Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Biogeosciences Année : 2024

Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach

Résumé

At the land–sea interface, the benthic carbon cycle is strongly influenced by the export of terrigenous particulate material across the river–ocean continuum. Episodic flood events delivering massive sedimentary materials can occur, but their short-term impact on carbon cycling is poorly understood. In this paper, we use a coupled data–model approach to estimate the temporal variations in sediment–water fluxes, biogeochemical pathways and their reaction rates during these abrupt phenomena. We studied one episodic depositional event in the vicinity of the Rhône River mouth (NW Mediterranean Sea) during the fall–winter of 2021/22. The distributions of dissolved inorganic carbon (DIC), sulfate (SO4 2-) and methane (CH4) were measured in sediment porewaters collected every 2 weeks before and after the deposition of a 25 cm sediment layer during the main winter flood event. Significant changes in the distribution of DIC, SO4 2- and CH4 concentrations were observed in the sediment porewaters. The use of an early diagenetic model (FESDIA) to calculate biogeochemical reaction rates and fluxes revealed that this type of flood event can increase the total organic carbon mineralization rate in the sediment by 75 % a few days after deposition. In this period, sulfate reduction is the main process contributing to the increase in total mineralization relative to non-flood deposition. The model predicts a short-term decrease in the DIC flux out of the sediment from 100 to 55 mmolm−2 d−1 after the deposition of the new sediment layer with a longer-term increase by 4 %, therefore implying an initial internal storage of DIC in the newly deposited layer and a slow release over relaxation of the system. Furthermore, examination of the stoichiometric ratios of DIC and SO4 2- as well as model output over this 5-month window shows a decoupling between the two modes of sulfate reduction following the deposition – organoclastic sulfate reduction (OSR) intensified in the newly deposited layer below the sediment surface, whereas anaerobic oxidation of methane (AOM) intensified at depth below the former buried surface. The bifurcation depth of sulfate reduction pathways, i.e., the sulfate–methane transition zone (SMTZ), is shifted deeper by 25 cm in the sediment column following the flood deposition. Our findings highlight the significance of short-term transient biogeochemical processes at the seafloor and provide new insights into the benthic carbon cycle in the coastal ocean.
Fichier principal
Vignette du fichier
FerreiraE-Rhone2024-bg-21-711-2024.pdf (2.16 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04511527 , version 1 (19-03-2024)

Identifiants

Citer

Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, et al.. Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach. Biogeosciences, 2024, 21 (3), pp.711 - 729. ⟨10.5194/bg-21-711-2024⟩. ⟨hal-04511527⟩
6 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More