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Abstract—In this paper, we are interested in the Compu-
tationally Complete Symbolic Attacker (CCSA) approach to
security protocol verification, which relies on probabilistic logics
to represent and reason about the interaction traces between
a protocol and an arbitrary adversary. The proof assistant
SQUIRREL implements one such logic. The CCSA logics come
with cryptographic axioms whose soundness derives from the
security of standard cryptographic games, e.g. PRF, EUF, IND-
CCA. Unfortunately, these axioms are complex to design and
implement; so far, these tasks are manual, ad-hoc and error-
prone. We solve these issues in this paper, by providing a formal
and systematic method for deriving axioms from cryptographic
games. Our method relies on synthesizing (parts of) an adversary
w.r.t. some cryptographic game, through the notion of bi-
deduction. Concretely, we define a rich notion of bi-deduction,
justify how to use it do derive cryptographic axioms, provide
a proof system for bi-deduction, and an automatic proof-search
method which we implemented in SQUIRREL.

I. INTRODUCTION

Computer systems are being used for increasingly many
applications in our digitalized societies: messaging, payments,
access control, voting, etc. All these applications involve
communication protocols, themselves relying on cryptographic
primitives, which enable the implementation of the desired
functionality while ensuring various security properties. Prov-
ing the security of protocols is both notoriously difficult and
very important, given their wide deployment and their use
in critical applications. It has thus been the topic of intense
research over the past decades. In this paper, we are concerned
with obtaining formal proofs of abstract protocols. We thus
consider high-level models, leaving aside the implementation
details even though they can be the source of many exploits
at the software and hardware levels (e.g., [1], [2]). We also
ignore the inner workings of cryptographic primitives, treating
them as black boxes ensuring some functionality while pre-
venting unwanted behaviors, which can of course hide other
vulnerabilities (e.g., [3]). Importantly, these abstractions do
not trivialize the analysis of protocols (see, e.g., [4], [5] for
striking attacks found at this level of abstraction, and [6] for
a state of the art).

We seek to obtain security guarantees in the cryptographers’
standard model for provable security, also known as the
computational model. In that setting, protocols and adver-
saries are modeled as Polynomial-time Probabilistic Turing
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Machines (PPTMs). We consider a general class of secu-
rity properties to establish, expressed as indistinguishability
between two protocols — typically, a real protocol and an
ideal one corresponding to an obviously correct but non-
practical implementation of the target application. To prove
such protocol indistinguishabilities, we rely on cryptographic
assumptions, which are properties of cryptographic primitives,
also expressed as indistinguishabilities. The notion of crypto-
graphic game, articulating the interactions of some unknown
adversary with either a full protocol or an isolated primitive,
thus plays a central role.

Example 1. The Pseudo-Random Family (PRF) assumption
requires that a cryptographic hash functions cannot be distin-
guished from a random function. We present here a variation
of the standard PRF game of cryptographers, which yields an
equivalent assumption but is easier to use to obtain practical
CCSA axioms, as shown later. Consider two cryptographic
games G0 and G1 relying on a security parameter η ∈ N:

• Both games are initialized by sampling uniformly a key
k of length η, and setting ℓ = [].

• In both games, a hashing oracle can be queried any
number of times. For each input m, it outputs h(m, k)
after having logged the query by setting ℓ := m :: ℓ.

• A real-or-random challenge oracle is finally provided,
which can only be queried once, at the end of the game,
on a message m ̸∈ ℓ. In G0, this oracle will output
h(m, k). In G1, it will output a freshly sampled value
of the same length.

The advantage of a PPTM adversary A in G = (G0,G1) is
the probability that it correctly guesses with which game it
is interacting:

∣∣Pr(AG0 = 1) − Pr(AG1 = 1)
∣∣. The hash

function is said to be PRF when this advantage is negligible
— i.e. asymptotically smaller than η−k for any k ∈ N — for
any PPTM A

Proofs in the computational model typically proceed by
“game hopping” [7]: one repeatedly reduces the indistin-
guishability of some game to that of another one (up to a
negligible probability). For instance, protocol indistinguisha-
bility may be reduced in this way to the lower-level indistin-
guishabilities on primitives. This is generally too complex to
be fully formalized, and the usual pen-and-paper proofs leave
gaps that often hide errors. To overcome this difficulty, mech-
anized verification tools have been developed. For instance,
CryptoVerif [8] automates common game-hopping transfor-
mations, Owl [9] allows to prove reachability properties by
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typing, while other tools (Easycrypt [10], CryptHOL [11],
SSProve [12]) allow reasoning through (probabilistic and
relational) program logics.

[13] have proposed an alternative approach to prove the
computational security of a protocol, which abstracts away the
quantitative details about probabilities and security parameters,
allowing to reason purely symbolically on the structure of
messages. They design a first-order logic – the CCSA logic
– where terms are interpreted as PPTMs computing mes-
sages, and a predicate u⃗ ∼ v⃗ corresponds to computational
indistinguishability. The security properties of cryptographic
primitives are reformulated as formulas in that logic – called
cryptographic axioms – whose soundness directly derives from
the indistinguishability of the associated cryptographic games:
in other words, cryptographic assumptions become logical
axioms. The security of a protocol is then expressed as a
formula, which must be shown to be a logical consequence of
the relevant cryptographic axioms. Several proofs have been
carried out using this approach, first by hand [14], [15], [16],
[17] and later using the proof assistant SQUIRREL, which relies
on enriched CCSA logics that notably internalize the notions
of protocol and execution traces. Initially proposed as a CCSA
meta-logic [18], [19], the logic behind SQUIRREL is now a
more general, higher-order CCSA logic [20].

Example 2. In the original CCSA logic, random samplings
of the protocol are represented by special constants called
names, and other function symbols represent PPTMs that
cannot access these samplings. The cryptographers’ PRF is
expressed through the following axiom scheme [15]:

u⃗,h(v, k) ∼ u⃗, if (
∧

m∈H v ̸= m) then nfresh else h(v, k)

Here, u⃗ and v must be closed terms; H is the set of all
terms m such that h(m, k) is a subterm of u⃗, v; the name
k must only occur as a hashing key; and the name nfresh must
have a single occurrence. All these conditions guarantee that
there exists a PPTM acting as an adversary in the game of
Example 1 which computes u⃗ and v, using the game’s hashing
oracle to compute h(m, k) for each m ∈ H . From this we
can build another adversary that tests whether v ̸= m for all
m ∈ H , calls the real-or-random oracle on v if this is the
case, and otherwise calls the hashing oracle on v. It will thus
obtain h(v, k) in G0 and the corresponding if-then-else term
in G1. If a PPTM could distinguish the two sides of the PRF
axiom with non-negligible probability, we would thus have an
adversary with non-negligible advantage in the PRF game.
That is, the cryptographic assumption implies the soundness
of our axiom scheme.

In the enriched CCSA logics behind SQUIRREL, formu-
lating axiom schemes becomes much more complex because
some formulas and terms are recursively defined over the exe-
cution trace, which makes it impossible to determine statically
e.g. the subterms of the form h(m, k). Much of the complexity
of designing these logics goes into determining precise-enough
over-approximations of sets of occurrences, and incorporating
these approximations into soundness arguments. These issues

are exacerbated with more complex cryptographic assump-
tions, e.g. indistinguishability under chosen-ciphertext (IND-
CCA1) [20, App. D]. This source of complexity has caused
errors both in the theory and implementation of SQUIRREL,
which currently relies on tedious verifications of the various
syntactic side conditions, and does not allow the user to control
approximations. Moreover, adding new cryptographic axioms
to SQUIRREL currently requires writing OCaml code (the lan-
guage SQUIRREL is implemented in), a time-consuming task
that requires an in-depth understanding of both the theoretical
framework and its implementation, putting it out-of-reach of
all but the most expert users. This is the problem we aim to
address in this work.

a) Soundness of Cryptographic Axioms: There is a fun-
damental connection between cryptographic games and the
corresponding CCSA axioms: a CCSA axiom u⃗0 ∼ u⃗1 is
valid under some cryptographic hypothesis — represented by
the game G = (G0,G1) — whenever the terms u⃗0 and u⃗1
can be computed by an attacker interacting with G. More
precisely, there must exist a single PTIME program S (the
simulator) such that S produces u⃗i when interacting with Gi

for both i ∈ {0, 1}. Until now, all soundness proofs of CCSA
axioms have been proved manually, by exhibiting (on paper) a
simulator S. This has been done in an ad-hoc fashion, for a few
cryptographic axioms and games (IND-CCA1, EUF-CMA. . . ).

Interestingly, some work has already been initiated to
mechanize the proofs of existence of simulators, albeit with
a different aim in mind. [19] introduced the notion of bi-
deduction: a judgment (v⃗0, v⃗1)▷ (u⃗0, u⃗1) holds if there exists
a deterministic PTIME program S computing u⃗i when given
v⃗i as input, for both i ∈ {0, 1}. The connection is quite clear:
if (∅, ∅) ▷ (u⃗0, u⃗1) holds then u⃗0 ∼ u⃗1 is a valid CCSA
formula. Unfortunately, the simulator S that can be obtained
using the approach of [19] is very limited: first, no interaction
(through oracle calls) with an external game are supported; and
second, the simulator S is always a simple loop-free (no while
or for loops, no recursion) and deterministic program. This
restricts the judgements that can be derived, as more complex
bi-deduction properties require more involved simulators. In
particular, the simulators constructed in the manual proofs of
soundness of SQUIRREL cryptographic axioms [18], [20] are
all completely out-of-scope.

b) Contributions: In this paper, we propose a formal
framework for systematically deriving cryptographic axioms
in the higher-order CCSA logic of SQUIRREL. To that end:

i) We significantly adapt the notion of bi-deduction intro-
duced in [19] by enriching the computational capabilities of
the simulator S witnessing a bi-deduction judgement:

• We allow probabilistic PTIME programs. This requires
to carefully track — using symbolic constraints — which
names correspond to adversarial computations and which
belong to the game and, more generally, to carefully
relate — through a probabilistic coupling — the random
samplings performed in the logic and in the computations
involving the game.
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• We provide access to oracles of a cryptographic game G.
Our approach supports games with an internal persistent
state, whose properties can be tracked by extending
the bi-deduction judgements with Hoare pre and post
conditions. E.g., in the case of the PRF game, the state is
used to keep track of which messages have been hashed,
and the assertion that some message has not been hashed
before will resurface in a conditional surrounding calls
to the real-or-random oracle, corresponding to the ad-hoc
conjunction over H in Example 2.

ii) We formally show that our improved notion of bi-
deducibility is expressive enough to derive sound crypto-
graphic axioms in our logic, and we provide a proof system for
establishing bi-deducibility. Our proof system notably features
an induction rule that can deal with the recursively defined
observables of protocols.

iii) We implemented this proof-search algorithm in SQUIR-
REL, to validate our approach on several case studies.

c) Related Work: The deduction problem has been ex-
tensively studied in the literature, albeit in different settings.
E.g. [21], [22], [23] study this problem in Dolev-Yao models,
hence they only consider adversaries with very restricted
computing capabilities and which do not have access to any
oracles. In [24], the authors rely on a deduction predicate with
a computational semantics, which they use to prove some
security properties. However, this work is mostly interested
in non-deducibility rather than deducibility, and they only
consider adversaries without access to any oracles.

d) Outline: We present in Section II the fragment of
SQUIRREL’s higher-order CCSA logic in which we shall work,
and define in Section III a formal model of cryptographic
games and adversaries that is adapted for our needs. Our notion
of bi-deduction is then presented in Section IV, together with
a proof system for deriving bi-deducibility. Finally, Section V
presents a proof-search procedure for this system. We report in
Section VI on some case studies performed with an extension
of SQUIRREL implementing this procedure (now merged into
the main branch of the tool [25]).

II. LOGIC

We recall the main features of the indistinguishability logic
of [20]. This is a first-order logic over higher-order terms with
a probabilistic semantics. More precisely, models of the logic
interpret terms as random variables sharing the same sample
space (hence terms can represent dependent random variables).
The logic features predicates capturing specific properties of
the random variable interpretations of terms. For instance, t1 ∼
t2 holds when the advantage of any PPTM in distinguishing
t1 from t2 is negligible.

A key aspect is that the probabilistic semantics of terms is
represented as deterministic functions taking as input tapes
providing the source of randomness. This yields an eager
sampling semantics for our logic, where no random sam-
plings are performed during the computation of the semantics.
Instead, all necessary randomness is drawn in advance, and
the semantics retrieve random values from it as needed. This

makes all sources of randomness explicit, and allows to easily
track the randomness shared between different computations.

a) Types: We consider simple types over a set of base
types B (e.g. bool, message, int): a type, denoted by τ, is either
a base type τb ∈ B or τ1 → τ2 where τ1 and τ2 are types.

b) Type Structures: A type structure M provides inter-
pretation domains for types, which are parameterized by the
security parameter η. For every η ∈ N, every base type τb ∈ B

maps to a set JτbK
η
M, which is the interpretation domain of

terms of type τb for a specific value of η. The interpretation is
then lifted to arrow types as expected: Jτ1 → τ2K

η
M = Jτ1K

η
M →

Jτ2K
η
M, i.e. the set of functions from Jτ1K

η
M to Jτ2K

η
M.

We require that standard types are interpreted as expected,
e.g. bool is interpreted as {0, 1} and int as N. We also require
that M specifies the sampling procedures used to sample values
in each type. First, for every base type τb ∈ B and η, M

defines the number RM,η(τb) ∈ N of random bits needed to
sample a value of type τb. Second, M provides a machine
JτbK$M such that for every η and bitstring w of length RM,η(τb),
JτbK$M(1η, w) computes a value in JτbK

η
M in time polynomial

in η.
c) Terms: We consider simply-typed λ-terms built from

a set of variable symbols X :

t ::= x | (t t) | λ(x : τ). t (when x ∈ X )

As usual, terms are taken modulo alpha-renaming, and we
let fv(t) denotes the free variables of t. A term is typed and
interpreted w.r.t. an environment E , which is a sequence of:
declarations of the form (x : τ), which state the existence
of a variable x of type τ; definitions of the form (x : τ = t),
which introduce new variables with a fixed meaning. Recursive
definitions are allowed, with a semantic well-foundedness
condition [20] whose details are irrelevant for the present
work. We write E ⊢ t : τ when t has type τ in E , and we
only consider well-typed terms and environments (see [20]
for typing rules).

d) Models: A term structure, or model M for an environ-
ment E , which we write M : E , allows to interpret well-typed
terms as random variables on the interpretation of their types,
as we describe next. The model M first specifies, for every η,
a sample space TM,η = T a

M,η×T h
M,η , where T a

M,η (resp. T h
M,η) is

the set of all bit-strings of some length fixed by M. Elements
of TM,η are pairs ρ = (ρa, ρh) of random tapes: ρa will be
used to model adversarial randomness, while ρh will be used
for honest random samplings. Given a type τ, RVM(τ) is the
set of η-indexed families of random variables from the sample
space TM,η to JτKηM:

RVM(τ)
def
=

{
(Xη)η∈N | Xη : TM,η → JτKηM for every η

}
For each declaration (x : τ) ∈ E , the model M provides
an interpretation M(x) ∈ RVM(τ). For X ∈ RVM(τ), we
define M[x 7→ X] as the model which maps x to X and
is otherwise identical to M. The interpretation of declared
variables is finally lifted to define JtKη,ρM:E ∈ RVM(τ) for any
term t such that E ⊢ t : τ, as follows:

JxKη,ρM:E
def
= M(x)(η)(ρ) (if (x : τ) ∈ E)

3



Jt t′Kη,ρM:E
def
= JtKη,ρM:E(Jt

′Kη,ρM:E)

Jλ(x : τ). tKη,ρM:E
def
=

(
a ∈ JτKηM 7→ JtKη,ρ

M[x 7→1
η
a]:(E,x:τ)

)
where 1ηa is the element of RVM(τ) such that 1ηa(η)(ρ) = a
for every ρ and 1ηa(η

′)(ρ) is some irrelevant value for η ̸= η′.
Note that the parameters η and ρ remain constant throughout
the interpretation (an interpretation JtKη,ρM:E only depends on
interpretations of subterms of t for the same parameters η, ρ)
which reflects the eager sampling semantics announced before.

If E contains a definition x : τ = t, the interpretation of x
is given by that of t, i.e. we have JxKη,ρM:E = JtKη,ρM:E . The well-
foundedness conditions on recursive definitions ensure that this
yields a unique interpretation.

e) Global Formulas: The formulas of our first-order
logic are as usual. We call them global formulas and decorate
their logical connectives to distinguish them from another
language of formulas that we will introduce later:

F ::= ⊥̃ | F ⇒̃ F | ∀̃(x : τ). F |
adv(t) | [t]e | [t] | t1, . . . , tn ∼ t′1, . . . , t′n

Other connectives and quantifiers (¬̃, ∨̃, ∧̃, ∃̃) are defined from
⊥̃, ⇒̃, ∀̃ as usual. As for terms, we write E⊢F when F is well-
typed in E (we omit the typing rules, which are standard). The
semantics of formulas (i.e. the satisfaction relation M |= F )
derives as usual from the semantics of atomic formulas (the
last four constructs) which we describe next.

For any term t of base type, adv(t) states that the inter-
pretation of t can be computed by a PPTM which can only
access the adversarial random tape: M |= adv(t) iff. there
exists a PPTM M s.t. M(1η, ρa) = JtKη,ρM:E for all η ∈ N

and ρ = (ρa, ρh) ∈ TM,η . The definition is extended naturally
to terms t of type τ1b → . . . → τkb → τb by requiring the
existence of a PPTM taking function arguments as inputs.

For any boolean term t, the atoms [t]e and [t] state,
respectively, that t is exactly true and overwhelmingly true:

M |= [t]e iff JtKη,ρM:E = 1 for all η ∈ N, ρ ∈ TM,η

M |= [t] iff Prρ∈TM,η (JtK
η,ρ
M:E = 0) is negligible in η

Finally, if t⃗ = t1, . . . , tn and t⃗′ = t′1, . . . , t
′
n are two are

sequences of terms with compatible base types (i.e. ti and t′i
have the same types for every i), the atom t⃗ ∼ t⃗′ states that t⃗
and t⃗′ are computationally indistinguishable. More precisely,
M |= t⃗ ∼ t⃗′ holds when, for any PPTM D, the following
quantity is negligible in η:∣∣∣ Pr

ρ∈TM,η

(
D(1η, J⃗tKη,ρM:E , ρa) = 1

)
− Pr

ρ∈TM,η

(
D(1η, Jt⃗′ Kη,ρM:E , ρa) = 1

)∣∣∣
Following standard notation from first-order logic, we write

E ,Θ |= Θ′ if all models w.r.t. E of the formulas of Θ are
also models of the formulas of Θ′. A formula F w.r.t. E is
valid when E , ∅ |= F . Finally, judgements of the logic are of
the form E ,Θ ⊢ F (where Θ, F are well-typed in E). Such a
judgement is valid whenever ∧̃Θ ⇒̃ F is valid.

Example 3. For any t : bool we have M |= [t]e ⇒̃ [t] for any
M, i.e. that formula is valid. The converse implication is not
valid. Moreover, [t] is logically equivalent to t ∼ true.

f) Builtins and Local Formulas: We will need to restrict
to models satisfying some conditions. We first assume that
environments always contain some builtins, including true,
false, if · then · else ·, with the expected types, and we
restrict to models where they are interpreted as expected. We
further assume that environments always contain the following
declarations:

∧,∨,⇒ : bool→ bool→ bool ¬ : bool→ bool

=τ : τ → τ → bool ∀τ ,∃τ : (τ → bool)→ bool (for each τ)

We require that models interpret all of these builtins in the
natural way. In particular:

J=τKη,ρM:E(a, a
′) = 1 ∈ JboolKη,ρM:E iff. a = a′ (a, a′ ∈ JτKη,ρM:E )

J∀τKη,ρM:E(f) = 1 ∈ JboolKη,ρM:E iff. f(a) = 1 for all a ∈ JτKη,ρM:E

We generally omit type subscripts on the equality and quanti-
fier symbols. With these operations, terms of type bool can be
seen as formulas: we call them local formulas to distinguish
them from the global formulas, which are the true formulas
of our first-order logic. The semantics of a local formula is a
random boolean variable, i.e. a function of η, ρ, but it evaluates
all of its subformulas for the same values of η, ρ. In contrast,
the semantics of a global formula is not parameterized by η, ρ,
but these formulas express properties of random variables.

g) Names: As a last, but crucial, ingredient in our logic,
we need a way to talk about specific random samplings. To
do this, we let N ⊆ X be a set of symbols called names.
A name n ∈ N can only be declared in an environment,
and must have a type of the form τ0 → τ1 where the
index type τ0 must be finite, which we write finite(τ0):
concretely, JτKηM must be finite for all η. We restrict to models
where names have a specific interpretation: for any M, there
must exist a machine wn such that, for every η ∈ N and
a ∈ Jτ0K

η
M, wn(η, a, ρh) extracts, in time polynomial in η,

RM,η(τ1) consecutive random bits from the honest tape ρh.
Furthermore, we require that wn(η, a, ρh) and wn′(η, a

′, ρh)
extract disjoint parts of ρh when either the names n, n′ or
the indices a, a′ differ. Then, the interpretation of the name
n is obtained by feeding the random bits extracted by wn

to the sampling algorithm Jτ1K$M given by the type structure
underlying M:

JnKη,ρM:E
def
=

(
a ∈ Jτ0K

η
M 7→ Jτ1K$M(η, wn(η, a, ρh))

)
By construction, if n1 : τ1 → τ and n2 : τ2 → τ are distinct

names and a1 ∈ Jτ1K
η
M, a2 ∈ Jτ2K

η
M, the random variables

ρ 7→ Jn1K
η,ρ
M:E(a1) and ρ 7→ Jn2K

η,ρ
M:E(a2) are independent

and identically distributed, for any η. The same holds for
Jn1K

η,ρ
M:E(a1) and Jn1K

η,ρ
M:E(a

′
1) whenever a′1 ̸= a1. Going

further, if t is term whose free variables are either names other
than n1, or variables x such that adv(x) holds, the random
variables JtKηM:E and Jn1K

η
M:E are also independent: indeed, the

semantics of t only depends on the tape ρa and segments of
ρh disjoint from the segments extracted by n1.

Example 4. In order to model a keyed hash function, we would
typically use types message and key and a function symbol
h : message×key→ message. Since keys are generally chosen
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randomly, they will be represented by names. Our notion of
model does not force the sampling of keys to be uniform, i.e. we
can reason over arbitrary key generation algorithms. However,
it is reasonable to require that freshly sampled keys cannot be
guessed by the attacker. This can be done by postulating the
axiom [k ⟨⟩ ̸= t] for any name k : unit → key, constant
function symbol ⟨⟩ : unit, and term t that does not contain the
name k. These conditions ensure that the random variables
JtKη,ρM:E and Jk ⟨⟩Kη,ρM:E are independent; the probability that they
coincide is thus negligible in models where keys are sampled
uniformly enough in a large enough sample space.

For convenience, we allow ourselves to use a name that has
a base type, in which case the semantical assumptions on it
are the same as if it were indexed over unit.

III. EXPRESSION, GAMES, AND ADVERSARIES

In this section, we introduce a programming language that
we use to describe cryptographic games and adversaries.
It is a simple While language extended with probabilistic
random samplings, and a mechanism allowing adversaries to
perform oracle calls. While adversaries are programs, not all
programs describe valid adversaries: e.g. we will require that
adversaries run in polynomial-time and properly use random
samplings. Our programming language is tailored to simplify
the connection with the logic in two ways: first, all the
program randomness is sampled eagerly, before execution
starts; second, the adversary is tasked with scheduling the
oracles’ randomness usage. Nonetheless, these non-standard
features remain simple enough to ensure that our notion of
adversaries (described using our programming language) is
equivalent to the standard one.

A. Syntax

We assume a set of program variables Xp, and an intrinsic
typing associating to each variable v ∈ Xp a base type
— we do not need a higher-order programming language.
The library of our language, denoted by Lp, is a set of
typed function symbols disjoint from Xp representing built-in
functions shared with the logic — i.e., we will have Lp ⊆ E .
We assume that Lp contains at least the standard arithmetic and
boolean operations (e.g. 0, ·+ ·, if · then · else ·, true, false).

1) Expressions: We let Expr be the set of expressions built
using Xp, Lp, and the special constant b, of type bool. This
constant will denote the side we are in when describing a left
or right cryptographic game. Formally, Expr is defined by:

e1, . . . , en ∈ Expr ::= e1 e2 | v | f | b (v ∈ Xp, f ∈ Lp)

Given an expression e, its left projection is the expression
e[b 7→ true] obtained by substituting all occurrences of b by
true. We define similarly the right projection e[b 7→ false] of e.

We assume a standard type system (whose rules we omit)
and only consider well-typed expressions w.r.t. Xp and Lp.

p1, . . . , pn::= v ← e

| v $← T[e]

| v ← Of (e⃗)[e⃗g; e⃗l]

| abort

| skip
| p1; p2
| if e then p1 else p2

| while e do p

Fig. 1. Syntax of programs.

2) Tagged random samplings: The logic uses two different
sources of randomness: the adversarial random tape ρa, given
to logical adversaries (i.e. adversarial function symbols and
the top-level distinguisher in the semantics of u⃗ ∼ v⃗) and the
honest random tape ρh used to represent honest samplings per-
formed by names. For programs, we need a more fined-grained
separation of sources of randomness, as illustrated next.

Example 5. Consider the indistinguishability formula
att(h(m, k)) ∼ att(fresh) with m and k distinct names and
att an adversarial function. Under the PRF assumption on h,
this formula is valid if we can build an adversary S against the
PRF game of Example 1 such that the interaction of S with
G0 produces att(h(m, k)) and the interaction of S with G1

produces att(fresh). Here, such an adversary exists: it samples
m, calls the real-or-random oracle on the result, and runs att
on the output obtained from the oracle. In the execution of this
simulator, it is useful to distinguish three kinds of randomness:
the adversarial randomness used to run att, the randomness
used by the simulator to sample m, and the randomness used
by the oracle to sample k.

To account for this, we use the notion of tagged random
tapes, where each tag in Tag = {TA,TS,TG} represents
a source of randomness used during the execution of the
simulator S,

• TA is for (logical) adversarial randomness;
• TS is for honest randomness that is directly sampled by S;
• TG is for the game (oracle) randomness that the simulator
S cannot directly access.

The program S can directly sample from randomness tagged
TA or TS, but not randomness tagged TG. Intuitively, the
logical random tape ρa corresponds to tag TA, while the logical
random tape ρh must be partitioned between tags TS and TG.

3) Programs: We consider a simple While programming
language whose full syntax is given in Fig. 1. We require pro-
grams to be well-typed, but omit the obvious type system. Our
language features the usual constructs — assignment, abort,
conditional, while loop, . . . — and two specific instructions
used for random samplings and oracle calls, we described next.

The program v $← T[e], where v : τ ∈ Xp, T ∈ Tag, and e
is of type int, samples a value of type τ using the randomness
from random source T read at offset e, and stores it into v.

The program v ← Of (e⃗)[e⃗g; e⃗l] is an oracle call, where
the variable v receives the call’s result, f is the oracle being
called, e⃗ are the oracle inputs, and e⃗g, e⃗l are type int. The
integers e⃗g and e⃗l let the adversary control the offsets at which
the oracle reads its randomness — the attacker controls the
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decl_var ::= v ← e (v ∈ Xp, e ∈ Expr)
decl_sample ::= v $← (v ∈ Xp)
decl_oracle ::= f(v⃗) := {decl_sample∗; p; return e}

(f ∈ O, v⃗ ∈ X ∗
p , e ∈ Expr, p a program)

decls ::= decl_var∗; decl_sample∗; decl_oracle∗

Fig. 2. Syntax of games defined over oracle names O.

randomness offsets, but cannot read nor write these random
bits itself. We distinguish the global offsets e⃗g used for the
global random variables of the game from the local offsets
e⃗l used for the local random variables of the oracles. As each
oracle call must use fresh randomness for local samplings, our
semantics will forbid the adversary from re-using local integer
offsets. Similarly, global offsets will have to be consistent from
one call to the next, as the game’s global variables must be
sampled only once.

Example 6. Assuming n,m, s : message ∈ Xp, the program

n $← TS[1]; m
$← TS[2]; s

$← TS[3]; w ← Ohash(n)[7; ·];
w′ ← Oreal-or-random(h(m, s))[7; 3]

may represent an adversary against the PRF game of Exam-
ple 1. It directly samples three values of type message at offsets
1, 2 and 3 in the honest random tape, corresponding to tag TS.
It calls the hash oracle on the first sampled value, indicating
that the game’s key must be read from the game tape for type
message at offset 7. It computes its own hash of the second
sampled value, keyed by the third sampled value, and finally
calls the real-or-random oracle on this hash, indicating the
same global offset for the key, and a local offset of 3 for the
oracle’s randomness. The global and local samplings of the
oracle calls are done using tag TG.

4) Games: Cryptographic games set up some data (e.g.
randomly sampling keys) and provide functionalities through
oracles to compute over this data. Oracles may modify the
game’s memory. As explained before, we are interested in
pairs of games (G0,G1) that are assumed to be indistinguish-
able. As for expressions, we factorize their common behavior
by defining a single game G that can use the boolean variable
b, such that G equals Gi when b = i.

Definition 1. A game G = (O, decls) is a finite set of oracle
names O, and a sequence of declarations decls whose syntax
is given in Fig. 2. Declarations contain, in order, sequences of:

1) initialisation of variables, either:

• v ← e, which assigns the evaluation of expression e to v;
• or vg $←, which initializes the global random variable vg .

2) f(v⃗) := {vl1 $←; . . . ; vlk
$←; p; return e}, which defines

an oracle f ∈ O with inputs v⃗ that initializes a sequence of
local random variables vl1, . . . , v

l
k, then executes a program

p without random samplings nor oracle calls, and finally
returns e. We assume that p never modifies the values of the

random global variables (e.g. vg above), and the random local
variables of any oracle (e.g. vl1, . . . , v

l
k above).

We require that a game provides a single definition for each
oracle name f ∈ O. Given one such definition, we let:

f.args def
= v⃗ f.loc$

def
= (v′1, . . . , v

′
k) f.prog def

= p f.expr def
= e

We also let f.glob$ be the vector of all global random
variables that are used in the oracle f .

For the rest of the article, we let G be an arbitrary but fixed
game, well-typed w.r.t. Xp and Lp.

Example 7. We define the PRF game over O = {hash, chal}:
k $←; ℓhash ← []; ℓchal ← [];

hash(x) :=
{
ℓhash ← x :: ℓhash;

return (if x ̸∈ ℓchal then h(x, k) else zero)
}

chal(x) :=
{
r $←;

v ← if x ̸∈ ℓhash ∪ ℓchal then

if b then h(x, k) else r

else zero ;

ℓchal ← x :: ℓchal;

return v
}

We use library functions for the empty list [] and list
concatenation ∪, and the if-then-else — the conditional above
is not at the program level. Our game generalize the one in
Example 1 by allowing multiple calls to the challenge, which in
turn requires that we use two logs ℓhash and ℓchal to avoid that a
challenge message is later used for the hash oracle. The game
features a globally sampled variable k and a locally sampled
variable r in the challenge oracle. The nested conditional
in that challenge uses the special variable b to specify the
different behaviors of G0 and G1.

Anticipating on what follows, the program from Example 6
will execute against our PRF game. After the execution with
b = 0 and b = 1 respectively, the evaluation of ⟨w,w′⟩ will
yield random variables with the same distributions as:

⟨h(n, k), if n ̸= m then h(h(m, s), k)⟩
and ⟨h(n, k), if n ̸= m then fresh⟩.

Intuitively, the indistinguishability of the PRF game G thus
implies the following logical indistinguishability, where we
simplified away the overwhelmingly true name dis-equality:

h(n, k), h(h(m, s)k) ∼ h(n, k), fresh.

B. Semantics

The semantics of expressions and programs is parameterized
by a logical model M of a (logical) environment E . The model
M is used to specify the semantics of all library functions in
Lp. To that end, we require that E is compatible with Xp and
Lp, in the following sense: Lp ⊆ E and the set of variables
defined or declared in E is disjoint from Xp.

1) Memories: A memory µ ∈ MemM,η w.r.t. a type
structure M and η is a function µ that associates to any
variable v ∈ Xp of type τ a value µ(v) ∈ JτKηM. As usual,
µ[v 7→ a] is the memory such that (µ[v 7→ a])(v) = a and
(µ[v 7→ a])(v′) = µ(v′) for any variable v′ ̸= v.

6



2) Program random tapes: To fit with the logic, all the
randomness of our programs is sampled eagerly and passed
to the program using read-only random tapes. To sample a
value of type τb, we retrieve a vector w$ of RM,η(τb) bits
from the random tapes, and then use the sampling algorithm
JτbK$M(η, w$) provided by the model to obtain a value in JτbK

η
M.

To simplify the presentation and analysis of the bi-deduction
logic in Section IV, we use a different random tape for each
usage: we will use a family of random tapes, one for each
pair (T, τb) of randomness source (i.e. tag T ∈ {TA,TG,TS})
and base type τb ∈ B we are sampling from. However, we
only consider bool for TA since adversarial randomness is only
needed for the adversarial function symbols in Lp.

Definition 2. A program random tape p is a family (p|L)L∈S
of infinite sequences of bits indexed by the set of labels:

S def
= {(TA, bool)} ∪

⋃
τb∈B{(TG, τb)} ∪ {(TS, τb)}.

For any tag T , we split p|T,τ into blocks of RM,η(τ) bits, and
for any k ∈ N, we let p|η,MT,τ [k] be the k-th such block. We may
omit M and τ when they are clear from the context.

Finally, we let P be the set of all program random tapes.

3) Semantics: The semantics [e]η,pM,i,µ of an expression e
of type τ is a value in JτKηM. The semantics of a program is
parameterized by the game G that the program can interact
with, a model M : E (such that Xp,Lp and E are com-
patible) used to interpret library function symbols, the side
bit i ∈ {0, 1}, and the security parameter η. The evaluation
LpMη,pG,M,i,µ ∈ MemM,η ∪ {⊥} of a program p in memory µ
and using the program random tape p is either the memory
obtained by executing p, or ⊥ if the execution does not
terminate. For the sack of conciseness, we write [e]η,pµ (resp.
LpMη,pµ ) when M, i and G are clear from context.

The definitions of these semantics is as expected from
the above explanations. We show below one interesting case,
providing the full definitions are in Appendix B:

Lv $← T[e]Mη,pµ
def
= µ

[
v 7→ JτK$M(η, p|

η
(T,τ)[k])

]
where k = [e]η,pµ and v has type τ.

We use a special variable res to store the return value of
a program. With this convention, we define the probability
Prp(LpM

η,p
G,M,i,µ) that a program p terminates in an accepting

state, starting in a memory µ with security parameter η and
interacting with side i ∈ {0, 1} of G, as follows:

Prp(LpM
η,p
G,M,i,µ)

def
= Prp

(
µ′[res] = 1 where µ′ = LpMη,pG,M,i,µ

)
4) Cost model: In order to define what an adversary is, we

need to restrict ourselves to PTIME programs, which requires a
time cost model. Rather than providing an explicit cost model,
which would be tedious and possibly unnecessarily restrictive,
we assume an arbitrary cost model satisfying a few expected
and standard properties which we detail in Appendix B-C.

5) Security of a game: An adversary against a game is a
PTIME program — w.r.t. our cost model — that respect the
game’s execution, i.e. that: does not read nor write the game
internal variables nor the special side constant b; does not
read the game tapes (labeled with TG); and properly provides
randomness offsets to the game: local offsets must be fresh,
and global offsets must be consistent across oracle calls. For
more details, see Appendix B-E.

We finally define what it means for a game to be secure.

Definition 3. A game G is secure in a compatible model M if
for any adversary p, the following quantity is negligible in η:∣∣Prp (LpMη,pG,M,0,µ0

)
− Prp

(
LpMη,pG,M,1,µ1

)∣∣
where µi = µi

init
η,p
M for any i ∈ {0, 1} is the initial memory of

the game (see Appendix B-C for details).

Example 8. The game of Example 7 is secure in a model M
iff. the standard cryptographic PRF assumption is satisfied for
the implementation of h in M.

IV. BI-DEDUCTION

Now that we have fixed our notions of games and ad-
versaries, we develop the central concept of this work: bi-
deduction in presence of a cryptographic game. When working
with bi-deduction, we will deal with several pairs of objects,
where each component is involved in the deduction on one
side i ∈ {0, 1}. We introduce special notations for such pairs,
following the style of [8].

Definition 4 (Bi-objects, u#, #(_, _)). We call bi-term a
pair of terms u# = #(u0, u1). We will similarly define and
manipulate several kinds of bi-objects: for instance, we call
(local) bi-formula a pair of local formulas f# = #(f0, f1,).

We allow ourselves to factorize common parts of a bi-
term (or any bi-object) by pushing the # downward. E.g.
f(#(u, v), g(#(s, t))) denotes #(f(u, g(s)), f(v, g(t))).

Our end goal in this work is to develop a method for
deriving indistinguishabilities from cryptographic assumptions
expressed as games, which should in particular subsume exist-
ing cryptographic axioms. To this end, we shall significantly
generalize the notion of bi-deduction from [19]. In that work, a
bi-deduction u# ▷ v# holds when there exists a deterministic
PTIME simulator which, for each i ∈ {0, 1}, computes vi
when given ui as input. This can be used to support useful
inferences on indistinguishability, as shown in the next rule:

u⃗0 ∼ u⃗1 #(u⃗0, u⃗1) ▷ #(v⃗0, v⃗1)

v⃗0 ∼ v⃗1

To prove the soundness of this rule, assume the contrary:
then the PTIME distinguisher D against v⃗0 ∼ v⃗1 can be com-
posed with the simulator S witnessing #(u⃗0, u⃗1) ▷ #(v⃗0, v⃗1)
to obtain a PTIME distinguisher D ◦ S against u⃗0 ∼ u⃗1.

We seek to leverage a similar argument to establish that
v⃗0 ∼ v⃗1 is a consequence of the security of a cryptographic
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game G. This will be expressed1 as #(∅, ∅) ▷ #(v⃗0, v⃗1) but
with a stronger notion of computation underlying bi-deduction:
to exploit the full generality of the argument, we will consider
arbitrary G-adversaries as simulators. This will lead to a
generalized bi-deduction judgement involving constraints on
the usage of random tapes, and assertions for describing the
game’s memory at a point of the simulator’s computation.
We present next these key ingredients, before introducing bi-
deduction itself and a proof system for it.

A. Name Constraints

Our simulators can perform random samplings, either di-
rectly or indirectly through oracle calls. Names in the bi-
deduction judgement will be used in both cases to represent
such computations. For example, in the PRF game using key k,
an adversary may compute h(m, k) through an oracle call (as-
suming that m is computable) but it may also compute h(m, s)
explicitly when s and k are distinct names (by drawing s and
computing the application of h itself). Having the simulator
sample k itself would be unsound, as an adversary is forbidden
from accessing the game’s random samplings directly.

To avoid such issues, we introduce name constraints to keep
track of how names are used in bi-deduction. We will make
use of the following set of tags:

TAGconstr = {TS ,T
loc
G } ∪ {T

glob
G,v | v ∈ G.gs}

Intuitively, TS indicates that a name corresponds to a random
sampling of the simulator; Tloc

G means that a name corresponds
to an oracle’s local sampling; finally, Tglob

G,v corresponds to the
global sampling of variable v in the game.

Definition 5. A name constraint is a tuple c = (α⃗, n, t, T, f)
where α⃗ is a vector of variables in X , n is a name, t is a
term, T ∈ TAGconstr, and f is a local formula. A constraint
system C is a list of name constraints.

Intuitively, the constraint above expresses that, for an arbi-
trary number of instantiations of the variables α⃗ such that f
holds, the name n is used at index t as specified by tag T . Vari-
ables α⃗ are bound in the constraint. Accordingly, constraints
are considered modulo renaming of these variables and, when
we consider several constraints jointly, we implicitly assume
that their bound variables are disjoint. We do not require that
free variables of t and f are all bound by α⃗.

Example 9. [({i}, n, i,Tglob
G,v , f), ({i}, n, i,TS , f

′)] is a con-
straint system that expresses that: for every value of i for
which f holds, the name n i is used to represent the global
sampling of variable v of the game; for every value of i for
which f ′ holds, the name n i represents a sampling performed
by the simulator. For this to make sense, we expect f and f ′

to be mutually exclusive.

1Although we will initially be concerned with judgements without any
input, i.e. u⃗# = ∅, the general form u⃗# ▷ v⃗# will still be useful, allowing
e.g. transitivity and induction rules in our proof system. Also note that we only
use our generalized bi-deduction to establish indistinguishabilities; u⃗# ▷ v⃗#
cannot be used to establish that v⃗0 ∼ v⃗1 follows from u⃗0 ∼ u⃗1 as in [19].

To reflect the intended semantics of constraints we define
N η,ρ

C,M
def
=

⋃
c∈C N

η,ρ
c,M where:

N η,ρ
(α⃗,n,t,T,f),M

def
= {⟨n, JtKη,ρMσ , T ⟩ | dom(σ) = α⃗, JfKη,ρMσ = true}

This interpretation of a constraint system supports a natural
notion of constraint subsumption: we write E ,Θ |= C ⊆ C′
when for any M such that M : E |= Θ, for any η and ρ, we
have N η,ρ

C,M ⊆ N
η,ρ
C′,M.

Intuitively, a constraint system expresses how the compu-
tation underlying a bi-deduction judgement uses names. We
define a validity criterion for constraint systems that captures
when the usage of names is consistent, which is necessary to
ensure that the computation does correspond to an adversary.
Validity consists of three conditions:

• name-tag associations must be functional: no name is
associated to two different tags;

• the local samplings must be fresh: the associated names
do not occur anywhere else;

• a globally sampled variable must be associated to a
unique name.

These conditions must hold for every η, ρ such that the
conditions f hold, and are defined formally in Fig. 3.

We define the validity of a constraint system C as the con-
junction of all conditions on all pairs of constraint occurrences:

Valid(C) def
= [

∧
c1,c2∈C

Fun(c1, c2)∧Fresh(c1, c2)∧Unique(c1, c2) ]e

As expected, Θ |= Valid(C′) and Θ |= C ⊆ C′ imply
Θ |= Valid(C). The validity condition relies on the exact truth
predicate, in other words we require our attackers to always
behave correctly w.r.t. randomness usage. Importantly, we
never require that names are distinct but only that their indices
are distinct. The former would be too strong, as constraints on
random samplings are intentional: we certainly do not rule out
the possibility that an attacker, performing a random sampling
by itself, happens to obtain the same value as a game’s random
sampling.

Later, we will make use of bi-systems of constraints C#. In
practice, they will be pairs of lists of the same length, so we
view and manipulate them as lists of bi-constraints. We define
Valid(C#) as Valid(C1) ∧̃Valid(C2).

B. Assertion Logic

Since the values returned by oracles may depend on the
game’s global state, we need to keep track of this state during
the adversarial computation underlying bi-deduction.

Example 10. In the PRF game, if k corresponds to the game’s
globally sampled key, fresh to a local sampling of the challenge
oracle, and m is an arbitrary adversarial message, we can
bi-deduce (∅, ∅) ▷ #(h(m, k), fresh): the simulator simply
calls the challenge oracle on m. However, we should not
have (∅, ∅) ▷ h(m, k),#(h(m, k), fresh): to compute these
bi-terms, the simulator would have to call both the hash and
the challenge oracles on m, and the second call would fail
because it would find m in either ℓchal or ℓhash. However,
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Fun(c1, c2)
def
= ∀α⃗1∀α⃗2. f1 ∧ f2 ⇒ t1 ̸= t2 when T1 ̸= T2 and n1 = n2, and Fun(c1, c2)

def
= ⊤ otherwise

Fresh(c1, c2)
def
= ∀α⃗1∀α⃗2. f1 ∧ f2 ⇒ c1(α⃗1) ̸= c2(α⃗2)⇒ t1 ̸= t2 when T1 = T2 = Tloc

G , n1 = n2, and Fun(c1, c2)
def
= ⊤ otherwise

Unique(c1, c2)
def
=


∀α⃗1∀α⃗2. f1 ∧ f2 ⇒ t1 = t2 when T1 = T2 ∈ {Tglob

G,v | v ∈ G.gs}, n1 = n2

∀α⃗1∀α⃗2. f1 ∧ f2 ⇒ ⊥ when T1 = T2 ∈ {Tglob
G,v | v ∈ G.gs}, n1 ̸= n2

⊤ otherwise

where c1 = (α⃗1, n1, t1, T1, f1) and c2 = (α⃗2, n2, t2, T2, f2); and where we write c1(α⃗1) ̸= c2(α⃗2) as a shorthand for ⊤ if c1 and c2 are
distinct occurrences, and α⃗1 ̸= α⃗2 otherwise.

Fig. 3. Constraint validity conditions.

we should have (∅, ∅) ▷ h(n, k),#(h(m, k), fresh) for any
adversarial message n always distinct from m, i.e. [n ̸= m]e.

A natural way to control the game’s state through bi-
deduction is to enrich our judgement with pre- and post-
conditions. For now we shall rely on an abstract assertion
language — a concrete instance of it will be considered later.

We thus assume an arbitrary language of assertions, with a
notion of well-typedness w.r.t. environments, and a notion of
satisfaction: given some environment E , an assertion φ that is
well-typed w.r.t. E , a model M : E , a security parameter η, a
random tape ρ and a memory µ, we write M, η, ρ, µ |=A φ to
denote that φ is satisfied by the left-hand side elements. Note
that an assertion φ can specify properties of both the game’s
memory µ and logical values, including names, thanks to ρ.
This allows, e.g., to have an assertion expressing that the value
of a particular name Jn tKη,ρM:E does not belong to some list
stored in the game’s memory µ. Adding p to the satisfaction
relation would not be useful, as relevant samplings by the
program and oracles can be accessed directly in the memory.

We assume that assertions support propositional connec-
tives, and that local formulas can be seen as assertions. Sat-
isfaction for these constructs should behave as expected, e.g.
M, η, ρ, µ |=A f iff. JfKη,ρM:E = 1; and M, η, ρ, µ |=A φ ⇒ ψ
iff. M, η, ρ, µ |=A φ implies M, η, ρ, µ |=A ψ.

Example 11. To see why local formulas are useful in asser-
tions, let us elaborate on Example 10. When n and m are two
names n and m, we cannot guarantee that they are always
distinct. However, we have the following:

(∅, ∅) ▷ h(n, k), if n ̸= m then #(h(m, k), fresh)

Here, the challenge oracle is only called in the then branch,
when n ̸= m does hold. The ability to propagate information
from term-level conditionals to assertions is crucial to verify
such bi-deductions.

C. Bi-deduction Judgement

We now have all the ingredients to form our bi-deduction
judgement. Defining its semantics, though, requires a little
more work. We start with a basic notion of computation, on
which we will elaborate.

Definition 6. Let u1#, . . . , u
m
# , v# be a sequence of bi-terms

well-typed in some environment E , which all have base

types. We say that a program p with distinguished variables
X1, . . . , Xm and res computes u⃗# ▷ v# w.r.t. M, η, p, ρ, µ
and side i ∈ {0, 1} when:

µ′[res] = JviK
η,ρ
M:E with µ′ = LpMη,p

M,i,µ[Xk 7→Juk
i Kη,ρ

M:E ]1≤k≤m

In this context, µ′ is the final memory of the computation.

a) Relating logical and program tapes: Naively, one may
then say that a bi-deduction u# ▷ v# holds w.r.t. a game G
when there exists an adversary p against G which computes
u# ▷ v# w.r.t. any M, η, ρ, p, µ and i. While it makes sense to
quantify universally over M, η, µ and i, doing the same for p
and ρ would be meaningless, resulting in an unfeasible notion
of bi-deduction. Intuitively, we can only expect the semantics
of program p and vi to coincide if they agree on the parts of
the tapes that are read. These parts will roughly be captured
by N η,ρ

M:E,C where C is the judgement’s constraints system.

Example 12. In the PRF game, if we need a name k to
correspond to the game’s (globally sampled) key key, it
is necessary that the tapes ρ and p coincide on positions
corresponding to, resp., k (for ρ) and key (for p).

We now turn to defining the relation between logical and
program random tapes which is associated to a constraint
system. To do so, we assume a fixed but arbitrary mapping
from (semantic) names to offsets in program random tapes:
for each environment E , for each name symbol n : τ ′ → τ
declared in E , for each M : E , η ∈ N and a ∈ Jτ ′KηM, we
assume an offset OM,η(n, a) ∈ N, such that OM,η is injective
and (1η, a) 7→ OM,η(n, a) is PTIME computable.

Definition 7. Let C be a constraint system and M a model,
both w.r.t. E . For any η ∈ N, we define Rη

C,M as the relation
between TM,η and program random tapes P such that ρ Rη

C,M
p holds when ρa is a prefix of p[TA, bool] and for all (n, a,T) ∈
N η,ρ

C,M, JnKη,ρM:E(a) = p|ηT [OM,η(n, a)].

Intuitively, the relation Rη
C,M relates pairs of logical and

program tapes that coincide on segments identified by C.
b) Couplings between logical and program tapes: Our

notion of bi-deduction C ⊢ ∅# ▷ v# will guarantee that there
exists a program p which computes ∅ ▷ v# w.r.t. any tapes
p, ρ that are related byRη

C,M, i.e. (omitting the initial memory):

for all i ∈ {0, 1} and ρ Rη
C,M p, LpMη,pM,i[res] = JviK

η,ρ
M:E .
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In order to be able to lift the equality above to an equality
over distributions (required in computational indistinguisha-
bility), i.e. to show that for any possible value x:

Prp∈P

(
LpMη,pM,i[res] = x

)
= Prρ∈TM,η

(
JviK

η,ρ
M:E = x

)
(1)

we rely on the standard notions of probabilistic coupling
and lifting (as in [26]). We only present the main intuitions
here, details are postponed to Appendix C-C. Consider some
distribution C over pairs of logical and program tapes in
TM,η × P. The left marginal of C is the distribution over
TM,η obtained by extracting the logical tape ρ from a pair
of tapes (ρ, p) sampled according to C. The right marginal
of C is similar, except that it extracts the program tape p. A
distribution C is said to be a probabilistic coupling of TM,η and
P, which we write C : TM,η ▷◁ P, if its left and right marginal
follow the same distributions as the distributions endowing,
resp., TM,η and P. E.g., C : TM,η ▷◁ P implies that for any x:

Prρ∈TM,η

(
JviK

η,ρ
M:E = x

)
= Pr(ρ,p)∈C

(
JviK

η,ρ
M:E = x

)
(2)

Prp∈P

(
LpMη,pM,i[res] = x

)
= Pr(ρ,p)∈C

(
LpMη,pM,i[res] = x

)
(3)

where the top (resp. bottom) equation follows from the left
(resp. right) marginal property of C.

Assume that we can build a coupling C : TM,η ▷◁ P
contained in Rη

C,M (roughly, this means that C only samples
pairs of tapes related by Rη

C,M). Then Eq. (1) holds. Indeed:

Prρ∈TM,η

(
JviK

η,ρ
M:E = x

)
= Pr(ρ,p)∈C

(
JviK

η,ρ
M:E = x

)
(Eq. (2))

= Pr(ρ,p)∈C

(
LpMη,pM,i[res] = x

)
(C contained in Rη

C,M)

= Prp∈P

(
LpMη,pM,i[res] = x

)
(Eq. (3))

c) Couplings from constraint systems: Given a constraint
system C, we would like to build a coupling that is contained in
Rη

C,M. It turns out that this cannot always be achieved: counter-
examples arise when a constraint c = (α⃗, n, t,T, f) features
a condition f (or an index t) that depends on the name n t
introduced in the constraint (see Example 15, Appendix C for
an explicit counter-example). Such pathological cases are of
no use for our use of constraint systems, and we rule them
out by introducing in Appendix C-C the notion of well-formed
constraint system. Given a valid and well-formed constraint
system, we are then able to build the desired coupling.
Roughly, this is done step by step, following the order in which
constraints appear in C: when processing a constraint c, we
are able to compute f and t using the already sampled parts
of the tape, by well-formedness; then, if f holds, we sample
the segments of the logical and program tapes determined by
n, t and T (validity ensures that these segments are not yet
sampled). Once all constraints are processes, the rest of the
tapes in sampled using to relevant probability distributions.

The following key lemma establishes that any well-formed
and valid constraint system C can be used to build a coupling
contained in Rη

C,M (see proof in Appendix C-E).

Lemma 1. Let C be a well-formed constraint system w.r.t.
M, η such that M |= Valid(C). Then, there exists a coupling
C : TM,η ▷◁ P contained in Rη

C,M.

d) Bi-deduction: We finally define bi-deduction:

Definition 8 (Bi-deduction judgement and semantics). A bi-
deduction judgement is of the form:

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷G v#

where G is a game, E is an environment, Θ is a set of global
formulas, C# is a constraint bi-system, the pre-condition φ#

and post-condition ψ# are bi-assertions, the inputs u⃗# is a
vector of bi-terms and v# is a bi-term.

It is valid when, for any type structure M0, there exists a
G-adversary p such that for any model M : E extending M0 in
such a way that M |= Θ∧̃Valid(C#), for any η ∈ N, i ∈ {0, 1},
C# is well-formed w.r.t. M, η and for any tapes ρ Rη

C,M p, and
for any µ such that M, η, ρ, µ |=A φi, p computes u⃗# ▷ v#
w.r.t. M, η, p, ρ, µ, i and the corresponding final memory µ′ is
such that M, η, ρ, µ′ |=A ψi. Moreover, we require that the
computation of p relies on global samplings G$ and local
samplings L$:

G$ ⊆ { OM,η(n, a) | ⟨n, a,Tglob
G,v ⟩ ∈ N

η,ρ
c,M , c ∈ C }

and L$ ⊆ { OM,η(n, a) | ⟨n, a,Tloc
G ⟩ ∈ N η,ρ

c,M , c ∈ C }.

Note that, while the general structure of the previous defini-
tion is guided by the need to derive indistinguishabilities from
bi-deducibilities (as proved formally in the next theorem),
some aspects of the definition are not necessary for this goal
but ease compositional proofs of bi-deduction through our
proof system. This is the case for the conditions on local and
global samplings, which make it easy to compose programs
while preserving the fact that they are G-adversaries.

Theorem 1. Let E be an environment, Θ a set of global formu-
las, and φ# be a bi-assertion such that, for all M : E satisfying
Θ, for all i ∈ {0, 1}, η, ρ, we have M, η, ρ, µi

init
η,ρ
M (G) |=A φi.

The following rule is sound w.r.t. models where G is secure,
for any C#, v⃗# and ψ#:

BI-DEDUCE
E ,Θ ⊢ Valid(C#) E ,Θ, C#, (φ#, ψ#) ⊢ ∅ ▷G v⃗#

E ,Θ ⊢ v⃗0 ∼ v⃗1
The proof is given in Appendix D-C.

D. Proof System

We now present the proof system we designed for
bideduction. Our proof rules are guided by the struc-
ture of the term to be bi-deduced. To enable expressive
rules, it is useful to consider vector of conditional terms.
We will thus consider bi-deductions of the form u⃗ ▷
(f1, if f1 then t1, . . . , fn, if fn then tn), noted more conve-
niently u⃗ ▷ ((t1 | f1), . . . , (tn | fn)) or even u⃗ ▷ t⃗ when the
conditions are irrelevant, using t⃗ to denote conditioned terms.
We present below an overview of the rules of our proof system,
providing in Appendix D the full set of proof rules as well as
soundness arguments and an example derivation.

We shall make use of two operations on constraint systems.
First, the concatenation of bi-constraint systems is defined
as #(C10 , C11) · #(C20 , C21) = #(C10 · C20 , C11 · C21). Note that
the validity of the concatenation of two constraints systems
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carries over to each of them and the well-formedness of two
constraints systems carries over to their concatenation. Second,
we define the generalization ∀x.C of C over x as the constraint
system C where x is added to the vector of bound variables
in all basic constraints. The validity of ∀x.C implies that of C,
and the well-formedness of C carries on to its generalizations.

We show a selected set of rules in Fig. 4, which we describe
below. First, our proof system features rules for basic simulator
constructions — e.g. REFL, FA, DROP, and IF-THEN-ELSE
— as well as weakening rules, e.g. WEAK.COND for term
conditions and WEAK.CONSTR for constraints. More inter-
estingly, a central rule of our proof system is TRANSITIVITY,
which corresponds to composing simulators. To see why it is
valid, consider a model M of Θ and Valid(C1# · C2#), and the
simulators pa and pb provided by the premises. The simulator
justifying the bi-deduction in conclusion will be (pa; pb):
additional inputs of the second simulator will be computed
by the first one. We can show that this program is also an
adversary for the game, and satisfies the conditions on local
and global offsets imposed by the bi-deduction semantics. A
crucial point here is that, because C1#·C2# is valid, the freshness
conditions for local samplings on the separate executions of
pa and pb imply the same thing for their sequential composi-
tion. Similarly, this validity implies that global samplings are
consistent across the two executions.

In order to represent unbounded collections of objects to bi-
deduce, we extend the bi-deduction judgement beyond terms
of base type, allowing order-1 types when the argument
types are enumerable. This can be done without changing
the semantics of bi-deduction, simply viewing these functions
as an explicit representation of their graph. This extension
notably brings the LAMBDA and INDUCTION rules of Fig. 4,
the latter allowing proofs of bi-deduction by induction. In both
cases, we require the pre- and post-conditions to coincide: this
is because the underlying simulator computation iterates the
computation of the simulator corresponding to the premise; the
condition on the game’s memory must be invariant through this
iteration. In the induction rule, well-foundedτ(<) states that
(JτKηM, J<KηM,E) is well-founded (details in Appendix D-A).

Two rules introduce new constraints in their conclusion.
The first rule, NAME, allows a simulator to sample a name.
The second rule is for oracle calls, and requires a preliminary
definition. An oracle triple for an oracle f , written {φ#}v# ←
Of (⃗t#)[⃗k#; r⃗#]{ψ#} is formed from: assertions φ# and ψ#

for the pre- and post-conditions, an output term v#, input
terms t⃗#, and terms k⃗# and s⃗# for the global and local
randomness offsets of the oracle. We require that the offsets are
of the form k⃗# = (kv ov♯)v∈f.glob$ and r⃗# = (rv sv♯)v∈f.loc$ ,
where kv and rv are names. Such a triple is valid, when
the oracle called with the specified parameters in a memory
satisfying φ#, returns v# in a memory satisfying ψ# (details
in Section D-B3).

Proposition 1. Let G be a game and f ∈ O one of its oracles.
The following rule is sound w.r.t. the class of models satisfying

G, using the notations introduced above:
ORACLEf

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷G w⃗#, (⃗t# |F#), (o⃗# |F#), (s⃗# |F#)

Θ |= {ψ# ∧ F#}v# ← Of (⃗t#)[⃗k#; r⃗#]{θ#}
E ,Θ, C′#, (φ#, θ#) ⊢ u⃗# ▷G w⃗#, (v# | F#)

with C′# =
C#·

∏
v∈f.glob$

(∅, kv, ov♯,Tglob
G,v , F#)·

∏
v∈f.loc$

(∅, rv, sv♯,Tloc
G , F#);

o⃗# = (ov♯)v∈f.glob$ and s⃗# = (sv♯)v∈f.glob$

V. PROOF SEARCH AND IMPLEMENTATION

We now describe the specification, heuristic and design
choices of our proof-search procedure — called search▷ — for
bi-deduction, as well as its implementation in our extension
of SQUIRREL [25], now merged into the main branch of the
tool. The tool now allows users to specify arbitrary games,
and bi-deduction verification is made available to the users
through a tactic crypto based on search▷, which takes as
input the game be used and some (optional) initial constraints.
Upon success, the tactic reduces the equivalence to be proved
to proof obligations corresponding to missing parts of the
constructed bi-deduction derivation.

1) Scope: Our goal is for search▷ and crypto to reach the
expressivity level of SQUIRREL legacy cryptographic tactics,
while being able to tackle new cryptographic games. Crucially,
legacy cryptographic tactics, as well as crypto, are not ex-
pected to apply in complex scenarios: a typical SQUIRREL
proofs consists in modifying to proof-goal using its indistin-
guishability logic [20] to pave the way for the application of
a cryptographic game. Furthermore, since SQUIRREL is an
interactive proof assistant, we aim for crypto to have a low
running time (i.e. a few seconds). This led to the following
design choice: search▷ does not backtrack and does not handle
induction. The former limitation is partially alleviated by a
careful design of our heuristics, and the latter with ad hoc
pre-processing in the implementation (described later).

2) Proof-search: search▷ take as input a partial bi-
deduction judgment which it tries to complete into a valid
judgement. That is, given an environment E , hypotheses Θ,
a bi-constraints system C#, a pre-condition φ#, inputs u⃗#
and outputs v⃗#, search▷ looks for additional hypotheses Θ′,
constraints C′# and a post-condition ψ#, such that:

E ,Θ ∪Θ′, C# · C′#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗# is valid.

It proceeds by a backward proof search, applying rules whose
conclusion matches v⃗# and recursing on the rule premises.

3) Heuristic: search▷ tries to greedily apply the oracle
rule, but avoids using it in scenarios where name constraints
added by the oracle rule would trivially lead to a unsatisfiable
constraint system. E.g., search▷ will not apply the oracle rule
if doing so would associate a name with a global tag Tglob

G,v
when this tag is already associated to a different name. When
the status of a name wrt. constraints does not necessarily
allow to use an oracle, search▷ rewrites the term to deduce
in order to conditionally apply the oracle. For example, in the
PRF game using name k i as the key, we can only obtain
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WEAK.CONSTR
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ w⃗#

Θ |= C# ⊆ C′# E ,Θ |=WF C
′
#

E ,Θ, C′#, (φ#, ψ#) ⊢ u⃗# ▷ w⃗#

WEAK.COND
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ f#, (v# | f ′

#), w⃗#

E ,Θ ⊢ [f ′
# ⇒ f#]e

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ (v# | f#), w⃗#

TRANSITIVITY
E ,Θ, C1#, (φ#, φ

′
#) ⊢ u⃗# ▷ t⃗#

E ,Θ, C2#, (φ′
#, ψ#) ⊢ u⃗#, t⃗# ▷ v⃗#

E ,Θ, C1# · C2#, (φ#, ψ#) ⊢ u⃗# ▷ t⃗#, v⃗#

REFL

E ,Θ, ∅, (φ#, φ#) ⊢ u⃗#, t# ▷ t#

FA
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, (t

1
# | f#), . . . , (tn# | f#)

E ,Θ ⊢ adv(g)

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, (g t
1
# . . . tn# | f#)

DROP
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, t⃗#

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#

IF-THEN-ELSE
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷

v⃗#, (b# | f#), (t# | f# ∧ b#), (t′# | f# ∧ ¬b#)

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, (if b# then t# else t′# | f#)

LAMBDA
(E , x : τ),Θ, C#, (φ#, φ#) ⊢ u⃗# ▷ (t# | f#)

E , x : τ ⊢ t# : τb enum(τ)

E ,Θ, ∀(x : τ).C#, (φ#, φ#) ⊢ u⃗# ▷ (λ(x : τ).t# | f#)

INDUCTION
(E , x : τ),Θ, C#, (φ#, φ#) ⊢
u⃗#, (λ(y : τ).if y < x then t[x 7→ y] | f#) ▷ (t# | f#)

finite(τ) fixed(τ) E ,Θ ⊢ well-foundedτ (<) ∧̃ adv(<)

E ,Θ,∀(x : τ).C#, (φ#, φ#) ⊢ u⃗# ▷ (λ(x : τ).t# | f#)

NAME
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ (t# | f#)

E ,Θ, C# · {(∅, n, t#,TS , f#)}, (φ#, ψ#) ⊢ u⃗# ▷ (n t# | f#)

Fig. 4. Selected set of rules.

h(m, k j) using the hash oracle when i = j (assuming that
m is not in the logs). In that case, search▷ rewrites the
term into if i = j then h(m, k i) else h(m, k j), and uses
the bi-deduction rule for conditionals, to conclude using the
hash oracle in the case where i = j, and by computing the
message explicitly otherwise (adding the constraint that k j is
a simulator name when j ̸= i).

4) Implementation: In addition to an implementation of
search▷, the new crypto tactic brings a new syntax to declare
arbitrary game, an instantiation of the assertion logic, and
a pre-processing technique to handle recursive terms. Our
implementation of the assertion logic only supports sets of
messages, which allows to handle, e.g., the sets of hashed
messages in the PRF game of Example 7. As we shall see,
this suffices to support the games corresponding to legacy
cryptographic axioms, as well as some new (standard) games.
Extending the assertion logic beyond that is left to future work.

We designed a pre-processing technique to handle recursive
terms. When crypto is be called on a equivalence v⃗0 ∼ v⃗1,
crypto first tries to show that all recursive sub-terms of
v⃗0 ∼ v⃗1 can be bi-deduced by induction. To do so, it generates
a partial bi-deduction sub-goal corresponding to the premise
of the induction rule, and calls search▷ on this partial sub-
goal until it completes into a bi-deduction judgement with a
fixed-point assertion on the game’s memory (i.e. φ# = ψ#).
Then, crypto calls search▷ on the initial bi-deduction sub-
goal #(v⃗0, v⃗1), knowing (by transitivity) that all recursive
sub-terms of #(v⃗0, v⃗1) can be bi-deduced. At the end of
its execution, a standard proof-obligation is generated to
guarantee that the constraint system returned by search▷ is
valid. See Appendix E-A for more details on how recursion
is handled.

VI. CASE STUDIES

Our implementation has allowed us to validate our approach
on several promising case studies, which we briefly describe
below. These case-studies are available with the source code
of the tool [25] (in sub-directory examples/crypto/),
as well as in HTML files that allow to replay the run of
SQUIRREL on each example without installing the tool.

The file hash-lock.sp presents the SQUIRREL proof of
our running example, i.e. strong secrecy for the Hash Lock
protocols, derived from the PRF game as in our examples.

We then illustrate how our crypto tactic can eventually
replace existing tactics, on the example of the Basic Hash
protocol, which is proved unlinkable in existing case studies
using the EUF and PRF legacy tactics. We adapt the same
arguments using crypto with both EUF and PRF games
in file basic-hash.sp. This shows that our bi-deduction
verification is already powerful enough for real examples,
though there is some work to be done to make it as easy
to use as legacy crypto tactics.

We show, obviously, that our approach is not limited to cryp-
tographic assumptions already supported by SQUIRREL. In the
file private-authentication.sp we prove anonymity
of the Private Authentication protocol [27] using a previously
unsupported cryptographic assumption: the CCA$ game that
roughly states the indistinguishability between an encrypted
message and a fresh random sampling. In the file nsl.sp,
we prove a key result about the Needham-Schroeder-Lowe
public-key protocol [28], which crucially relies on the CCA2

game that was previously unsupported in SQUIRREL.
All cryptographic tactics in SQUIRREL can only handle

#(_, _) in the indistinguishability to prove, and not in the
protocol being used. Interestingly, crypto does not have this
limitation: global-cpa.sp shows that we can prove the
equivalence between two protocols outputting different values
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(of the same length) using crypto on the CPA game; such
equivalences are often useful when reasoning about protocols.

VII. CONCLUSION

In order to systematically derive indistinguishabilities from
cryptographic games in the tool SQUIRREL, we have designed
a strong notion of bi-deduction, a bi-deduction proof system,
and we implemented an automated proof search procedure for
it. We validated this procedure on several case studies.

This promising development calls for several future works.
Much work is obviously left to encapsulate bi-deduction
verification into user-friendly crypto tactics, and to improve
the performance and precision of our verification procedure.
We will also push our implementation on larger case studies,
including ones using complex, currently unsupported crypto
assumptions, e.g. from electronic voting. From a theoretical
point of view, our bi-deduction relies on an exact semantics
which complicates some proof rules; we will explore several
ways to relax this limitation.
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Appendix E show how the Hash Lock protocol’s security can
be proven in SQUIRREL with the new tactics crypto, giving
more details on how the crypto tactic is implemented.

APPENDIX A
PROTOCOLS MODELING

The indistinguishability logic of Section II forms the theo-
retical foundations of the SQUIRREL Prover, a proof assistant
for the verification of security protocols. This protocol verifi-
cation tool, introduced in [18], has been extended in various
ways since then [19], [29].

We provide here a quick description of how protocols
are modeled in SQUIRREL, through an example: the Hash
Lock protocol. While understanding how protocol are modeled
and analyzed in the logic of SQUIRREL is not necessary to
understand the contributions of this article, it should help put
this work in context. Essentially, a protocol is a distributed
program that aims at providing some security properties. As
usual, we consider an active adversary that fully controls the
network: it can reads, intercept and even modify all messages
exchanged by honest participants.

Example 13. The Hash Lock protocol relies on on a keyed
hash function h(_, _), and involves participants A1, A2, . . .
where each Ai owns a secret hashing key ki to be used
across an unbounded number of sessions. For its jth session,
participant Ai inputs x and outputs ⟨ni,j ,h(⟨ni,j , x⟩, ki)⟩,
where ⟨ni,j , x⟩ is a pair combining a session-specific nonce,
i.e. a fresh random sampling, and the input x. We would
like that an adversary against the protocols, not knowing the
keys ki, but having obtained the outputs of several sessions
on chosen inputs, cannot distinguish the next output from a
random sampling. This is the case whenever h is assumed to
be a PRF.

We model an execution of a protocol along an execution
trace with the adversary. Points of the execution trace, called
timestamps, represent instants at which an interaction took
place between the adversary and an honest participant, i.e.
a participant inputted a message from the adversary and
then outputted its answer. More precisely, we use the type
timestamp to represent the execution trace, assumed to be
always fixed, finite and well-founded w.r.t. < : timestamp→
timestamp→ bool. We assume special constants init,undef :
timestamp representing, resp., the initial timestamp and a
timestamp that never happens, and that the order < is total
on timestamps other than undef, and induces a predecessor
function pred : timestamp→ timestamp.

We model the execution of an adversary interacting with the
protocol along a fixed execution trace using three mutually re-
cursive functions input, output, frame : timestamp→ message.
We use a special syntax using @ to denote the application of
these functions to timestamps: input@t represents the input
provided by the adversary at time t; output@t the protocol
output at that time; and frame@t the sequence of all outputs up

to time t, included. The functions frame and input are always
defined as follows:

frame@init = input@init = output@init = empty

frame@ t = ⟨frame@pred t, output@t⟩
input@ t = att(frame@ pred t) (when init < t)

On the contrary, output depends on the protocol (it models
the messages outputted by the participants). Once these func-
tions are defined, they can be used to express the intended
security properties of the protocol as a logical formula. We
show on example of such a modeling for the Hash Lock
protocol in the next example.

Example 14. We use the types timestamp but also index,
assumed to be tagged as fixed and finite and a function
T : index × index → timestamp so that T(i, j) represents
a timestamp where tag i plays its session j. We view this
function as a constructor that is injective, mutually exclusive,
and exhaustive, through natural axioms.

We model the execution of an adversary interacting with
the Hash Lock protocol along a fixed execution trace using
the three mutually recursive functions input, output, frame pre-
sented before, and defining output as follows:

output@t = h(⟨n(i, j), input@t⟩, k i) (when t = T(i, j))

Finally, the fact that the output at time t is indistinguishable
from a random value can then be expressed as follows, using
a name fresh : unit → message which is not used in the
protocol:

frame@pred t, output@t ∼ frame@pred t, fresh ⟨⟩

This equivalence can be proved in SQUIRREL using (the
tactic corresponding to) a PRF axiom scheme in the style of
Example 2. As we shall see, we will prove it directly from the
PRF game, by bi-deduction.

APPENDIX B
PROGRAM SEMANTICS

We provide here the definitions of the semantics for our
expressions and programs.

A. Expression Semantics

The semantics [e]η,pM,i,µ of an expression e of type τ is a value
in JτKηM. This semantics is evaluated relatively to a memory
µ, a model M : E such that Xp,Lp and E are compatible,
a security parameter η, a program random tape p, and a bit
i ∈ {0, 1} stating on which side the expression is evaluated.
The semantics of expressions, defined in Fig. 5, uses the bit i
to interpret the special boolean term b, and the memory µ to
evaluate program variables in Xp. Moreover, the semantics of
a library function f ∈ Lp is:

[f ]η,pM,i,µ
def
= JfKη,(p|TA,bool,ρ0)

M:E

i.e. the (logical) semantics of f in the model M, using p|TA,bool
as adversarial (logical) random tape, and the all-zero random
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[b]η,pM,i,µ
def
= i [v]η,pM,i,µ

def
= µ(v) when v ∈ Xp

[f ]η,pM,i,µ
def
= JfKη,(p|TA,bool,ρ0)

M:E when f ∈ Lp

[e1 e2]
η,p
M,i,µ

def
= [e1]

η,p
M,i,µ ([e2]

η,p
M,i,µ)

Fig. 5. Semantics of expressions w.r.t. an model M : E .

µi
init

η,p
M (·) def

= {eta 7→ η}

µi
init

η,p
M (G)

def
= µi

init
η,p
M (decl_varsG)

µi
init

η,p
M (decls; v ← e)

def
= Lv ← eMη,pµ where µ = µi

init
η,p
M (decls)

Fig. 6. Initial memory of a game G w.r.t. M and side bit i.

tape ρ0 as honest random tape — since all library function Lp
will be assumed to be adversarial, and therefore do not use
honest randomness.

We omit M and i when they are clear from context, and
write [e]η,pµ instead of [e]η,pM,i,µ.

B. Initial Memory

The initial memory µi
init

η,p
M (G) of a game G for security

parameter η, program random tape p, model M and side bit
i ∈ {0, 1} is defined in Fig. 6. It is obtained by evaluating the
deterministic global variable assignments. Moreover, the value
of the security parameter is made available to the game and
adversary through the variable eta. Global random variables
are not in this initial memory; they will be sampled during
oracle calls.

C. Cost Model

To keep our approach generic and abstract, we assume that
our program semantics is endowed with a time-cost model
satisfying some standard and expected properties.

More precisely, we assume a cost function C parameterized
by the model M which associates to each program p, security
parameter η and memory µ a worst-case execution time
CM(p, η, µ) ∈ N ∪ {+∞} which bounds execution times of
p for all possible program tapes — this cost must be +∞ if
some execution does not terminate. We say that a program p is
PTIME w.r.t. M when CM(p, η, µ) is bounded by a polynomial
in η and |µ| (the sum of the sizes of all values stored in µ).
We will assume only a few basic properties of this cost model:

• all expressions are PTIME, which is reasonable as sam-
pling procedures provided by the model are PTIME, and
since library functions are assumed to be adversarial;

• the memory after executing a PTIME program is of
polynomial size in η and the size of the initial memory;

• an oracle call is PTIME, which is both a constraint on
the cost model and the game;

• if both p and q are PTIME programs, then so is (p; q);
• while l ̸= [] do (p; l ← tail l) is PTIME provided that

p is a PTIME program that does not modify variable l,

in all models where tail induces a well-founded ordering
on the semantic values of type list.

D. Program Semantics
The semantics of a program is parameterized by the game

G that the program can interact with, a model M : E (such that
Xp,Lp and E are compatible) used to interpret library function
symbols, the side bit i ∈ {0, 1}, and the security parameter η.
The evaluation LpMη,pG,M,i,µ ∈ MemM,η ∪ {⊥} of a program p
in memory µ and using the program random tape p is either
the memory obtained by executing p, or ⊥ if the execution
does not terminate. Its definition, given in Fig. 7, is mostly
standard; we describe next the treatment of oracle calls and
samplings.

If v is a variable of type τ , then the evaluation of the random
sampling v $← T[e] w.r.t. memory µ and program random tape
p evaluates the integer e as an offset k ∈ N, retrieves the
k-th block of random bits p|η(T,τ)[k] from the random tape
labeled by (T,τ), and uses it to run the sampling algorithm
JτK$M provided by the model M.

To evaluate an oracle call instruction v ← Of (e⃗)[e⃗g ; e⃗l ], we
first evaluate the arguments e⃗ , the global randomness offsets
e⃗g and the local randomness offsets e⃗l , and store the results in,
resp., f.args, G.glob$ and f.loc$ ; then, we execute the oracle
body f.prog; and finally, we store the result of the evaluation
of the return expression f.expr in v.

E. Adversaries
A adversary against G (or G-adversary) is a PTIME program

which may only call the oracles of G, respecting their type.
Moreover, an adversary must not read the special side constant
b, and must not read or write the game variables. Finally, the
program must properly use random samplings, in any possible
execution:

• We forbid the adversary from directly sampling from
the TG-labeled random tapes, which are reserved for the
game’s random samplings.

• We require that local offsets in oracle calls are fresh: an
integer used as a local offset may not be used anywhere
else as an offset, in this oracle or in a past or future call.

• We require that global offsets are consistent across all
oracle calls: each of the game’s global samplings must
correspond to a unique global offset.

APPENDIX C
PROBABILISTIC COUPLINGS AND BI-DEDUCTION

In this appendix we go back to Section IV-C, where we intu-
itively introduced the notion of well-formedness for constraint
systems, coming from the need to lift semantical equalities to
probabilistic equalities. We show a counter-example illustrat-
ing the need for the well-formedness condition, then define
formally this condition, and prove Lemma 1.

Example 15. Consider a name n : unit → bool and let C =
{c0, c1} with:

c0 = (∅, n, ⟨⟩,TS , n ⟨⟩ = 0)

c1 = (∅, n, ⟨⟩,Tloc
G , n ⟨⟩ = 1)
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Lv ← eMη,pµ
def
= µ

[
v 7→ [e]η,pµ

]
LabortMη,pµ

def
= ⊥ LskipMη,pµ

def
= µ

Lp0; p1Mη,pµ
def
=

{
Lp1M

η,p
µ′ if Lp0Mη,pµ = µ′

⊥ if Lp0Mη,pµ = ⊥

Lif e then p0 else p1Mη,pµ
def
=

{
Lp0Mη,pµ if [e]η,pµ = true

Lp1Mη,pµ if [e]η,pµ = false

Lwhile e do pMη,pµ
def
= lim

n→∞
LloopnMη,pµ

where loopn = (if e then p else skip)n; if e then abort else skip

Lv $← T[e]Mη,pµ
def
= µ

[
v 7→ JτK$M(η, p|

η
(T,τ)[k])

]
where k = [e]η,pµ and v has type τ

Lv ← Of (e⃗)[e⃗g ; e⃗l ]Mη,pµ
def
= let µ′ = µ

f.args 7→ [e⃗ ]η,pµ

G.glob$ 7→ p|ηTG [ [e⃗g ]
η,p
µ ]

f.loc$ 7→ p|ηTG [ [e⃗l ]
η,p
µ ]

 in

let µ′′ = Lf.progMη,pµ′ in

µ′′[v 7→ [f.expr]η,pµ′′

]
Fig. 7. Program semantics w.r.t. a model M : E , a side i ∈ {0, 1} and a game G.

In words, n ⟨⟩ must be seen as a simulator name when it is 0,
and a local sampling of the game when it is 1. But, to know
in which case we are, we must already have sampled n ⟨⟩!

Let us show that a coupling cannot be included in Rη
C,M.

First observe that ρ Rη
C,M ρa imposes that ρa is a prefix of

p[TA, bool] and:
• either Jn ⟨⟩Kη,ρM:E = 0 and p|ηTS

[OM,η(n, ⟨)⟩] = 0;
• or Jn ⟨⟩Kη,ρM:E = 1 and p|η

Tloc
G
[OM,η(n, ⟨)⟩] = 1.

Less formally, the logical tape must coïncide with the simulator
tape on n ⟨⟩ when this sampling is zero; otherwise it must
coïncide with the local sampling tape for that name. Thus,
the program tape ρa such that p|ηTS

[OM,η(n, ⟨)⟩] = 0 and
p|η
Tloc

G
[OM,η(n, ⟨)⟩] = 1 is not related to any logical tape in

Rη
C,M — for any ρ, we do not have ρ Rη

C,M ρa. Hence the right
marginal of a coupling included in Rη

C,M would never sample
such tapes. This missing set of tapes has non-zero measure
(in fact it has measure 1

4 ) hence the right marginal of our
coupling would not coincide with the standard distribution
over program tapes, which is a contradiction.

A. Preliminaries: Probability Theory

We first recall some standard definitions from measure and
probability theory.

1) Definitions: For any set S, we let P(S) be the power-set
of S. A σ-algebra F over a set S is a non-empty subset of
P(S) closed under: i) complement; and ii), countable union
and intersection. An element E of a σ-algebra is called an
event. A measurable space (S,F) is a set S equipped with
a σ-algebra F . A measure space (S,F , µ) is a measurable
set (S,F) together with a function µ : F → [0; 1] —
called a measure — such that i) µ(∅) = 0; ii) µ is non-
negative (i.e. ∀E ∈ F , µ(E) ≥ 0); iii) µ is σ-additive, i.e.
for any countable sequences (Ei)i∈N of disjoint elements of

F , µ(
⋃

iEi) =
∑

i µ(Ei). A probability space (S,F , µ) is a
measure space of total mass is 1, i.e. µ(S) = 1. A distribution
D over a measurable space (S,F) is a function such that
(S,F , D) is a probability space. Two distributions D1 and D2

over (S,F) are said to be of the same law if D1(E) = D2(E)
for any E ∈ F . Finally, a random variable X : Ω→ S from a
probability space (Ω,FΩ, µΩ) to a measurable space (S,FS)
is any function such that ∀E ∈ FS, X−1(E) ∈ FΩ.

2) Notations: If (S,F , µ) is a measure space and E an
event of F , then the probability Pr(E) of E is simply µ(E).
Similarly, if D is a distribution over (S,F) and E an event
of F , then Pr(D ∈ E)

def
= D(E). If X is a random variable

from the probability space (Ω,FΩ, µΩ) to (S,FS) and E an
event of FS, then Pr(X ∈ E)

def
= µ(X−1(E)).

3) Distributions as programs: We will describe some dis-
tributions using programs written in pseudo-code, e.g. if D is a
distribution, then the program x $← D; y $← D; return (x, x +
y) defines a distribution over pair of values. Given a program
p, we write Prp(E) the probability of event E w.r.t. the
distribution defined by p.

4) π and λ systems: Let S be a set and X ⊆ P(S), then:
• σ(X) is the smallest σ-algebra containing X — we say

that X generates σ(X).
• X is a π-system if X is closed under finite intersections.
• X is a λ-system if ∅ ∈ X and X is closed under

complement and countable disjoint unions.
We recall the following standard result:

Proposition 2 (Dynkin (π, λ)-Theorem). Let P be a π-system
and L a λ-system. If P ⊆ L then σ(P ) ⊆ L.

To show that two distribution coincide, it is sufficient to
show that they coincide on a generating π-system B.
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Proposition 3. Let (S,F) be a measurable set and D1, D2

be two distributions over S. Let B by a π-system such that
σ(B) = F . If D1 and D2 agree on B then D1 and D2 agree
on F , i.e.

if ∀E ∈ B,D1(E) = D2(E) then ∀E ∈ F , D1(E) = D2(E)

Proof. Let L def
= {E ∈ F | D1(E) = D2(E)}. We can

check that L is a λ-system. By hypothesis, B ⊆ L. Hence, by
Dynkin (π, λ)-theorem, σ(B) ⊆ L, which, since B generates
F , means that F ⊆ L. Moreover, we trivially have from the
definition of L that L ⊆ F . Hence F = L, from which we
deduce that D1 and D2 coincides on L.

B. Couplings and Lifting Lemma

Recall that, in section Section IV-C, in order to be able to lift
equalities over tapes in Rη

C,M to equalities over probabilities,
we relied on the standard notion of a probabilistic coupling
and lifting (as in [26]). TIn this section, we give the definition
of probabilistic coupling, before defining containment and a
general lifting lemma.

Definition 9 (Probabilistic coupling). Let (S1,F1, µ1) and
(S2,F2, µ2) be two probabilistic spaces.A coupling C of
µ1 and µ2, written C : µ1 ▷◁ µ2, is a random variable
C : Ω→ S1×S2 from some probabilistic space Ω to S1×S2

such that:

• µ1 and C’s left marginal follow the same law, i.e.:

∀E1 ∈ F1. Prµ1
(E1) = Pr(C ∈ E1 × S1).

• similarly, µ2 and C’s right marginal follow the same law.

The coupling we build will be contained in the relation
Rη

C,M, ensuring that only related tapes are coupled.

Definition 10 (Probabilistic containement). Let (S,F , µ) be
a probabilistic space and E ∈ F an event. We say that the
measure µ is contained in E, when for all F ∈ F , µ(F ) =
µ(F ∩ E).

The following lemma allows to lift an equality over ele-
ments related by a relation R to a equality over probabilities,
as long as there exists a probabilistic coupling contained in R.

Lemma 2. Let (S1,F1, µ1) and (S2,F2, µ2) be two proba-
bilistic spaces, R ⊆ S1 × S2 a relation between S1 and S1

and E1 ∈ F1 and E2 ∈ F2 be events such that:

for all x R y, x ∈ E1 iff. y ∈ E2. (4)

Then Prµ1(E1) = Prµ2(E2) if there exists a coupling µ :
µ1 ▷◁ µ2 contained in R.

Proof. First, notice that by Eq. (4):

(E1 × S2) ∩R = (E1 × E2) ∩R (5)

and
(S2 × E2) ∩R = (E1 × E2) ∩R. (6)

Now, let µ : µ1 ▷◁ µ2 be a coupling contained in R. Then:

Prµ1
(E1) = Prµ(E1 × S2) (left marginal property)

= Prµ((E1 × S2) ∩R) (by containement)
= Prµ((E1 × E2) ∩R) (by Eq. (5))
= Prµ((S1 × E2) ∩R) (by Eq. (6))
= Prµ(S1 × E2) (by containement)
= Prµ2

(E2) (right marginal property)

which concludes this proof.

C. Well-formedness of Constraints System

Before moving on to the proof of Lemma 1, we are
missing one key ingredient: the notion of well-formedness
of a constraints system. First, we defined the restriction of
a logical random tape to the (concrete) names constrained by
a constraint system.

Definition 11 (Restriction of a random tapes). Let M : E be
a model, η a security parameter, ρ be a random tape and C a
constraint system. The restriction of ρ by C with w.r.t. M and
η — written ρ|M,η,C — is the random tape obtained from ρ
by zeroing all random bits that corresponds to names that are
not in N η,ρ

C,M.

We define well-formedness as follows.

Definition 12 (Well-formedness of constraint systems). Let
M : E be a model and η the security parameter. A constraint
system C is well-formed with respect to M, η when:

• C is empty;
• or C = C0, (α⃗, n, t, T, f) where C0 is a well-formed con-

straint system w.r.t. M, η and there exists a (mathematical
and deterministic) function g such that for all random
tape ρ and valuation a⃗ ∈ J⃗τKηM (where τ⃗ are the types
of α⃗),

g(ρ|M[α⃗ 7→a⃗],η,C0
) = J(t | f)Kη,ρ

M[α⃗ 7→a⃗]:E .

We write E ,Θ |=WF C if C is well-formed w.r.t. M, η for any
M : E such that E ,Θ |= M. For pairs C# = #(C0, C1,) of
constraint systems, E ,Θ |=WF C# stands for well-formedness
of both C0 and C1.

Outline: The following two sections of this appendix aims
at proving Lemma 1, i.e. that a probabilistic coupling con-
tained in Rη

C,M can be constructed from any well-formed and
valid constraint systems C. First, we prove a preliminary result
showing how to build a coupling between two distributions
over arrays of independent and identically distributed (i.i.d.
for short) values in Appendix C-D, and we then use this result
to prove Lemma 1 in Appendix C-E.

D. Couplings Arrays

We prove some preliminary results showing how to build
couplings of arrays of values.
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1) I.i.d. Sampling of arrays: Let I be a finite set, and let
DS be a fixed but arbitrary distribution over some measurable
space (S,F). We identify the set SI with arrays indexed by I

of values in S.

Definition 13. We let DI
S be the distribution over SI (equipped

with the product σ-algebra) where all cells are independently
sampled according to DS, i.e. the distribution defined by the
program (in pseudo-code):

a← [⊥ for _ ∈ I];

for (j ∈ I) do { a[j] $← DS; }
return a;

(7)

where ⊥ is a special element (s.t. ⊥ ̸∈ S) used to denote a
cell that is yet to be sampled.

Proposition 4. Let I be a finite set, and p be any program of
the form:

a← [⊥ for _ ∈ I];

s← sinit;

for (_ ∈ |I|) do { i← f(s); a[i] $← DS; s← g(s, a); }
return a;

(8)

where sinit, f and g are arbitrary mathematical deterministic
functions such that at the end of the execution of the above
program, all cells in I are sampled.

Then p defines a distribution over SI of law DI
S.

Proof. Let n = |I| and E1, . . . , En ∈ F be events of (S,F).
First, let us prove that:

Prp(a ∈
∏

iEi) = Prp0(a ∈
∏

iEi) (9)

where p0 is the program sampling the array in an i.i.d.
fashion as described in Eq. (7) (hence Prp0

(a ∈
∏

iEi) =∏
i Pr(DS ∈ Ei)). We start be splitting the sum:

Prp(a ∈
∏

iEi) =
∑

σ Prp((a ∈
∏

iEi) | Aσ) · Prp(Aσ)

where the sum is over all permutations of {1, . . . , n} and Aσ

is the event: “p sampled values in the array in the order σ”.
Conditioned by Aσ , the probability that p samples an array in∏

iEi is the probability that the program:

a← [⊥ for _ ∈ I];

for (j ∈ I) do { a[σ(j)] $← DS; }
return a;

samples an array in
∏

iEi, i.e.
∏

i Pr(DS ∈ Eσ−1(i)). Hence:∑
σ Prp((a ∈

∏
iEi) | Aσ) · Prp(Aσ)

=
∑

σ

∏
i Pr(DS ∈ Eσ−1(i)) · Prp(Aσ)

=
∏

i Pr(DS ∈ Ei) ·
∑

σ Prp(Aσ)

=
∏

i Pr(DS ∈ Ei)

This concludes the proof of Eq. (9).

To finish the proof, we must show that Prp(a ∈ E) =
Prp0

(a ∈ E) for any event E in the product σ-algebra∏
1≤i≤n F . Let B be the set:

B
def
= {E1 × · · · × En | E1, . . . , En ∈ F}

We know that p and DI
S coincide on B (by Eq. (9)). Moreover,

we can check that B is a π-system. By Proposition 3, p and DI
S

agree on the σ-algebra generated by B, which is the product
σ-algebra over SI. Consequently, p is of law DI

S.

2) Couplings i.i.d. arrays from selection functions: Let I1
and I2 be two finite sets, and let DS be fixed by arbitrary dis-
tribution over a measurable space (S,F) (the sample space).

Assume that we have a function select such that, for any
two partially sampled arrays a1 : I1 → S∪{⊥} and a2 : I2 →
S∪{⊥}, (select a1 a2) either select a pair of ⊥-valued indices
of a1 and a2, or return a special value done. More precisely:

∀a1, a2. select a1 a2 ∈ (I1 × I2) ∪ {done}
and select a1 a2 = (i1, i2)⇒ a1[i1] = ⊥ ∧ a2[i2] = ⊥ (10)

Let pc(select) be the distribution over DI1
S ×D

I2
S defined by

the program (in pseudo-code):

a1 ← [⊥ for _ ∈ I1];

a2 ← [⊥ for _ ∈ I2];

while (select a1 a2 ̸= done) do {
(i1, i2)← select a1 a2;

v $← DS;

a1[i1]
$← v;

a2[i2]
$← v;

}
for (i ∈ I1) do { if (a1[i] = ⊥) then a1[i]

$← DS; else skip }
for (i ∈ I2) do { if (a2[i] = ⊥) then a2[i]

$← DS; else skip }
return (a1, a2);

Proposition 5. For any selection function select satisfying
Eq. (10), we have that:

pc(select) : D
I1
S ▷◁ DI2

S .

Proof. It is clear that pc(select)’s left marginal follows the
same distribution as:

a1 ← [⊥ for _ ∈ I1];

a2 ← [⊥ for _ ∈ I2];

while (select a1 a2 ̸= done) do {
(i1, i2)← select a1 a2;

a1[i1]
$← DS;

a2[i2]← a1[i1];

}
for (i ∈ I1) do { if (a1[i] = ⊥) then a1[i]

$← DS; else skip }
return a1;

This program samples all the cells of a1 independently
according to the distribution DS, in some particular order. By
Proposition 4, we know that the order in which we sample
cells does not matter, and that the distribution defined this
program is of law DI1

S .

Repeating the same reasoning on the right, we get that
pc(select)’s right marginal follows the distribution DI2

S , which
concludes this proof.
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E. Constructing a Coupling Contained in Rη
C,M

We now recall and prove Lemma 1.

Lemma 1. Let C be a well-formed constraint system w.r.t.
M, η such that M |= Valid(C). Then, there exists a coupling
C : TM,η ▷◁ P contained in Rη

C,M.

Proof. Let M be a model and C a constraint system such that
C is both valid and well-formed w.r.t. M. We are going to
build, for any η ∈ N, a coupling that is contained in Rη

C,M.
Given C, M and η, we use the framework of Proposition 5

for building couplings. We instantiate it such that a1 represents
a (partially defined) logical tape, which will be noted ρ, and a2

represents the relevant finite portion of a partial computational
tape, noted p. Given a partial logical tape ρ, mapping each type
and index in RM,η(τ) to a value in {0, 1,⊥}, we say that a
term t is well-defined w.r.t. ρ when JtKη,ρ1

M:E = JtKη,ρ2

M:E for all
tapes ρ1 and ρ2 that coincide with ρ where it is defined. When
it is the case, we allow ourselves to simply write JtKη,ρM:E for
this unique value.

We now describe the selection function (select ρ p) with
which we instantiate the framework. Our selection function
looks for an elementary constraint c = (α⃗, n, t, T, f) ∈ C and
a value a⃗ ∈ Jτ⃗KηM (where τ⃗ are the types of α⃗) such that:
(a) both JfKη,ρ

M{α⃗ 7→a⃗}:E,α⃗ and JtKη,ρ
M{α⃗ 7→a⃗}:E,α⃗ are defined w.r.t.

ρ, and the former is true;
(b) ρ still contains ⊥ in the segment corresponding to name

n and index JtKη,ρ
M{α⃗ 7→a⃗}:E,α⃗;

(c) p still contains ⊥ in the segment corresponding to name
n, index JtKη,ρ

M{α⃗ 7→a⃗}:E,α⃗ and tag T .
If such c and a⃗ exist, choose an arbitrary one and return the
corresponding indices in the logical and computational tapes.
Otherwise, return done.

Our selection function, making a choice among an infinite
domain Jτ⃗KηM, is ineffective. Note, however, that pc(select)
still only takes a finite number of iterations, as each iteration
removes an undefined position in tape ρ, which is finite. More
precisely, it is useful to declare two pairs (c, a⃗) and (c′, a⃗′)
as equivalent when they both satisfy (a) and their indices
are the same: JtKη,ρ

M{α⃗ 7→a⃗}:E,α⃗ = Jt′Kη,ρ
M{α⃗ 7→a⃗′}:E,α⃗

. Then, we
note that the effect of selecting a pair (c, a⃗) is the same as
selecting any equivalent (c′, a⃗′). This is interesting because,
even though there might be infinitely many possible values
for the α⃗ variables, the indices t can only take a finite number
of values (recall that M and η are fixed).

We now show that our coupling is contained in Rη
C,M. To

do so, consider an arbitrary run of pc(select). We say that a
pair (c, a⃗) is addressed at some point in this run if satisfies
(a) but neither (b) nor (c). Once a pair is addressed, the
value of the corresponding name will have been set in the
tapes. Note, though that a pair needs not be selected to be
addressed: it suffices that an equivalent pair is selected. First,
we observe that, at every step of our run, and for every pair
(c, a⃗) for which condition (a) holds, conditions (b) and (c) are
equivalent. Indeed, if only one kind of tape is defined for our
name, it must have been set due to the previous selection of

another constraint instance, but validity imposes that distinct
instances address distinct names. Second, we note that, for
every pair (c, a⃗), condition (a) will eventually be met. This is
a consequence of well-foundedness: assume for the sake of
contradiction that this is not the case for a constraint c such
that C = C0 · c · C1, and consider the leftmost such c. At some
point, all pairs (c′, b⃗) with c′ ∈ C0 will satisfy (a) and, after a
finite number of iterations, they will all have been addressed.
From then on, condition (a) will hold for (c, a⃗). To conclude,
every pair will eventually satisfy (a) and must thus eventually
be addressed. Hence, for any (n, v,T) ∈ N η,ρ

C,M, we have
JnKη,ρM:E(v) = p|ηT [OM,η(n, v)]. The rest of Rη

C,M, concerning
ρa and p[TS , bool] is obvious.

APPENDIX D
PROOF SYSTEM

In this section we present the full proof system, partially
given in the article.

A. Type Tagging and Restrictions

We will need to restrict our attention to type structures
satisfying some assumptions. Recall that each proof system
rule is proved by providing a simulator. This simulator must
be an adversary, and, as such, be a polytime program. Besides,
to bideduce some terms, one might need a simulator with
a while-loop, e.g. to compute a function graph. To ensure
such simualator still run in polynomial time, one need some
restrictions on the types of the loop iterator. These restrictions
are presented in this subsection.

For each base types, we use a simple tagging mechanism:
we assume that each base type comes with a (possibly empty)
set of tags constraining the possible interpretations of the type
in type structures. We use the tag finite on a type τ to restrict
to structures where JτKηM is finite for all η, fixed to impose
that JτKηM does not depend on η, and enum to require that
there exists a machine Mτ

M such that Mτ
M(1

η) computes in
PTIME (a suitable representation of) a sequence ⟨a1, . . . , an⟩
of all elements of JτKηM. When possible, tags are then lifted to
arrow types as expected: τ1 → τ2 is finite (resp. enumerable)
when τ1 and τ2 are.

Futhermore, well-foundedτ(<) is an additional atom of
the logic which requires that the interpretation of the binary
function symbol < is deterministic (i.e. J<Kη,ρM:E does not
depends on ρ) and that (JτKηM, J<KηM,E) is a well-founded set
for every η.

B. Inference rules

Inference rules of our proof system, given in Fig. 8, Fig. 9,
and Fig. 10, are organized in three categories:

• First, the constructive rules. This includes weakening
rules (of hypotheses, pre- and post-conditions, constraints
· · · ), re-ordering of the terms, and rewriting.

• Second, the computational rules. They capture the com-
putations that do not require random samplings or oracle
calls from the adversary. This comprises function ap-
plications, transitivity, computation of adversarial terms,
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WEAK.CONSTR
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ w⃗#

Θ |= C# ⊆ C′# E ,Θ |=WF C
′
#

E ,Θ, C′#, (φ#, ψ#) ⊢ u⃗# ▷ w⃗#

WEAK.COND
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ f#, (v# | f ′

#), w⃗#

E ,Θ ⊢ [f# ⇒ f ′
#]e

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ (v# | f#), w⃗#

WEAK.MEM
E ,Θ, C#, (φ′, ψ′) ⊢ u⃗# ▷ v⃗#

E ,Θ |=A φ⇒ φ′ E ,Θ |=A ψ′ ⇒ ψ

E ,Θ, C#, (φ,ψ) ⊢ u⃗# ▷ v⃗#

WEAK.HYPS
E ,Θ′, C#, (φ#, ψ#) ⊢ u⃗# ▷ w⃗#

Θ |= Θ′

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ w⃗#

DEFINITION
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ t#

(x : τ = t#) ∈ E
(E),Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ x

REFL

E ,Θ, ∅, (φ#, φ#) ⊢ u⃗#, t# ▷ t#

PERMUTE
σ, σ′ are permutations

E ,Θ, C#, (φ#, ψ#) ⊢ u1
#, · · · , un

# ▷ v1#, . . . , v
n
#

E ,Θ, C#, (φ,ψ) ⊢ uσ(1)
# , . . . , u

σ(m)
# ▷ v

σ′(1)
# , . . . , v

σ′(n)
#

DROP
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, t⃗#

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#

REWRITE-L
E ,Θ, C#, (φ#, ψ#) ⊢ #(w⃗0, w⃗1) ▷ v#
E ,Θ ⊢ [u⃗0 = w⃗0]e ∧̃ [u⃗1 = w⃗1]e

E ,Θ, C#, (φ#, ψ#) ⊢ #(u⃗0, u⃗1) ▷ v#

REWRITE-R
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ #(w⃗0, w⃗1)
E ,Θ ⊢ [v⃗0 = w⃗1]e ∧̃ [v⃗0 = w⃗1]e

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ #(v⃗0, v⃗1)

DUP
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, t⃗#

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, t⃗#, t⃗#

Fig. 8. Bi-deduction constructive rules

NAME
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ (t# | f#)

E ,Θ, C# · {(∅, n, t#,TS , f#)}, (φ#, ψ#) ⊢ u⃗# ▷ (n t# | f#)

ORACLEf

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷G w⃗#, (⃗t# |F#), (o⃗# |F#), (s⃗# |F#)

Θ |= {ψ# ∧ F#}v# ← Of (⃗t#)[⃗k#; r⃗#]{θ#}
E ,Θ, C′#, (φ#, θ#) ⊢ u⃗# ▷G w⃗#, (v# | F#)

with C′# = C# ·
∏

v∈f.glob$

(∅, kv, ov♯,Tglob
G,v , F#) ·

∏
v∈f.loc$

(∅, rv, sv♯,Tloc
G , F#);

o⃗# = (ov♯)v∈f.glob$ and s⃗# = (sv♯)v∈f.glob$

Fig. 9. Bi-deduction adversarial rules

conditional if then else , computing a function’s graphs,
and induction.

• Finally, adversarial rules capture adversarial capabilities:
random samplings and oracle calls.

In order to justify the soundness of our rules, it is useful to
notice that, for all M and η, we have:

• Valid(C1 · C2) |= Valid(C1) ∧Valid(C2),
• for all j ∈ {1, 2}, Rη

C1·C2,M⊆R
η
Cj ,M, and

• for all j ∈ {1, 2} and random tape ρ : N η,ρ
Cj ,M ⊆ N

η,ρ
C1·C2,M

• For two bi-constraints systems C# and C′#, if E ,Θ|=WFC#
and E ,Θ |=WF C′# then E ,Θ |=WF (C# · C′#).

We have similar properties for constraint generalization:
• Valid(∀(x : τ). C) |= ∀̃(x : τ).Valid(C)
• for all a ∈ JτKηM, Rη

∀(x:τ).C,M⊆R
η
C,M[x 7→a]

• for all a ∈ JτKηM and random tape ρ: N η,ρ
C,M[x 7→a] ⊆

N η,ρ
∀(x:τ).C,M

• For any bi-constraints system C and variable x : τ , if
E , x : τ ,Θ |=WF C# then E ,Θ |=WF ∀(x : τ). C#.

1) Constructive Rules: The common point of all construc-
tive rules is that they don’t change the adversary given by the
premise.

First, notice that an adversary that computes a term t#, also
compute any term t′# exactly equal to t′#. This also holds for
input terms : using a term u# or a term u′# exactly equal
doesn’t change the adversary results. This is captured by rules
REWRITE-L and REWRITE-R.

Rule DROP holds because, given a simulator corresponding
to the premise, we obtain a simulator for the conclusion by
executing the premise simulation and then dropping some of
its outputs. Similarly, PERMUTE corresponds to re-ordering
inputs and outputs, REFL to copying an input, DUP to dupli-
cating an output, and DEFINITION replaces a variable by its
definition.

Then, we have four weakening rules. The rule WEAK.HYPS
and WEAK.MEM for hypothesis and pre- and post-conditions
weakening, designed as expected. The rule WEAK.CONSTR
for constraints weakening on the same ideas, based on the
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ADVERSARIAL
E ,Θ ⊢ adv(t)

E ,Θ, ∅, (φ#, φ#) ⊢ u⃗# ▷ t

FA
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, (t

1
# | f#), . . . , (tn# | f#)

E ,Θ ⊢ adv(g)

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, (g t
1
# . . . tn# | f#)

IF-THEN-ELSE
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, (b# | f#), (t# | f# ∧ b#), (t′# | f# ∧ ¬b#)

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ v⃗#, (if b# then t# else t′# | f#)

TRANSITIVITY
E ,Θ, C1#, (φ#, φ

′
#) ⊢ u⃗# ▷ t⃗#

E ,Θ, C2#, (φ′
#, ψ#) ⊢ u⃗#, t⃗# ▷ v⃗#

E ,Θ, C1# · C2#, (φ#, ψ#) ⊢ u⃗# ▷ t⃗#, v⃗#

LAMBDA APP
E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ (g#, t# | f#)

E ⊢ t⃗# : τ enum(τ)

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷ (g# t# | f#)

LAMBDA
(E , x : τ),Θ, C#, (φ#, φ#) ⊢ u⃗# ▷ (t# | f#)

E , x : τ ⊢ t# : τb enum(τ)

E ,Θ,∀(x : τ).C#, (φ#, φ#) ⊢ u⃗# ▷ (λ(x : τ).t# | f#)

QUANTIFICATOR O ∈ {∀,∃}
(E , x : τ),Θ ∧̃ adv(x), C#, (φ#, φ#) ⊢ u⃗# ▷ (t# | f#) enum(τ)

E ,Θ, ∀(x : τ).C#, (φ#, φ#) ⊢ u⃗# ▷ (O(x : τ).t# | f#)

INDUCTION
(E , x : τ),Θ, C#, (φ#, φ#) ⊢ u⃗#, (λ(y : τ).if y < x then t[x 7→ y] | f#) ▷ (t# | f#)

finite(τ) fixed(τ) E ,Θ ⊢ well-foundedτ (<) ∧̃ adv(<)

E ,Θ,∀(x : τ).C#, (φ#, φ#) ⊢ u⃗# ▷ (λ(x : τ). t# | f#)

Fig. 10. Bi-deduction computational rules

previous remark that when C ⊆ C′ then Valid(C′)⇒ Valid(C).
Finally the rule WEAK.COND weaken the local formula at-
tached to term. For any term (t# | f#) and a formula f ′# such
that [f ′ ⇒ f#]e then an adversary that compute (t# | f#) and
f ′# can also compute (t# | f#) : intuitively, such adversary
compute t# more “often” than when f# is true and at least
every time that f# is true.

2) Computational Rules: Computational rules includes
rules that do not require random samplings or oracle calls
from the adversary:

• the rule ADVERSARIAL to build a program that compute
an adversary term (which is immediately an adversary);

• the rules to compute functions (FA for adversarial func-
tion, LAMBDA APP for computed function, IF-THEN-
ELSE for specific handling of if then else );

• the rules that chain programs: either with sequence of
two programs (TRANSITIVITY) or under while loops
(LAMBDA to compute a function graph, QUANTIFICA-
TOR O ∈ {∀,∃} for specific handling of quantifiers,
INDUCTION to compute recursively a function graph).
For the proof of these rules one have to show that the final
program is still an adversary, i.e. that the final program
is polynomial, correctly chains pre- and post-conditions,
and doesn’t violate freshness of local samplings and
uniqueness of global samplings. For the first point, one
need to add restriction on the size of the while loops (we
restrict types of lambda terms and quantified variable to
be enumerable, or fixed and finite for induction). The
second point is ensured by forcing the rules using while
loops to apply only on fixed-point conditions. The last
point is done by operation on constraints define earlier.

3) Adversarial Rules: Finally, there are two adversarial
rules, which captures two specific capabilities of adversaries:
NAME corresponds to random samplings; and, ORACLEf to
oracle calls.

We give here the definition of an oracle triple validity, which
we omitted from the body.

Definition 14 (Oracle Hoare triple). Consider a oracle triple
for an oracle f :

{φ#}v# ← Of (⃗t#)[⃗k#; r⃗#]{ψ#}

whose offsets are of the form k⃗# = (kv ov♯)v∈f.glob$ and
r⃗# = (rv sv♯)v∈f.loc$ .

This triple is valid, i.e.:

Θ |= {φ#}v# ← Of (⃗t#)[⃗k#; s⃗#]{ψ#},

when, for any M such that M |= Θ, for any η, ρ, µ#, i ∈
{0, 1}, and any fresh variable X , if M, η, ρ, µi |=A φi then
M, η, ρ, µ′

i |=A ψi and:

JviK
η,ρ
M:E = µ′

i(X)[f.expr]η,p
M:E,i,µ′

i

where µ′
i = LX ← Of (J⃗tiK

η,ρ
M:E)[e⃗k ; e⃗s ]M

η,p
µi

e⃗k =
(
OM:E,η(kv, Jov,iK

η,ρ
M:E)

)
v∈f.glob$

e⃗s =
(
OM:E,η(rv, Jsv,iK

η,ρ
M:E)

)
v∈f.loc$

where p arbitrary s.t. ρa is a prefix of its adversarial tape.

We recall and quickly sketch the proof of Proposition 1.

21



Proposition 1. Let G be a game and f ∈ O one of its oracles.
The following rule is sound w.r.t. the class of models satisfying
G, using the notations introduced above:
ORACLEf

E ,Θ, C#, (φ#, ψ#) ⊢ u⃗# ▷G w⃗#, (⃗t# |F#), (o⃗# |F#), (s⃗# |F#)

Θ |= {ψ# ∧ F#}v# ← Of (⃗t#)[⃗k#; r⃗#]{θ#}
E ,Θ, C′#, (φ#, θ#) ⊢ u⃗# ▷G w⃗#, (v# | F#)

with C′# =
C#·

∏
v∈f.glob$

(∅, kv, ov♯,Tglob
G,v , F#)·

∏
v∈f.loc$

(∅, rv, sv♯,Tloc
G , F#);

o⃗# = (ov♯)v∈f.glob$ and s⃗# = (sv♯)v∈f.glob$

Proof (sketch). From the bi-deduction premise, we get a sim-
ulator p that computes inputs and offsets for the oracle call.
The final simulator p′ is p followed by an oracle call. The
new program is polynomial if p is, furthermore, the validity
of C ensures the freshness of local offsets and uniqueness of
global offsets. The equality between the result of p′ and the
semantics of the output terms follows form the validity of the
Hoare triplet.

Example 16. Let’s take the PRF game of example Example 1
and show the indistinguishability

h(n, k), h(m, s), h(m, k) ∼ h(n, k), h(m, s), fresh

using bi-deduction with the PRF game, with n, k,m, s distinct
names of type τ .

The plan is to show that the first and last terms can be
computed by oracle calls and the middle one is just function
applications. For that we will need that h is adversarial, but
also a way to ensure that n ̸= m. For this latter point would
like to use the tricks of example 11. Since large(τ) |= n ̸=
m ∼ true, the formulas

h(n, k), h(m, s), if n ̸= m then h(m, k)

∼ h(n, k), h(m, s), if n ̸= m then fresh

implies our goal formula under large(τ) hypothesis (this is
formula rewriting, see [18] for details). Let’s take hypothesis
Θ = adv(h) ∧ large(τ).

For the sake of simplicity, we instantiate assertion by
memory sets: the satisfiability then become inclusion and the
implication inclusion.

Let
φ0 = {[lhash 7→ []; lchal 7→ []]

and
φ = {[lhash 7→ [n]; lchal 7→ []]}.

We have

E ,Θ |= {φ0}h(n, k)← Ohash(n)[k; .]{φ},

and, using NAME, gets the bi-deduction judgment

E ,Θ, ((∅, n, ∅,TS ,⊤), (∅, k, ∅,Tglob
G,k ,⊤), (φ0, φ) ⊢ ∅ ▷ h(n, k)

Then, using NAME, DUP and FA, we also gets that:

E ,Θ, ((∅, n, ∅,TS ,⊤), (∅,m, ∅,TS ,⊤), (∅, s, ∅,TS ,⊤),
(φ,φ) ⊢ ∅ ▷ h(m, s), n ̸= m

Finally, we have:

{φ ∧ n ̸= m}#(h(m, k), fresh)← Ochal(m)[k; fresh]{ψ}

for a certain ψ. As before, using the IF-THEN-ELSE, ORACLEf

for f = chal and NAME rules, we get

E ,Θ, ((∅, n, ∅,TS ,⊤), (∅,m, ∅,TS ,⊤), (∅,m, ∅,TS , n ̸= m)

(∅, k, ∅,Tglob
G,k , n ̸= m), (∅, fresh, ∅,Tloc

G , n ̸= m)), (φ,φ) ⊢
∅ ▷ if n ̸= m then #(h(m, k), fresh).

By transitivity, we get the final judgement:

E ,Θ, C, (φ0, ψ) ⊢ ∅ ▷
h(n, k), h(m, s), if n ̸= m then #(h(m, k), fresh)

where:

C = {(∅, n, ∅,TS ,⊤), (∅, k, ∅,Tglob
G,k ,⊤)

(∅,m, ∅,TS), (∅, s, ∅,TS),

(∅, n, ∅,TS ,⊤), (∅,m, ∅,TS ,⊤),
(∅,m, ∅,TS , n ̸= m),

(∅, k, ∅,Tglob
G,k , n ̸= m),

(∅, fresh, ∅,Tloc
G , n ̸= m)}

Then Valid(C) = ⊤, and the proof is done.

C. Proof of Theorem 1

We now recall and prove Theorem 1.

Theorem 1. Let E be an environment, Θ a set of global formu-
las, and φ# be a bi-assertion such that, for all M : E satisfying
Θ, for all i ∈ {0, 1}, η, ρ, we have M, η, ρ, µi

init
η,ρ
M (G) |=A φi.

The following rule is sound w.r.t. models where G is secure,
for any C#, v⃗# and ψ#:

BI-DEDUCE
E ,Θ ⊢ Valid(C#) E ,Θ, C#, (φ#, ψ#) ⊢ ∅ ▷G v⃗#

E ,Θ ⊢ v⃗0 ∼ v⃗1

Proof. Assume that the conclusion is not valid: there exists
M : E satisfying Θ and a PPTM D that distinguishes v⃗0
from v⃗1 with a non-negligible advantage. In other words, the
following function is non-negligible:

η 7→

∣∣∣∣∣ Prρ∈TM,η

(
D(Jv⃗0Kη,ρM:E , 1

η, ρa) = 1
)
−

Prρ∈TM,η

(
D(Jv⃗1Kη,ρM:E , 1

η, ρa) = 1
) ∣∣∣∣∣ (11)

Assume further that the premises are valid. Since C# is valid,
we know that C0 and C1 are both valid. By the second
premise, and by hypothesis on φ#, there exists a G-adversary
p computing ∅ ▷ v⃗i w.r.t. M, η, p, ρ, µi for any i ∈ {0, 1}, η,
ρ and p such that ρ Rη

Ci,M
p, where µi is µi

init
η,ρ
M .

We now construct a G-adversary that wins the game G with
non-negligible probability, contradicting the cryptographic as-
sumption. We first translate the distinguisherD between v⃗0 and

22



v⃗1 into a program d that performs the same computations2 for
some input variables X⃗ and return variable res:

for all η, i, µ, a⃗ ∈ J⃗τKηM, for all tapes (ρa, ρh) Rη
Ci,M

p,

LdMη,p
M,i,µ[X⃗ 7→a⃗]

[res] = D(⃗a, 1η, ρa) (12)

where τ⃗ are the types of v⃗0 (and of v⃗1, since v⃗0 and v⃗1 have
the same types). Since D only accesses ρa, the program d only
accesses p[TA, bool], hence it is an adversary. We can thus form
an adversary q by composing d with p. C0 is well-formed,
hence, by Lemma 1, there exists a coupling C : TM,η ▷◁ P
contained in Rη

Ci,M
.

Hence using Eq. (12) and Lemma 2, we obtain that:

Prp
(
LqMη,pM,0,µ0

[res] = 1
)
= Prρ∈TM,η

(
D(Jv⃗0Kη,ρM:E , 1

η, ρa) = 1
)
.

Repeating the reasoning for i = 1, we obtain that the following
function is equal to the one in Eq. (11):

η 7→
∣∣Prp(LqMη,pM,0,µ0

[res] = 1
)
− Prp

(
LqMη,pM,1,µ1

[res] = 1
)∣∣.

It is thus non-negligible, contradicting the assumption on G
in M.

APPENDIX E
IMPLEMENTATION

We detail here the fully automated procedure search▷ for
finding bi-deduction proofs using the proof system of Sec-
tion IV. As explained in section Section V, we aim at a fully
automated procedure, reasonnably efficient, but not necessarly
complete. Then, rather than requiring user guidance during
proof search, our algorithm will make heuristic choices on
how to build the proof, and return to the user some proof
obligations (as global and local formulas) that can then be
proved, automatically or not, using the standard means in the
proof assistant.

A. Recursive Functions

Our logic supports recursively defined functions, which are
crucially used to model protocols, as shown in Example 14.
Following this particular use case, we will consider only
recursive functions over timestamps, even though our approach
is more general than that. If f# is recursively defined, proving
that a term (f# u#) is bi-deducible will often require to prove
that (f# x#) can be bi-deduced for all values x# ≤ u#. This
can only be achieved in our proof-system using the induction
rule, which is notoriously difficult to automate due to the need
to find generalizations that are invariant. In our case, invariants
concerns the assertions, but also the terms to be deduced.

Instead of searching for proofs using induction rules in
arbitrary ways, our approach is to look for proofs that follow
a simple construction pattern. This eases automation and
provides good results in practice, see Section VI. When trying
to verify a bi-deduction judgement u⃗#▷v⃗#, we first search for

2In this equation, i and µ are arbitrary, because our program initializes its
own memory and does not call any oracle.

induction-free derivations of judgements of the following form
(we will discuss later how these judgments are determined):

(E , t : timestamp),Θ, Ci#, (φ#, φ#) ⊢
u⃗#, (λt

′. if t′ < t ∧ t ≤ t0 then w⃗#[t 7→ t′]) ▷ (wi
# | t ≤ t0)

(13)

E ,Θ, C′#, (φ#, ψ#) ⊢ u⃗#, (λt. if t ≤ t0 then w⃗#) ▷ v⃗# (14)

The rough idea is that, instead of bi-deducing u⃗# ▷ v⃗#, we
more generally try to bi-deduce:

u⃗# ▷ (λt. if t ≤ t0 then w⃗#), v⃗#

for some well-chosen w⃗# = (w1
#, . . . , w

k
#). By transitivity,

the extra terms are first bi-deduced by induction, and then be-
come available to ease the bi-deduction of v⃗#. More precisely,
we derive:

E ,Θ, C′# · ∀t.(
∏

i∈[1;k] Ci#), (φ#, ψ#) ⊢ u⃗# ▷ v⃗#

using rules TRANSITIVITY, INDUCTION and DROP and the
derivations of the above judgements, with a derivation of
Eq. (13) for each i ∈ [1; k]. Note that we restrict to have the
same pre- and post-condition φ on all judgments of Eq. (13).
More generally, our invariants are insensitive to the iteration
variable t, which can be limiting, but generally keeps our
proof search procedure reasonably simple and notably helps
termination.

In our implementation, w⃗# is obtained from v⃗# by col-
lecting all recursive definitions that may be useful, directly or
indirectly, to deduce the recursive definitions appearing in v⃗#.
This is done using a fixed-point computation, introduced in
[19], which balances efficiency and precision.

Example 17. In Example 14 we seek to prove the following
indistinguishability, where fresh is a name which is not used
in the protocol:

Θ |= frame@pred t0, h(⟨n (i0, j0), att(frame@pred t0)⟩, k i0)
∼ frame@pred t0, fresh ⟨⟩

For the sake of simplicity, we shall assume here that t0 =
T(i0, j0) for some indices that are assumed adversarial in Θ.
Our indistinguishability actually follows from the following bi-
deduction judgement w.r.t. the PRF game, for any constraint
system C that is valid and any pre-condition φ that holds on
the game’s initial memory:

E ,Θ, C, (φ,ψ) ⊢ ∅ ▷
frame@pred t0,
if fFresh then

#(h(⟨n (i0, j0), att(frame@pred t0)⟩, k i0), fresh ⟨⟩)

where fFresh is the (overwhelmingly true) formula stating that
n (i0, j0) ̸= n (i, j) for all i, j such that T(i, j) < T(i0, j0). To
simplify the presentation, we omit markers indicating that C,
φ and ψ are actually bi-constraint systems and bi-assertions.

We choose w⃗# = (frame@t, input@t, output@t) to prove
this judgment using the strategy defined above, with t :=
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pred t0. We will thus have to prove the following judg-
ments, for some constraint systems C1, C2, C3, C′ and w′

# =(
λt′. if t′ < t then (frame@t', input@t', output@t') | t < t0

)
:

E ,Θ, C1, (φ,φ) ⊢ w′
# ▷ (frame@t | t < t0)

E ,Θ, C2, (φ,φ) ⊢ w′
# ▷ (input@t | t < t0)

E ,Θ, C3, (φ,φ) ⊢ w′
# ▷ (output@t | t < t0)

E ,Θ, C′, (φ,φ) ⊢ (λt. if t < t0 then w⃗#) ▷

frame@pred t0, if fFresh then #(output@t0, fresh ⟨⟩)

This kind of generalization will occur very often when bi-
deduction involves inputs, outputs, or frames, due to the
mutual definition of these functions. These judgments can
indeed be proved, without using the induction rule; details
are given in Example 20.

This example leaves unspecified the assertion language, and
does not explain how assertions can be synthesized to fit the
proof’s requirements; this is explained next.

B. Assertion Language

Most cryptographic games rely only on global variables
to store monotonic logs, which are then used only to check
that some messages have not been logged. We choose an
assertion language that is well adapted to this use case. This is
enough to support all cryptographic games already supported
by SQUIRREL and, arguably, most standard cryptographic
games. In term of operations supported in the cryptographic
games, this yields a similar expressivity to CRYPTOVERIF,
which supports logs through tables.

Given that oracles and simulators are programs, we cannot
hope to precisely characterize the game’s memory at any
point of a bi-deduction. In particular, proofs by induction
will require assertions that are invariant by bi-deduction steps.
Finding invariant assertions can be achieved by sufficiently
over-approximating the logged values in assertions. The over-
approximation should just be precise enough to be able to
ensure that some values are absent from the logs.

Concretely, we use assertions that associate, to each log of
the game, a formal union of elements of the form (α⃗,m#, f#)
where α⃗ is a list of variables, m# is a term and f# is a
local formula. As for constraints, α⃗ should be understood as
a binders. The semantics of an item (α⃗,m, f) w.r.t. M, η, ρ is
a set of possible semantic values, where τ⃗ is the vector of the
types of α⃗:

J(α⃗,m, f)Kη,ρM:E
def
= {JmKη,ρ

M[α⃗ 7→a⃗]:E | a⃗ ∈ Jτ⃗KηM, JfKη,ρ
M[α⃗ 7→a⃗]:E = 1}

The semantics for a formal union of such items is then
naturally taken as the union of the semantics of all items.
Finally, we define the semantics of an assertion by considering
that it is satisfied by a memory when the semantic values in
each log are contained in the semantics of the corresponding
formal set in the assertion:

M, η, ρ, µ |=A φ when, for all ℓ log of G, µ(ℓ) ⊆ Jφ(ℓ)Kη,ρM:E

This assertion language supports the required operations:
given a local formula f and an assertion φ, we define φ ∧ f
as the assertion where f is added as a conjunction to each
condition in φ; we can also define φ ∪ ψ as the point-wise
union of assertions, which over-approximates φ ∨ ψ. Finally,
assertions can be generalized over some variable: we define
∀x.φ as the assertion φ where x has been added to the first
component of each item.

Example 18. To obtain a complete derivation in Example 17,
we can use the following assertions:

φ(ℓhash) = {({i, j}, n (i, j),T(i, j) < t0)}
φ(ℓchal) = ∅ ψ(ℓhash) = φ(ℓhash)
ψ(ℓchal) = {(∅, n (i0, j0), true)}

The invariant φ over-approximates the messages passed to the
hash oracle during the computation of w⃗; it could be made
precise by taking ({j}, n, (i0, j),T(i0, j) < t0). It is however
precise enough to allow the final use of the oracle rule for
the challenge oracle, which requires that n (i0, j0) has not
previously been used in an oracle query.

C. Proof Search
In order to find the induction-free derivations required in

the general proof method described in Appendix E-A, we
implement the goal-directed heuristic proof search procedure
search▷(·) that takes as input a partial bi-deduction goal,
with an incomplete well-formed constraint system and global
hypotheses and without a post-condition, and finds a derivation
for a possible completion of this goal. More precisely, we
must have that for any initial environment E , hypotheses Θ,
constraints C# such that E ,Θ|=WFC#, pre-condition φ#, input
terms u⃗#, and output terms v⃗#,

search▷ (E ,Θ, C#, (φ#, ·) ⊢ u⃗# ▷ (v⃗# | f#)) = (Θ′, C′#, ψ#, f
′
#)

implies that

E ,Θ ∪Θ′, (C# · C′#), (φ#, ψ#) ⊢ u⃗# ▷ (v⃗# | f# ∧ f ′
#) is derivable

and E ,Θ |=WF C# · C
′
#

In case the proof search fails, search▷(·) returns an error.
The addition of Θ′ and f ′# corresponds to proof obligations,
at different levels, that the user may discharge later on. Our
procedure makes use of existing automated deduction capa-
bilities in SQUIRREL to automatically verify formulas when
needed; it is notably used to limit the number of produced
proof obligations. In Example 17, the condition fFresh would
be added as f ′#, and could be automatically discharged later.

For usability and performance reasons, our proof search
procedure is fully deterministic, guided by the structure of
the terms to deduce. It eagerly applies the REFL and ADVER-
SARIAL rules whenever possible. It also eagerly applies the
oracle rule when constraints in C# allow it. When this is not
guaranteed, a specific strategy is used to avoid abusive use
of oracles that may prevent the completion of the rest of the
proof. We illustrate it with the PRF game, in a situation where
we want to deduce a message h(m, k i), the constraint system
specifies that the game’s key corresponds to (k j), but we
cannot check that i = j: in this case we rewrite the term to
be deduced into if i = j then h(m, k i) else h(m, k i) and

24



use the conditional rule IF-THEN-ELSE, after which we can
use the hash oracle to deduce (h(m, k i) | i = j) but directly
compute (h(m, k j) | i ̸= j) by having the simulator sample
(k j),

When applying oracle rules, our strategy needs to synthesize
a post-condition from the pre-condition, such that the Hoare
triple is valid. Because our assertions only track logs, which
are assume to evolve only monotonically, this can be done by
enriching (by means of unions) the pre-condition, e.g. taking
ψ0(ℓ) = φ0(ℓ) ∪ (∅,m0, f0) and ψ1(ℓ) = φ1(ℓ) ∪ (∅,m1, f1)
when an oracle is called on m# under condition f#.

D. Invariant Synthesis

In order to find the initial pre-condition φ# required to
complete the whole proof by induction of Appendix E-A, we
proceed iteratively, attempting to find an invariant φ# as the
result of a fixed-point computation. We start with the assertion
φ0
# stipulating that all logs are empty. At iteration i, we will

have an assertion φi
#, and we use our proof search procedure

to complete induction-free derivations. If this succeeds, it
yields several post-conditions ψ#, which can be regarded as
a single post-condition by taking their union. We define φi+1

#

as φi
# ∪ ∀t.ψ# – this generalization is necessary for the new

condition to make sense w.r.t. E and, intuitively, to express
that the post-condition enriches the pre-condition with new
potential logged terms for all values of t. Finally, we check
whether this new condition semantically entails the previous
one. If this is the case, we have found an invariant – and
derivations of the expected form, with φi

# as post-conditions,
can be obtained by weakening post-conditions to φi

#. If this
is not the case, we move on to the next iteration to further
over-approximate our condition.

The idea that assertions over-approximate logs, and this
fixed-point computation of invariants, is directly inspired by
abstract interpretation techniques [30]. In this regard, our
assertion language forms a rather crude abstract domain,
though it already provides good results. Our algorithms might
be improved in the future by using richer abstract domains for
sets of terms, e.g. [31], [32].

Example 19. In the proof of Example 17, starting with φ0

which maps the two logs to ∅, the first derivation of our three
inductive bi-deduction judgements yields, after some simplifi-
cations, φ1(ℓhash) = ({t, i, j}, n (i, j), t = T(i, j) < t0) and
φ1(ℓchal) = ∅. Since ̸|= φ0 ⇒ φ1, we restart the proof-search
for our three judgements with φ1 as the new pre-condition. We
obtain φ2 = φ1, at which point we can search for the fourth
derivation. This will succeed with a post-condition mentioning
the use of the challenge oracle. It will finally remain to check
that the produced constraints are valid, to conclude that bi-
deduction holds.

Example 20. We explain how the judgements ob-
tained at the end of Example 17 can be derived. To
derive the final judgement, recall that output@t0 =
h(⟨n (i0, j0), att(frame@pred t0)⟩, k i0). Because att is ad-
versarial and frame@pred t0 is available from w⃗# in input,

we can derive the first term, as well as the second component
of the hashed message. The first component of the hashed
message can also be derived by simulator’s random sampling,
which would add the constraints (∅, n, (i0, j0),TS ,⊤). To
conclude, we have to call the hash oracle, which adds the
constraint (∅, k, i0,Tglob

G,key), and requires that φ implies that
the hashed message is not in ℓhash ∪ ℓchal.

Because the constraint systems Ci will eventually be com-
bined with C′ to yield a system that must be valid, we will
only be able to use the name k i0 as the game’s key in the
other bi-deduction derivations.

The input judgement above can easily be derived, taking
C2 = ∅, by definition of the input function and because the
frame at pred t < t is available from w′. Similarly, we easily
obtain the frame judgement, with C1 = ∅.

For the output judgement, we also expand the definition of
the output function, and proceed by case analysis over t. In
the key case, we have to derive:

(E , t, i, j),Θ ∧̃ [t = T(i, j)]e, C′3, (φ,φ) ⊢ w′ ▷

h(⟨n (i, j), input@t⟩, k i)

Clearly, the hashed message can be bi-deduced with
({i, j}, n, (i, j),TS ,⊤) ∈ C′3. To compute the hash per se,
there are two cases:

• Either i0 ̸= i, in which case the adversary can sample
the key k i and compute the hash itself. For that case, we
add ({i}, k i,TS , i0 ̸= i) in the constraints system.

• Or i0 = i, in which case the only way for the adversary
to compute the hash without rendering the constraints
invalid is by calling the hashing oracle. Doing so adds
the constraint (, n, (i0, j),TS ,⊤), and requires that the
condition φ is invariant by the oracle call, i.e. preserved
by the addition of the hashed message to ℓhash.

Overall, we can derive the output judgement with C3 =
{({i, j}, n, (i, j),⊤), (∅, k, i0,⊤)}.
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