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Abstract: As part of our ongoing attempt to broaden the applications of the amidoxime moiety as a
potential source of new antileishmanial agents, this study focuses on the product 4-(5-Benzyl-3-((4-
fluorophenyl)sulfonyl)-5-methyl-4,5-dihydrofuran-2-yl)-2-nitrobenzamide. This unexpected amide
was obtained in an 85% yield as the major product with a conventional amidoxime synthesis protocol
(Ethanol/Na2CO3) involving the reaction of hydroxylamine and a nitrile group. The formation of
this amide derivative instead of the expected amidoxime can be attributed to two complementary
effects: the strong electron effect of the nitro group and the influence of ethanol, a polar protic
solvent. Alternatively, the desired amidoxime derivative, 4-(5-benzyl-3-((4-fluorophenyl)sulfonyl)-5-
methyl-4,5-dihydrofuran-2-yl)-N′-hydroxy-2-nitrobenzimidamide, was obtained in an 80% yield by
an alternative protocol (DMSO/KOtBu). This original compound, featuring a nitro group in the ortho
position to the amidoxime, will be further evaluated, both in the field of medicinal chemistry and in
other relevant areas, highlighting an unusual method to access amidoximes from hindered substrates.

Keywords: amidoxime; amide; 4,5-dihydrofuran; nitro group; leishmania

1. Introduction

Amidoxime is a functional group extensively studied for environmental applications,
for example in the treatment of seawater or wastewater [1–3]. The growing number of
citations and publications over time indicates significant interest, which extends to other
fields such as polymer science, organic chemistry and medicinal chemistry [4–8]. Our team
has previously reported the antileishmanial activity of some original compounds bearing a
dihydrofuran and an amidoxime group [9,10].

The amidoxime group is usually obtained by reacting hydroxylamine (released in situ
from its hydrochloride salt in a protic solvent: ethanol or methanol) with nitriles under
basic conditions, usually involving CaCO3 or Na2CO3, (Scheme 1). The desired amidoxime
formation is often accompanied by the corresponding amide byproduct, which can vary in
yield. In certain cases, the formation of amide is not reported, which could be a result of
methods that achieved yields reaching as much as 100% [11].
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Other synthetic methods, such as the reaction of hydroxylamine with iminoethers or
amidine hydrochlorides, as well as the reduction of oxyamidoximes or nitrosolic acids,
are limited in their operations or used under specific conditions [12–16]. Less common
conditions involve KOtBu in DMSO [17,18]. However, there is little available information
about other aryl nitriles, particularly those bearing a nitro group in the ortho position to
the nitrile function.

The literature survey revealed that the amidoxime formation reaction is limited to
aryl-nitriles and to certain alkyl substrates, with a lack of information regarding more
complex or sterically hindered electrophilic substrates. Although this reaction has been
widely reported to be highly efficient, the scope of more diverse substrates remains to
be clarified.

In this work, an unexpected amide product was obtained via a conventional ami-
doxime protocol from an aryl nitrile substrate. Notably, the distinctive feature of the
starting material, in this case, was the presence of a nitro group in the ortho position to the
cyano group.

2. Results

A three-step synthesis was performed to access the aryl nitrile 3 bearing a nitro
group in the ortho position, serving as the substrate to obtain the amidoxime deriva-
tive 5 (Scheme 2). To achieve this synthesis, a vinyl intermediate was synthesized, com-
pound 1, (81% of yield) through a cross-coupling Suzuki–Miyaura reaction with 4-bromo-
2-nitrobenzonitrile as the starting material. Subsequently, compound 1 was converted to
a linear β-ketosulphone 2 through a radical reaction, and the appropriate hydrazine, in a
39% yield. A subsequent oxidative radical cyclization step mediated by Mn(OAc)3 led to
the 4,5-dihydrofuran scaffold 3 in a moderate yield (37%).
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In an attempt to obtain the amidoxime 5, the latter compound 3 was subjected to a
microwave assisted reaction following method (A) (Scheme 3). Surprisingly, the struc-
ture of the major product obtained (with an 85% yield) was identified and confirmed by
HRMS to be of the amide derivative 4-(5-benzyl-3-((4-fluorophenyl)sulfonyl)-5-methyl-4,5-
dihydrofuran-2-yl)-2-nitrobenzamide. Based on this result, it was hypothesized that the
formation of the amide could come from interactions between ethanol and hydroxylamine,
as the solvation effect could modify the nucleophilic character of the hydroxylamine. Their
ambident behavior (O- or N-attack) has been documented for other substrates [19–21]. Tak-
ing this into consideration, an alternative solvent DMSO was used (method B, Scheme 3),
giving the amidoxime 5 in an 80% yield (method B, Scheme 3).

Plausible mechanistic explanations have been suggested by Srivastava et al. [22]
and Stephenson et al. [23], as shown in Scheme 4, considering the ambident nucleophile
nature of NH2OH (O and N atoms possessing sharply different nucleophilicities) the N-
attack and the O-attack ways have been highlighted. In the case of an N-attack over the
carbon atom of the nitrile, the amidoxime formation could be favored (compound b) via
N-hydroxybenzimidamide (compound a, Scheme 4). Moreover, with an O-attack type, the
amide formation may be favored with the attack of a second equivalent of hydroxylamine
(by the oxygen or nitrogen) and the subsequent formation of the O-aminohydroxylamine
(NON) or the hydroxyhydrazine (NNO).
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Vörös et al. reported a theoretical and experimental analysis to describe the byproduct
formation (not as the main product) of the amide [24,25]. This mechanism depends on the
energetic requirement for two types of solvents, a protic type vs. ionic liquids. According
to their thermodynamic analysis, in a protic solvent as ethanol, the transformation of
intermediate c into the amide byproduct d exhibits a transition state (TS-2-amide) with a
lower enthalpy than the transition state of the formation of compound a (TS-1-oxime), as
shown in Scheme 4. Likewise, the enthalpy difference between the two transition states,
TS-1-oxime and TS-2-amide varies with the solvent with TS-1-oxime > TS-2-amide in a
protic solvent like ethanol, but inverted to TS-2-amide > TS-1-oxime with an ionic solvent.
Therefore, the reaction conditions favoring a more stable TS-2-amide might then explain
the byproduct formation of the amide [24,25].

Our results showed that a combined effect may be suggested to explain the formation
of an amide as the main product. Notably, we observed that substrates without a nitro
group predominantly form amidoxime in both DMSO and ethanol conditions. However,
when a nitro group is introduced in ortho position to the nitrile function, in a protic solvent
such as ethanol, this predominantly gives the amide product, while DMSO demonstrates
a more specific tendency towards amidoxime formation. These observations suggest the
next plausible theoretical approaches considering both the mechanistic insights reported by
Vörös et al. and the theory of ‘hard and soft’ nucleophiles and electrophiles [26,27]. Specifi-
cally, the predominant formation of the amide derivative as the main product using ethanol



Molbank 2023, 2023, M1750 4 of 9

as a solvent could be related to the more stable transition state O-intermediate-to-amide (TS-
2-NO2-amide), Scheme 5. This enhanced stability could be influenced by both the electronic
influence of the nitro group and the solvation effect of the ethanol (where hydrogen bond
interactions occur) forming a solvent network that could mediate the proton transfer in the
course of the reaction [28]. Furthermore, regarding the inductive and mesomeric effects
of the nitro group [29,30], the nitrile becomes a more electrophilic center, and therefore a
‘harder’ electrophile that predominantly undergoes an O-attack from the hydroxylamine in
TS-1, since ‘hard–hard’ (and ‘soft–soft’) interactions are preferred [31,32]. Meanwhile, the
predominant formation of amidoxime observed with DMSO as a solvent could be explained
either by a hindered second hydroxylamine attack in the absence of an appropriate solvent
network necessary to stabilize the TS-2; then, the intermediary compound c via TS-1 is
unable to transform forward d and the process either turns back to an N-attack or to an
alternative possibility involving a cyclic intermediate rearrangement [25].
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3. Materials and Methods
3.1. Chemistry

Reagents were purchased from Sigma-Aldrich (3050 Spruce Street St. Louis, MO,
USA), Fluorochem (Unit 14 Graphite Way, Hadfield, Glossop SK13 1QH, UK), Fisher
Scientific (168 3rd Ave, Waltham, MA, USA) or TCI chemicals (9211 North Harborgate
Street, Portland, OR, USA), and used without further purification. Microwave reactions
were performed using monomode reactors: Biotage Initiator® classic (Uppsala, Sweden) in
sealed vials with output power ranging from 0 to 400 W. The following adsorbent was used
for column chromatography: silica gel 60 (Merck KgaA, Darmstadt, Germany, particle size
0.063–0.200 mm, 70–230 mesh ASTM). Reaction monitoring of intermediary compounds
was performed either using aluminum TLC plates (5 × 5 cm) with silica gel coated 60F-254
(Merck) in an appropriate eluent and visualized using ultraviolet light under a UV-Lamp
VL-6.CL., at 254 nm (6 W) and 365 nm (6 W) or using an LC-MS apparatus, Thermo
Scientific Accela High Speed LC System® coupled to a Thermo MSQ Plus® quadrupole
mass spectrometer, with an HPLC column Thermo Hypersil Gold® (168 3rd Ave, Waltham,
MA, USA) 50 × 2.1 mm (C18 bounded), with particles of a diameter of 1.9 mm. The volume
of sample injected into the column was 1 µL. Chromatographic analysis, total duration
of 8 min, was on the gradient of the following solvents: t = 0 min, methanol/water 50:50;
0 < t < 4 min, a linear increase in the proportion of methanol to a methanol/water ratio of
95:5; 4 < t < 6 min, methanol/water 95:5; 6 < t < 7 min, a linear decrease in the proportion
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of methanol to return to a methanol/water ratio of 50:50; 6 < t < 7 min, methanol/water
50:50. The water used was buffered with ammonium acetate 5 mM. The flow rate of the
mobile phase was 0.3 mL/min, at the Faculté de Pharmacie of Marseille.

The high-resolution mass spectrum was recorded on an SYNAPT G2 HDMS (Waters,
34 Maple St, Milford, MA, USA) equipped with a pneumatically assisted atmospheric pres-
sure ionization (API) source. The sample was ionized in positive electrospray mode under
the following conditions: electrospray voltage—2.8 kV; orifice voltage—20 V; nebulizing
gas flow rate (nitrogen)—100 L/h. The sample was dissolved in 300 µL of dichloromethane
and then diluted 1:103 in a solution of methanol with 3 mM ammonium acetate. The
extract solution was introduced into the ionization source via in-fusion at a flow rate of
10 µL/min. The exact mass measurement was performed in triplicate with external cal-
ibration. HRMS was performed at the Faculté des Sciences de Saint-Jérôme (Marseille,
France). Elemental analysis was performed on a Flash EA 1112 (Thermo Fisher Scientific,
Waltham, MA, USA), controlled by Eager Xperience software (Ver. 1.2), under the con-
ditions: temperature—970 ◦C, carrier gas—helium, gas flow rate—140 mL/min, detector
catharometer, performed at the Faculté des Sciences de Saint-Jérôme (Marseille, France).

NMR spectra were recorded on a Bruker Avance NEO 400 MHz NanoBay spectrom-
eter at the Faculté de Pharmacie of Marseille. Residual 1H and 13C peaks in deuterated
solvent (CDCl3) were used for chemical shift calibration without the need for an additional
internal standard. 1H NMR: reference CDCl3 δ = 7.26 ppm and 13C NMR: reference CDCl3
δ = 77.16 ppm. Data for 1H NMR are reported as follows: chemical shifts (δ) in parts per
million (ppm), multiplicity (described as follows: s, singlet; bs, broad singlet; d, doublet;
t, triplet; q, quadruplet; dd, doublet of doublet; ddd, doublet of doublet of doublet; m,
multiplet), coupling constants (J) in Hertz (Hz) and integration. Data for 13C NMR are
reported as follows: chemical shifts (δ) in parts per million (ppm).

3.2. 2-Nitro-4-vinylbenzonitrile (1)

A microwave vial of 20 mL was charged with 4-bromo-2-nitrobenzonitrile (500 mg,
1.0 equiv.), vinylboronic acid pinacol ester (1.2 equiv.), potassium carbonate (3.0 equiv.) and
tetrakis(triphenylphosphine)palladium (0) (5 mol%). The system was capped and a mixture
of 4 mL of dioxane–water (3:1) was introduced under nitrogen atmosphere. The reaction
mixture was stirred at 120 ◦C for the appropriate time. The TLC monitoring reaction was
performed using cyclohexane-AcOEt (7:3) as an eluent and visualized with ultraviolet
light under a UV-Lamp VL-6.CL., 254 nm (6 W), with a retardation factor of 0.61, and
verified via low-resolution LC-MS. The reaction mixture was poured into cold water and
extracted with ethyl acetate (3 × 20 mL). The organic layer was washed with brine, dried
over sodium sulphate and the solvent was removed in vacuo. Then, the obtained crude
was purified via column chromatography on silica gel from 90:10 to 50:50 of petroleum
ether/dichloromethane, to afford the desired product with a yield of 81% (310 mg). The
product was obtained as a light orange solid. 1H NMR (400 MHz, CDCl3): δ (ppm) 8.32
(s, 1H, CHAr), 7.86 (d, 3JH-H = 8.0 Hz, 1H, CHAr), 7.78 (d, 3JH-H = 8.0 Hz, 1H, CHAr), 6.80
(dd, 3JH-H = 10.9 Hz, 3JH-H = 17.6 Hz, 1H, CH), 6.05 (d, 3JH-H = 17.6 Hz, 1H, H-CH2), 5.66
(d, 3JH-H = 10.9 Hz, 1H, H-CH2). 13C NMR (100 MHz, CDCl3): δ (ppm) 143.6 (C), 135.9
(CHAr), 133.6 (CHAr), 131.4 (CHAr), 122.9 (CHAr), 121.1 (2C), 115.2 (C), 106.4 (C). Analysis
calculated for C9H6N2O2: C 62.07%, H 3.47%, N 16.09%, and found C 62.07%, H 3.41%, N
15.99%. LC/MS ESI+ tR 4.46 min, (m/z) [M + Na]+ 197.29/197.15. Mp 113–114 ◦C.

3.3. 4-(2-((4-Fluorophenyl)sulfonyl)acetyl)-2-nitrobenzonitrile (2)

A mixture of 2-nitro-4-vinylbenzonitrile (1) (270 mg, 1.55 mmol), sulfonylhydrazide
(1.55 mmol), Cu(OAc)2 (5 mol%), and EtOH (6 mL) in a 25 mL round-bottomed flask
was placed under O2 (balloon). The reaction vessel was allowed to stir at 80 ◦C for 72 h.
The TLC monitoring reaction was performed using cyclohexane-AcOEt (1:1) as an eluent
and visualized with ultraviolet light under a UV-Lamp VL-6.CL., 254 nm (6 W), with a
retardation factor of 0.45, and verified via low-resolution LC-MS. After the reaction, the
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resulting mixture was concentrated under vacuum and the residue was purified by flash
column chromatography using a mixture of petroleum ether—AcOEt (from 9:1 to 4:6) as an
eluent to give the desired product as a light brown solid with a yield of 39% (196 mg). 1H
NMR (400 MHz, CDCl3): δ (ppm) 8.88 (s, 1H, CHAr), 8.45 (d, 3JH-H = 8.1 Hz, 1H, CHAr),
8.12 (d, 3JH-H = 8.1 Hz, 1H, CHAr), 7.92–7.89 (m, 2H, CHAr), 7.34–7.29 (m, 2H, CHAr), 4.79
(s, 2H, CH2). 13C NMR (100 MHz, CDCl3): δ (ppm) 185.4 (C), 166.7 (d, JC-F = 258.9 Hz, C),
149.2 (C), 139.4 (C), 136.6 (CHAr), 134.3 (CHAr), 134.0 (C), 131.7 (d, JC-F = 9.8 Hz, 2CHAr),
126.0 (CHAr), 117.1 (d, JC-F = 23.0 Hz, 2CHAr), 114.1 (C), 112.6 (C), 64.1 (CH2). 19F NMR
(376.5 MHz, CDCl3): δ (ppm) −100.6. Analysis calculated for C15H9FN2O5S: C 51.73%, H
2.60%, N 8.04%, and found C 52.10%, H 2.58%, N 8.18%. LC/MS ESI+ tR 4.39 min, (m/z)
[M + 2Na]+ 197.40/197.14. Mp 128–129 ◦C.

3.4. 4-(5-Benzyl-3-((4-fluorophenyl)sulfonyl)-5-methyl-4,5-dihydrofuran-2-yl)-2-nitrobenzonitrile (3)

In a microwave vial of 20 mL equipped with a stirring bar, a solution of manganese (III)
acetate dihydrate (2.1 equiv.) and copper (II) acetate (1 equiv.) in 12 mL of glacial acetic acid
was heated at 80 ◦C under microwave irradiation for 15 min. Then, the reaction mixture was
cooled and compound 2 (165 mg, 0.48 mmol, 1 equiv.) and 2-methyl-3-phenyl-1-propene
(2 equiv.) in 13 mL of acetic acid were introduced. The reaction mixture was heated for 2.5 h
under microwave irradiation under the same conditions. The TLC monitoring reaction was
performed using cyclohexane-AcOEt (6:4) as an eluent and visualized with ultraviolet light
under a UV-Lamp VL-6.CL., 254 nm and 365 nm (6 W), with a retardation factor of 0.54. The
resulting product was poured into 50 mL of cold water and extracted with dichloromethane
(3 × 40 mL). The organic extracts were collected and washed with saturated aqueous
NaHCO3 (3 × 40 mL) and dried over Na2SO4. The solvent was evaporated under reduced
pressure, and the crude product was purified via column chromatography (silica gel; eluent:
cyclohexane-AcOEt from 9:1 to 7:3) affording the title product as a white oily solid and
verified via HRMS. Yield: 37% (84 mg). 1H NMR (400 MHz, CDCl3): δ (ppm) 8.45 (d,
4JH-H = 1.6 Hz, 1H, CHAr), 8.06 (dd, 4JH-H = 1.6 Hz, 3JH-H = 8.1 Hz, 1H, CHAr), 7.94 (d,
3JH-H = 8.2 Hz, 1H, CHAr), 7.58–7.54 (m, 2H, 2CHAr), 7.24–7.12 (m, 5H, 5CHAr), 7.05 (d,
3JH-H = 8.2 Hz, 2H, 2CHAr), 3.04 (d, 2JH-H = 14.7 Hz, 2H, CH2), 2.92–2.82 (m, 2H, CH2),
1.43 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ (ppm) 165.6 (d, JC-F = 255.9 Hz, C), 157.5
(C), 136.7 (d, JC-F = 3.5 Hz, C), 135.2 (CHAr), 135.1 (CHAr), 135.0 (2C), 134.4 (C), 130.3
(2CHAr), 129.8 (d, JC-F = 10.1 Hz, 2CHAr), 128.5 (2CHAr), 127.4 (CHAr), 126.4 (CHAr), 116.8
(d, JC-F = 22.5 Hz, 2CHAr), 114.6 (C), 113.7 (C), 109.5 (C), 89.9 (C), 46.7 (CH2), 41.7 (CH2),
27.7 (CH3). 19F NMR (376.5 MHz, CDCl3): δ (ppm) −103.5. C25H19FN2O5S: HRMS: m/z
[M + Na]+ calculated 501.0891; found 501.0891.

3.5. 4-(5-Benzyl-3-((4-fluorophenyl)sulfonyl)-5-methyl-4,5-dihydrofuran-2-yl)-2-nitrobenzamide (4)

In a microwave vial of 20 mL equipped with a stirring bar, a solution of compound
3 (45 mg, 0.09 mmol), in water (2 mL) and ethanol (9 mL) was inserted. Hydroxylamine
hydrochloride (26 mg, 0.38 mmol, 4 equiv.) and sodium carbonate (20 mg, 0.19 mmol)
were added. The mixture was heated at 90 ◦C under N2 and microwave irradiation
for 1h. The TLC monitoring reaction was performed using DCM/MeOH (4%) as an
eluent and visualized with ultraviolet light under a UV-Lamp VL-6.CL., 254 nm (6 W),
with a retardation factor of 0.45. The reaction was allowed to cool, and the ethanol was
removed under reduced pressure. The aqueous layer was extracted with ethyl acetate
(3 × 5 mL), the combined organic fractions were dried over anhydrous Na2SO4 and the
solvent was removed under reduced pressure. The crude product was purified via column
chromatography (silica gel; eluent: DCM/MeOH from 2% to 4%) affording the title product
as a white oily solid and verified via HRMS. Yield 85% (37 mg). 1H NMR (400 MHz, CDCl3):
δ (ppm) 8.17 (d, 4JH-H = 1.6 Hz, 1H, CHAr), 7.91 (dd, 4JH-H = 1.6 Hz, 3JH-H = 8.0 Hz, 1H,
CHAr), 7.60 (d, 3JH-H = 8.0 Hz, 1H, CHAr), 7.57–7.52 (m, 2H, 2CHAr), 7.24–7.10 (m, 5H,
5CHAr), 7.05 (d, 3JH-H = 7.7 Hz, 2H, 2CHAr), 6.09 (br s, 2H, NH2), 3.03 (d, 2JH-H = 13.9 Hz,
1H, CH2), 3.02 (d, 2JH-H = 14.8 Hz, 1H, CH2), 2.88 (d, 2JH-H = 14.8 Hz, 1H, CH2), 2.83 (d,
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2JH-H = 13.9 Hz, 1H, CH2), 1.54 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ (ppm) 167.8
(C), 165.6 (d, JC-F = 255.5 Hz, C), 159.0 (C), 145.9 (C), 137.1 (C), 135.2 (C), 134.9 (CHAr), 133.8
(C), 131.6 (C), 130.4 (2CHAr), 129.8 (d, JC-F = 9.6 Hz, 2CHAr), 128.5 (2CHAr), 128.3 (CHAr),
127.3 (CHAr), 125.5 (CHAr), 116.7 (d, JC-F = 23.5 Hz, 2CHAr), 112.1 (C), 89.5 (C), 46.7 (CH2),
41.6 (CH2), 27.7 (CH3). 19F NMR (376.5 MHz, CDCl3): δ (ppm) −103.9. C25H21FN2O6S:
HRMS: m/z [M + NH4]+ calculated 514.1443; found 514.1443.

3.6. 4-(5-Benzyl-3-((4-fluorophenyl)sulfonyl)-5-methyl-4,5-dihydrofuran-2-yl)-N’-hydroxy-2-
nitrobenzimidamide (5)

A suspension of hydroxylamine hydrochloride (10 equiv.) in DMSO was stirred
under inert atmosphere and cooled to 0 ◦C. Potassium tert-butoxide (10 equiv.) was
added gradually, and the reaction mixture was stirred for 30 min. Then, compound 3 was
added (30 mg, 0.08 mmol, 1 equiv.), and the reaction mixture was stirred for 18 h at room
temperature. The TLC monitoring reaction was performed using DCM-MeOH (96:4) as an
eluent and visualized with ultraviolet light under a UV-Lamp VL-6.CL., 254 and 365 nm
(6 W), with a retardation factor of 0.39. The resulting mixture was poured into cold water.
Then, the reaction mixture was extracted with EtOAc (3 × 15 mL), and the organic layers
were combined, washed with water (1 × 20 mL), brine (1 × 20 mL), dried over Na2SO4,
and concentrated. The crude product was purified via column chromatography (eluent:
dichloromethane/MeOH 98/2): yield 80% (33 mg). The product was obtained as a yellow
oily solid and verified via HRMS. 1H NMR (400 MHz, CDCl3): δ (ppm) 8.05 (s, 1H, CHAr),
7.89 (d, 3JH-H = 8.6 Hz, 1H, CHAr), 7.66 (d, 3JH-H = 8.5 Hz, 1H, CHAr), 7.57–7.52 (m, 2H,
CHAr), 7.23–7.03 (m, 7H, CHAr), 5.12 (br s, 2H, NH2), 3.03 (d, 2JH-H = 14.5 Hz, 2H, CH2),
2.89–2.82 (m, 2H, CH2), 1.53 (s, 3H, CH3). OH not observed. 13C NMR (100 MHz, CDCl3)
δ (ppm) 165.5 (d, JC-F = 255.9 Hz, C), 159.1 (C), 150.4 (C), 148.0 (C), 137.1 (C), 135.3 (C),
134.1 (CHAr), 131.7 (C), 130.9 (CHAr), 130.4 (2CHAr), 129.8 (d, JC-F = 9.7 Hz, 2CHAr), 128.8
(C), 128.5 (2CHAr), 127.3 (CHAr), 125.3 (CHAr), 116.7 (d, JC-F = 22.8 Hz, 2CHAr), 112.2
(C), 89.5 (C), 46.7 (CH2), 41.7 (CH2), 27.6 (CH3). 19F NMR (376.5 MHz, CDCl3): δ (ppm)
−104.1. C25H22FN3O6S: LC/MS ESI+ tR 8.10 min, (m/z) [M + H]+ 511.8/511.52; HRMS:
m/z [M + Na]+ calculated 534.1106; found 534.1105.

4. Conclusions

This study highlights the formation of the product 4-(5-Benzyl-3-((4-fluorophenyl)sulfonyl)-
5-methyl-4,5-dihydrofuran-2-yl)-2-nitrobenzamide, formed through a method conventionally
yielding to the amidoxime in major yields. Two complementary effects have been the-
orized to explain this unexpected result. First an electronic effect associated with the
presence of the nitro moiety and a solvation by the protic solvent. Considering that the
formation of the amide derivative is mainly linked to the O-attack of hydroxylamine it
was hypothesized that the electron effect could favor a more stable transition state prior
to the amide formation. These conditions are not present when DMSO is used then the
desired product 4-(5-Benzyl-3-((4-fluorophenyl)sulfonyl)-5-methyl-4,5-dihydrofuran-2-yl)-
N′-hydroxy-2-nitrobenzimidamide can be obtained. This original compound, featuring a
nitro group in the ortho position to the amidoxime moiety, will be further evaluated, both
in the field of medicinal chemistry and in other relevant areas.

Supplementary Materials: The following are available online: Figure S1: LC-MS spectra of compound
1, Figure S2: LC-MS spectra of compound 2, Figure S3: HRMS spectra of compound 3, Figure S4:
HRMS spectra of compound 4, Figure S5: HRMS spectra of compound 5, Figures S6–S15: 1H NMR
and 13C NMR spectra of compounds 1, 2, 3, 4 and 5.
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