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ABSTRACT
We address the task planning problem for robots collaborating
with humans to achieve a shared task. In this context, humans
often want to be free to choose what they want to do, as well
as how according to their internal preferences. In this work, we
propose a new human-aware task planner that explicitly takes into
account amodel of execution inspired by joint action schemes while
capturing the uncontrollability factor of the human operators and
social signals. Its output is the robot’s behavioral policy, which
describes the robot’s action to perform in every state such that
the action is congruent and compliant with the human’s decision
and action, including being passive, to be executed in parallel. The
generation of the robot policy using our proposed framework is
described, highlighting the planning process and the joint action
model it is based on. We provide empirical evidence and brief user
study results through simulated BlocksWorld scenarios, validating
its ability to produce compliant concurrent robot behaviors.

CCS CONCEPTS
• Human-centered computing→ Collaborative interaction;
• Computing methodologies→ Robotic planning; collaboration
and coordination.

KEYWORDS
Human-Robot Collaboration, Planning for Joint Action, Robot Plan-
ning, Dynamic Execution
ACM Reference Format:
Anthony Favier and Rachid Alami. 2018. Planning Concurrent Actions
and Decisions in Human-Robot Joint Action Context. In Proceedings of 3rd
International Workshop of Symbiotic Society With Avatars (SSA’24). ACM,
New York, NY, USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Human-robot collaboration (HRC) is a current research focus due
to the rise in the number of robot-assisted applications where col-
laborative robots obviously contribute some value [27]. Robots
collaborating with humans has a utility in real-world domains like
household [30], or a robot assisting surgeons [15], collaborating at
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workshops [28], and helping astronauts in the space [11]. Hence,
robot’s autonomy is useful to have an efficient collaboration with
humans on a joint task [23]. Autonomy can be enhanced by plan-
ning the robot’s behavior beforehand while also considering human
operators, which is broadly known as human-aware planning and
decision-making [4, 7, 30]. This is the subject of this paper.

In the context of HRC for a shared task [27], we believe, based on
the literature on joint action [6, 13, 25, 26], that the key towards a
seamless interaction is, to consider the human as an uncontrollable
agent and to be fully and concurrently compliant with them. The
human should not be dictated which action they must perform, as
in [3, 23], and the robot must comply with possible human decisions
and actions during execution.

To collaborate with such humans with their (hidden) preferences,
one can devise an online planning scheme coupled with a plan
executor. However, in order to maintain real-time performance,
online planning generally keeps a restricted horizon. Therefore,
decisions taken online may lead to a dead end or may not lead to
an optimal solution. Offline planning overcomes these issues.

We propose a new offline task planner which extends an existing
human-aware planning system addressed in [3]. The new plan-
ner is designed to take into account a Model of Execution, which
is in the form of an automaton and mainly inspired by the joint
actions schemes. The model captures humans’ latitude in their deci-
sions. The planner’s output is the robot’s behavioral policy, which
describes the robot’s action in a state such that the action is con-
gruent and compliant with the human’s decision in this state and
their estimated preferences, and that it is also legal to be executed
in parallel. Our framework also allows humans at any time during
execution to share their preferences to adapt online and accordingly
the robot’s policy. In addition, our approach considers social signals
to enhance execution by minimizing uncertainties. Both humans
and robots issue signals to clarify situations such as performing an
action, waiting for the other agent’s necessary actions, or indicating
a desire to remain passive.

In this paper, we discuss relevant related work before describing
the joint action model of execution that is central to our approach.
We then describe the task planning problem and then introduce
our novel framework. The following two sections explain how the
robot policy is generated by a three-step process: exploration, char-
acterization, and generation. We empirically evaluated our approach
in simulation. With a BlocksWorld scenario, we show how our
approach can effectively produce a concurrent robot behavior that
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is compliant with human online decisions and preferences. Even-
tually, before we conclude, we briefly present the user study we
conducted validating our approach.

2 RELATEDWORK
Using task models is a typical method of representing computer
interaction and human behavior at a high abstraction level. Annett
and Duncanwere the first to use the hierarchical structure of human
action to their advantage [2]. They claimed that up until a particular
criterion is satisfied, activities can be described at various levels
of abstraction. Thus, each task can be broken down into smaller
ones that describe the steps a person would take to complete a
higher-level task. Various task models have been realized in the
HR collaborative planning context, e.g., hierarchical task networks
(HTNs) [18, 23], POMDPs [23, 29, 30], AND/OR graphs [9], etc.
A hierarchical network is created using HTNs (abstract and non-
abstract tasks) and AND/OR graphs to represent the inner coupling
links of the subtasks [12], and the plan search occurs in a depth-
first manner. In [14], the authors show how uncertainty can be
dealt with in the evolution of the environment and agent behavior.
The challenge lies with the hidden and implied state of the human
agent [30], especially in POMDPs for HRC.

Past works motivated us to use HTNs for the task/action speci-
fication for agents, as in HATP/EHDA [3] too, because they have
similarities to real-world human decision-making.

Unlike ours, HATP frameworks extending HTNs consider hu-
mans controllable [1, 18], while in [23], the framework considers
planning at multiple abstraction levels (with a single HTN) with hu-
mans. The latter is capable of basic reasoning for role assignment
and task allocation. Like in our setting, robots plan under state
uncertainty with partially observable human intentions modeled
and tackled (mainly) at the primitive task level. This framework
currently does not allow for concurrent planning/execution. On the
other hand, we can see our execution automaton as an extension of
the POMDP model (used in [23] for deciding role allocation at the
primitive task level) for handling concurrency. Generally, existing
frameworks (unlike ours) produce explicitly coordinated, shared
HR plans that are assumed to be acceptable by humans, hence these
techniques rely more on prior negotiation with humans and the
replanning aspect for successful execution in reality.

There have been a few attempts to cater to concurrent execution,
but they deal with explicit time to manage concurrency [5, 16].
However, due to the context uncertainties, it is often challenging
to estimate accurately tasks and actions duration. In [4], the robot
does not plan actions for humans but forecasts their actions/plans
from their activities and bases its own decision on the distribution
of possible human plans. Here robots can perform actions concur-
rently, estimating/managing the completion time of the agents’
actions carefully. We can see the human activity recognition part as
a form of our identification (ID) process of the automaton used. The
robot needs such a plan/goal recognition technique to be compliant
with the human’s decisions. But, unlike ours, they do not consider
an explicit shared goal among the agents, and hence humans are
not concerned with stuff robots might be interested in during col-
laboration. We believe that a shared goal creates a different context
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Figure 1: The Model of Execution, in the form of an automa-
ton and here simplified, captures the latitude of uncontrol-
lable humans in their actions and guides our task planning
approach. In this paradigm, the two agents can act concur-
rently but one is always compliant with the other’s decision
to act. Here, the human is always free to decide whether to
start acting first, or after the robot, or not to act at all. To be
compliant, the robot attempts to identify human decisions
using perception and situation assessment as well as possible
collaborative human signaling acts (e.g., gestures or speech).

in HRC than the robot just being compliant with an estimated hu-
man’s goals/plans. In another work, both recognition and adaptation
take place simultaneously and comprehensively [19]. It deals with
action scheduling of an already generated contingent plan com-
prising human’s and robot’s actions. It outputs schedules for the
robot actions that can execute concurrently but to do that explicit
temporal constraints are considered.

Another approach [22] proposes a communication free human-
robot collaborative approach for an adaptive execution. In this
work, the robot observes and supports human decisions, actively
selecting actions to optimize collaborative task efficiency. Unlike
our approach, they introduce an extended collaborative HTN rep-
resentation with role assignment for planning and state tracking
during execution, which is more in line with [23]. In contrast, we
employ two distinct HTNs for robot and human capabilities and
use an AND/OR tree for exploration and execution tracking. While
their online planning may enhance scalability, optimality is not
guaranteed. Also, our scheme accommodates both verbal and non-
verbal communication, allowing the human to express preferences
that update the robot policy online.

3 THE MODEL OF EXECUTION
Our task planning approach uses a model of execution to improve
the fluency and amenability of HRC. This model is in the form
of an execution automaton as shown in Figure 1, and is based on
several key notions and mechanisms borrowed from studies on
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joint actions [17, 21], and adapted to Human-Robot Joint Action [6,
8]. The key idea is that co-acting agents co-represent the shared
task context and integrate task components of their co-actors into
their own task representation [24, 31]. Also, coordination and role
distribution rely strongly on reciprocal information flow, e.g., social
signals [8], prediction of other’s next action [20]. By abstracting the
model of execution and implementing it in our planning approach,
our scheme provides human full latitude in their action choices.

Consider an example to clarify the execution automaton. Assume
a human and a robot have to pick up two blocks, A and B, that
both can reach. Both blocks can be picked up concurrently unless
the agents try to pick the same block, the actions are conflicting.
As a result, despite being executable in parallel, the actions are
interdependent, and in order to avoid conflicts, one agent must be
compliant with the other. However, if we consider a third block
C that only the robot can reach, it can always pick up this block
without any risk of conflicts with the human’s choice.

In a state, a human decision can result in one of three outcomes.
First, the human can choose to act first (left subtree). If the robot’s
best action is not in conflict with the human action (e.g., pick C), the
robot can safely perform this action concurrently with the human
operator (branch 3). However, if the robot’s best action is either
pick A or pick B, the human action must be identified first with a
subroutine in order to be compliant with it. If this subroutine is
successful the robot can perform any actionwhich is congruentwith
the identified human action (branch 1). This includes the robot’s
choice to be passive and let the human act alone. However, if the
robot is unable to identify the human action, it must remain passive
in order to avoid potential conflicts (branch 2). Then, the human can
either decide to be passive or to act after the robot (right subtree). In
both cases, the human is passive at the beginning, making the robot
to start performing alone a feasible action. While the robot is acting,
the human is free to remain passive until the next step (branch 5),
or to choose a congruent action to act concurrently (branch 4). As a
result, the human can always choose to 1) act first, 2) act after the
robot, or 3) not act at all. The robot will always be compliant with
these online human decisions.

When both agents finish their actions, the step is considered as
“over”. Then, another subroutine assesses the new world state (𝑠𝑖+1),
which is the result of the concurrent actions being executed in the
state 𝑠𝑖 , before repeating the whole process until the task is solved.

Note that if both agents are passive, e.g. the human decides to
be passive when the robot cannot act, then the step is repeated.

4 PROPOSED FRAMEWORK DESCRIPTION
Before we delve into the details of the problem description, let us list
in one place all the important assumptions we make with respect
to human operators.

• Humans and robots are not equal. The robot is here to assist
the human while aiming for efficiency.
• Humans are naturally uncontrollable agents, or at least they
do not like otherwise. So, their behavior can only be esti-
mated and emulated.
• Humans are cooperative, rational, and congruent but their
commitment and preferences regarding the shared task are
unknown and only estimated.

EXPLORATION and CHARACTERIZATION
INPUTS 

Problem Specifications Model of execution 
(automaton)

Characterized AND/OR Tree

Set of Metrics

Estimation of
human preferences  

POLICY 
GENERATION/UPDATE

OUTPUT
Robot Compliant Policy 

Πrobot 

Figure 2: An overview of the planning process. Taking as
input the problem specification, the Exploration and Charac-
terization process produces an AND/OR tree s.t. each branch
is a successful plan and is characterized by a set of metrics.
Then, an estimation of the human preferences enables rank-
ing these branches and generating the robot’s policy, Π𝑟𝑜𝑏𝑜𝑡 .

• Humans are expected to signal the robot their decisions so
that the robot can comply and act in parallel.
• Models describing human capabilities, world dynamics, and
their understanding of common ground is given.

4.1 The Task Planning Problem
We address the human-aware task planning problem in a joint
action context as described in [3]. The ability of the robot to simulate
human behavior, beliefs, and decision-making processes enhances
the traditional non-deterministic planning problem that this issue
represents. Here, we consider distinct action models, beliefs, and
agendas for the human and the robot.

4.2 The Planning Algorithm
Our planning framework is depicted in Figure 2. It extends the
planning scheme appearing in [3], allowing the agents to act con-
currently and produce solutions that always respect humans’ online
decisions and preferences.

As Input, the framework takes the problem specifications con-
sisting in initial agendas and beliefs, and action models. We assume
that during planning, each feasible pair of concurrent actions in-
stantaneously produces 𝑠𝑖+1 from 𝑠𝑖 as in classical planning. Hence,
we make a clear distinction between the usages of the same automa-
ton in planning time and online execution. Also, we do not perform
reasoning with explicit temporal constraints or use durative actions
in planning (unlike [4]).

The output of our approach is a compliant robot policy Π𝑟𝑜𝑏𝑜𝑡

which indicates for every possible human action in every state and
for every the action the robot should perform concurrently to the
human one. Each robot action has been selected to optimally satisfy
the estimated human preferences regarding the task.

The search space must be computed offline. However, the policy
can be generated online, and thus, it can be updated online with
newly estimated human preferences.

5 EXPLORATION AND CHARACTERIZATION
The model of execution (Figure 1) is abstracted and used to model
the assumptions w.r.t. the human operator, and explore relevant
courses of actions to eventually produce the robot policy Π𝑟𝑜𝑏𝑜𝑡 .
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alize it better, while expanding a state 𝑠𝑖 in search, each hu-
man action HA𝑘 is followed by a partial state 𝑠𝑘

𝑖
from which

the robot can only select actions ({RA1, RA2, ..., RA𝑝 }) non-
conflicting with HA𝑘 and can be executed concurrently in 𝑠𝑖 .

5.1 Computing Concurrent Actions
Concurrency is critical in our context enabling agents to act in paral-
lel, but the non-determinism involved due to uncontrollable human
decisions challenges the planning process differently. Beginning
from the initial state, we depict in Figure 3 how our deliberation
process expands and builds the search space in the form of an
AND/OR tree. From each real state (AND) node 𝑠𝑖 , based on the
human agenda and action model (HTNℎ𝑢𝑚𝑎𝑛), all the actions that
the human is likely the perform are retrieved. Each possible action
expands the tree with partial state nodes 𝑠 𝑗

𝑖
and updates the agenda

and beliefs accordingly. Next, for each AND node, the robot actions
returned by its action model (HTN𝑟𝑜𝑏𝑜𝑡 ) which are non-mutually
exclusive to the particular human action expand the tree with new
real state (AND) nodes.

Note that if an action does not cause any explicit change in
the environment it is called passive. Such actions are useful in our
context to allow agents to not always act when they can, and thus,
explore further courses of actions. To anticipate the human choice
to not-act (branch 5) a passive action is always inserted as a possible
human action. It also helps to anticipate situations when the human
wants to let the robot start and act concurrently. We also consider
systematic passive robot action for two main reasons. First, if a
mandatory identification fails, the robot must remain passive to
avoid any conflicts with human online choices (branch 2). Second,
the robot must be proactive to satisfy the human preferences. Hence,
it is sometimes better to not perform an action (and be passive) to
let the human perform it now or later.

5.2 Characterization Metrics
Each branch of the AND/OR tree is a feasible plan. To generate
the robot policy we first characterize every plan by computing the
following set of metrics:
• Time of End of Human Duty: Time step after which the
human can remain passive.
• Human Effort: Sum of the cost of all human actions.
• Time of Task Completion: The time step at which the task
is fully achieved.

• Global Effort: The sum of the costs of all actions.

Here, we consider that each non-passive action has a cost of 1.0,
and that every passive action has a cost of 0.0.

We proposed a reasonable set of metrics that are relevant to
characterize each plan but it could (and should) be complemented
by other social metrics yet to be defined. The computed values are
stored with the fully explored search space which is then referred
to as “Characterized AND/OR Tree”. It constitutes the output of the
offline exploration.

However, these metrics are not sufficient to determine the robot’s
policy since it depends on how the human wants to prioritize these
metrics while collaborating. This prioritization is referred to as the
estimated human preferences.

6 THE ROBOT’S POLICY (Π𝑟𝑜𝑏𝑜𝑡 )
6.1 Estimation of human preferences
We are interested in finding an appropriate robot’s action in each
(partial) state (𝑠𝑖 or 𝑠

𝑗
𝑖
) in the characterized AND/OR tree as depicted

in Figure 3. To do so, we first have to be able to compare plans
with each other to aim for the best one. We do so by using the
estimated human preferences as a mean of comparison. Suppose no
explicit preferences were told, so to start with, the robot estimates
the human preferences. Such estimation is done by minimizing
or maximizing each characterization metric in a defined priority
order. For instance, one of the example human preferences we
defined is HUMAN-MIN-WORK corresponding to the following
ordering: Minimal Human Effort > Earliest End of Human Duty >

Best Overall Cost > Earliest End of Task. When two plans have the
same Minimal Human Effort, then the second metric in the ordered
list is used to compare the plans, and so on.

6.2 Generation
Estimating the human preferences allow us to compare and rank
each plan from best to worst. To improve legibility, we normalize
the branches’ ranks to obtain a score such that a plan with the
lowest rank has a score of 0.0 while the highest rank corresponds
to a score of 1.0. This makes it easier to visualize the “quality” of
a plan, regardless of the instance’s size. Then, by propagating the
best reachable rank in the upper nodes we can identify the best
robot action (𝑅𝐴∗) to pick w.r.t. every human possible action.

The first draft of the robot’s policy maps each partial state 𝑠 𝑗
𝑖

of the tree to the best robot action to perform (𝑅𝐴∗), i.e., Π𝑟𝑜𝑏𝑜𝑡 :
{𝑠 𝑗
𝑖
} → 𝑅𝐴∗. The partial states are identified at execution time if

either the ID process is successful or human remains passive. Such
policy is complemented to handle identification failures, noted as
the state 𝜆, s.t., 𝜋 (𝜆) = PASS. Additionally, for a given 𝑠𝑖 , if the
identification is not needed then we can directly map the state itself
𝑠𝑖 to the best robot action. In such cases, we override the policy
defined above as follows 𝜋 (𝑠𝑖 ) = 𝑅𝐴∗.

6.3 Execution
The execution of the policy stems from the execution automaton
and is depicted in Algorithm 1.
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Algorithm 1: The robot’s online behavioral policy.
(starting) 𝑠 ← initial state;
while ¬ IsTaskAchived(s) do

wait_start_step();
if 𝑠 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(𝜋) then

execute(𝜋 (𝑠));
else

if IsHumanPassive() then
execute(𝜋 (𝑠 𝑗

𝑖
));

else
id_state← IDProcess() ; # ∈ {𝜆} ∪ {𝑠 𝑗

𝑖
}

execute(𝜋 (id_state));
end

end
wait_end_step();
𝑠 ← AssessmentProcess();

end

7 EMPIRICAL EVALUATION
We provide results obtained after simulating symbolically the exe-
cution of robot policies produced with our approach.

7.1 Simulated Experiment
The execution is symbolically simulated using an implementation
of Alg. 1 and by mocking the human behavior. A human policy is
produced using our approach with perfectly estimated human pref-
erences. Then, the robot policy is produced by using an estimation,
more or less accurate, of these preferences.

Here we have access to both the real human preferences and
their estimation by the robot, thus we use the following notations. A
plan’s score regarding the estimation of the robot will be referred to
as an R-score. The plan’s score regarding the real human preferences
will be referred to as the H-score. In practice, the R-score is an
estimation of the H-score by the robot, and by maximizing the R-
score the robot tries to maximize the H-score. Thus, it is important
to note that it is acceptable to reach a low R-score as long as a high
H-score is obtained.

Incorrect robot estimations of the human preferences can have
various effects such as being adversarial to the real preferences.
When the robot has a correct estimation, maximizing the R-score
will necessary maximize the H-score as-well. However, in case of
incorrect estimation, maximizing the R-score can lead to a wide
range of H-score, including low scores. Eventually, an adversarial
estimation implies that the R-score and H-score cannot be high at
the same time. In such case, most often, a high R-score will necessar-
ily lead to a lowH-score, making the robot behavior unintentionally
adversarial to the human preferences.

We evaluated our approach in the BlocksWorld domain. Figure 4
shows one problem instance. The human and the robot are on
opposite sides of a table and their shared task is to stack colored
cubes to match the given goal pattern. Initially, all colored cubes are
disposed on the table into three zones. Each agent has a dedicated
zone (RZ & HZ ) and a common zone (CZ ) is in the middle. Each

Figure 4: An instance of the BlocksWorld domain. The ideal
plan is strongly influenced by the human preferences. For
the earliest end of the task, the human prevents using the
box. A lazy humanwill only place the required pink bar from
their side. A human in a hurry will place concurrently the
yellow cube to place the pink bar early and be able to leave.

agent can only pick cubes from either their own zone and from
the common zone CZ. There is a box in RZ in which cubes can be
inserted. To pick such cubes the robot must first perform a dedicated
action to open the box before being able to use the cubes inside as
regular ones.

For the simulations, we first generated three problems with dif-
ferent initial states and shared tasks, and we produced for each
their corresponding characterized AND/OR tree. After, we created
three sets of pairs of human preferences and their estimation. In
Set A, the estimations are never adversarial and mostly correct.
Set B includes incorrect estimations which are sometimes adver-
sarial. And Set C only contains adversarial estimations. Then, for
each problem, we generated the robot and human policies for each
preference-estimation pair from each set, and their execution was
simulated. The R-score and H-score of every simulated executed
plan are shown as heatmaps for each set of pairs in Figure 5.

7.2 Simulation Results
In Set A, the estimation of the robot is close to the real human
preferences and is never adversarial. Some plans had an R-score
lower than 1.0 showing that the estimation was not perfect. Yet, the
compliance to the human actions and the non-adversarial choices
of the robot allows to always reach a maximal H-score of 1.0. With
Set B, the wrong estimation induced some adversarial choices of
the robot preventing the human from always reaching a H-score
of 1.0. But the average H-score obtained is 0.985, thus the human’s
preferences were pretty much satisfied. Set C captures the worst
possible estimations making the robot to always make choices
detrimental to the H-score. This can be seen by the lower average H-
score obtained of 0.742 and the very low minimal H-score obtained
(0.161). Yet, we can notice that the average H-score is still high,
showing that making the robot compliant with human actions is
very effective and compensates significantly (of course not totally)
for a very poor estimation of human preferences.

We can reasonably complement the human policy, which is so
far only based on preferences, with a rule stating that whenever
the robot performs an action that degrades significantly the best
reachable H-Score then the human reacts by updating online the
robot preferences, and align them with their own. The Bottom-Right
part of Figure 5 shows the new distribution of scores obtained with
Set C but using the rule. We notice that aligning preferences online
avoids very low human scores (minimum of 0.677), and increases
significantly the average human score as comparedwhen the robot’s
policy is not updated online (from 0.742 to 0.894). Hence, making
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Figure 5: R-scores and H-scores of the obtained executed
plans after simulating the execution of the robot and the
human policy generated by considering three problems and
three sets of pairs of preferences/estimations. The estima-
tions in each set are (A) Never, (B) Sporadically, and (C) Al-
ways adversarial. On the right, it is shown the scores obtained
using an enhanced human policy that can correct online the
robot’s estimation while using the set (C).

the robot compliant with online preferences is very effective in
improving the quality of the joint plan executed.

Overall, we can see that the compliant robot behavior regarding
both online human actions and preferences benefits the collabora-
tion thanks to the high human scores obtained.

We can easily imagine and discuss about a counter-case where
the robot never gives the initiative to humans and always execute
its best action. In contrast with our approach, humans would be
forced to comply with the robots which is less acceptable and
more restricting. As it is evident from our simulation results in
adversarial setups, this time, the robot would have a stronger impact
on the solution than the human. Thus, wrong robot choices would
significantly degrade the H-score without the human being about to
react. As a result, being compliant and adjusting to online decisions
and preferences can be seen as some social factor that robots should
maximize, and our framework helps achieving that.

8 USER STUDY VALIDATION
We developed an interactive simulation in which a human can
control an avatar and collaborate with a simulated robot following
a policy generated with our approach. We used this simulator to
conduct a user study with 25 participants (fig. 6) to validate our
overall approach and the use of the model of execution, referred
to as the Human-First (HF) regime. We used a baseline consisting
of a robot executing the produced policy while always taking the

Figure 6: A participant doing the experiment.

initiative and forcing the human to be compliant, referred to as the
Robot-First (RF) regime.

As preferences, the participants were given in each scenario the
objective to either finish the collaborative stacking task fast or to
free themselves as early as possible, letting the robot to finish the
task alone. Then, we produced 3 pairs of preferences-estimations
where only 1 pair has a correct estimation and the 2 others have
adversarial estimations, producing 3 robot policies. Then, for each
policy, the participants faced both a robot following the HF regime
and then the baseline RF regime.

By asking the participants to answer a reduced version of the
PeRDITA questionnaire [10] after each scenario, and by recording
the execution and computing objective metrics, we were able to
show the following. Among the 6 scenarios, the human preferences
were significantly less satisfied in the two scenario using the base-
line with erroneous estimations. This means that the preferences
were satisfied similarly despite the erroneous estimations when
using the HF regime or when the RF regime has a correct estimation.

Additionally, in two scenarios with lower preferences satisfac-
tion, the participants perceived the interaction as significantly less
Positive, the collaboration as significantly lessAdaptive and Efficient,
and their found the robot decisions significantly less Appropriate
and Accommodating.

9 CONCLUSION
We addressed the complex challenge of concurrent task planning
for a shared goal in the context of human-robot collaboration, ac-
knowledging the inherent need for autonomy in humans’ choices
of ‘what’ and ‘how’ aspects during task execution. Based on stud-
ies about joint action, we formulate an execution model, and we
present a new human-aware task planner designed to accommo-
date the uncontrollability factor inherent in human agents while
employing this execution model leveraging social signals to facil-
itate the exploration of human-robot joint actions and a smooth
execution. As a result, the planner produces the behavioral policy
for a robot that complies with online human decisions and their (on-
line) provided estimated preferences, ensuring a sound execution
of concurrent joint action in reality. We provide a detailed account
of the novel planning process and joint action model, demonstrat-
ing its effectiveness through simulated BlocksWorld scenarios. We
also briefly presents results obtained by a user study we conducted
which validates our approach.
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