.

[30] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of loop-free programs. In PLDI. ACM, 62–73.

[31] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. 2015. Automated
Analysis and Synthesis of Authenticated Encryption Schemes. In CCS. ACM,
84–95.

[32] Simon Jeanteur, Laura Kovács, Matteo Maffei, and Michael Rawson. 2024. Cryp-
toVampire: Automated Reasoning for the Complete Symbolic Attacker Cryp-
tographic Model. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 259–259.

[33] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In ICSE (1). ACM, 215–224.

[34] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout. 2019. An Abstract
Domain for Trees with Numeric Relations. In ESOP (Lecture Notes in Computer
Science, Vol. 11423). Springer, 724–751.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[36] Adrien Koutsos. 2019. The 5G-AKA Authentication Protocol Privacy. In EuroS&P.
IEEE, 464–479.

[37] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and
Vampire. In CAV (Lecture Notes in Computer Science, Vol. 8044). Springer, 1–35.

[38] Gavin Lowe. 1996. Breaking and fixing the Needham-Schroeder Public-Key
Protocol using FDR. In Tools and Algorithms for the Construction and Analysis of
Systems, TizianaMargaria and Bernhard Steffen (Eds.). Springer BerlinHeidelberg,
Berlin, Heidelberg, 147–166.

[39] Alex J. Malozemoff, Jonathan Katz, andMatthew D. Green. 2014. Automated Anal-
ysis and Synthesis of Block-Cipher Modes of Operation. In CSF. IEEE Computer
Society, 140–152.

[40] David Monniaux. 2003. Abstracting cryptographic protocols with tree automata.
Sci. Comput. Program. 47, 2-3 (2003), 177–202.

[41] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. 2014. Test-
driven synthesis. In PLDI. ACM, 408–418.

[42] M. Rusinowitch, R. Küsters, M. Turuani, and Y. Chevalier. 2003. An NP Deci-
sion Procedure for Protocol Insecurity with XOR. In Logic in Computer Science,
Symposium on. IEEE Computer Society, Los Alamitos, CA, USA, 261.

[43] Guillaume Scerri and Ryan Stanley-Oakes. 2016. Analysis of Key Wrapping
APIs: Generic Policies, Computational Security. In CSF. IEEE Computer Society,
281–295.

[44] Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security
proofs. IACR Cryptol. ePrint Arch. (2004), 332.

Outline of appendices. We give missing details of the logic’s syn-
tax and semantics in Appendix A, and the semantics of our pro-
gramming language is presented in Appendix B. In Appendix C
we develop the coupling method introduced in Section 4.3. In Ap-
pendix D, we present our complete proof system for bideduction.
Finally, Appendix E provides more details on the implementation of
our crypto tactic, and shows how the Hash Lock protocol’s security
can be proved in Sqirrel with this tactic.

A LOGIC
We present in more details the indistinguishability logic of [8],
including elided definitions, introducing new technical definitions

necessary for the rest of the appendices, and adding explanations
and examples.

A key aspect of the logic is that the probabilistic semantics of
a term is represented as a deterministic function taking random
tapes as input. This yields an eager sampling semantics for our logic,
where no random samplings are performed during the computa-
tion of the semantics. Instead, all necessary randomness is drawn
in advance, and the semantics retrieve random values from it as
needed. Using such a semantics makes all sources of randomness
explicit, and allows to easily track the randomness shared between
different computations.

Type structures and randomness. Any type structure M must
provide the sampling procedures used to sample values in each
type. First, for every base type 𝜏b ∈ B and [, a type structure M
defines the numberRM,[ (𝜏b) ∈ N of random bits needed to sample a
value of type 𝜏b. Second,M provides a machine J𝜏bK$M such that for
every [ and bitstring𝑤 of length RM,[ (𝜏b), J𝜏bK$M (1

[ ,𝑤) computes
a value in J𝜏bK

[

M
in time polynomial in [.

Term interpretation. For 𝑋 ∈ RVM (𝜏), we defineM[𝑥 ↦→ 𝑋 ] as
the model which maps 𝑥 to 𝑋 and is otherwise identical to M. The
interpretation J𝑡K[,𝜌

M:E ∈ RVM (𝜏) of any term 𝑡 of type 𝜏 is defined
as follows:

J𝑥K[,𝜌
M:E

def
= M(𝑥) ([) (𝜌) (if (𝑥 : 𝜏) ∈ E)

J𝑡 𝑡 ′K[,𝜌
M:E

def
= J𝑡K[,𝜌

M:E (J𝑡
′K[,𝜌
M:E )

J_(𝑥 : 𝜏0) . 𝑡K[,𝜌M:E
def
=


J𝜏0K

[

M
→ J𝜏K[

M

𝑎 ↦→ J𝑡K[,𝜌
M[𝑥 ↦→1

[
𝑎 ]:(E,𝑥 :𝜏0 )

where 1[𝑎 is the element of RVM (𝜏0) such that 1[𝑎 ([) (𝜌) = 𝑎 for
every 𝜌 and 1

[
𝑎 ([′) (𝜌) is some irrelevant value for [ ≠ [′. Note

that the parameters [ and 𝜌 remain constant throughout the inter-
pretation (an interpretation J𝑡K[,𝜌

M:E only depends on interpretations
of subterms of 𝑡 for the same parameters [, 𝜌) which reflects the
eager sampling semantics announced before.

Names. Let E be an environment and n a namewith type 𝜏0 → 𝜏1
in E. Then, in any model M : E, we require that there exist a
machine𝑤n such that, for every [ ∈ N and 𝑎 ∈ J𝜏0K

[

M
,𝑤n ([, 𝑎, 𝜌h)

extracts, in time polynomial in [, RM,[ (𝜏1) consecutive random bits
from the honest tape 𝜌h. Furthermore, we require that𝑤n ([, 𝑎, 𝜌h)
and𝑤n′ ([, 𝑎′, 𝜌h) extract disjoint parts of 𝜌h when either the names
n, n′ or the indices 𝑎, 𝑎′ differ. Then, the interpretation of the name
n is obtained by feeding the random bits extracted by 𝑤n to the
sampling algorithm J𝜏1K$M given by the type structure underlying
M. Then, we must have that:

JnK[,𝜌
M:E

def
=

{
J𝜏0K

[

M
→ J𝜏1K

[

M

𝑎 ↦→ J𝜏1K$M ([,𝑤n ([, 𝑎, 𝜌h))

By construction, if n1 : 𝜏1 → 𝜏 and n2 : 𝜏2 → 𝜏 are dis-
tinct names and 𝑎1 ∈ J𝜏1K

[

M
, 𝑎2 ∈ J𝜏2K

[

M
, the random variables

𝜌 ↦→ Jn1K
[,𝜌

M:E (𝑎1) and 𝜌 ↦→ Jn2K
[,𝜌

M:E (𝑎2) are independent and iden-
tically distributed, for any [. The same holds for Jn1K

[,𝜌

M:E (𝑎1) and
Jn1K

[,𝜌

M:E (𝑎
′
1) whenever 𝑎

′
1 ≠ 𝑎1. Going further, if 𝑡 is a term whose

free variables are either names other than n1, or variables 𝑥 such
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that adv(𝑥) holds, the random variables J𝑡K[
M:E and Jn1K

[

M:E are
also independent: indeed, the semantics of 𝑡 only depends on the
tape 𝜌a and segments of 𝜌h disjoint from the segments extracted
by n1.

Global formulas. The formulas of our first-order logic are stan-
dard. We call them global formulas and decorate their logical con-
nectives with a tilde to distinguish them from local formulas:

𝐹 ::= ⊥̃ | 𝐹 ⇒̃ 𝐹 | ∀̃(𝑥 : 𝜏) . 𝐹 |
const(𝑡) | adv(𝑡) | [𝑡]e | [𝑡] | 𝑡1, . . . , 𝑡𝑛 ∼ 𝑡 ′1, . . . , 𝑡

′
𝑛

Other connectives and quantifiers (¬̃, ∨̃, ∧̃, ∃̃) are defined from
⊥̃, ⇒̃, ∀̃ as usual. As for terms, we write E ⊢ 𝐹 when 𝐹 is well-typed
in E (we omit the typing rules, which are standard).

The semantics of first-order quantifiers and connectives are as
usual. The atom const(𝑡) requires that 𝑡 is a constant value, in-
dependent from both [ and 𝜌 , i.e. M |= const(𝑡) iff. there exists
𝑐 such that J𝑡K[,𝜌

M:E = 𝑐 for every [, 𝜌 . We already described the
semantics of the adv(𝑡), [𝑡]e, [𝑡] and 𝑡1, . . . , 𝑡𝑛 ∼ 𝑡 ′1, . . . , 𝑡

′
𝑛 atoms

in Section 3.1.

Example 7. The global formulas [𝜑] ∧̃ [𝜑] and [𝜑 ∧ 𝜑] are logi-
cally equivalent, but this does not hold with disjunctions. Finally, the
following axiom scheme is valid, for any terms ®𝑢, ®𝑣 :

∀̃𝑥∀̃𝑦. [𝑥 = 𝑦] ⇒̃ (®𝑢 ∼ ®𝑣) ⇒̃ (®𝑢{𝑥 ↦→ 𝑦} ∼ ®𝑣{𝑥 ↦→ 𝑦})
where, for any terms 𝑡, 𝑡 ′ and variable 𝑥 , we let 𝑡{𝑥 ↦→ 𝑡 ′} be the
term 𝑡 in which all occurrences of 𝑥 have been substituted by 𝑡 ′.

Example 8. For any 𝑡 : bool we haveM |= [𝑡]e ⇒̃ [𝑡] for anyM, i.e.
that formula is valid. The converse implication is not valid. Moreover,
[𝑡] is logically equivalent to 𝑡 ∼ true.

B PROGRAM SEMANTICS
We present here the semantics of our expressions and programs.

B.1 Program Random Tapes
To fit with the logic, all the randomness of our programs is sampled
eagerly and passed to the program using read-only random tapes.
To sample a value of type 𝜏b, we retrieve a vector𝑤$ of RM,[ (𝜏b)
bits from the random tapes, and then use the sampling algorithm
J𝜏bK$M ([,𝑤$) provided by the model to obtain a value in J𝜏bK

[

M
. To

simplify the presentation and analysis of the bi-deduction logic
in Section 4, we use a different random tape for each usage: we
will use a family of random tapes, one for each pair (T, 𝜏b) of ran-
domness source (i.e. tag T ∈ {TA, TG, TS}) and base type 𝜏b ∈ B we
are sampling from. However, we only consider bool for TA since
adversarial randomness is only needed for the adversarial function
symbols in Lp.

Definition 8. A program random tape 𝔭 is a family (𝔭|l)l∈L of
infinite sequences of bits indexed by the set of labels:

L
def
= {(TA, bool)} ∪

⋃
𝜏b∈B{(TG, 𝜏b)} ∪ {(TS, 𝜏b)}.

For any tag 𝑇 , we split 𝔭 |𝑇,𝜏 into blocks of RM,[ (𝜏) bits, and for any
𝑘 ∈ N, we let 𝔭|[,M

𝑇,𝜏
[𝑘] be the 𝑘-th such block. We may omit M and 𝜏

when they are clear from the context.
Finally, we let𝔓 be the set of all program random tapes.

[b][,𝔭
M,𝑖,`

def
= 𝑖 [𝑣][,𝔭

M,𝑖,`

def
= ` (𝑣) when 𝑣 ∈ Xp

[𝑓 ][,𝔭
M,𝑖,`

def
= J𝑓 K

[,(𝔭 |TA,bool,𝜌0 )
M:E when 𝑓 ∈ Lp

[𝑒1 𝑒2][,𝔭M,𝑖,`
def
= [𝑒1][,𝔭M,𝑖,` ( [𝑒2]

[,𝔭

M,𝑖,`
)

Figure 7: Semantics of expressions w.r.t. an modelM : E.

`𝑖init
[,𝔭

M
(·) def

= {eta ↦→ [}

`𝑖init
[,𝔭

M
(G) def

= `𝑖init
[,𝔭

M
(decl_varsG)

`𝑖init
[,𝔭

M
(decls; 𝑣 ← 𝑒) def

= L𝑣 ← 𝑒M[,𝔭` where ` = `𝑖init
[,𝔭

M
(decls)

Figure 8: Initial memory of a game G w.r.t.M and side bit 𝑖.

B.2 Expression Semantics
We say that a logical environment E is compatible with the set
of program variables Xp and library Lp if Lp ⊆ E and the set of
variables defined or declared in E is disjoint from Xp.

The semantics [𝑒][,𝔭
M,𝑖,`

of an expression 𝑒 of type 𝜏 is a value in
J𝜏K[

M
. This semantics is evaluated relatively to a memory `, a model

M : E such that Xp,Lp and E are compatible, a security parameter
[, a program random tape𝔭, and a bit 𝑖 ∈ {0, 1} stating onwhich side
the expression is evaluated. The semantics of expressions, defined
in Fig. 7, uses the bit 𝑖 to interpret the special boolean term b, and
the memory ` to evaluate program variables in Xp. Moreover, the
semantics of a library function 𝑓 ∈ Lp is:

[𝑓 ][,𝔭
M,𝑖,`

def
= J𝑓 K

[,(𝔭 |TA,bool,𝜌0 )
M:E

i.e. the (logical) semantics of 𝑓 in the model M, using 𝔭 |TA,bool as
adversarial (logical) random tape, and the all-zero random tape
𝜌0 as honest random tape — indeed all library function Lp will
be assumed to be adversarial, and therefore do not need honest
randomness.

We omit M and 𝑖 when they are clear from context, and write
[𝑒][,𝔭` instead of [𝑒][,𝔭

M,𝑖,`
.

B.3 Initial Memory
The initial memory `𝑖init

[,𝔭

M
(G) of a gameG for security parameter [,

program random tape𝔭, modelM and side bit 𝑖 ∈ {0, 1} is defined in
Fig. 8. It is obtained by evaluating the deterministic global variable
assignments. Moreover, the value of the security parameter is made
available to the game and the simulator through the variable eta.
Global random variables are not in this initial memory; they will
be sampled during oracle calls.

B.4 Program Semantics
The semantics of a program is parameterized by the game G that
the program can interact with, a model M : E (such that Xp,Lp
and E are compatible) used to interpret library function symbols,
the side bit 𝑖 ∈ {0, 1}, and the security parameter [. The evaluation
LpM[,𝔭G,M,𝑖,` ∈ MemM,[ ∪ {⊥} of a program p in memory ` and
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L𝑣 ← 𝑒M[,𝔭`
def
= `

[
𝑣 ↦→ [𝑒][,𝔭`

]
LabortM[,𝔭`

def
= ⊥ LskipM[,𝔭`

def
= `

Lp0; p1M
[,𝔭
`

def
=

{
Lp1M

[,𝔭

`′ if Lp0M
[,𝔭
` = `′

⊥ if Lp0M
[,𝔭
` = ⊥

Lif 𝑒 then p0 else p1M
[,𝔭
`

def
=

{
Lp0M

[,𝔭
` if [𝑒][,𝔭` = true

Lp1M
[,𝔭
` if [𝑒][,𝔭` = false

Lwhile 𝑒 do pM[,𝔭`
def
= lim

𝑛→∞
Lloop𝑛M

[,𝔭
`

where loop𝑛 = (if 𝑒 then p else skip)𝑛 ; if 𝑒 then abort else skip

L𝑣 $← T[𝑒]M[,𝔭`
def
= `

[
𝑣 ↦→ J𝜏K$M ([,𝔭 |

[

(T,𝜏 ) [𝑘])
]
where 𝑘 = [𝑒][,𝔭` and 𝑣 has type 𝜏

L𝑣 ← 𝑂 𝑓 (®𝑒 ) [ ®𝑒𝑔 ; ®𝑒𝑙 ]M
[,𝔭
`

def
= let `′ = `


𝑓 .args ↦→ [®𝑒 ][,𝔭`
G.glob$ ↦→ 𝔭 |[TG [ [ ®𝑒𝑔 ]

[,𝔭
` ]

𝑓 .loc$ ↦→ 𝔭 |[TG [ [ ®𝑒𝑙 ]
[,𝔭
` ]

 in

let `′′ = L𝑓 .progM[,𝔭
`′ in

`′′
[
𝑣 ↦→ [𝑓 .expr][,𝔭

`′′
]

Figure 9: Program semantics w.r.t. a modelM : E, a side 𝑖 ∈ {0, 1} and a game G.

using the program random tape 𝔭 is either the memory obtained by
executing p, or ⊥ if the execution does not terminate. Its definition,
given in Fig. 9, is mostly standard; we describe next the treatment
of oracle calls and samplings.

If 𝑣 is a variable of type 𝜏 , then the evaluation of the random
sampling 𝑣 $← T[𝑒] w.r.t. memory ` and program random tape 𝔭
evaluates the integer 𝑒 as an offset 𝑘 ∈ N, retrieves the 𝑘-th block
of random bits 𝔭 |[(T,𝜏 ) [𝑘] from the random tape labeled by (T,𝜏),
and uses it to run the sampling algorithm J𝜏K$

M
provided by the

model M.
To evaluate an oracle call instruction 𝑣 ← 𝑂 𝑓 (®𝑒 ) [ ®𝑒𝑔 ; ®𝑒𝑙 ], we first

evaluate the arguments ®𝑒 , the global randomness offsets ®𝑒𝑔 and the
local randomness offsets ®𝑒𝑙 , and store the results in, resp., 𝑓 .args,
G.glob$ and 𝑓 .loc$ ; then, we execute the oracle body 𝑓 .prog; and
finally, we store the result of the evaluation of the return expression
𝑓 .expr in 𝑣 .

B.5 Cost Model
To keep our approach generic and abstract, we assume that our
program semantics is endowed with a time-cost model satisfying
some standard and expected properties.

More precisely, we assume a cost function𝐶 parameterized by the
modelM which associates to each program p, security parameter [
and memory ` a worst-case execution time𝐶M (p, [, `) ∈ N∪{+∞}
which bounds execution times of p for all possible program tapes —
this cost must be +∞ if some execution does not terminate. We say
that a program p is PTIME w.r.t.M when𝐶M (p, [, `) is bounded by
a polynomial in [ and |` | (the sum of the sizes of all values stored
in `). We will assume only a few basic properties of this cost model:
• all expressions are PTIME, which is reasonable as sampling
procedures provided by the model are PTIME, and since
library functions are assumed to be adversarial;

• the memory after executing a PTIME program is of polyno-
mial size in [ and the size of the initial memory;
• an oracle call is PTIME, which is both a constraint on the
cost model and the game;
• if both 𝑝 and 𝑞 are PTIME programs, then so is (𝑝; 𝑞);
• while 𝑙 ≠ [] do (p; 𝑙 ← tail 𝑙) is PTIME provided that p
is a PTIME program that does not modify variable 𝑙 , in all
models where tail induces a well-founded ordering on the
semantic values of type list.

B.6 Adversaries
An adversary against G (or G-adversary) with respect to a model
M : E and a security parameter [ is a program which may only
call the oracles of G, respecting their type. Moreover, an adversary
must not read the special side constant b, and must not read or
write the game variables. Finally, the program must properly use
random samplings, in any possible execution inM, with the security
parameter [:
• We forbid the adversary from directly sampling from the
TG-labeled random tapes, which are reserved for the game’s
random samplings.
• We require that local offsets in oracle calls are fresh: an
integer used as a local offset may not be used anywhere else
as an offset, in this oracle or in a past or future call.
• We require that global offsets are consistent across all oracle
calls: each of the game’s global samplings must correspond
to a unique global offset.

C PROBABILISTIC COUPLINGS AND
BI-DEDUCTION

In this appendix we go back to Section 4.3, where we intuitively
introduced the notion of well-formedness for constraint systems,

17



coming from the need to lift semantical equalities to probabilistic
equalities. We show a counter-example illustrating the need for the
well-formedness condition, then define formally this condition, and
prove Lemma 1.

Example 9. Consider a name n : unit→ bool and let C = {𝑐0, 𝑐1}
with:

𝑐0 = (∅, n, ⟨⟩, T𝑆 , n ⟨⟩ = 0)
𝑐1 = (∅, n, ⟨⟩, TlocG , n ⟨⟩ = 1)

In words, n ⟨⟩ must be seen as a simulator name when it is 0, and a
local sampling of the game when it is 1. But, to know in which case
we are, we must already have sampled n ⟨⟩!

Let us show that a coupling cannot be included in R[C,M. First

observe that 𝜌 R[C,M 𝜌a imposes that 𝜌a is a prefix of 𝔭[TA, bool]
and:
• either Jn ⟨⟩K[,𝜌

M:E = 0 and 𝔭 |[T𝑆 [𝑂M,[ (n, ⟨⟩)] = 0;
• or Jn ⟨⟩K[,𝜌

M:E = 1 and 𝔭 |[
TlocG
[𝑂M,[ (n, ⟨⟩)] = 1.

Less formally, the logical tape must coincide with the simulator tape
on n ⟨⟩ when this sampling is zero; otherwise it must coincide with
the local sampling tape for that name. Thus, the program tape 𝜌a such
that 𝔭 |[T𝑆 [𝑂M,[ (n, ⟨⟩)] = 0 and 𝔭 |[

TlocG
[𝑂M,[ (n, ⟨⟩)] = 1 is not related

to any logical tape in R[C,M — for any 𝜌 , we do not have 𝜌 R[C,M 𝜌a.

Hence the right marginal of a coupling included in R[C,M would never
sample such tapes. This missing set of tapes has non-zero measure
(in fact it has measure 1

4 ) hence the right marginal of our coupling
would not coincide with the standard distribution over program tapes,
which is a contradiction.

C.1 Preliminaries: Probability Theory
We first recall some standard definitions from measure and proba-
bility theory.

Definitions. For any set S, we let P(S) be the power-set of S.
A 𝜎-algebra F over a set S is a non-empty subset of P(S) closed
under: i) complement; and ii), countable union and intersection.
An element 𝐸 of a 𝜎-algebra is called an event. A measurable space
(S, F ) is a set S equipped with a 𝜎-algebra F . A measure space
(S, F , `) is a measurable set (S, F ) together with a function ` :
F → [0; 1] — called a measure — such that i) ` (∅) = 0; ii) ` is
non-negative (i.e. ∀𝐸 ∈ F , ` (𝐸) ≥ 0); iii) ` is 𝜎-additive, i.e. for any
countable sequences (𝐸𝑖 )𝑖∈N of disjoint elements of F , ` (⋃𝑖 𝐸𝑖 ) =∑
𝑖 ` (𝐸𝑖 ). A probability space (S, F , `) is a measure space of total

mass is 1, i.e. ` (S) = 1. A distribution 𝐷 over a measurable space
(S, F ) is a function such that (S, F , 𝐷) is a probability space. Two
distributions 𝐷1 and 𝐷2 over (S, F ) are said to be of the same
law if 𝐷1 (𝐸) = 𝐷2 (𝐸) for any 𝐸 ∈ F . Finally, a random variable
𝑋 : Ω → S from a probability space (Ω, FΩ, `Ω) to a measurable
space (S, FS) is any function such that ∀𝐸 ∈ FS , 𝑋 −1 (𝐸) ∈ FΩ .

Notations. If (S, F , `) is a measure space and 𝐸 an event of F ,
then the probability Pr(𝐸) of 𝐸 is simply ` (𝐸). Similarly, if𝐷 is a dis-
tribution over (S, F ) and 𝐸 an event of F , then Pr(𝐷 ∈ 𝐸) def= 𝐷 (𝐸).
If 𝑋 is a random variable from the probability space (Ω, FΩ, `Ω) to
(S, FS) and 𝐸 an event of FS , then Pr(𝑋 ∈ 𝐸) def= ` (𝑋 −1 (𝐸)).

Distributions as programs. We will describe some distributions
using programs written in pseudo-code, e.g. if 𝐷 is a distribution,
then the program x $← 𝐷 ; y $← 𝐷 ; return (x, x + y) defines a distri-
bution over pair of values. Given a program 𝑝 , we write Pr𝑝 (𝐸) the
probability of event 𝐸 w.r.t. the distribution defined by 𝑝 .

𝜋 and _ systems. Let S be a set and 𝑋 ⊆ P(S), then:
• 𝜎 (𝑋 ) is the smallest 𝜎-algebra containing 𝑋 — we say that
𝑋 generates 𝜎 (𝑋 ).
• 𝑋 is a 𝜋-system if 𝑋 is closed under finite intersections.
• 𝑋 is a _-system if ∅ ∈ 𝑋 and 𝑋 is closed under complement
and countable disjoint unions.

We recall the following standard result:

Proposition 2 (Dynkin (𝜋, _)-Theorem). Let 𝑃 be a 𝜋-system and
𝐿 a _-system. If 𝑃 ⊆ 𝐿 then 𝜎 (𝑃) ⊆ 𝐿.

To show that two distribution coincide, it is sufficient to show
that they coincide on a generating 𝜋-system 𝐵.

Proposition 3. Let (S, F ) be a measurable set and 𝐷1, 𝐷2 be two
distributions over S. Let 𝐵 by a 𝜋-system such that 𝜎 (𝐵) = F . If 𝐷1
and 𝐷2 agree on 𝐵 then 𝐷1 and 𝐷2 agree on F , i.e.

if ∀𝐸 ∈ 𝐵, 𝐷1 (𝐸) = 𝐷2 (𝐸) then ∀𝐸 ∈ F , 𝐷1 (𝐸) = 𝐷2 (𝐸)

Proof. Let 𝐿 def
= {𝐸 ∈ F | 𝐷1 (𝐸) = 𝐷2 (𝐸)}. We can check that

𝐿 is a _-system. By hypothesis, 𝐵 ⊆ 𝐿. Hence, by Dynkin (𝜋, _)-
theorem, 𝜎 (𝐵) ⊆ 𝐿, which, since 𝐵 generates F , means that F ⊆ 𝐿.
Moreover, we trivially have from the definition of 𝐿 that 𝐿 ⊆ F .
Hence F = 𝐿, and thus that 𝐷1 and 𝐷2 coincides on F . □

C.2 Couplings and Lifting Lemma
Recall that, in section Section 4.3, in order to be able to lift equalities
over tapes in R[C,M to equalities over probabilities, we relied on the
standard notion of a probabilistic coupling and lifting (as in [13]).In
this section, we give the definition of probabilistic coupling, before
defining containment and a general lifting lemma.

Definition 9 (Probabilistic coupling). Let (S1, F1, `1) and (S2, F2, `2)
be two probabilistic spaces.A couplingC of `1 and `2, writtenC : `1 ⊲⊳
`2, is a random variable C : Ω → S1 × S2 from some probabilistic
space Ω to S1 × S2 such that:

• `1 and C’s left marginal follow the same law, i.e.:

∀𝐸1 ∈ F1 . Pr`1 (𝐸1) = Pr(𝐶 ∈ 𝐸1 × S1).

• similarly, `2 and C’s right marginal follow the same law.

The coupling we build will be contained in the relation R[C,M,
ensuring that only related tapes are coupled.

Definition 10 (Probabilistic containement). Let (S, F , `) be a prob-
abilistic space and 𝐸 ∈ F an event. We say that the measure ` is
contained in 𝐸, when for all 𝐹 ∈ F , ` (𝐹 ) = ` (𝐹 ∩ 𝐸).

The following lemma allows to lift an equality over elements
related by a relation 𝑅 to a equality over probabilities, as long as
there exists a probabilistic coupling contained in 𝑅.
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Lemma 2. Let (S1, F1, `1) and (S2, F2, `2) be two probabilistic
spaces, 𝑅 ⊆ S1 × S2 a relation between S1 and S1 and 𝐸1 ∈ F1 and
𝐸2 ∈ F2 be events such that:

for all 𝑥 𝑅 𝑦, 𝑥 ∈ 𝐸1 iff. 𝑦 ∈ 𝐸2. (7)

Then Pr`1 (𝐸1) = Pr`2 (𝐸2) if there exists a coupling ` : `1 ⊲⊳ `2
contained in 𝑅.

Proof. First, notice that by Eq. (7):

(𝐸1 × S2) ∩ 𝑅 = (𝐸1 × 𝐸2) ∩ 𝑅 (8)

and
(S2 × 𝐸2) ∩ 𝑅 = (𝐸1 × 𝐸2) ∩ 𝑅. (9)

Now, let ` : `1 ⊲⊳ `2 be a coupling contained in 𝑅. Then:

Pr`1 (𝐸1) = Pr` (𝐸1 × S2) (left marginal property)
= Pr` ((𝐸1 × S2) ∩ 𝑅) (by containement)
= Pr` ((𝐸1 × 𝐸2) ∩ 𝑅) (by Eq. (8))
= Pr` ((S1 × 𝐸2) ∩ 𝑅) (by Eq. (9))
= Pr` (S1 × 𝐸2) (by containement)
= Pr`2 (𝐸2) (right marginal property)

which concludes this proof. □

C.3 Well-Formedness of Constraint Systems
The goal of this section is to define the notion of well-formedness
of a constraint system used in Lemma 1.

Doing so requires us to first introduce what are constraint in-
stances.

Definition 11 (Constraint instance). Let ®𝛼 = (𝛼0, . . . , 𝛼 𝑗 ) be a
sequence of variables of type ®𝜏 = 𝜏0, . . . , 𝜏 𝑗 . An instance of a constraint
𝑐 = ( ®𝛼, n, 𝑡,𝑇 , 𝑓 ) w.r.t. a type structure M0 and [ ∈ N is an element
( ®𝑎, 𝑐) where ®𝑎 = (𝑎0, . . . , 𝑎 𝑗 ) and for any 𝑖 ∈ {0, . . . , 𝑗}, 𝑎𝑖 ∈ J𝜏𝑖K

[

M0
.

Given a modelM and a random tape 𝜌 , we can interpret a con-
straint instance as a multi-set in a similar way to what we did with
constraints:

N[,𝜌( ®𝑎,( ®𝛼,n,𝑡,𝑇 ,𝑓 ) ),M
def
=

{
⟨n, J𝑡K[,𝜌

M[ ®𝛼 ↦→1
[

®𝑎 ]
,𝑇 ⟩

�� J𝑓 K[,𝜌
M[ ®𝛼 ↦→1

[

®𝑎 ]
= true

}
We lift this to any sequence 𝑙C of constraint instances as follows:

N[,𝜌
𝑙C ,M

def
=

⋃
( ®𝑎,𝑐 ) ∈𝑙C N

[,𝜌

( ®𝑎,𝑐 ),M

where, in the equation above,
⋃

must be understood as multi-set
union in the equation above.

We are now ready to explain what is a well-formed constraint sys-
tem. Roughly, a constraint system C is well-formed if there exists an
ordering 𝑐1, . . . , 𝑐𝑛 of the concrete instances it represents that veri-
fies the property that for any 𝑖 , the instance 𝑐𝑖 = ( ®𝑎, ( ®𝛼, n, 𝑡,𝑇 , 𝑓 )) is
such that the index 𝑡 and condition 𝑓 can be computed using only
the names defined by the previous constraint instances 𝑐1, . . . , 𝑐 𝑗−1.

Definition 12 (Restriction of a random tape). The restriction 𝜌 |M,[,𝑙C
of a random tape 𝜌 by a sequence of constraint instances 𝑙C w.r.t. a
modelM and [ ∈ N is the random tape obtained from 𝜌 by zeroing
all random bits that corresponds to names that are not in N[,𝜌

𝑙C ,M
.

Definition 13 (Well-formedness of constraint instances). A finite
sequence 𝑙C = (𝑐1, . . . , 𝑐𝐾 ) of constraint instances is well-formed w.r.t.
a model M : E and [ ∈ N relatively to the terms ®𝑢 when for any
𝑘 ≤ 𝐾 , if 𝑐𝑘 = ( ®𝑎, ( ®𝛼, 𝑛, 𝑡,𝑇 , 𝑓 )) then there exists a function 𝑔 such
that

𝑔(𝜌 |M,[,𝑙𝑘C , J®𝑢K[,𝜌
M:E ) = J(𝑡 | 𝑓 )K[,𝜌

M[ ®𝛼 ↦→1
[

®𝑎 ]:(E, ®𝛼 )

where 𝑙𝑘C = (𝑐0, . . . , 𝑐𝑘−1).

We can now define the well-formedness of a constraint system.

Definition 14 (Well-formedness of constraint systems). A con-
straint system C is well-formed w.r.t. a modelM and [ ∈ N relatively
to a vector of input terms ®𝑢 when there exists a sequence 𝑙C of con-
straints instances such that for any tape 𝜌 , N[,𝜌C,M = N[,𝜌

𝑙C ,M
, and 𝑙C is

well-formed w.r.t.M, [ relatively to ®𝑢.
In that case, we say that 𝑙C witnesses the well-formedness of C.

We write E,Θ |=WF(®𝑢) C if C is well-formed w.r.t.M, [ relatively
to ®𝑢 for any [ and any M : E such that E,Θ |= M. For pairs
C# = #(C0;C1) of constraint systems, E,Θ |=WF( ®𝑢#) C# stands for
well-formedness of both C0 relatively to ®𝑢0 and C1 relatively to ®𝑢1.
The fact that the notion is relatively to term comes from the need
to compose the well-formedness of constraints system in the way
we do for adversaries in the bi-deduction inference rules later on,
so morally each constraints systems is allowed access to inputs,
just like adversaries. Finally, we say that a constraints system is
well-formed if it well-formed relatively to the empty sequence of
terms.

Outline. The following two sections of this appendix aims at
proving Lemma 1, i.e. that a probabilistic coupling contained in
R[C,M can be constructed from any well-formed and valid con-
straint systems C. First, we prove a preliminary result showing
how to build a coupling between two distributions over arrays of
independent and identically distributed (i.i.d. for short) values in
Appendix C.4, and we then use this result to prove Lemma 1 in
Appendix C.5.

C.4 Couplings Arrays
We prove some preliminary results showing how to build couplings
of arrays of values.

I.i.d. Sampling of arrays. Let I be a finite set, and let 𝐷S be a fixed
but arbitrary distribution over some measurable space (S, F ). We
identify the set SI with arrays indexed by I of values in S.

Definition 15. We let 𝐷I
S
be the distribution over SI (equipped

with the product 𝜎-algebra) where all cells are independently sam-
pled according to 𝐷S , i.e. the distribution defined by the program (in
pseudo-code):

a← [⊥ for _ ∈ I];

for ( 𝑗 ∈ I) do { a[ 𝑗 ] $← 𝐷S ; }
return a;

(10)

where ⊥ is a special element (s.t. ⊥ ∉ S) used to denote a cell that is
yet to be sampled.
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Proposition 4. Let I be a finite set, and 𝑝 be any program of the
form:

a← [⊥ for _ ∈ I];
s← sinit;

for (_ ∈ |I | ) do { 𝑖 ← f(s) ; a[𝑖 ] $← 𝐷S ; s← g(s, a) ; }
return a;

(11)

where sinit, f and g are arbitrary mathematical deterministic functions
such that at the end of the execution of the above program, all cells in
I are sampled.

Then 𝑝 defines a distribution over SI of law 𝐷I
S
.

Proof. Let 𝑛 = |I| and 𝐸1, . . . , 𝐸𝑛 ∈ F be events of (S, F ). First,
let us prove that:

Pr𝑝 (a ∈
∏
𝑖 𝐸𝑖 ) = Pr𝑝0 (a ∈

∏
𝑖 𝐸𝑖 ) (12)

where 𝑝0 is the program sampling the array in an i.i.d. fashion as
described in Eq. (10) (hence Pr𝑝0 (a ∈

∏
𝑖 𝐸𝑖 ) =

∏
𝑖 Pr(𝐷S ∈ 𝐸𝑖 )).

We start be splitting the sum:

Pr𝑝 (a ∈
∏
𝑖 𝐸𝑖 ) =

∑
𝜎 Pr𝑝 ((a ∈

∏
𝑖 𝐸𝑖 ) | 𝐴𝜎 ) · Pr𝑝 (𝐴𝜎 )

where the sum is over all permutations of {1, . . . , 𝑛} and 𝐴𝜎 is
the event: “𝑝 sampled values in the array in the order 𝜎”. Condi-
tioned by 𝐴𝜎 , the probability that 𝑝 samples an array in

∏
𝑖 𝐸𝑖 is

the probability that the program:

a← [⊥ for _ ∈ I];

for ( 𝑗 ∈ I) do { a[𝜎 ( 𝑗 ) ] $← 𝐷S ; }
return a;

samples an array in
∏
𝑖 𝐸𝑖 , i.e.

∏
𝑖 Pr(𝐷𝑆 ∈ 𝐸𝜎−1 (𝑖 ) ). Hence:∑

𝜎 Pr𝑝 ((a ∈
∏
𝑖 𝐸𝑖 ) | 𝐴𝜎 ) · Pr𝑝 (𝐴𝜎 )

=
∑
𝜎

∏
𝑖 Pr(𝐷𝑆 ∈ 𝐸𝜎−1 (𝑖 ) ) · Pr𝑝 (𝐴𝜎 )

=
∏
𝑖 Pr(𝐷𝑆 ∈ 𝐸𝑖 ) ·

∑
𝜎 Pr𝑝 (𝐴𝜎 )

=
∏
𝑖 Pr(𝐷𝑆 ∈ 𝐸𝑖 )

This concludes the proof of Eq. (12).

To finish the proof, we must show that Pr𝑝 (a ∈ 𝐸) = Pr𝑝0 (a ∈ 𝐸)
for any event 𝐸 in the product 𝜎-algebra

∏
1≤𝑖≤𝑛 F . Let 𝐵 be the

set:

𝐵
def
= {𝐸1 × · · · × 𝐸𝑛 | 𝐸1, . . . , 𝐸𝑛 ∈ F }

We know that 𝑝 and 𝐷I
S
coincide on 𝐵 (by Eq. (12)). Moreover, we

can check that 𝐵 is a 𝜋-system. By Proposition 3, 𝑝 and 𝐷I
S
agree

on the 𝜎-algebra generated by 𝐵, which is the product 𝜎-algebra
over SI. Consequently, 𝑝 is of law 𝐷I

S
. □

Couplings i.i.d. arrays from selection functions. Let I1 and I2 be
two finite sets, and let 𝐷S be fixed by arbitrary distribution over a
measurable space (S, F ) (the sample space).

Assume that we have a function select such that, for any two
partially sampled arrays a1 : I1 → S ∪ {⊥} and a2 : I2 → S ∪ {⊥},
(select a1 a2) either select a pair of ⊥-valued indices of a1 and a2,
or return a special value done. More precisely:

∀a1, a2 . select a1 a2 ∈ (I1 × I2) ∪ {done}
and select a1 a2 = (𝑖1, 𝑖2) ⇒ a1 [𝑖1] = ⊥ ∧ a2 [𝑖2] = ⊥

(13)

Let 𝑝𝑐 (select) be the distribution over 𝐷I1
S
× 𝐷I2

S
defined by the

program (in pseudo-code):
a1 ← [⊥ for _ ∈ I1 ];
a2 ← [⊥ for _ ∈ I2 ];
while (select a1 a2 ≠ done) do {
(𝑖1, 𝑖2 ) ← select a1 a2;

v $← 𝐷S ;

a1 [𝑖1 ] $← v;

a2 [𝑖2 ] $← v;
}

for (𝑖 ∈ I1 ) do { if (a1 [𝑖 ] = ⊥) then a1 [𝑖 ] $← 𝐷S ; else skip }

for (𝑖 ∈ I2 ) do { if (a2 [𝑖 ] = ⊥) then a2 [𝑖 ] $← 𝐷S ; else skip }
return (a1, a2 ) ;

Proposition 5. For any selection function select satisfying Eq. (13),
we have that:

𝑝𝑐 (select) : 𝐷I1
S
⊲⊳ 𝐷

I2
S
.

Proof. It is clear that 𝑝𝑐 (select)’s left marginal follows the same
distribution as:

a1 ← [⊥ for _ ∈ I1 ];
a2 ← [⊥ for _ ∈ I2 ];
while (select a1 a2 ≠ done) do {
(𝑖1, 𝑖2 ) ← select a1 a2;

a1 [𝑖1 ] $← 𝐷S ;
a2 [𝑖2 ] ← a1 [𝑖1 ];

}

for (𝑖 ∈ I1 ) do { if (a1 [𝑖 ] = ⊥) then a1 [𝑖 ] $← 𝐷S ; else skip }
return a1;

This program samples all the cells of 𝑎1 independently according
to the distribution 𝐷S , in some particular order. By Proposition 4,
we know that the order in which we sample cells does not matter,
and that the distribution defined this program is of law 𝐷

I1
S
.

Repeating the same reasoning on the right, we get that𝑝𝑐 (select)’s
right marginal follows the distribution 𝐷I2

S
, which concludes this

proof. □

C.5 Constructing a Coupling Contained in R[C,M
We now recall and prove Lemma 1.

Lemma 1. Let C be a well-formed constraint system w.r.t.M, [ such
that M |= Valid(C). Then, there exists a coupling C : TM,[ ⊲⊳ 𝔓

contained in R[C,M.

Proof. Let M be a model, [ a value of the security parameter
and C a constraint system such that C is both valid and well-formed
w.r.t. M. We are going to build, for any [ ∈ N, a coupling that is
contained in R[C,M.

We use the framework of Proposition 5 for building couplings.We
instantiate it such that a1 represents a (partially defined) logical tape,
which will be noted 𝜌 , and a2 represents the relevant finite portion
of a partial computational tape, noted 𝔭. Given a partial logical tape
𝜌 , mapping each type and index in RM,[ (𝜏) to a value in {0, 1,⊥},
we say that a term 𝑡 is well-defined w.r.t. 𝜌 when J𝑡K[,𝜌1

M:E = J𝑡K[,𝜌2
M:E

for all tapes 𝜌1 and 𝜌2 that coincide with 𝜌 where it is defined.
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When it is the case, we allow ourselves to simply write J𝑡K[,𝜌
M:E for

this unique value.
We now describe the selection function (select 𝜌 𝔭) with which

we instantiate the framework. Let 𝑙C be a sequence of instances
witnessing the well-formedness of C w.r.t.M, [. At each iteration,
the function select chooses, if it exists, the smallest integer 𝑘 , such
that the 𝑘𝑡ℎ element in 𝑙C is a constraint instance ( ®𝑎, 𝑐) with 𝑐 =
( ®𝛼, n, 𝑡,𝑇 , 𝑓 ) ∈ C such that:

(a) both J𝑓 K[,𝜌
M[ ®𝛼 ↦→®𝑎]:E, ®𝛼 and J𝑡K[,𝜌

M[ ®𝛼 ↦→®𝑎]:E, ®𝛼 are defined w.r.t. 𝜌 ,
and the former is true;

(b) 𝜌 still contains ⊥ in the segment corresponding to name n
and index J𝑡K[,𝜌

M[ ®𝛼 ↦→®𝑎]:E, ®𝛼 ;
(c) 𝔭 still contains ⊥ in the segment corresponding to name n,

index J𝑡K[,𝜌
M[ ®𝛼 ↦→®𝑎]:E, ®𝛼 and tag 𝑇 ,

and returns the corresponding indices in the logical and computa-
tional tapes. Otherwise, it returns done.

It should be noted that select does not simply consider offsets
in the order prescribed by 𝑙C . To explain why this is necessary,
consider two equivalent constraint instances ( ®𝑎, 𝑐) and ( ®𝑎′, 𝑐′), i.e.
such that they both satisfy (a) and their indices are the same:

J𝑡K[,𝜌
M[ ®𝛼 ↦→®𝑎]:E, ®𝛼 = J𝑡 ′K[,𝜌

M[ ®𝛼 ↦→ ®𝑎′ ]:E, ®𝛼
.

Then, ( ®𝑎, 𝑐) and ( ®𝑎′, 𝑐′) refers to the same offsets, and the function
select should not return twice the same offsets.

We now show that our coupling is contained in R[C,M. To do so,
consider an arbitrary run of 𝑝𝑐 (select). We say that an instance
( ®𝑎, 𝑐) is addressed at some point in this run if satisfies (a) but nei-
ther (b) nor (c). Once an instance is addressed, the value of the
corresponding name will have been set in the tapes. Note, though
that an instance needs not be selected to be addressed: it suffices
that an equivalent constraint instances is selected.

We observe that, at every step of our run, and for every instance
for which condition (a) holds, conditions (b) and (c) are equivalent.
Indeed, if only one kind of tape is defined for our name, it must have
been set due to the previous selection of another constraint instance,
but validity imposes that distinct instances address distinct names.

Then, we note that, for every instance ( ®𝑎, 𝑐) in the sequence 𝑙C ,
if all instances preceding ( ®𝑎, 𝑐) in 𝑙C have been addressed then con-
dition (a) holds. This is a consequence of well-foundedness. Indeed,
let 𝑐 = ( ®𝛼, n, 𝑡,𝑇 , 𝑓 ) and 𝑙 ′ =

(
( ®𝑎0, 𝑐0), . . . , ( ®𝑎𝑘 , 𝑐𝑘 )

)
be the instances

strictly before the position of the instance ( ®𝑎, 𝑐) we consider in 𝑙C .
We have that for any �̂� , the semantics of (𝑡 | 𝑓 ) is a function of
�̂� |M,[,𝑙 ′ . We assumed that all the instances of 𝑙 ′ have been addressed.
Then for any tapes �̂� and �̃� that coincide with the partial tape 𝜌 , we
have that �̂� |M,[,𝑙 ′ = �̃� |M,[,𝑙 ′ , and thus (𝑡 | 𝑓 ) is well-defined w.r.t. 𝜌 .

To conclude, every instance in 𝑙C will eventually be addressed.
Hence, for any (𝑛, 𝑣, T) ∈ N[,𝜌

𝑙C ,M
= N[,𝜌C,M, we have J𝑛K[,𝜌

M:E (𝑣) =
𝔭|[T [𝑂M,[ (𝑛, 𝑣)]. The rest of R

[

C,M, concerning 𝜌𝑎 and 𝔭[T𝑆 , bool]
is obvious. □

D PROOF SYSTEM
In this section we present the full proof system, which we only
sketched in the body.

D.1 Type Tagging and Restrictions
We will need to restrict our attention to type structures satisfying
some assumptions. Recall that each proof system rule is proved by
providing a simulator, which must be a polynomial-time adversary.
Besides, to bi-deduce some terms, one might need a simulator with
a while-loop, e.g. to compute a function graph. To ensure such
simulator still run in polynomial time, one need some restrictions
on the types of the loop iterator. These restrictions are presented
in this subsection.

For each base types, we use a simple tagging mechanism: we
assume that each base type comes with a (possibly empty) set of
tags constraining the possible interpretations of the type in type
structures. We use the tag finite on a type 𝜏 to restrict to structures
where J𝜏K[

M
is finite for all [, fixed to impose that J𝜏K[

M
does not

depend on [, and enum to require that there exists a machineM𝜏
M

such thatM𝜏
M (1[ ) computes in PTIME (a suitable representation

of) a sequence ⟨𝑎1, . . . , 𝑎𝑛⟩ of all elements of J𝜏K[
M
. When possible,

tags are then lifted to arrow types as expected: 𝜏1 → 𝜏2 is finite
(resp. enumerable) when 𝜏1 and 𝜏2 are.

Furthermore,well-founded𝜏 (<) is an additional atom of the logic
which requires that the interpretation of the binary function symbol
< is deterministic (i.e. J<K[,𝜌

M:E does not depends on 𝜌) and that
(J𝜏K[

M
, J<K[

M,E ) is a well-founded set for every [.

D.2 Inference Rules
Inference rules of our proof system, given in Fig. 10, Fig. 11, and
Fig. 12, are organized in three categories:
• First, the structural rules. This includes weakening rules
(of hypotheses, pre- and post-conditions, constraints . . .),
re-ordering of the terms, and rewriting.
• Second, the computational rules. They capture the computa-
tions that do not require random samplings or oracle calls
from the simulator. This comprises function applications,
transitivity, computation of adversarial terms, conditional
if then else , computing a function’s graphs, and induction.
• Finally, adversarial rules capture adversarial capabilities: ran-
dom samplings and oracle calls.

In order to justify the soundness of our rules, it is useful to have a
few lemmas on how validity and/or well-formedness of constraints
systems propagate, presents here

D.2.1 Preliminary lemmas for constraints systems. Immedialtly, we
can first notice that, for all M and [ and constraints system C1 and
C2, we have:
• Valid(C1 · C2) |= Valid(C1) ∧ Valid(C2),
• for all 𝑗 ∈ {1, 2}, R[C1 ·C2,M⊆R

[

C 𝑗 ,M
, and

• for all 𝑗 ∈ {1, 2} and random tape 𝜌 : N[,𝜌C 𝑗 ,M
⊆ N[,𝜌C1 ·C2,M

We have similar properties for constraint generalization:
• Valid(∏(𝑥 : 𝜏). C) |= ∀̃(𝑥 : 𝜏) .Valid(C)
• for all 𝑎 ∈ J𝜏K[

M
, R[∏(𝑥 :𝜏 ) .C,M⊆R[C,M[𝑥 ↦→𝑎]

• for all 𝑎 ∈ J𝜏K[
M
and random tape 𝜌 :

N[,𝜌C,M[𝑥 ↦→𝑎] ⊆ N
[,𝜌∏(𝑥 :𝜏 ) .C,M

Wehave similar results for well-formedness properties, for which
we provide proofs. In order to prove such properties, we need to
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Weak.Constr
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑤#

Θ |= C# ⊆ C′# E,Θ |=WF( ®𝑢#) C
′
#

E,Θ, C′#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑤#

Weak.Cond
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ 𝑓#, (𝑣# | 𝑓 ′# ), ®𝑤#

E,Θ ⊢ [𝑓# ⇒ 𝑓 ′# ]e
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ (𝑣# | 𝑓#), ®𝑤#

Weak.Mem
E,Θ, C#, (𝜑 ′,𝜓 ′) ⊢ ®𝑢# ▷ ®𝑣#

E,Θ |=𝐴 𝜑 ⇒ 𝜑 ′ E,Θ |=𝐴 𝜓 ′ ⇒ 𝜓

E,Θ, C#, (𝜑,𝜓 ) ⊢ ®𝑢# ▷ ®𝑣#

Weak.Hyps
E,Θ′, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑤#

Θ |= Θ′

E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑤#

Definition
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ 𝑡#

(𝑥 : 𝜏 = 𝑡#) ∈ E
(E),Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ 𝑥

Refl

E,Θ, ∅, (𝜑#, 𝜑#) ⊢ ®𝑢#, 𝑡# ▷ 𝑡#

Permute
𝜎, 𝜎′ are permutations

E,Θ, C#, (𝜑#,𝜓#) ⊢ 𝑢1#, · · · , 𝑢𝑛# ▷ 𝑣
1
#, . . . , 𝑣

𝑛
#

E,Θ, C#, (𝜑,𝜓 ) ⊢ 𝑢𝜎 (1)# , . . . , 𝑢
𝜎 (𝑚)
# ▷ 𝑣

𝜎 ′ (1)
# , . . . , 𝑣

𝜎 ′ (𝑛)
#

Drop
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#, ®𝑡#
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#

Rewrite-L
E,Θ, C#, (𝜑#,𝜓#) ⊢ #( ®𝑤0; ®𝑤1) ▷ 𝑣#
E,Θ ⊢ [ ®𝑢0 = ®𝑤0]e ∧̃ [ ®𝑢1 = ®𝑤1]e
E,Θ, C#, (𝜑#,𝜓#) ⊢ #( ®𝑢0; ®𝑢1) ▷ 𝑣#

Rewrite-R
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ #( ®𝑤0; ®𝑤1)
E,Θ ⊢ [ ®𝑣0 = ®𝑤1]e ∧̃ [ ®𝑣0 = ®𝑤1]e
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ #( ®𝑣0; ®𝑣1)

Dup
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#, ®𝑡#
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#, ®𝑡#, ®𝑡#

Figure 10: Structural bi-deduction rules

Name
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ (𝑡# | 𝑓#)

E,Θ, C# · {(∅, 𝑛, 𝑡#, T𝑆 , 𝑓#)}, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ (𝑛 𝑡# | 𝑓#)

Oracle𝑓
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷G ®𝑤#, (®𝑡# | 𝐹#), (®𝑜# | 𝐹#), (®𝑠# | 𝐹#)

Θ |= {𝜓# ∧ 𝐹#}𝑣# ← 𝑂 𝑓 (®𝑡#) [®𝑘#; ®𝑟#]{\#}
E,Θ, C′#, (𝜑#, \#) ⊢ ®𝑢# ▷G ®𝑤#, (𝑣# | 𝐹#)

with C′# = C# ·
∏

𝑣∈ 𝑓 .glob$
(∅, k𝑣, 𝑜𝑣♯, T

glob
G,𝑣 , 𝐹#) ·

∏
𝑣∈ 𝑓 .loc$

(∅, r𝑣, 𝑠𝑣♯, TlocG , 𝐹#);

®𝑜# = (𝑜𝑣♯)𝑣∈ 𝑓 .glob$ and ®𝑠# = (𝑠𝑣♯)𝑣∈ 𝑓 .glob$

Figure 11: Adversarial bi-deduction rules

be able to compose the inherent functions coming from the well-
formedness definition of different constraints systems, and, as such,
we need functions to get the arguments for them. Especially, we
need functions to restrict random tapes, which whose existence is
guaranteed by the following lemmas (Lemma 3 and Lemma 4).

For the rest of this subsection, we fixed an arbitrary environ-
ment E and an arbitrary formula Θ. All mention of models M will
implicitly be with respect to E, such thatM : E |= Θ.

Lemma 3. Let 𝑙 be a sequence of constraint instances well-formed
w.r.t. a model M, [ ∈ N relatively to terms ®𝑢. Assume that:

𝑙 = (( ®𝑎0, 𝑐0), . . . , ( ®𝑎𝐾 , 𝑐𝐾 ))

where 𝑐𝑖 = ( ®𝛼𝑖 , ni, 𝑡𝑖 ,𝑇𝑖 , 𝑓𝑖 )) for any 𝑖 ≤ 𝐾 .
Then, for any 𝑘 ∈ {0, . . . , 𝐾}, there exists a function 𝑔𝑘 such that:

𝑔𝑘 (𝜌 |M,[,𝑙 , J®𝑢K[,𝜌
M:E ) = J(𝑡𝑘 | 𝑓𝑘 )K

[,𝜌

M:E .

Proof. We prove this lemma by induction over 𝑘 .
Base case (k=0): By well-formedness of 𝑙 , there exists 𝑔 such that

𝑔(𝜌 |M,[,𝜖 , J®𝑢K[,𝜌
M:E ) = J(𝑡0 | 𝑓0)K[,𝜌M:E .

where 𝜖 is the empty sequence. Thus, 𝜌 |M,[,𝜖 is the tape where all
offsets are set to zero. We conclude by having 𝑔0 be the function
that ignores its input tape 𝜌 |M,[,𝑙 and directly calls 𝑔 on a zeroed
tape and J®𝑢K[,𝜌

M:E .

Inductive case: By well-formedness of 𝑙 , there exists a function 𝑔
such that

𝑔(𝜌 |M,[,𝑙𝑘 , J®𝑢K[,𝜌
M:E ) = J(𝑡𝑘 | 𝑓𝑘 )K

[,𝜌

M:E .

where 𝑙𝑘 = (( ®𝑎0, 𝑐0), . . . , ( ®𝑎𝑘 , 𝑐𝑘 )). Furthermore, by induction, for
any 𝑖 ∈ {0, . . . , 𝑘 − 1} there exists a function 𝑔𝑖 such that:

𝑔𝑖 (𝜌 |M,[,𝑙 , J®𝑢K[,𝜌
M:E ) = J(𝑡𝑖 | 𝑓𝑖 )K[,𝜌M:E .

Then there exists then a function 𝑔′ that, given 𝜌 |M,[,𝑙 and
J®𝑢K[,𝜌

M:E , determines 𝜌 |M,[,𝑙𝑘 . Indeed, it is possible to determines
the set N[,𝜌

M,𝑙𝑘
using the function (𝑔𝑖 )𝑖<𝑘 , and then 𝜌 |M,[,𝑙𝑘 is deter-

mined by zeroing in 𝜌 |M,[,𝑙 all bit corresponding to name not in
N[,𝜌
M,𝑙𝑘

, which is a subset of N[,𝜌
M,𝑙

.
We conclude the proof by composing 𝑔′ with 𝑔. □
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Adversarial
E,Θ ⊢ adv(𝑡)

E,Θ, ∅, (𝜑#, 𝜑#) ⊢ ®𝑢# ▷ 𝑡

FA
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#, (𝑡1# | 𝑓#), . . . , (𝑡𝑛# | 𝑓#)

E,Θ ⊢ adv(𝑔)
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#, (𝑔 𝑡1# . . . 𝑡𝑛# | 𝑓#)

If-then-else
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#, (𝑏# | 𝑓#), (𝑡# | 𝑓# ∧ 𝑏#), (𝑡 ′# | 𝑓# ∧ ¬𝑏#)

E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#, (if 𝑏# then 𝑡# else 𝑡 ′# | 𝑓#)

Transitivity
E,Θ, C1# , (𝜑#, 𝜑′#) ⊢ ®𝑢# ▷ ®𝑡#
E,Θ, C2# , (𝜑 ′#,𝜓#) ⊢ ®𝑢#, ®𝑡# ▷ ®𝑣#
E,Θ, C1# · C2# , (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑡#, ®𝑣#

Lambda-App
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ (𝑔#, 𝑡# | 𝑓#)

E ⊢ ®𝑡# : 𝜏 enum(𝜏)
E,Θ, C#, (𝜑#,𝜓#) ⊢ ®𝑢# ▷ (𝑔# 𝑡# | 𝑓#)

Lambda
(E, 𝑥 : 𝜏),Θ, C#, (𝜑#, 𝜑#) ⊢ ®𝑢#, 𝑥 ▷ (𝑡# | 𝑓#)
E, 𝑥 : 𝜏 ⊢ 𝑡# : 𝜏b 𝜏b ∈ B enum(𝜏)

E,Θ,∏(𝑥 :𝜏 ) .C#, (𝜑#, 𝜑#) ⊢ ®𝑢# ▷ (_(𝑥 : 𝜏) .𝑡# | 𝑓#)

Quantificator-𝑂 ∈ {∀, ∃}
(E, 𝑥 : 𝜏),Θ, C#, (𝜑#, 𝜑#) ⊢ ®𝑢#, 𝑥 ▷ (𝑡# | 𝑓#) enum(𝜏)
E,Θ,∏(𝑥 :𝜏 ) C#, (𝜑#, 𝜑#) ⊢ ®𝑢# ▷ (𝑂 (𝑥 : 𝜏).𝑡# | 𝑓#)

Induction
(E, 𝑥 : 𝜏),Θ, C#, (𝜑#, 𝜑#) ⊢ ®𝑢#, (_(𝑦 : 𝜏).if 𝑦 < 𝑥 then 𝑡 [𝑥 ↦→ 𝑦] | 𝑓#), 𝑥 ▷ (𝑡# | 𝑓#)
E, 𝑥 : 𝜏 ⊢ 𝑡# : 𝜏b 𝜏b ∈ B finite(𝜏) fixed(𝜏) E,Θ ⊢ well-founded𝜏 (<) ∧̃ adv(<)

E,Θ,∏(𝑥 :𝜏 ) C#, (𝜑#, 𝜑#) ⊢ ®𝑢# ▷ (_(𝑥 : 𝜏) .𝑡# | 𝑓#)

Figure 12: Computational bi-deduction rules

Finally, the following lemma enable to re-restrict random tape,
which is the key lemma for the twomain lemmas of this sub-section:
Lemma 5 and 6.

Lemma 4. For any modelM and security parameter [, for any vector
of terms ®𝑢 for any well-formed sequences of constraint instances 𝑙 and
𝑙 ′ such that all element of 𝑙 ′ are in 𝑙 , there exists a function 𝑔 such
that, for all random tape 𝜌 ,

𝑔(𝜌 |M,[,𝑙 , J®𝑢K[,𝜌
M:E ) = 𝜌 |M,[,𝑙 ′ .

Proof. Using Lemma 3, we know there exists a function that
determines N[,𝜌

M,𝑙 ′
from 𝜌 |M,[,𝑙 and J®𝑢K[,𝜌

M:E . Then, the function that
zeroes all bits associated to names not in N[,𝜌

M,𝑙 ′
ends the proof. □

Now, let introduce the lemmas to compose constraints system.

Lemma 5. For any term ®𝑢 and ®𝑣 , for all constraints system C1 and
C2 such that

E,Θ |=WF(®𝑢) C1 and E,Θ |=WF(®𝑢, ®𝑣) C2

then whenever there exists a function 𝑠 such that for all logical random
tape 𝜌 , and 𝑙C1 witnessing the well-formedness of C1,

𝑠 (𝜌 |M,[,𝑙C1 , J®𝑢K[,𝜌
M:E ) = J®𝑣K[,𝜌

M:E

then
E,Θ |=WF(®𝑢) C1 · C2 .

Proof. LetM be a model w.r.t. E such that E,Θ |= M and [ be
a security parameter.

By hypothesis, C1 is well-formed w.r.t.M, [ relatively to ®𝑢. Let
𝑙C1 be the sequence of constraint instances witnessing its well-
formedness relatively to ®𝑢. Similarly, let 𝑙C2 be the sequence of
constraint instances witnessing the well-formedness of C2 rela-
tively to ®𝑢, ®𝑣 .

Then, let us show that the concatenation of the two sequences
𝑙C1 · 𝑙C2 witnesses the well-formedness of C1 · C2. Let

𝑙C1 · 𝑙C2 =
(
( ®𝑎0, 𝑐0), . . . , ( ®𝑎𝐾 , 𝑐𝐾 )

)
and ( ®𝑎𝑘 , 𝑐𝑘 ) = ( ®𝑎𝑘 , ®𝛼, 𝑛, 𝑡,𝑇 , 𝑓 ) be an element of 𝑙C1 · 𝑙C2 .

We must show that:

∃𝑔,∀𝜌,𝑔(𝜌 |M,[,𝑙𝑘 , J®𝑢K[,𝜌
M:E ) = J(𝑡 | 𝑓 )K[,𝜌

M[ ®𝛼 ↦→1
[

®𝑎𝑘
]:E (14)

with 𝑙𝑘 = (( ®𝑎1, 𝑐1), . . . , ( ®𝑎𝑘−1, 𝑐𝑘−1)).
If ( ®𝑎𝑘 , 𝑐𝑘 ) is an element of 𝑙C1 , then this is immediate by well-

formedness of C1. Thus, assume that ( ®𝑎𝑘 , 𝑐𝑘 ) is an element of 𝑙C2 .
Let then 𝐾1 be the length of 𝑙C1 , we have then

𝑙C1 =
(
( ®𝑎1, 𝑐1), . . . , ( ®𝑎𝐾1 , 𝑐𝐾1 )

)
Let 𝜌 be an arbitrary random tape.
By well-formedness of C2, we have that there exists 𝑔𝑐 such that:

𝑔𝑐 (𝜌 |M,[,𝑙𝑘
C2
, J®𝑢, ®𝑣K[,𝜌

M:E ) = J(𝑡 | 𝑓 )K[,𝜌
M[ ®𝛼 ↦→1

[

®𝑎𝑘
]:E (15)

with 𝑙𝑘C2 = [( ®𝑎𝐾1+1, 𝑐𝐾1+1) . . . ( ®𝑎𝑘−1, 𝑐𝑘−1)]
The function 𝑔𝑐 is then almost the target function 𝑔 of Eq. (14)

we want. We are left to show there exists functions that return the
argument for 𝑔𝑐 , and composing these function with 𝑔𝑐 will end
the proof. Hence, are left to show that
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• there exists a function that return 𝜌 |M,[,𝑙𝑘
C2

when given

𝜌 |M,[,𝑙𝑘 , J®𝑢K[,𝜌
M:E ;

• and, for any random tape 𝜌 , there exists a function that
return J®𝑣K[,𝜌

M:E when given 𝑔’s argument. However, we have
the function 𝑠 such that 𝑠 (𝜌 |M,[,𝑙C1 , J®𝑢K[,𝜌

M:E ) = J®𝑣K[,𝜌
M:E , then,

it is sufficient to show there exists a function that return
𝜌 |M,[,𝑙C1 when given 𝜌 |M,[,𝑙𝑘 , J®𝑢K[,𝜌

M:E .
These two points are consequences of Lemma 4. □

Lemma 6. For all M : E and [, for any term ®𝑢, any fresh variable 𝑥
of type 𝜏 tagged enum, for all constraints system C,

if E, (𝑥 : 𝜏),Θ |=WF(®𝑢, 𝑥 ) C then E,Θ |=WF(®𝑢)
∏
(𝑥 :𝜏 ) C.

Proof. LetM : E be a model, and [ be a security parameter. For
all 𝑣 in J𝜏K[

M
, let 𝑙𝑣C be the sequence witnessing the well-formedness

of C w.r.t.M𝑣
def
= M[𝑥 ↦→ 1

[
𝑣 ]. We write 𝑙𝑣 the sequence obtained

from 𝑙𝑣C by replacing each constraint instance(
®𝑎, ( ®𝛼, n, 𝑡,𝑇 , 𝑓 )

)
by

(
(𝑣, ®𝑎), ((𝑥, ®𝛼), n, 𝑡,𝑇 , 𝑓 )

)
.

The type 𝜏 is enumerable. Then let (𝑣1, . . . , 𝑣 𝐽 ) be a sequence of
all elements of J𝜏K[

M
. Finally, let the concatenation of sequences

𝑙 = 𝑙𝑣1 · · · 𝑙𝑣𝐽 and show that 𝑙 witnesses the well-formedness of∏
(𝑥 :𝜏 ) C.
Let 𝑗 be an integer in {1 . . . 𝐽 }, let then 𝑙𝑣𝑗C = (( ®𝑎1, 𝑐1), . . . , ( ®𝑎𝐾 , 𝑐𝐾 )),

and similarly 𝑙𝑣𝑗 = ((𝑣 𝑗 , ®𝑎1, 𝑐𝑥1 ), . . . , (𝑣 𝑗 , ®𝑎𝐾 , 𝑐
𝑥
𝐾
)), and let 𝑘 be an

integer in {1, . . . 𝐾}. Let show that there exists a function 𝑔, such
that for all random tape 𝜌 ,

𝑔(𝜌 |M,[,𝑙 𝑗,𝑘 , J®𝑢K[,𝜌
M,E ) = J(𝑡 | 𝑓 )K[,𝜌

M[𝑥 ↦→1
[
𝑣𝑗
; ®𝛼𝑘 ↦→1

[

®𝛼 ]
.

with 𝑙 𝑗,𝑘 = 𝑙𝑣1 · · · 𝑙𝑣𝑗−1 · 𝑙𝑣𝑗 ,𝑘 and

𝑙𝑣𝑗 ,𝑘 =
(
(𝑣 𝑗 , ®𝑎1, 𝑐𝑥1 ), . . . , (𝑣 𝑗 , ®𝑎𝑘−1, 𝑐

𝑥
𝑘−1)

)
.

By well-formedness of C relatively to ®𝑢, 𝑥 , w.r.t.M𝑣𝑗 , [, there exists
𝑔𝑣 such that for all random tape 𝜌 ,

𝑔𝑣 (𝜌 |M𝑣𝑗
,[,𝑙

𝑣𝑗 ,𝑘

C
, J®𝑢, 𝑥K[,𝜌

M𝑣𝑗

) = J(𝑡 | 𝑓 )K[,𝜌
M𝑣𝑗
[ ®𝛼𝑘 ↦→1

[

®𝑎𝑘
] .

with 𝑙𝑣𝑗 ,𝑘C =
(
( ®𝑎1, 𝑐1), . . . , ( ®𝑎𝑘−1, 𝑐𝑘−1)

)
Notice that M𝑣𝑗 [ ®𝛼𝑘 ↦→

1
[

®𝑎𝑘
] = M[𝑥 ↦→ 1

[
𝑣𝑗 ; ®𝛼𝑘 ↦→ 1

[

®𝑎𝑘
], and J®𝑢, 𝑥K[,𝜌

M𝑣
= J®𝑢K[,𝜌

M,E , 𝑣 by term
semantic and freshness of 𝑥 in ®𝑢. Then, there is left that there
exists a function that for all random tape 𝜌 outputs 𝜌

|M𝑣𝑗
,[,𝑙

𝑣𝑗 ,𝑘

C

on inputs 𝜌 |M,[,𝑙 𝑗,𝑘 , J®𝑢K[,𝜌
M,E ,𝑣 𝑗 and ®𝑎𝑘 . First, notice that in 𝑙

𝑣𝑗 ,𝑘 , all
instances bind the variable 𝑥 to 𝑣 𝑗 , then N[,𝜌

M𝑣𝑗
,𝑙
𝑣𝑗 ,𝑘

C

= N[,𝜌
M,𝑙

𝑣𝑗 ,𝑘
and

thus 𝜌
|M𝑣𝑗

,[,𝑙
𝑣𝑗 ,𝑘

C
= 𝜌 |M,[,𝑙 𝑗,𝑘 and we conclude using Lemma 4. □

D.2.2 Structural Rules. The common point of all structural rules is
that they do not change the simulator obtained from the premise.

First, notice that a simulator that computes a term 𝑡#, also com-
pute any term 𝑡 ′# exactly equal to 𝑡

′
#. This also holds for input terms:

using a term𝑢# or a term𝑢′# exactly equal does not change the simu-
lator’s result. This is captured by rules Rewrite-L and Rewrite-R.

Rule Drop holds because, given a simulator corresponding to the
premise, we obtain a simulator for the conclusion by executing the

premise simulation and then dropping some of its outputs. Similarly,
Permute corresponds to re-ordering inputs and outputs, Refl to
copying an input, Dup to duplicating an output, and Definition
replaces a variable by its definition.

Then, we have four weakening rules. The ruleWeak.Hyps and
Weak.Mem for hypothesis and pre- and post-conditions weakening,
designed as expected. The ruleWeak.Constr for constraints weak-
ening on the same ideas, based on the previous remark that when
C ⊆ C′ then Valid(C′) ⇒ Valid(C). Finally, the ruleWeak.Cond
weaken the local formula attached to term. For any term (𝑡# | 𝑓#)
and a formula 𝑓 ′# such that [𝑓 ′ ⇒ 𝑓#]e then an adversary that
compute (𝑡# | 𝑓#) and 𝑓 ′# can also compute (𝑡# | 𝑓#) : intuitively,
such adversary compute 𝑡# more “often” than when 𝑓# is true and
at least every time that 𝑓# is true.

D.2.3 Computational Rules. We call computational rules the rules
that do not require random samplings or oracle calls from the
simulator:

• the rule Adversarial to build a program that compute an
adversarial term (which is immediately an adversary);
• the rules to compute functions (FA for adversarial function,
Lambda-App for computed function, If-then-else for spe-
cific handling of if then else );
• the rules that chain programs: either with sequence of two
programs (Transitivity) or under while loops (Lambda
to compute a function graph, Quantificator-𝑂 ∈ {∀, ∃}
for specific handling of quantifiers, Induction to compute
recursively a function graph). For the proof of these rules
one have to show that the final program is still a PTIME
adversary, i.e. that the final program is polynomial, correctly
chains pre- and post-conditions, and doesn’t violate fresh-
ness of local samplings and uniqueness of global samplings.
For the first point, one need to add restriction on the size
of the while loops (we restrict types of lambda terms and
quantified variable to be enumerable, or fixed and finite for
induction). The second point is ensured by forcing the rules
using while loops to apply only on fixed-point conditions.
The last point is done by operation on constraints define
earlier.

D.2.4 Adversarial Rules. Finally, there are two adversarial rules,
which captures two specific capabilities of adversaries: Name cor-
responds to random samplings; and, Oracle𝑓 to oracle calls.

We give here the definition of an oracle triple validity, which we
omitted from the body.

Definition 16 (Oracle Hoare triple). Consider a oracle triple for an
oracle 𝑓 :

{𝜑#}𝑣# ← 𝑂 𝑓 (®𝑡#) [®𝑘#; ®𝑟#]{𝜓#}

whose offsets are of the form

®𝑘# = (𝑘𝑣 𝑜𝑣♯)𝑣∈ 𝑓 .glob$ and ®𝑟# = (𝑟𝑣 𝑠𝑣♯)𝑣∈ 𝑓 .loc$ .

This triple is valid, i.e.:

Θ |= {𝜑#}𝑣# ← 𝑂 𝑓 (®𝑡#) [®𝑘#; ®𝑠#]{𝜓#},
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when, for any M such that M |= Θ, for any [, 𝜌 , `#, 𝑖 ∈ {0, 1}, and
any fresh variable 𝑋 , if M, [, 𝜌, `𝑖 |=𝐴 𝜑𝑖 then M, [, 𝜌, `′

𝑖
|=𝐴 𝜓𝑖 and:

J𝑣𝑖K
[,𝜌

M:E = `′𝑖 (𝑋 ) [𝑓 .expr]
[,𝔭

M:E,𝑖,`′
𝑖

where `′𝑖 = L𝑋 ← 𝑂 𝑓 (J®𝑡𝑖K
[,𝜌

M:E ) [ ®𝑒𝑘 ; ®𝑒𝑠 ]M
[,𝔭
`𝑖

®𝑒𝑘 =
(
𝑂M:E,[ (𝑘𝑣, J𝑜𝑣,𝑖K

[,𝜌

M:E )
)
𝑣∈ 𝑓 .glob$

®𝑒𝑠 =
(
𝑂M:E,[ (𝑟𝑣, J𝑠𝑣,𝑖K

[,𝜌

M:E )
)
𝑣∈ 𝑓 .loc$

where 𝔭 arbitrary s.t. 𝜌a is a prefix of its adversarial tape.

We recall and quickly sketch the proof of Proposition 1.

Proposition 1. Let G be a game and 𝑓 ∈ O one of its oracles. The
following rule is sound w.r.t. the class of models satisfying G, using
the notations introduced above:

Oracle𝑓
E,Θ, C#, (𝜑#,𝜓# ) ⊢ ®𝑢# ▷G ®𝑤#, (®𝑡# | 𝐹# ), ( ®𝑜# | 𝐹# ), (®𝑠# | 𝐹# )

Θ |= {𝜓# ∧ 𝐹#}𝑣# ← 𝑂 𝑓 (®𝑡# ) [ ®𝑘#; ®𝑟# ] {\#}
E,Θ, C′#, (𝜑#, \# ) ⊢ ®𝑢# ▷G ®𝑤#, (𝑣# | 𝐹# )

with C′# =
C# ·

∏
𝑣∈𝑓 .glob$

(∅, k𝑣, 𝑜𝑣♯,T
glob
G,𝑣 , 𝐹# ) ·

∏
𝑣∈𝑓 .loc$

(∅, r𝑣, 𝑠𝑣♯,TlocG , 𝐹# )

®𝑜# = (𝑜𝑣♯ )𝑣∈𝑓 .glob$ and ®𝑠# = (𝑠𝑣♯ )𝑣∈𝑓 .glob$

Proof (sketch). From the bi-deduction premise, we get a simu-
lator p that computes inputs and offsets for the oracle call. The final
simulator p′ is p followed by an oracle call. The new program is
polynomial if p is, furthermore, the validity of C ensures the fresh-
ness of local offsets and uniqueness of global offsets. The equality
between the result of p′ and the semantics of the output terms
follows from the validity of the Hoare triplet. □

D.3 Proof of Theorem 1
We now recall and prove Theorem 1.

Theorem 1. Let E be an environment, Θ a set of global formulas,
and 𝜑# be a bi-assertion such that, for allM : E satisfying Θ, for all
𝑖 ∈ {0, 1}, [, 𝜌 , we haveM, [, 𝜌, `𝑖init

[,𝜌

M
(G) |=𝐴 𝜑𝑖 . The following rule

is sound w.r.t. models where G is secure, for any C#, #( ®𝑣0; ®𝑣1) and𝜓#:
Bi-deduce
E,Θ ⊢ Valid(C#) E,Θ, C#, (𝜑#,𝜓#) ⊢ ∅ ▷G #( ®𝑣0; ®𝑣1)

E,Θ ⊢ ®𝑣0 ∼ ®𝑣1
Proof. Assume that the conclusion is not valid: there exists

M : E satisfying Θ and a PPTM D that distinguishes ®𝑣0 from ®𝑣1
with a non-negligible advantage. In other words, the following
function is non-negligible:

[ ↦→
����� 𝑃𝑟𝜌∈TM,[

(
D(J ®𝑣0K[,𝜌M:E , 1

[ , 𝜌a) = 1
)
−

𝑃𝑟𝜌∈TM,[

(
D(J ®𝑣1K[,𝜌M:E , 1

[ , 𝜌a) = 1
) ����� (16)

Assume further that the premises are valid. Since C# is valid, we
know that C0 and C1 are both valid. By the second premise, and by
hypothesis on 𝜑#, there exists a PTIME G-adversary p computing
∅ ▷ ®𝑣𝑖 w.r.t. M, [,𝔭, 𝜌, `𝑖 for any 𝑖 ∈ {0, 1}, [, 𝜌 and 𝔭 such that
𝜌 R[C𝑖 ,M 𝔭, where `𝑖 is `𝑖init

[,𝜌

M
.

We now construct a PTIME G-adversary that wins the game G
with non-negligible probability, contradicting the cryptographic
assumption. We first translate the distinguisher D between ®𝑣0 and

®𝑣1 into a program d that performs the same computations2 for some
input variables ®𝑋 and return variable res:

for all [, 𝑖 , `, ®𝑎 ∈ J®𝜏K[
M
, for all tapes (𝜌a, 𝜌h) R

[

C𝑖 ,M 𝔭,

LdM[,𝔭
M,𝑖,` [ ®𝑋 ↦→®𝑎]

[res] = D(®𝑎, 1[ , 𝜌a) (17)

where ®𝜏 are the types of ®𝑣0 (and of ®𝑣1, since ®𝑣0 and ®𝑣1 have the
same types). SinceD only accesses 𝜌a, the program d only accesses
𝔭[TA, bool], hence it is an adversary. We can thus form an adversary
q by composing d with p. C0 is well-formed, hence, by Lemma 1,
there exists a coupling C : TM,[ ⊲⊳ 𝔓 contained in R[C𝑖 ,M.

Hence using Eq. (17) and Lemma 2, we obtain that:

𝑃𝑟𝔭
(
LqM[,𝔭

M,0,`0
[res] = 1

)
= 𝑃𝑟𝜌∈TM,[

(
D(J ®𝑣0K[,𝜌M:E , 1

[ , 𝜌a) = 1
)
.

Repeating the reasoning for 𝑖 = 1, we obtain that the following
function is equal to the one in Eq. (16):

[ ↦→
��𝑃𝑟𝔭 (LqM[,𝔭M,0,`0 [res] = 1

)
− 𝑃𝑟𝔭

(
LqM[,𝔭

M,1,`1
[res] = 1

) ��.
It is thus non-negligible, contradicting the assumption on G in M.

□

E IMPLEMENTATION
We detail here the fully automated procedure search▷ for finding bi-
deduction proofs using the proof system of Section 4. As explained
in section Section 5, we aim at a fully automated procedure, rea-
sonably efficient, but not necessarily complete. Then, rather than
requiring user guidance during proof search, our algorithm will
make heuristic choices on how to build the proof, and return to the
user some proof obligations (as global and local formulas) that can
then be proved, automatically or not, using the standard means in
the proof assistant.

E.1 Recursive Functions
Our logic supports recursively defined functions, which are cru-
cially used to model protocols, as shown in Section 2. Following this
particular use case, we will consider only recursive functions over
timestamps, even though our approach is more general than that. If
𝑓# is recursively defined, proving that a term (𝑓# 𝑢#) is bi-deducible
will often require to prove that (𝑓# 𝑥#) can be bi-deduced for all
values 𝑥# ≤ 𝑢#. This can only be achieved in our proof-system
using the induction rule, which is notoriously difficult to automate
due to the need to find generalizations that are invariant. In our
case, invariants concerns the assertions, but also the terms to be
deduced.

Instead of searching for proofs using induction rules in arbitrary
ways, our approach is to look for proofs that follow a simple con-
struction pattern. This eases automation and provides good results
in practice, see Section 6. When trying to verify a bi-deduction
judgement ®𝑢# ▷ ®𝑣#, we first search for induction-free derivations of
judgements of the following form (we will discuss later how these

2In this equation, 𝑖 and ` are arbitrary, because our program initializes its ownmemory
and does not call any oracle.
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judgments are determined):

(E, 𝑡 : timestamp),Θ, C𝑖# , (𝜑#, 𝜑# ) ⊢
®𝑢#, (_𝑡 ′ . if 𝑡 ′ < 𝑡 ∧ 𝑡 ≤ 𝑡0 then ®𝑤# [𝑡 ↦→ 𝑡 ′ ] ), 𝑡 ▷ (𝑤𝑖

# | 𝑡 ≤ 𝑡0 )
(18)

E,Θ, C′#, (𝜑#,𝜓# ) ⊢ ®𝑢#, (_𝑡 . if 𝑡 ≤ 𝑡0 then ®𝑤# ) ▷ ®𝑣#

The rough idea is that, instead of bi-deducing ®𝑢# ▷ ®𝑣#, we more
generally try to bi-deduce:

®𝑢# ▷ (_𝑡 . if 𝑡 ≤ 𝑡0 then ®𝑤#), ®𝑣#

for some well-chosen ®𝑤# = (𝑤1
# , . . . ,𝑤

𝑘
# ). By transitivity, the extra

terms are first bi-deduced by induction, and then become available
to ease the bi-deduction of ®𝑣#. More precisely, we derive:

E,Θ, C′# · ∀𝑡 .(
∏
𝑖∈[1;𝑘 ] C𝑖#), (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ®𝑣#

using rules Transitivity, Induction andDrop and the derivations
of the above judgements, with a derivation of Eq. (18) for each 𝑖 ∈
[1;𝑘]. Note that we restrict to have the same pre- and post-condition
𝜑 on all judgments of Eq. (18). More generally, our invariants are
insensitive to the iteration variable 𝑡 , which can be limiting, but
generally keeps our proof search procedure reasonably simple and
notably helps termination.

In our implementation, ®𝑤# is obtained from ®𝑣# by collecting
all recursive definitions that may be useful, directly or indirectly,
to deduce the recursive definitions appearing in ®𝑣#. This is done
using a fixed-point computation, introduced in [6], which balances
efficiency and precision.

Example 10. In Section 2 we seek to prove the following indistin-
guishability, where nfresh is a name which is not used in the protocol:

Θ |= frame(pred t0), n (𝑖0, 𝑗0), h(⟨n (𝑖0, 𝑗0), att(frame(pred t0))⟩, k 𝑖0)
∼ frame(pred t0), n (𝑖0, 𝑗0), nfresh

with 𝑡0 = T(𝑖0, 𝑗0). Also, the indices 𝑖0 and 𝑗0 are assumed adversarial
in Θ. Our indistinguishability actually follows from the following
bi-deduction judgement w.r.t. the PRF game, for any constraint system
C that is valid and any pre-condition 𝜑 that holds on the game’s
initial memory:

E,Θ, C, (𝜑,𝜓 ) ⊢ ∅ ▷
frame(pred t0), n (𝑖0, 𝑗0),
if 𝑓Fresh then

#(h(⟨n (𝑖0, 𝑗0), att(frame(pred t0))⟩, k 𝑖0); nfresh)

where 𝑓Fresh is the (overwhelmingly true) formula stating that

n (𝑖0, 𝑗0) ≠ n (𝑖, 𝑗)

for all 𝑖, 𝑗 such that T(𝑖, 𝑗) < T(𝑖0, 𝑗0). To simplify the presentation,
we omit markers indicating that C, 𝜑 and𝜓 are actually bi-constraint
systems and bi-assertions.

We choose ®𝑤# = (frame(t), input(t), output(t)) to prove this judgment
using the strategy defined above, Let:

𝑤 ′# =
(
_𝑡 ′ . if 𝑡 ′ < 𝑡 then (frame(t'), input(t'), output(t')) | 𝑡 ≤ pred(𝑡0)

)
.

We will thus have to prove the following judgments, for some con-
straint systems C1, C2, C3, C′ and:

(E, 𝑡 : timestamp),Θ, C1, (𝜑, 𝜑) ⊢ 𝑤 ′#, 𝑡 ▷ (frame(t) | 𝑡 ≤ pred(𝑡0))
(E, 𝑡 : timestamp),Θ, C2, (𝜑, 𝜑) ⊢ 𝑤 ′# ▷ (input(t) | 𝑡 ≤ pred(𝑡0))
(E, 𝑡 : timestamp),Θ, C3, (𝜑, 𝜑) ⊢ 𝑤 ′# ▷ (output(t) | 𝑡 ≤ pred(𝑡0))

E,Θ, C′, (𝜑,𝜓 ) ⊢ (_𝑡 . if 𝑡 ≤ pred(𝑡0) then ®𝑤#) ▷
frame(pred t0), n (𝑖0, 𝑗0), if 𝑓Fresh then #(output(t0); nfresh)

This kind of generalization will occur very often when bi-deduction
involves inputs, outputs, or frames, due to the mutual definition of
these functions. These judgments can indeed be proved, without using
the induction rule; details are given in Example 13.

This example leaves unspecified the assertion language, and does
not explain how assertions can be synthesized to fit the proof’s
requirements; this is explained next.

E.2 Assertion Language
Most cryptographic games rely only on global variables to store
monotonic logs, which are then used only to check that some mes-
sages have not been logged. We choose an assertion language that
is well adapted to this use case. This is enough to support all crypto-
graphic games already supported by Sqirrel and, arguably, most
standard cryptographic games. In term of operations supported
in the cryptographic games, this yields a similar expressivity to
CryptoVerif, which supports logs through tables.

Given that oracles and simulators are programs, we cannot hope
to precisely characterize the game’s memory at any point of a bi-
deduction. In particular, proofs by induction will require assertions
that are invariant by bi-deduction steps. Finding invariant asser-
tions can be achieved by sufficiently over-approximating the logged
values in assertions. The over-approximation should just be precise
enough to be able to ensure that some values are absent from the
logs.

Concretely, we use assertions that associate, to each log of the
game, a formal union of elements of the form ( ®𝛼,𝑚#, 𝑓#) where ®𝛼
is a list of variables,𝑚# is a term and 𝑓# is a local formula. As for
constraints, ®𝛼 should be understood as a binders. The semantics of
an item ( ®𝛼,𝑚, 𝑓 ) w.r.t. M, [, 𝜌 is a set of possible semantic values,
where ®𝜏 is the vector of the types of ®𝛼 :

J( ®𝛼,𝑚, 𝑓 )K[,𝜌
M:E

def
=

{
J𝑚K[,𝜌

M[ ®𝛼 ↦→®𝑎]:E

��� ®𝑎 ∈ J®𝜏K[
M
, J𝑓 K[,𝜌

M[ ®𝛼 ↦→®𝑎]:E = 1
}

The semantics for a formal union of such items is then naturally
taken as the union of the semantics of all items. Finally, we define
the semantics of an assertion by considering that it is satisfied by a
memory when the semantic values in each log are contained in the
semantics of the corresponding formal set in the assertion:

M, [, 𝜌, ` |=𝐴 𝜑 when, for all ℓ log of G, ` (ℓ) ⊆ J𝜑 (ℓ)K[,𝜌
M:E

This assertion language supports the required operations: given
a local formula 𝑓 and an assertion𝜑 , we define𝜑∧ 𝑓 as the assertion
where 𝑓 is added as a conjunction to each condition in 𝜑 ; we can
also define 𝜑 ∪𝜓 as the point-wise union of assertions, which over-
approximates 𝜑 ∨ 𝜓 . Finally, assertions can be generalized over
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some variable: we define ∀𝑥 .𝜑 as the assertion 𝜑 where 𝑥 has been
added to the first component of each item.

Example 11. To obtain a complete derivation in Example 10, we can
use the following assertions:

𝜑 (ℓhash) = {({𝑖, 𝑗}, n (𝑖, 𝑗), T(𝑖, 𝑗) ≤ pred(𝑡0))}
𝜑 (ℓchallenge) = ∅ 𝜓 (ℓhash) = 𝜑 (ℓhash)
𝜓 (ℓchallenge) = {(∅, n (𝑖0, 𝑗0), true)}

The invariant 𝜑 over-approximates the messages passed to the hash
oracle during the computation of ®𝑤 ; it could be made precise by taking
({ 𝑗}, n, (𝑖0, 𝑗), T(𝑖0, 𝑗) < 𝑡0). It is however precise enough to allow
the final use of the oracle rule for the challenge oracle, which requires
that n (𝑖0, 𝑗0) has not previously been used in an oracle query.

E.3 Proof Search
In order to find the induction-free derivations required in the
general proof method described in Appendix E.1, we implement
the goal-directed heuristic proof search procedure search▷ (·) that
takes as input a partial bi-deduction goal, with an incomplete well-
formed constraint system and global hypotheses and without a
post-condition, and finds a derivation for a possible completion of
this goal. More precisely, we must have that for any initial envi-
ronment E, hypotheses Θ, input terms ®𝑢#, constraints C# such that
E,Θ |=WF( ®𝑢#) C#, pre-condition 𝜑#, and output terms ®𝑣#,

search▷ (E,Θ, C#, (𝜑#, ·) ⊢ ®𝑢# ▷ ( ®𝑣# | 𝑓#)) = (Θ′, C′#,𝜓#, 𝑓 ′# )
implies that

E,Θ ∪ Θ′, (C# · C′#), (𝜑#,𝜓#) ⊢ ®𝑢# ▷ ( ®𝑣# | 𝑓# ∧ 𝑓 ′# ) is derivable
and E,Θ |=WF( ®𝑢#) C# · C

′
#

In case the proof search fails, search▷ (·) returns an error. The
addition of Θ′ and 𝑓 ′# corresponds to proof obligations, at different
levels, that the user may discharge later on. Our procedure makes
use of existing automated deduction capabilities in Sqirrel to
automatically verify formulas when needed; it is notably used to
limit the number of produced proof obligations. In Example 10, the
condition 𝑓Fresh would be added as 𝑓 ′# , and could be automatically
discharged later.

For usability and performance reasons, our proof search proce-
dure is fully deterministic, guided by the structure of the terms to
deduce. It eagerly applies the Refl and Adversarial rules when-
ever possible. It also eagerly applies the oracle rule when constraints
in C# allow it. When this is not guaranteed, a specific strategy is
used to avoid abusive use of oracles that may prevent the comple-
tion of the rest of the proof. We illustrate it with the PRF game,
in a situation where we want to deduce a message h(𝑚, k 𝑖), the
constraint system specifies that the game’s key corresponds to (k 𝑗),
but we cannot check that 𝑖 = 𝑗 : in this case we rewrite the term to be
deduced into if 𝑖 = 𝑗 then h(𝑚, k 𝑖) else h(𝑚, k 𝑖) and use the con-
ditional rule If-then-else, after which we can use the hash oracle
to deduce (h(𝑚, k 𝑖) | 𝑖 = 𝑗) but directly compute (h(𝑚, k 𝑗) | 𝑖 ≠ 𝑗)
by having the simulator sample (k 𝑗),

When applying oracle rules, our strategy needs to synthesize a
post-condition from the pre-condition, such that the Hoare triple is
valid. Because our assertions only track logs, which are assume to
evolve only monotonically, this can be done by enriching (by means

of unions) the pre-condition, e.g. taking 𝜓 (ℓ) = 𝜑 (ℓ) ∪ (∅,𝑚#, 𝑓#)
when an oracle is called on𝑚# under condition 𝑓#.

E.4 Invariant Synthesis
In order to find the initial pre-condition 𝜑 required to complete the
whole proof by induction of Appendix E.1, we proceed iteratively,
attempting to find an invariant 𝜑 as the result of a fixed-point
computation. We start with the assertion 𝜑0 stipulating that all logs
are empty. At iteration 𝑖 , we will have an assertion 𝜑𝑖 , and we use
our proof search procedure to complete induction-free derivations.
If this succeeds, it yields several post-conditions𝜓 , which can be
regarded as a single post-condition by taking their union. We define
𝜑𝑖+1 as 𝜑𝑖 ∪ ∀𝑡 .𝜓 – this generalization is necessary for the new
condition to make sense w.r.t. E and, intuitively, to express that
the post-condition enriches the pre-condition with new potential
logged terms for all values of 𝑡 . Finally, we check whether this
new condition semantically entails the previous one. If this is the
case, we have found an invariant – and derivations of the expected
form, with 𝜑𝑖 as post-conditions, can be obtained by weakening
post-conditions to 𝜑𝑖 . If this is not the case, we move on to the next
iteration to further over-approximate our condition.

The idea that assertions over-approximate logs, and this fixed-
point computation of invariants, is directly inspired by abstract in-
terpretation techniques [25]. In this regard, our assertion language
forms a rather crude abstract domain, though it already provides
good results. Our algorithms might be improved in the future by
using richer abstract domains for sets of terms, e.g. [34, 40].

Example 12. In the proof of Example 10, starting with 𝜑0 in which
𝜑0 (ℓchallenge) = 𝜑0 (ℓhash) = ∅, the first derivation of our three in-
ductive bi-deduction judgements yields, after some simplifications,

𝜑1 (ℓhash) =
(
{𝑡, 𝑖, 𝑗}, n (𝑖, 𝑗), 𝑡 = T(𝑖, 𝑗) ≤ pred(𝑡0)

)
and 𝜑1 (ℓchallenge) = ∅. Since ̸ |= 𝜑0 ⇒ 𝜑1, we restart the proof-search
for our three judgements with 𝜑1 as the new pre-condition. We obtain
𝜑2 = 𝜑1, at which point we can search for the fourth derivation. This
will succeed with a post-condition mentioning the use of the challenge
oracle. It will finally remain to check that the produced constraints
are valid, to conclude that bi-deduction holds.

Example 13. We explain how the judgements obtained at the end
of Example 10 can be derived. To derive the final judgement, recall
that output(t0) = h(⟨n (𝑖0, 𝑗0), att(frame(pred t0))⟩, k 𝑖0). Because att
is adversarial and frame(pred t0) is available from ®𝑤# in input, we
can derive the first term, as well as the second component of the
hashed message. The first component of the hashed message can also
be derived by simulator’s random sampling, which would add the
constraints (∅, n, (𝑖0, 𝑗0), T𝑆 ,⊤). To conclude, we have to call the hash
oracle, which adds the constraint (∅, k, 𝑖0, TglobG,key), and requires that
𝜑 implies that the hashed message is not in ℓhash ∪ ℓchallenge.

Because the constraint systems C𝑖 will eventually be combined with
C′ to yield a system that must be valid, we will only be able to use
the name k 𝑖0 as the game’s key in the other bi-deduction derivations.

The input judgement above can easily be derived, taking C2 = ∅, by
definition of the input function and because the frame at pred 𝑡 < 𝑡
is available from𝑤 ′. Similarly, we easily obtain the frame judgement,
with C1 = ∅.
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For the output judgement, we also expand the definition of the
output function, and proceed by case analysis over 𝑡 . In the key case,
we have to derive:

(E, 𝑡, 𝑖, 𝑗 ),Θ ∧̃ [𝑡 = T(𝑖, 𝑗 ) ]e, C′3, (𝜑,𝜑 ) ⊢ 𝑤′ ▷
h(⟨n (𝑖, 𝑗 ), input(t)⟩, k 𝑖 )

Clearly, the hashed message can be bi-deduced with:

({𝑖, 𝑗}, n, (𝑖, 𝑗), T𝑆 ,⊤) ∈ C′3 .
To compute the hash per se, there are two cases:

• Either 𝑖0 ≠ 𝑖 , in which case the adversary can sample the
key k 𝑖 and compute the hash itself. For that case, we add
({𝑖}, k 𝑖, T𝑆 , 𝑖0 ≠ 𝑖) in the constraints system.
• Or 𝑖0 = 𝑖 , in which case the only way for the adversary to
compute the hash without rendering the constraints invalid
is by calling the hashing oracle. Doing so adds the constraint
(, n, (𝑖0, 𝑗), T𝑆 ,⊤), and requires that the condition 𝜑 is invari-
ant by the oracle call, i.e. preserved by the addition of the
hashed message to ℓhash.

Overall, we can derive the output judgement with:

C3 = {({𝑖, 𝑗}, n, (𝑖, 𝑗),⊤), (∅, k, 𝑖0,⊤)}.
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