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Abstract

Consciousness can be characterized by studying spontaneous fluctuations in brain activity, commonly measured
with resting-state functional Magnetic Resonance Imaging (rs-fMRI). Previous rs-fMRI studies in monkeys
and humans have shown that different levels of consciousness are defined by the relative prevalence of different
dynamical functional connectivity patterns, also called brain patterns. These patterns closely match the
underlying structural connectivity when consciousness is lost. The results suggest that changes in the state of
consciousness lead to changes in connectivity patterns, not only at the level of co-activation strength between
regions, but also at the level of entire networks. Here, we use a linear latent variable model that provides
interpretable brain networks to reveal a new signature of consciousness and its chemically induced loss during
anesthesia. To identify interpretable spatial signatures of consciousness, we apply a four-step framework by i)
generating a list of atlases, ii) filtering and extracting the time series associated with the brain Regions of
Interest (ROIs) of each atlas, iii) decomposing the signals into tailored brain networks with associated Brain
Network Activities (BNAs), and iv) performing statistical inference and multivariate analysis of the BNAs.
The novelty of the framework lies in the adoption of a constrained linear latent variable model that provides
BNAs based on identifiable and disjoint ROIs, called brain networks, and the ability to offer a sound basis
for atlas selection given the underlying clinical question. The model yields a set of tailored brain networks
and associated BNAs that characterize states of consciousness. Our results suggest that a network composed
of fronto-parietal and cingular cortices strongly influences the shift of consciousness state, especially between
anesthesia and wakefulness. Interestingly, this observation is consistent with the global neural workspace
theory of consciousness. We also decipher the level of anesthesia from rs-fMRI-derived BNAs. We identify
neurobiologically relevant brain networks that provide novel interpretable signatures of consciousness and its
loss during anesthesia. These findings pave the way for translational applications such as the diagnosis of
consciousness disorders.

Introduction

Linking the state of consciousness to brain activity is a complex endeavor. In neuroscience, we study the
relationship between consciousness and the brain by looking at how certain properties of the brain change
between different states of consciousness. In particular, we compare normal wakefulness with altered states of
consciousness experimentally induced by different anesthetic conditions. This comparison is conducted using
computational models designed to accurately decode the level of consciousness from brain activity recordings
such as electroencephalography (EEG) or functional magnetic resonance imaging (fMRI). Deciphering such
activity remains a major challenge in neuroscience and medicine. It is also crucial for a deeper understanding
of individual cognition, perception, and subjective awareness. Decoding levels of consciousness provides a
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means to explore and categorize the different states of consciousness and mental processes that individuals
can exhibit.

The anesthesia-induced Loss of Consciousness (LoC) was first studied using EEG [1–3]. The EEG signal
depends on the type of anesthetic used and varies at different stages and depths of anesthesia [4]. Anesthesia
can significantly modulate synaptic activity and neuronal responses and induce changes in measured cortical
activity [4–8]. Each anesthetic also has its own specific effects on the brain [9–11]. The mechanisms involved
may directly affect the neurovascular coupling [12] and therefore may have a direct effect on the vascular
response measured in fMRI (called the blood oxygen level (BOLD) effect) [13, 14]. Working with the
fMRI signal involves understanding how neural activity translates into observed changes in blood flow and
oxygenation. A number of studies showed distinct profiles of altered Functional Connectivity (FC) from
isoflurane and ketamine in Non-Human Primates (NHPs) [15, 16]. Although less sensitive to the specific
anesthetic and molecular target, fMRI analysis at the level of cortical brain Regions Of Interest (ROIs)
showed a clear conscious/unconscious separability [17–19]. Here, instead of a bottom-up investigation starting
from molecules and cells that would take into account anesthetic specificities, an information-processing
analysis of functional brain imaging is used to study different levels of consciousness.

Measuring consciousness with such ROI-based analysis is a challenging task due to its subjective nature.
However, researchers have developed neuroimaging techniques that provide insight into the neural correlates
of consciousness. In particular, resting-state fMRI (rs-fMRI), which is accessible to healthy subjects and
patients, has been widely used to characterize spontaneous fluctuations in brain activity [20,21]. The study
of correlations between resting-state time-course signals in brain ROIs generate the so-called FC matrix.
Some induced patterns have been shown to correlate with states of consciousness, such as sleep [22] or
anesthesia [18, 23]. Regional connectivity patterns are classically studied over the entire fMRI recording
(named FC to leave the notation uncluttered) or over time intervals to characterize the temporal dynamics
of rs-fMRI activity (named dFC). FC captures the average or stable patterns of functional connections
between brain regions, while dFC focuses on the time-varying nature of these connections, providing a more
detailed understanding of dynamic brain processes. Both approaches contribute to our understanding of
brain function and can provide valuable insights when studying Disorders of Consciousness (DoC). Here,
we focus on characterizing the overall organization of functional networks in the brain (i.e., using FC) and
understanding how different brain regions work together. Our goal is to develop an FC-driven computational
model of the brain to identify patterns associated with conscious or unconscious experience. A key factor in
the choice of this model will be the interpretability of the results. This promotes responsible use of machine
learning models and enables users to understand and effectively use their results.

The proposed experiments will be performed on a retrospective rs-fMRI dataset composed of NHPs
recorded across states of consciousness by modeling LoC with finely tuned EEG-controlled anesthesia [18, 19].
On this dataset, existing analyses fall either under unsupervised classification approaches [18,19] or under a
priori computational model identification [24]. We believe that reanalyzing the same dataset is valuable for
several reasons. First, the neuroscience community has recently adopted robust data analysis frameworks that
combine both supervised and unsupervised models. These frameworks aim to exploit as much experimental
information as possible. Second, these new frameworks replace classical unsupervised approaches with factorial
model fitting. These models produce latent variables that can be interpreted by design. With such a new
analysis paradigm, we expect to automate the extraction of previous discoveries and to reveal new insights,
alternative interpretations, or previously unnoticed patterns or relationships within the data. We also believe
that it will allow the exploration of new research questions, such as the possibility of using the existing data
in an application perspective, with the ultimate goal of providing tools to assist physicians in diagnosing
DoC [25].

Using this dataset, our group has previously described two brain signatures of anesthesia-induced
LoC [18,19,24]. The first signature is revealed by studying whole-brain dynamics from the rs-fMRI signal.
Unsupervised clustering of the dFCs reveals distinct functional connectivity patterns, also called brain
patterns. These states are ranked according to their similarity to the underlying structural connectivity.
Analyzing the relationship between functional connectivity patterns and structural connectivity is crucial for
gaining a comprehensive understanding of how the brain’s structure influences its function. Indeed, both
functional and structural connectivity are key components in unraveling the complexity of the brain’s network
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architecture. A comprehensive brain signature of anesthesia-induced LoC is provided by the relative prevalence
of these ranked brain patterns in the different awake or anesthetized acquisition conditions. However, the
interpretation of these results remains complex (see S1 Fig). Alternatively, a second signature is identified
by examining the frequency of synchronization levels present in the rs-fMRI signal. Such an analysis of
synchronization patterns provides a physiological proxy for the level of consciousness. Unfortunately, this
proxy also shows poor detection ability (see S2 Fig). Overall, and in both cases, we believe that a single
brain-wide metric limits the interpretability of the model and is probably inappropriate for modeling the
underlying fine-grained spatial processes.

Finally, there are several theoretical frameworks to study consciousness. The two prominent theories are
the Global Neuronal Workspace (GNW) [26,27] and the Integrated Information (II) [28,29] theories. Initially,
a semi-automated approach was used to extend the GNW theory to monkeys using the considered retrospective
dataset [19]. Thus, in the present work, we focus on the GNW theoretical model of conscious access. This
model states that a piece of information becomes conscious when it is available to a widely distributed
cortico-cortical network [26,27,30,31]. Although the GNW model of consciousness is not a localizationist
approach, key neuroanatomical landmarks such as the prefrontal cortex, the parietal cortex, and the cingular
cortex are responsible for broadcasting information to make it globally available [25]. Neuroimaging studies
have shown disorganized GNW in patients with DoC [32–34] and in anesthetized monkeys [35, 36]. Thus,
anesthesia may induce LoC by reconfiguring cortical dynamics, primarily within the GNW nodes. In the
proposed study, the target ROIs will consist of these cortical nodes.

In this work, we develop a computational framework for identifying interpretable spatial signatures of
consciousness from rs-fMRI data. The proposed framework characterizes the different levels of consciousness.
It consists of four steps (Fig 1): i) generating a list of atlases, ii) filtering and extracting the time series
associated with each atlas ROI, iii) recovering disjoint brain networks and associated Brain Network Activities
(BNAs) from ROI-based FC matrices that reflect the empirical covariance structures of the data [37], and iv)
performing statistical inference and multivariate analysis on the BNAs. The brain networks are disjoint sets of
brain regions, and the associated latent variables (the BNAs) form our spatial signatures. As input, standard
FC is calculated by averaging time course signals in ROIs, assuming functional consistency within regions.
Different atlases can describe these collections of ROIs. However, the functional relationships between them
vary from atlas to atlas. At the heart of atlas selection is the question of whether different conditions lead
to consistent choices, and whether genericity should be preferred over adaptive strategies. Thus, we extend
the work of Monti and colleagues [37] to address the atlas selection problem. In Monti’s seminal work, a
strategy is developed to select the optimal number of components/brain networks when decomposing FC
structures. In our framework, a machine learning paradigm also provides a sound basis for atlas selection
given the underlying clinical question.

The remainder of this manuscript is organized as follows. First, we describe the retrospective dataset
studied, including data collected during awake or anesthesia-induced LoC. Then, we provide a detailed
explanation of the Modular Hierarchical Analysis (MHA) method and present the considered atlas collection.
Finally, we demonstrate that the resulting tailored brain networks and associated BNAs are interpretable.
They provide original insights into the study of brain dynamics and function. Overall, we establish a robust
compendium of spatial biomarkers of consciousness. Among the identified brain networks, one is highly
consistent with the GNW. This demonstrates that the MHA can be used in discovery-driven analysis to
detect new interpretable signatures of consciousness and anesthesia.

Materials and methods

Dataset

This study is a retrospectively analysis of functional imaging data collected nearly 10 years ago in non-human
primates in various states of consciousness [18, 19]. The data were acquired in five rhesus macaques (macaca
mulatta), one male (monkey J) and four females (monkeys A, K, L, and R), 5 to 8 kg, 8 to 12 years, either
in the awake state or under general anesthesia using different molecular agents (ketamine, propofol, or
sevoflurane) representing 6 anesthetic conditions. Three monkeys were scanned for each arousal state (awake:
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Fig 1. Illustrating the application of the proposed four-step framework to the characterization of different levels
of consciousness. Note that the box plot shows the distribution of the functional activities G(i) that are associated with the
brain network 1 for the CoCoMac atlas across all the acquisition conditions. The level of consciousness is indicated by the size of
the ”ZZZ” notation.

monkeys A, K, and J - propofol anesthesia: monkeys K, R, and J - ketamine anesthesia: monkeys K, R,
and L - sevoflurane anesthesia: monkeys L, R, and J). For the anesthetics used in this retrospective study,
the molecular targets are summarized in S1 Table. Levels of anesthesia were defined by a clinical arousal
score (the monkey sedation scale) and continuous EEG monitoring (for details of the anesthesia protocol, see
the anesthesia paper [19]). Two different levels of anesthesia are considered for propofol and sevoflurane,
either moderate sedation or deep sedation equivalent to general anesthesia, and deep sedation for ketamine.
156 rs-fMRI runs (500 volumes per run, TR=2.4s) were acquired on a 3T Siemens with a customized single
transmit-receiver surface coil (see S2 Table for a detailed description of the acquisition conditions distribution
across monkeys). The spatial preprocessing is performed by the pipeline described in [19, 38], which includes
the following steps: slice timing correction, B0 inhomogeneities correction, motion correction, reorientation,
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masking, realignment, and smoothing. A run-by-run visual quality control was performed by an expert
neuroimager to ensure the quality of the data (i.e. absence of common artefacts, motion, ...). The same
monkey is implicated in several sessions and runs. Within-session runs may exhibit less variability than
between-session runs. Due to legitimate ethical constraints, NHP data are inevitably sparse. Therefore,
we independently analyze all 156 rs-fMRI runs acquired under any of the six listed anesthetic conditions.
To evaluate this hypothesis, we employ a leave-one-subject-out strategy during the model estimation and
inference stages. The goal is to validate the generalization of the model to unseen data. In the following
experiments, we leave out J to maximize the number of acquisition conditions in the test set. Alternatively, we
could have assessed the consistent performance of the model across subjects, indicating its potential robustness
and reliability in different settings. Unfortunately, this approach is not realistic in this retrospective dataset
due to the heterogeneity in the distribution of acquisition conditions across monkeys.

The original study was conducted in accordance with the European Convention for the Protection of
Vertebrate Animals used for Experimental and Other Scientific Purposes (Directive 2010/63/EU), the National
Institutes of Health’s Guide for the Care and Use of Laboratory Animals. Animal studies were approved
by the institutional Ethical Committee (Commissariat à l’Énergie atomique et aux Énergies alternatives;
Fontenay aux Roses, France; protocols 10-003 and 12-086).

Establishing a list of atlases

The atlas selection problem is investigated by considering either general reference atlases or a data-driven
atlas. General anatomical atlases are defined on other structural or functional datasets, sometimes mixed
with histological sections and microscopy. Conversely, data-driven atlases are learned directly from the
rs-fMRI data. The former involve the analysis of data based on predefined anatomical or functional regions.
The latter are designed to capture the inherent structure and variability of the data itself. While general
reference atlases may not fully capture the complexity and variability of the data, data-driven atlases can
aid in the discovery of novel biomarkers and reveal unexpected associations, relationships, or features not
previously considered. Indeed, such an approach allows for a more individualized and nuanced understanding
of functional connectivity (by increasing precision and improving sensitivity) and may be useful for identifying
previously unrecognized functional networks.

Here we consider the CoCoMac atlas, a well-accepted general atlas of the rhesus macaque consisting of 82
cortical regions (41 cortical regions within each hemisphere) [39]. We also consider the CIVMR atlas, which
contains a selection of 222 cortical and subcortical regions [40]. To build an atlas based on the dataset, we
use the Online Dictionary Learning (DictLearn) from the Nilearn development kit [41]. Using this learning
process, we define ROIs directly from rs-fMRI data. A comprehensive analysis of several state-of-the-art
strategies recently ranked DictLearn among the best with high robustness and accuracy [42]. DictLearn
first masks the data with the cortical/subcortical spatial support of the CIVMR atlas. Next, it extracts
connex brain activation regions from the dictionary maps using connected components analysis. We obtain
a set of 246 adapted ROIs mapping cortical/subcortical contiguous areas, called the DictLearn atlas. The
cross-validation scheme does not evaluate the potential variability of the DictLearn atlas estimation. Thus,
the data-driven DictLearn atlas, like the CoCoMac and CIVMR atlases, is considered as prior knowledge of
the proposed framework.

Time series filtering and extraction

Let I(i) ∈ Rx×y×z×t, i ∈ [1, N ] be a rs-fMRI time series volume collected across our cohort of N=156
experimental runs. i refers to complete runs, i.e. multiple observations (statistical samples) of the same
(time x space) stochastic process related to the different states of anesthesia. x, y, and z represent the
spatial dimension of each volume, and t is the number of time points. Time series denoising operations are
applied [18,19]. Specifically, voxel time series are detrended, filtered with low-pass (0.05-Hz cutoff), high-pass
(0.0025-Hz cutoff), and zero-phase fast Fourier notch (0.03 Hz, to remove an artifactual pure frequency
present in all the data) filters, regressed out from motion confounds, and z-score standardized. Let p be
the fixed number of ROIs defined by the atlas. The feature matrix X(i) ∈ Rp×t contains the averaged time
series computed across all voxels within each ROI. The high number of ROIs in some atlases encourages the
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computation of the mapping between an atlas and the rs-fMRI data in the high-resolution template space.
This way, topology issues induced by the atlas down-sampling are avoided (i.e., a region vanishing due to
high contraction in the deformation field). From each feature matrix X(i), a FC matrix reflecting the data
empirical covariance structure is derived and will be analyzed in the sequel.

Linear latent variable model estimation

The Modular Hierarchical Analysis (MHA)

A latent variable model is a statistical model that relates high-dimensional observed variables to low-
dimensional unseen latent variables. Such a model can capture complex brain properties that are challenging
to quantify or measure directly. From the empirical ROI-based covariance structures or FC matrices, the
model estimates a set of distinct brain networks common to all experimental runs, and associated BNAs.
This supports the identification of common patterns of brain activity that are consistently observed during
different states of anesthesia. The identification of a common brain pattern repertoire across the six considered
anesthetic states strengthens the proposed hypothesis [19]. In such a model, the latent variables are the
BNAs that are specific to each run i. In a small number of networks regime, the MHA linear latent variable
model has proven to yield more reproducible and explainable results than others such as Principal Component
Analysis (PCA) or Independent Component Analysis (ICA) [37]. The MHA approach follows the probabilistic
PCA formulation [43]. Briefly, the rs-fMRI observations X(i) are generated as a linear projection from
low-dimensional latent variables Z(i) ∈ Rk. Both observations and latent variables are taken to follow a
multivariate Gaussian distribution. We obtain the following generative model for observed data [37]:

Z(i) ∼ N (0, G(i))

X(i)|Z(i) = z(i) ∼ N (Wz(i), v(i)I)
(1)

where G(i) ∈ Rk×k is the covariance of latent variables, k denotes the number of disjoint brain networks,
and v(i) ∈ R+ is the measurement noise. By capturing the low-rank covariance structure via the shared
across-runs loading matrix W , the MHA model can reconstruct the covariance matrix in Σ(i):

Σ(i) = WG(i)WT + v(i)I (2)

W ∈ Rp×k describes brain networks that are reproducible across the entire population. Each column j
of W encodes the jth brain network. For each run i, the matrix G(i) contains the latent variables of run i.
More specifically, the jth diagonal element of G(i) estimates the so-called BNA associated with the jth brain
network for run i. To compute the model parameters, the optimization maximizes the model log-likelihood L
between Σ(i) and the empirical covariance structure K(i) = X(i)X(i)′ ∈ Rp×p across all runs as follows:

L(W,G(i)) =

N∑
i=1

p log(2π) + log det Σ(i) + tr(Σ(i)−1
K(i))

Ŵ = argmax
W :WTW=I; W≥0

L(W,G(i))

(3)

Over PCA, the MHA model adds a non-negativity constraint to the orthonormal constraint. It gives MHA
the ability to uncover disjoint brain networks in W and associated run-wise BNAs in G(i). W has a block
structure and is uniquely defined and identifiable. W can be thought of as a shared basis of k non-overlapping
brain networks across all runs.

As in the work of Monti and colleagues [37], the choice of the optimal number of disjoint networks k in the
model is treated as hyperparameter tuning. A leave-one-subject-out split is performed to generate a training
set and a test set. The MHA model is fitted to the training set, and the log-likelihood L is maximized over
the unseen test set. Using unseen data is crucial to evaluate the performance and generalization ability of the
model and to avoid overfitting. However, maximizing the log likelihood over unseen data for hyperparameter
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selection should be done with caution. We know that overfitting can occur critically in our dataset because
multiple anesthetic states were administered to the same monkey. To mitigate this risk, we include all of a
monkey’s data in the test set.

Brain networks matching

For each atlas l, l ∈ {1 = CoCoMac, 2 = CIVMR, 3 = DictLearn} we get kl Brain Networks (BNs). In
the following, we will compare these networks with a geometric criterion. Let BN l

i , i ∈ [1, kl] be a brain
network of a given atlas l. BN l

i is composed of Ni,l ROIs, defined as the number of non-zero values in the
ith columns of W l. The goal here is to match brain networks across atlases. We start by simplifying a ROI
(composed of V connected voxels) to its centroid (a 3D coordinate x,y,z). We define the mapping function

ϕ : BN l
i ∈ RNi,l×V×3 → B̄N

l
i ∈ RNi,l×3, where ϕ is the mean operator. To compare brain networks between

two atlases, we then introduce a proximity measure between a brain network i of atlas l1 (BN l1
i ) and a brain

network j of atlas l2 (BN l2
j ). The proximity metric is defined as the Mean of the Closest (MoC) distance

between the set of centroids defined in B̄N
l1
i and B̄N

l2
j :

dMoC(B̄N
l1
i , B̄N

l2
j ) =

d(B̄N
l1
i , B̄N

l2
j ) + d(B̄N

l2
j , B̄N

l1
i )

2
, where

d(B̄N
l1
i , B̄N

l2
j ) = mean

gi∈B̄N
l1
i
min

gj∈B̄N
l2
j
||gi − gj ||

(4)

and ||.|| is the euclidean norm. Note that the dMoC proximity metric is symmetric to avoid inconsistencies
between sets of different sizes.

Decoding brain network activities

Only the k-diagonal elements in G(i) are considered in the proposed analysis. Let S(i) = (s1
G(i) , ..., s

k
G(i))

denote the associated individual activities over the k discovered BNs. For all runs i ∈ [1, N ], let G ∈ RN×k

be the concatenation of the individual activities S(i). Below we are interested in comparing the different
BNAs contained in each column of G: BNAj = (sj

G(1) , ..., s
j
G(N)), j ∈ [1, k]. As such, we can interpret the

BNAs as a measure of the activity within the corresponding brain networks. In other words, the BNAs
represent the amount of variability carried by each brain network. We hypothesize that the off-diagonal
entries of the latent variable covariances are not the most discriminative features for the clinical question
under investigation. The non-zero off-diagonal values indicate the presence of redundancy in the data or
some degree of correlation between variables.

BNA-based statistical inference

Group analysis is performed on the BNAs on an atlas basis to highlight the main discrepancy between
anesthetic conditions. Applying the Shapiro-Wilk test reveals that the BNAs do not satisfy the normal
assumptions. Therefore, pairwise nonparametric Wilcoxon signed-rank tests are used between paired grouped
BNAs. The null hypothesis (H0) states that no significant difference exists between two awake/anesthetized
conditions. p-values are adjusted for multiple comparisons using the Benjamini / Yekutieli False Discovery
Rate (FDR) correction.

BNA-based multivariate analysis

Let the aforementioned G ∈ RN×k be the decomposed BNAs, and y ∈ ZN
+ the labels encoding the anesthetic

conditions (awake state or moderate/deep ketamine, propofol, or sevoflurane anesthesia). Supervised machine
learning can predict the outcomes y from the input features G. The proposed classification relies on Support
Vector Machines (SVM) with a Radial Basis Function (RBF) kernel (as implemented in scikit-learn [44]).
The gamma hyperparameter is automatically determined, while the C hyperparameter is set to 1. To limit
overfitting during training in our small-size dataset, bagging is implemented. It aggregates multiple models
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trained from the base SVM-RBF estimator by randomly taking training subsets. It enables the definition of
an overall stronger predictor. As previously described, the model is trained using a leave-one-subject-out
splitting to generate a training set and a test set. Model fitting is performed using five-fold cross-validation
on the train set. Note that the above classifier treats each class as being non-ordinal and might miss the
inherent relationship among the categories to learn. Thus, we also assess the benefit of using another base
classification estimator that implements an Ordinal Logistic model with l2 regularization [45] (as implemented
in mord [46]). The regularization parameter is set to 1. In both cases, the described hyperparameters are not
evaluated in an internal cross-validation.

Brain network importance

Finally, it is reasonable to ask which brain networks are involved in the different predictions. Using a
model-agnostic permutation importance technique (as implemented in scikit-learn [44]), we measure the
importance of features by randomly permuting the values of a feature and evaluating the impact on the
model’s performance. By comparing the performance of the model with the permuted features to its original
performance, one can determine which features have the most influence on the predictions. Features with a
significant drop in performance after permutation are considered more important. Such a technique helps to
identify which features or BNAs and their associated brain networks have the greatest impact on the model’s
performance, and can provide insight into the relationships between BNAs and anesthetic conditions.

Results

Consciousness-related connectivity can be decomposed into few consistent brain
networks

The choice of atlas controls the number of input regions p fed into the model. Maximizing L yields salient
k = 4, k = 6, and k = 7 optimal brain networks for the CoCoMac, DictLearn, and CIVMR atlases, respectively
(Fig 2). For the CoCoMac atlas, the likelihoods for k = 3 and k = 4 are very close. We choose k = 4 to
maximize the coverage of the ROIs (see S3 Table and S4 Table for a listing of this coverage for k = 3 and
k = 4). Recall that the MHA constraints drive this coverage by conditioning the loading matrix W to have at
most one non-zero entry per row and imposing sparsity with non-negativity. For the comparison of the brain
networks from the three atlases, the similarity metric dMoC is applied in a bottom-up fashion. Paired brain
networks show remarkably symmetric and spatially consistent patterns of connectivity (Fig 3). Atlases that
provide additional brain networks are globally symmetric (see S3 Fig). It should be noted that by considering
all data, we maximize the possibility of obtaining a result that is valid across subjects. Furthermore, given the
distribution of acquisition conditions across the monkeys, we felt that this decision to consider all data was
justified. Nevertheless, to validate the robustness of the discovered BNs, we re-ran the MHA decomposition
using a leave-one-subject-out strategy with the CoCoMac atlas. Interestingly, the generated BNs and BNAs,
with a particular focus on BN1 and BN4, exhibit remarkable similarity (see S5 Fig). Furthermore, when
listing the differences in terms of the ROIs included in each BN, the differences remain small (see S5 Table).

Changes in brain networks across states of consciousness

In terms of BNAs, the most significant differences between conditions (i.e., states of consciousness) are
highlighted using pairwise statistics by preserving the network order (see Fig 4 for the CoCoMac atlas and S4
Fig for the CIVMR and DictLearn atlases). In contrast to the sliding window synchronization patterns [24],
our statistics allow for highlighting a larger number of significant differences, with a notable one appearing
between the awake state and all anesthetic conditions. The latter result emphasizes the interest of the Brain
Network 1 (BN1), which is indicated by a star in Fig 4 and S4 Fig. Interestingly, when focusing on this
network for the CoCoMac atlas (BN1 in Fig 4), the ROIs underlying this difference are perfectly symmetric
and closely match the macaque GNW nodes [35]: the posterior cingulate cortex (CCp), anterior cingulate
cortex (CCa), intraparietal cortex (PCip), frontal eye field (FEF), dorsolateral prefrontal cortex (PFCdl),
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Fig 2. Illustrating how to select the best number of brain networks. A) the CoCoMac, CIVMR, and DictLearn atlases,
and B) associated 0-1 normalized log-likelihood L0−1 on the unseen validation set for k ∈ [2, 10]. The optimal number of networks
is represented by a vertical dashed line: k=4 brain networks for the CoCoMac atlas, k=6 for the DictLearn atlas and k=7 for the
CIVMR atlas.

prefrontal polar cortex (PFCpol) and dorsolateral premotor cortex (PMCdl) areas, which includes the sensory
regions of the primary motor cortex (M1), primary somatosensory cortex (S1), primary visual cortex (V1),
and primary auditory cortex (A1) (Table 1-A). Although obtained in an unsupervised constrained manner,
BN1 closely supports the GNW theory (7/11 nodes). The identification of the GNW can only be conclusive
on the CoCoMac atlas, as it is the only atlas available to date with the macaque GNW description. To repeat
the analysis with other atlases, we should first follow the methodology developed by Uhrig and colleagues [35]
to establish atlas-specific GNW nodes.

Table 1. Listing of Brain Networks (BNs) inferred from the CoCoMac atlas.

name hemi location
CCp posterior cingulate cortex left, right cingulate cortex
CCa anterior cingulate cortex left, right cingulate cortex
S1 primary somatosensory cortex left, right parietal cortex
PCi inferior parietal cortex left, right parietal cortex
PCm medial parietal cortex left, right parietal cortex
PCip intraparietal cortex left, right parietal cortex
PCs superior parietal cortex left, right parietal cortex
M1 primary motor cortex left, right frontal cortex
FEF frontal eye field left, right frontal cortex
PMCm medial premotor cortex left, right frontal cortex
PMCdl dorsolateral premotor cortex left, right frontal cortex

(A)

name hemi location
Amyg amygdala left, right temporal cortex
TCc central temporal cortex left, right temporal cortex
TCi inferior temporal left, right temporal cortex
PHC parahippocampal cortex left, right temporal cortex
HC hippocampus left, right temporal cortex
TCv ventral temporal cortex left, right temporal cortex
VACv anterior visual area (ventral) left, right occipital cortex
V2 visual area 2 left, right occipital cortex
VACd anterior visual area (dorsal) left, right occipital cortex
V1 visual area 1 left, right occipital cortex
CCr retrosplenial cingulate cortex left, right cingulate cortex

(B)

A) the BN highlighting the difference between the awake state and anesthesia (the BN1 indicated by a star in Fig 4-A), and B)
the inferred BN4 that is driven by the visual pathway. The detected GNW areas are shown in blue, and the corresponding sensory
areas in green.
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Fig 3. The derived brain networks (BNs). BNs consist of sets of unique ROIs represented by their centroids for the
CoCoMac (k=4), DictLearn (k=6) and CIVMR (k=7) atlases. The BNs are sorted according to the geometric criterion dMoC .
Only the BNs that match in each atlas are displayed. The remaining BNs are listed in S3 Fig.

Fig 4. Inferred Brain Networks (BNs) and associated BN activities (BNAs). Four BNs are inferred from the MHA
model using the CoCoMac atlas (BN1, BN2, BN3, BN4). Pairwise statistical analysis of the associated BNAs and visualization of
these BNAs against the different acquisition conditions are proposed in addition to the display of the inferred networks. These
plots illustrate how clearly awake can be distinguished from all anesthetic states and, to a lesser extent, how all anesthetic states
can be distinguished from each other. The legend for the p-value annotation is as follows:
∗∗ : 1.0e− 3 < p ≤ 1.0e− 2, ∗ ∗ ∗ : 1.0e− 4 < p ≤ 1.0e− 3, ∗ ∗ ∗∗ : p ≤ 1.0e− 4.
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Table 2. Brain activity based prediction of acquisition conditions using the CoCoMac, CIVMR and DictLearn
atlases.

CoCoMac CIVMR DictLearn

SVM RBF All DeepModerate Anesthesia All DeepModerate Anesthesia All DeepModerate Anesthesia

train 0.76 ± 0.06 0.84 ± 0.02 1.0 ± 0.0 0.8 ± 0.02 0.89 ± 0.03 0.97 ± 0.02 0.8 ± 0.04 0.88 ± 0.01 1.0 ± 0.0
validation 0.58 ± 0.09 0.78 ± 0.14 0.99 ± 0.012 0.61 ± 0.11 0.77 ± 0.08 0.96 ± 0.06 0.71 ± 0.1 0.79 ± 0.02 0.99 ± 0.01
test 0.24 ± 0.05 0.84 ± 0.05 0.97 ± 0.03 0.39 ± 0.08 0.54 ± 0.04 0.76 ± 0.03 0.44 ± 0.11 0.65 ± 0.08 0.75 ± 0.0

Ordinal Logistic All DeepModerate Anesthesia All DeepModerate Anesthesia All DeepModerate Anesthesia

train 0.7 ± 0.02 1.0 ± 0.0 0.63 ± 0.05 0.9 ± 0.03 0.79 ± 0.02 1.0 ± 0.0
validation 0.73 ± 0.08 0.99 ± 0.02 0.56 ± 0.07 0.85 ± 0.21 0.75 ± 0.08 1.0 ± 0.01
test 0.79 ± 0.09 0.98 ± 0.01 0.63 ± 0.03 0.68 ± 0.04 0.67 ± 0.05 0.83 ± 0.02

The Balanced Accuracy (BAcc) metric is used to evaluate model performances. Three settings are considered: the awake state
and all anesthetics are considered separately (All), the anesthetics are grouped by dosage (DeepModerate), or all anesthetics are
encoded in the same group (Anesthesia). Two models are evaluated: the SVM RBF and Ordinal Logistic models. The CoCoMac
atlas performs best on the DeepModerate and Anesthesia settings (blue). It remains difficult to predict all conditions, but the
CIVMR and DictLearn atlases give the best performance (orange). In this case, the difference with the CoCoMac remains weak.

Which atlas best predicts depth of anesthesia from brain network activity?

With the BNA distributions, we can clearly distinguish the state of wakefulness from the state of anesthesia,
regardless of the anesthetics administered to suppress consciousness (Fig 4). Further differences between
anesthetics remain. Therefore, we perform a multivariate analysis of the BNAs to establish a decision rule for
the atlas selection problem, taking into account the downstream anesthetic state classification task. To further
explore BNAs, SVM-RBF and Ordinal Logistic models are considered for solving three classification tasks,
corresponding to three sets of target labels: 1) the awake state and each anesthetic are considered separately
(label set name: All), 2) the anesthetics are labeled by sedation level (label set name: DeepModerate), or 3)
all anesthetics are encoded in the same group (label set name: Anesthesia). For the CoCoMac, CIVMR, and
DictLearn atlases, BNA-driven predictions are listed in Table 2. The CoCoMac atlas performs best on the
DeepModerate and Anesthesia tasks, demonstrating its relevance in characterizing the depth of anesthesia. It
remains competitive to predict the conditions separately. In the following experiments, the SVM-RBF is
retained as it gives better performance. Our goal now is to provide more insight into the brain networks
discovered with the selected atlas. A brain network importance analysis promotes two brain networks
(Fig 5-A). Second, BN1, mostly parieto-cingular, is described in the previous paragraph and contains most of
the GNW nodes. First, BN4 (Table 1-B), mainly temporo-occipital, contains the visual pathway and may
correspond to the fact that awake monkeys have open eyes with potential visual stimulation.

Sensitivity analysis of brain activity-driven predictions

Deciphering the level of consciousness from neural activity holds important potential for clinical application,
i.e. the development of novel tools to objectively monitor the depth of anesthesia. To investigate the versatility
of the method, we evaluate its learning curve as a function of the acquisition duration. This experiment
is performed in the case of the CoCoMac atlas, using the three different labeling settings described in the
previous paragraph: All, DeepModerate, and Anesthesia (Fig 5-B). The duration of the truncated time series
ranges from 10 to 500 TR by steps of 10 TR increment. Despite the small dataset size, these plots suggest
that a 200 TR run length gives accurate performances (∼ 0.8 balanced accuracy for the Anesthesia setting).
Thus, the proposed solution needs 200 TR to make reliable predictions. This learning curve analysis for a
given time series duration is the only practical way to determine a steady state for the model. Although more
data would be necessary to confirm this result, it provides an order of magnitude of the minimum buffer size
for such an approach.
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Fig 5. In-depth understanding of how the model works. A) Brain networks (BNs) with the greatest impact on the
prediction based on feature of importance analysis for the CoCoMac atlas. Three settings are considered: the awake state and all
anesthetics are considered separately (All), the anesthetics are grouped by dosage (DeepModerate), or all anesthetics are encoded
in the same group (Anesthesia). Values on the x-axis encode how much model performance decreases with a random shuffling
(using balanced accuracy as the performance metric). The amount of randomness is assessed by repeating the process several
times. Strong positive values indicate features of interest, while negative values indicate predictions that are more accurate than
the real data. The latter can happen when the feature is not important, but randomness makes the predictions more accurate.
This is a known behavior with small datasets, which are more prone to random error. B) Learning curves with respect to the
acquisition time for the CoCoMac atlas. The Balanced Accuracy (BAcc) metric is used to evaluate the performance of the SVM
RBF model. For reasonable performance we need at least 200 TR.

Discussion

In the present study, we developed a novel approach for the analysis of rs-fMRI data obtained during different
states of consciousness in macaque monkeys. We could extract anatomically relevant cortical brain networks
that underlie different states of consciousness. The novelty of the framework lies in the adoption of a
constrained linear latent variable model that provides BNAs over identifiable and disjoint ROIs, called brain
networks. In line with the GNW theory of consciousness, the brain network involving the frontal, parietal, and
cingular cortices plays a prominent role in identifying the level of consciousness. This new approach allows
the construction of an interpretable brain decoding model that provides a unique signature of consciousness
and anesthesia-induced LoC. Within the brain activity recordings, we highlight specific properties (the BNAs)
that predictably differ between conscious and unconscious states and that could be used to accurately and
objectively classify individuals according to their state of consciousness. A BNA-driven prediction paradigm
also ensures that the selected atlas is well suited to investigate the underlying clinical question and provides
a sound empirical basis for solving the optimal atlas selection problem.

A successful benchmark limited by overfitting

fMRI neuroimaging and neurophysiological maps provide unique data on brain activity, providing an excellent
opportunity to build a whole-brain computational model of LoC. We present such a data-driven machine
learning model, the MHA. This model scales to any dataset, and the associated hyperparameters are tuned
numerically from maximum likelihood estimation. Specifically, a four-step framework generates a coherent,
interpretable, and robust model of consciousness. The discovered brain networks are tailored, spatially
consistent, and symmetric. The optimal number of brain networks depends on the input atlas, but a clear
decision can be made by monitoring the log-likelihood. Stability analyses of resting-state networks in humans
often suggest that 7 to 17 networks are appropriate [47]. In the macaque, ICA allows the detection of 11
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prominent resting-state networks involving multiple levels of neural processing that show a remarkable degree
of similarity to the human organization [48]. Here, following the seminal work of Monti and colleagues in
humans [37], the number of optimal brain networks obtained for the three considered atlases varies from 4 to
7. Capturing the functional organization with few BNs clearly increases interpretability. The question of
whether this organization is adequately captured is challenging and will be the subject of dedicated work.

As input, we used a retrospective rs-fMRI dataset acquired in macaque monkeys in different states of
consciousness, where key results regarding the network organization are expected [18,19]. The potential of the
proposed framework is demonstrated by modeling brain activity on this dataset. Because fMRI acquisition
in monkeys is typically performed on a small number of subjects, there is a risk of overfitting. Overfitting
occurs when a model becomes too complex and starts to fit the noise or random fluctuations in the training
data, rather than the underlying patterns or relationships that are of interest. When working with datasets
with a small number of individuals, overfitting can be particularly problematic because there may not be
enough examples to capture the true distribution of the data. The small sample size can thus limit the
statistical power of the study, making it more difficult to detect true effects and increasing the risk of false
negatives. Here, the use of a linear latent variable model is less prone to overfitting than more complex
models. A leave-one-subject out strategy is also used in the inference stage. However, it’s important to note
that the effectiveness of a linear model in limiting overfitting depends on the characteristics of the data and
the complexity of the underlying relationships.

Increasing the size of the dataset is a common and effective strategy to reduce overfitting in machine
learning. To increase the size of the dataset without additional acquisition, we are exploring the benefits of
including simulated data [49,50]. The MHA model, coupled with a rich simulated repertoire of functional
brain configurations, would provide a unique framework for exploring artificial LoC in silico and other
potential target areas described in different theoretical frameworks (such as the II theory). Note that it is not
easy to externally validate the model and subsequent findings. In fact, such retrospective data are very rare.

In conclusion, the detection of residual consciousness is still an open and challenging problem. BNAs
derived from the MHA model provide reliable biomarkers of consciousness. Recent work has focused on
capturing the dynamics of spatiotemporally overlapping functional networks encoded in the dFCs. Training
the MHA model on the dFCs will be the subject of dedicated work. The results will be compared with those
obtained by conventional dynamic FC analysis or co-activation pattern analysis such as the iCAPs [51]. Such
a comparison would reinforce the unique insights provided by the MHA approach.

The parcellation strategy

It is common practice in neuroimaging to use a specific template that defines anatomical regions of the
brain. The atlas serves as a common spatial landmark for analysis and interpretation of the data. In our
case, it allows us to map and compare brain activity across individuals or groups. Developing a framework
for selecting the optimal atlas is essential for defining the relevant ROIs in the study and improving the
reproducibility and comparability of research. Indeed, to obtain accurate measurements and meaningful
interpretations of the data, it is essential to choose an atlas, whether structural and/or functional, that
precisely defines the ROIs suitable for the subsequent analysis. In addition, the development of a framework
for selecting the optimal atlas will lay the groundwork for standardizing approaches and guidelines for atlas
selection. This will also promote improved reproducibility and facilitate meta-analyses. We propose a machine
learning paradigm that provides a sound basis for atlas selection given the underlying clinical question. In our
analysis, the most accurate predictions of depth of anesthesia using the proposed BNAs are achieved with the
CoCoMac atlas, specifically designed to study cortical regions. This is consistent with GNW theory, which
suggests that the neural correlates of consciousness are predominantly cortical in nature. In a functional
connectivity study, the choice of brain atlas is usually a trade-off between the characterization of brain
structure and signal averaging for data reduction and noise reduction. Fine-grained brain areas can capture
brain activity descriptions with more functionally-specific regions at the expense of signal-to-noise ratio loss.
Fine-grained brain areas also generate high-dimensional input features that are challenging to learn in generic
predictive models, a problem known as the curse of dimensionality. Increasing the dataset size will alleviate
this problem, and can be achieved through the simulation paradigm proposed in the previous paragraph,
or through emerging initiatives such as the PRIMatE Data Exchange [52], which provides free access to an
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increasing number of fMRI recordings.

Potential applications of the proposed framework

The brain is a highly interconnected system consisting of multiple regions that communicate and interact
with each other. The proposed framework rethinks the state-of-the-art data-driven strategies. It decomposes
the brain signal into brain networks. This provides valuable information about the functional organization
of the brain and allows the study of individual differences in brain activity. In fact, each individual has a
unique pattern of brain connectivity. Characterizing these individual differences can provide insights into
variations in cognitive abilities, behavior, and susceptibility to brain disorders. In addition, understanding
individual differences in network connectivity may facilitate the development of personalized treatment
approaches, where interventions can be tailored to target specific network dysfunctions in a given individual.
The study of network-level properties offers the potential to identify specific biomarkers that can be used for
diagnostic purposes, disease monitoring, or prediction of treatment outcomes. Indeed, many neurological
and psychiatric disorders are characterized by alterations in brain connectivity. By decomposing the brain
signal into networks, we can study how these changes manifest at the network level. By comparing network
properties between healthy individuals and patients, it is possible to identify aberrant connectivity patterns
associated with specific disorders. This approach can lead to a better understanding of the underlying
mechanisms of the disorders and potentially help to develop diagnostic or therapeutic strategies.

Decoding consciousness

In this study, our focus is on detecting differences directly related to interactions between cortical regions by
applying statistical analyses to BNAs categorized by level of consciousness. Unlike alternative methods such
as PCA or ICA, BNAs derived from BNs emphasize a significant advantage inherent to the MHA model: a
notable improvement in interpretability. Indeed, we indentify two main brain networks that account for the
ability to decode the state of consciousness. One of them, previously described in the literature, supports
the above hypothesized GNW theory. The associated BNAs effectively discriminate between awake and all
anesthetic states, which is a strong finding. Additionally, to a lesser extent, these BNAs also distinguish
among anesthetic states, underscoring that the use of different anesthetics may alter FC. The other is a new,
unnoticed pattern. Specifically, this network is driven by the visual pathway and may be an artifact of our
experimental setting, where awake monkeys had open eyes with potential visual stimulation. In the method
of [19], eye position was tracked during the scans. To move forward, we plan to remove windows of saccades
or increased visual activity from the awake data. Saccades may selectively generate small motion artifacts
(which may have been partially preprocessed) or artificially induce neural coherence in the awake data. This
could have confounded the modeling results. Overall, the MHA approach yields few tailored brain networks
and associated BNAs, which promotes interpretability. The model does not rely on any biological assumption
about anesthetics, and provides results that are insensitive to different anesthetics. Thus, one might assume
that we are getting a general signature of consciousness, disentangled from potential markers related to a
particular anesthetic effect.

Supporting information

S1 Fig. Brain state patterns. Illustrating the prevalence of different dynamic functional connectivity
patterns. Unsupervised clustering of dFC matrices yields brain states: A) the within-state probability of
occurrence allows the discrimination of specific brain patterns, B) the brain states (numbered 1 through 7)
can be ranked according to their spatial correlation with the underlying anatomical connectivity structure,
and C) the averaging of within-state saliency maps highlights different brain connectivity patterns, which are
the basis of consciousness markers.

S2 Fig. Sliding windows global synchronization patterns analysis. Replication of the sliding
windows synchronization patterns analysis under our experimental settings using either A) the negative
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or B) the positive peaks, and considering the 3 atlases (CoCoMac, CIVMR, and DictLearn). From left to
right: i) the positive/negative peaks of each time-series are detected and regrouped in a raster plot, ii) the
positive/negative peaks occurrence for each sliding window are computed, and iii) the global synchronization
metric as the Fano Factor (FF) distributions across acquisition conditions (dashed lines), and a gamma fit
(solid lines) are estimated.

S3 Fig. Brain networks derived from each atlas. The derived brain networks (BNs) consist of sets of
unique ROIs represented by their centroids for the CoCoMac (k=4), DictLearn (k=6) and CIVMR (k=7)
atlases. The BNs are sorted according to the geometric criterion dMoC : A) BNs that are matched in each
atlas, and B) BNs from atlases that provide additional brain networks.

S4 Fig. Inferred Brain Networks (BNs) and associated BN Activities (BNAs). BNs are inferred
from the MHA model using the A) CIVMR (k=7) and B) DictLearn (k=6) atlases. Pairwise statistical
analysis of the associated BNAs and visualization of these BNAs against the different acquisition conditions
are proposed in addition to the display of the inferred networks. These plots illustrate how clearly awake
can be distinguished from all anesthetic states and, to a lesser extent, how all anesthetic states can be
distinguished from each other. The legend for the p-value annotation is as follows: ∗∗ : 1.0e − 3 < p ≤
1.0e− 2, ∗ ∗ ∗ : 1.0e− 4 < p ≤ 1.0e− 3, ∗ ∗ ∗∗ : p ≤ 1.0e− 4.

S5 Fig. Inferred Brain Networks (BNs) and associated BN Activities (BNAs) when using a
leave-one-subject out strategy. BNs are inferred from the MHA model using the CoCoMac (k=4) atlas
when all data are available (first row) or when one subject is removed during training (second row). For
comparison, a pairwise statistical analysis of the associated BNAs and a visualization of these BNAs against
the different acquisition conditions are proposed.

S1 Table. Summary of the molecular targets of the anesthetics used. Information taken from
[9,11,53]. Up” means potentiation, and ”down” means inhibition. Under the heading ”Potassium channels”
effects are given for two-pore/inwardly rectifying/voltage-gated channels.

S2 Table. Description of the acquisition conditions across monkeys. The data were collected
between July 2011 and August 2016 in five rhesus macaques (macaca mulatta), one male (monkey J) and
four females (monkeys A, K, L, and R), 5 to 8 kg, 8 to 12 years, either in the awake state or under anesthesia
(ketamine, propofol, or sevoflurane). Three monkeys were scanned for each arousal state (awake: monkeys
A, K, and J - propofol anesthesia: monkeys K, R, and J - ketamine anesthesia: monkeys K, R, and L -
sevoflurane anesthesia: monkeys L, R, and J) with the following repartition.

S3 Table. Listing of the networks inferred from the CoCoMac atlas (k=3). Listing of A) the
network 1, B) the network 2, and C) the network 3. The detected GNW areas are depicted in blue, and the
associated sensory areas in green.

S4 Table. The remaining networks inferred from the CoCoMac (k=4). Listing of A) the network
2, and B) the network 3. The detected GNW areas are depicted in blue, and the associated sensory areas in
green.

S5 Table. The networks inferred from the CoCoMac (k=4) when using a leave-one-subject
out strategy. Listing of A) the network matched to BN1, and B) the network matched with BN4. The
detected GNW areas are depicted in blue, and the associated sensory areas in green. The +/- signs indicate
the addition or deletion of a region in the considered BN.
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Lillin and all the members of the NeuroSpin preclinical platform for their support to the experimental work.

Author contributions

Conceptualization: B. Jarraya.
Data curation: L. Uhrig.
Formal analysis: A. Grigis, C. Gomez.
Funding acquisition: B. Jarraya.
Investigation: B. Jarraya, L. Uhrig.
Methodology: A. Grigis.
Project administration: B. Jarraya.
Resources: B. Jarraya.
Software: A. Girigs, C. Gomez.
Supervision: V. Frouin, E. Duchesnay.
Visualization: A. Grigis.
Writing – original draft preparation: A. Grigis.
Writing – Review & Editing: A. Grigis, C. Gomez, V. Frouin, E. Duchesnay, L. Uhrig, B. Jarraya.

Data and code availability

All data and codes underlying the results of this study are available at https://doi.org/10.5281/zenodo.
10572216.

References

1. Gibbs FA, Davis H, Lennox WG. The electro-encephalogram in epilepsy and in conditions of impaired
consciousness. Journal of Nervous and Mental Disease. 1935;34:1133–1148.

2. Gibbs FA, Gibbs EL, Lennox WG. Effect on the electro-encephalogram of certain drugs which influence
nervous activity. JAMA Internal Medicine. 1937;60:154–166.

3. Loomis AL, Harvey EN, Hobart G. Cerebral states during sleep, as studied by human brain potentials.
Journal of Experimental Psychology. 1937;21:127–144.

4. Purdon PL, Sampson AL, Pavone KJ, Brown EN. Clinical Electroencephalography for Anesthesiologists:
Part I Background and Basic Signatures. Anesthesiology. 2015;123:937–960.

5. Mhuircheartaigh RN, Warnaby CE, Rogers R, Jbabdi S, Tracey I. Slow-Wave Activity Saturation and
Thalamocortical Isolation During Propofol Anesthesia in Humans. Science Translational Medicine.
2013;5:208ra148–208ra148.

6. Akeju O, Westover MB, Pavone KJ, Sampson AL, Hartnack KE, Brown EN, et al. Effects of Sevoflurane
and Propofol on Frontal Electroencephalogram Power and Coherence. Anesthesiology. 2014;121:990–998.

7. Wang K, Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. EEG slow-wave coherence changes
in propofol-induced general anesthesia: experiment and theory. Frontiers in Systems Neuroscience.
2014;8.

March 19, 2024 16/19

https://doi.org/10.5281/zenodo.10572216
https://doi.org/10.5281/zenodo.10572216


8. Akeju O, Song AH, Hamilos AE, Pavone KJ, Flores FJ, Brown EN, et al. Electroencephalogram
signatures of ketamine anesthesia-induced unconsciousness. Clinical Neurophysiology. 2016;127:2414–
2422.

9. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev
Neurosci. 2004;5(9):709–720.

10. Hentschke H, Schwarz C, Antkowiak B. Neocortex is the major target of sedative concentrations
of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor-mediated
inhibition. Eur J Neurosci. 2005;21(1):93–102.

11. Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal.
Nat Rev Neurosci. 2008;9(5):370–386.

12. Masamoto K, Kanno I. Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb
Blood Flow Metab. 2012;32(7):1233–1247.

13. Aladj LJ, Croughwell ND, Smith LR, Reves JG. Cerebral Blood Flow Autoregulation Is Pre-
served During Cardiopulmonary Bypass in Isoflurane-Anesthetized Patients. Anesthesia & Analgesia.
1991;72:48–52.

14. Matta BF, Heath KJ, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and
isoflurane. Anesthesiology. 1999;91(3):677–680.

15. Hori Y, Schaeffer DJ, Gilbert KM, Hayrynen LK, Cléry JC, Gati JS, et al. Altered resting-
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