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ON THE SIMULTANEOUS CONVERGENCE OF VALUES AND
TRAJECTORIES OF CONTINUOUS INERTIAL DYNAMICS WITH

TIKHONOV REGULARIZATION TO SOLVE CONVEX MINIMIZATION
WITH AFFINE CONSTRAINTS

FOUAD BATTAHI1, ZAKI CHBANI1, HASSAN RIAHI1,∗

1Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad university, 40000 Marrakech, Morroco

Abstract. In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic
system with fast convergence guarantees to solve structured convex minimization problems with
linear constraints. The system is associated with the augmented Lagrangian formulation of the
minimization problem. The corresponding dynamics brings into play three general time-varying
parameters, which are respectively associated with viscous damping, extrapolation and temporal
scaling. By appropriately adjusting these parameters, each with specific properties, we develop a
Lyapunov analysis which provides fast convergence properties of the values and of the feasibility
gap. These results will naturally pave the way for developing corresponding accelerated ADMM
algorithms, obtained by temporal discretization.
Keywords. Convex function; Minimisation problem; Linear constraint; Inertial dynamics; Tikhonov
regularization.

1. INTRODUCTION

In this paper, X is a real Hilbert space, endowed with the scalar product ⟨·, ·⟩ and the
norm ∥x∥2 = ⟨x,x⟩, for x ∈X . We are interested by the treatment of the following convex
minimization problem under linear constraints:

min
x∈C

f (x) where C := {x ∈ X : Ax = b} , (1)

where
∗ f : X → R is a convex continuously differentiable function,
∗ A : X → Z is a linear continuous operator and b ∈ Z ,
∗ S := argminC f ̸= /0 and x∗ is the element of minimum norm of S.

(H0)
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Our objective in this article is to provide a rigorous treatment of the convergence analy-
sis of primal-dual dynamics which will be introduced by combining recent dynamic meth-
ods in the unconstrained minimization which ensure strong convergence (see [1–3]), and
also those of the second order in time (see [4–6]) which were constructed to solve with
fast convergences a similar constrained minimization problem.

Continuous-time approaches for the case of unconstrained convex minimization prob-
lem minx∈X f (x) was initiated as the Heavy ball with friction method by Polyak [7, 8]:

ẍ(t)+α ẋ(t)+∇ f (x(t)) = 0. (2)

In the case where f is µ-strongly convex, then by fixing α = 2
√

µ in [9], the Heavy ball
system provides linear convergence of values f (x(t)) to min f (resp. trajectories x(t) to
the unique minimizer of f ). In [10, 11] the autors rely on the asymptotic behaviour, when
t →+∞, of the trajectories of the inertial system with Hessian-driven damping

ẍ(t)+ γ(t)ẋ(t)+β (t)∇2 f (x(t))ẋ(t)+b(t)∇ f (x(t)) = 0, (3)

where γ(t) and β (t) are damping parameters, and b(t) is a time scale parameter. Based on
a Lyapunov analysis, and using a continuous time version of Opial’s lemma, they prove
additional estimations for values and prove the weak convergence of the trajectories. Here,
in [11, Theorem 2.2], convergence of the trajectories has been proved for the weak topol-
ogy of H . It is a natural question to ask whether one can obtain strong convergence. A
counterexample due to Baillon [12] shows that the trajectories of the continuous steepest
descent may converge weakly but not strongly. We do not elaborate more on this for the
sake of brevity. More recently, Attouch et al. [13] considered for δ > 0 the following
system

ẍ(t)+
δ

tr/2 ẋ(t)+∇ f (x(t))+
1
tr x(t) = 0. (4)

They obtained, for 0 < r < 2, strong asymptotic convergence towards the minimum norm
solution and the following convergence rates

f (x(t))−min
X

f = O

(
1
tr

)
and ∥ẋ(t)∥2 = O

(
1

t
r+2

2

)
. (5)

In this perspective, [3] introduced the dynamical system:

ẍ(t)+α ẋ(t)+β (t)∇ ft(x(t)) = 0, (6)

and [14] proposed the following two inertial systems involving Hessian-driven damping:

ẍ(t)+α ẋ(t)+δ
d
dt

(∇ f (x(t)))+β (t)∇ ft(x(t)) = 0, (7)
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and

ẍ(t)+α ẋ(t)+δ
d
dt

(∇ ft(x(t)))+β (t)∇ ft(x(t)) = 0, (8)

where ft(·) := f (·)+ c
2β (t)

∥ · ∥2 is a
c

β (t)
-strongly convex function, with the following

hypothesis 
(i) α,c > 0,
(ii) β : [t0,+∞[−→]0,+∞[ is a nondecreasing continuously

differentiable function satisfying lim
t→+∞

β (t) = +∞,
(9)

By assuming
(i) c ≥ α2 > 0,µ =

α

1+a
,a > 1,

(ii) β (t) is a twice continuously differentiable function with

lim
t→+∞

β̇ (t)
β (t)

= 0, limsup
t→+∞

−β̈ (t)
β̇ (t)

<
α

2
,

(10)

Theorem 3.1 in [3] ensured for t large enough that

f (x(t))−min
X

f = O

(
1

β (t)

)
and ∥ẋ(t)∥2 = O

(
β̇ (t)
β (t)

+ e−µt

)
. (11)

As interesting special cases, the authors have proposed

β (t) = tmeγt p
with (p,m) ∈ (R+)

2 \{(0,0)},0 < p < 1,γ > 0.

A common strategy for constructing such a dynamic method for constrained minimiza-
tion consists of adapting (6) for saddle functions. Let us remember that the constrained
minimization problem (1) can be equivalently reformulated as the saddle point problem

min
x∈X

max
λ∈Z

L (x,λ ), (12)

where the Lagrangian L : X ×Z → R is defined by

L (x,λ ) = f (x)+ ⟨λ ,Ax−b⟩. (13)

Under our standing assumption (H0), L is a saddle function since it is convex with respect
to x∈X , and affine (and hence concave) with respect to λ ∈Z . Then, a point x̄ is optimal
for (1), and λ̄ is a corresponding Lagrange multiplier if and only if (x̄, λ̄ ) is a saddle point
of the Lagrangian saddle function L , i.e. for every (x,λ ) ∈ X ×Z ,

L (x̄,λ )≤ L (x̄, λ̄ )≤ L (x, λ̄ ). (14)
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The existence of a saddle point thus plays a critical role in solving (1). We denote by S̄ the
set of saddle points of L . The corresponding optimality conditions read

(x̄, λ̄ ) ∈ S̄ ⇐⇒

{
∇xL (x̄, λ̄ ) = 0,
∇λ L (x̄, λ̄ ) = 0,

⇐⇒

{
∇ f (x̄)+A∗λ̄ = 0,
Ax̄−b = 0,

(15)

where ∇x (respectively ∇λ ) is the gradient with respect to x (respectively to λ ) and A∗ is
the adjoint operator of A.

The dynamical system which was investigated in recent years is :
ẍ(t)+α(t)ẋ(t)+β (t)∇xLµ

(
x(t), λ (t)+ γ(t)λ̇ (t)

)
= 0,

λ̈ (t)+α(t)λ̇ (t)−β (t)∇λ Lµ

(
x(t)+ γ(t)ẋ(t), λ (t)

)
= 0,

(x(t0),λ (t0)) = (x0,λ0) and (ẋ(t0), λ̇ (t0)) = (ẋ0, λ̇0),

(TRIALS)

where α(t) is an extrapolation parameter, β (t) is attached to the temporal scaling of the
dynamic and γ(t) is a viscous damping parameter. Here Lµ is the known augmented
Lagrangian defined by

Lµ(x,y) := L (x,y)+
µ

2
∥Ax−b∥2.

The case in which β (t) = 1, was studied in [15, 16], while the case in which α(t) = α

ts

(for 0 < s ≤ 1) and β (t) is more general have been treated in [4,6,15,17]. Knowing that in
unconstrained minimization (see [18–21]) the viscous Nesterov damping term α(t) = α

t

plays an important role to obtain for values the fast convergence of order O
(

1
t2

)
. The role

of the viscous damping factor γ(t)ẋ(t) is to induce more flexibility in the dynamic system
and also to validate the convergence conditions as was recently noticed in [4, 15–17, 22].
As we will assert, the temporal scaling function β (.) has the role of further improving
the convergence rates of the value of the objective function along the trajectory, as was
noticed in the context of unconstrained minimization problems in [18, 19, 23] and linearly
constrained minimization problems in [4–6].

Note that in all the works cited above, the strong convergence of the paths x(t) is only
ensured under strong conditions. Our goal in what follows is to draw inspiration from our
recent works [2,3,13,14] on unconstrained minimization in order to conclude it for general
convex-concave saddle functions.

So, to reach a solution to the constrained optimization problem (1), we consider a
primal-dual dynamical system where we approach this problem via a two-level contin-
uous path:
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The first level is a penalization of the associated Lagrangian L (x,λ ) by a strongly
convex-concave saddle function, which is an other augmented Lagrangian Lt : X ×Z →
R defined, for r,c > 0 and t > t0, by

Lt(x,λ ) = L (x,λ )+
c

2tr (∥x∥2 −∥λ∥2). (16)

These ensures the existence and uniqueness of an associated saddle point (xt ,λt). We
choose as a penalization parameter the time function c

tr which tends towards zero when t
goes to infinity.

The second level consists of adapting a suitable associated dynamic system which can
ensure in double slice the strong convergence of its solution towards an optimal solution
of (15), and also have the fastest possible convergence rates.

This dynamic system, which is called Mixed Inertial Primal-Dual Augmented Lagrangian
System, is written as follows: for t > t0

ẍ(t)+α ẋ(t)+ tr∇xLt(x(t),λ (t)) = 0,
λ̇ (t)− tr∇λ Lt

(
x(t)+ 1

τ
ẋ(t),λ (t)

)
= 0,

(x(t0),λ (t0)) = (x0,λ0) and ẋ(t0) = ẋ0,

(MIPDALS)

Here α > 0 is a damping parameter, tr is attached to the temporal scaling of the dy-
namic and 1/τ > 0 is an extrapolation parameter, x0, ẋ0 ∈ X ,λ0 ∈ Z . The dynami-
cal system (MIPDALS), which is investigated in more recent papers [5, 24, 25], differs
from the (TRIALS) system proposed above. We first notice the non-coincidence between
the proposed augmented Lagrangians which differ in their penalization factors, then in
(MIPDALS) we restrict ourselves to a times first order differential equation for the varia-
tions of λ (t) .

In previous papers dealing with dynamic systems to attain saddle points, the authors
rely on Lyapunov functions E (t) based on selected solutions (x(t),y(t)) and saddle points
z∗ := (x∗,λ ∗) of L . Our proof is based on the following Lyapunov function

E (t) := tr
(

Lt(x,λt)−Lt(xt ,λt)

)
+

1
2
∥v(t)∥2 +

τ

2
∥λ (t)−λt∥2

where (xt ,λt) is the unique saddle point of Lt , v(t) = τ(x(t)− xt)+ ẋ(t), r,τ > 0 and the
temporal scaling parameter function is tr.

We will show in Theorem 3.1 that under a judicious setting of parameters, E (t) satisfies
the first-order differential inequality

d
dt

[
eµtE (t)

]
≤ ∥z∗∥2

2
d
dt

[
et

t1−r

]
,
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which by integration states our main convergence Theorem 3.2. Let us select these con-
vergence rates

f (x(t))−min
C

f ≤ O

(
1
tr

)
, ∥Ax(t)−b∥= O

(
1
tr

)
, ∥x(t)− xt∥2 = O

(
1

t1−r

)
,

where that of the values and constraints are better and those of the path x(t) ensures its
strong convergence towards the solution closest to the origin.

The remainder of the paper is organized as follows. Next we will introduce the setting
we will work with and formulate the proposed Lyapunov energy function. This will be
followed by the main estimation of this function. Afterwards, we will investigate the main
convergence theorem on the values, trajectories and velocities in Section 3. Two primary
special cases for the function β are treated in section 4, for which in addition numerical
experiments are given for a simple convex (not strictly convex) function. Finally, on the
basis of the Moreau regularization technique, in the last section we extend our results to
non-smooth convex functions with extended real values.

2. CONTROL OF VARIATIONS FOR THE SADDLE POINTS OF THE NEW AUGMENTED

LAGRANGIAN FUNCTIONS

In this section we present the new Lagrangian function Lt : X ×Z → R defined by

Lt(x,λ ) = L (x,λ )+
c

2tr (∥x∥2 −∥λ∥2) (17)

= f (x)+ ⟨λ ,Ax−b⟩+ c
2tr (∥x∥2 −∥λ∥2).

For each t ≥ t0, let us set (xt ,λt) := argminmax
X ×Z

Lt , which is the unique saddle-point of the

strongly convex-concave saddle function Lt . The first order optimality conditions give0 = ∇xLt(xt ,λt) = ∇ f (xt)+A∗λt +
c
tr xt ,

0 = ∇λ Lt(xt ,λt) = Axt −b− c
tr λt .

(18)

We begin with some auxiliary results

Lemma 2.1. [25, Lemma 6] Let t0 ≥ 0, g : [t0,+∞) → Z a continuous differentiable
function and a : [t0,+∞)→ [0,+∞) a continuous function. Suppose that there exists C ≥ 0
such that for every t > t0, ∥∥∥∥g(t)+

∫ t

t0
a(s)g(s)ds

∥∥∥∥≤C, (19)

then sup
t≥t0

∥g(t)∥<+∞.
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Proof. Set G(t) := exp
(∫ t

t0 a(s)ds
)∫ t

t0 a(s)g(s)ds for t ≥ t0, then condition (19) ensures

that
∥∥ d

dt G(t)
∥∥ ≤ Ca(t)exp

(∫ t
t0 a(s)ds

)
= C d

dt

(
exp
(∫ t

t0 a(s)ds
))

. Using G(t0) = 0, we
obtain

exp
(∫ t

t0
a(s)ds

)∥∥∥∥∫ t

t0
a(s)g(s)ds

∥∥∥∥ = ∥G(t)∥=
∥∥∥∥∫ t

t0

d
dt

G(s)ds
∥∥∥∥

≤
∫ t

t0

∥∥∥∥ d
dt

G(s)
∥∥∥∥ds

≤ C
(

exp
(∫ t

t0
a(s)ds

)
−1
)
≤C exp

(∫ t

t0
a(s)ds

)
.

Thus ∥∥∥∥∫ t

t0
a(s)g(s)ds

∥∥∥∥≤C.

Return to condition (19), we conclude, for each t ≥ t0,

∥g(t)∥ ≤
∥∥∥∥g(t)+

∫ t

t0
a(s)g(s)ds

∥∥∥∥+∥∥∥∥∫ t

t0
a(s)g(s)ds

∥∥∥∥≤ 2C.

□

Lemma 2.2. Under conditions (H0) and c >,0 < r < 1we have for all (x,λ ) ∈ X ×Z
and t ≥ t0,

(i) Lt(x,λt)−Lt(xt ,λt)≥
c

2tr ∥x− xt∥2,

(ii) Lt(xt ,λt)−Lt(xt ,λ )≥
c

2tr ∥λ −λt∥2.

Proof. We give only the proof for (i), that for (ii) being similar. We first remark that for
each x,y ∈ X and t ≥ t0〈

∇xLt(x,λt)−∇xLt(y,λt),x− y
〉

=
〈

∇ f (x)−∇ f (y),x− y
〉
+

c
tr ∥x− y∥2

≥ c
tr ∥x− y∥2.

It follows that ∇xLt(·,λt) is strongly monotone, then applying [26, Corollary 3.5.11] we
conclude strong convexity of Lt(·,λt). Thus, for each x ∈ X and each t ≥ t0

Lt(x,λt)−Lt(xt ,λt)≥
c

2tr ∥x− xt∥2 +
〈

∇xLt(xt ,λt),x− y
〉
=

c
2tr ∥x− xt∥2.

□

Lemma 2.3. Assume conditions (H0) and c >,0 < r < 1and denote by (x∗,λ ∗) the metric
projection of (0X ,0Z ) on S̄ the set of saddle points of L . Then, we have
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(i) for all t > t0, ∥(xt ,λt)∥ ≤ ∥(x∗,λ ∗)∥ and limt→+∞ ∥(xt ,λt)− (x∗,λ ∗)∥= 0,
(ii) for all t > t0,

∥∥∥(ẋt , λ̇t)
∥∥∥≤ r

t
∥(xt ,λt)∥ ≤

r
t
∥(x∗,λ ∗)∥.

Proof. (i) Consider the operator M : X ×Z → X ×Z defined by

M (x,λ ) := (∇xL (x,λ ) , −∇λ L (x,λ )) .

Then M is the monotone operator associated with the convex-concave function L , and
since it is also continuous on X ×Z , it is maximally monotone (see, for instance, [27,
Corollary 20.28]).

We also have the set of zeros of the maximally monotone operator M is nothing other
than the whole set of saddle points of L . This means that the solution set S̄ is a closed
convex subset of X ×Z .

Referring to (18), we also have that (xt ,λt) is characterized by(
M +

c
tr I
)
(xt ,λt) = (0X ,0Z ) ⇐⇒ (xt ,λt) =

(
I+

tr

c
M

)−1

(0X ,0Z ).

So using [28, Theorem 2.2] (see also [27, Theorem 23.44]), we have (xt ,λt) strongly con-
verges to (x∗,λ ∗), and [28, Propo. 2.6 (iii)] ensures also that for every t > t0, ∥(xt ,λt)∥ ≤
∥(x∗,λ ∗)∥.

(ii) Set w(t) = (xt ,λt), then from (18), we have for t > t0 and h near zero

M (w(t)) =− c
tr w(t) and M (w(t +h)) =− c

(t +h)r (w(t +h)).

By monotonicity of M , we get

⟨M (w(t +h))−M (w(t)),w(t +h)−w(t)⟩

=

〈
c
tr w(t)− c

(t +h)r (w(t +h)),w(t +h)−w(t)
〉
≥ 0.

Thus, for each t > t0 and h sufficiently small

∥w(t +h)−w(t)∥2 ≤
((

1+
h
t

)r

−1
)
⟨w(t),w(t +h)−w(t)⟩ ,

which implies, by the mean value theorem that there exists ch between 0 and h
t such that

∥w(t +h)−w(t)∥ ≤
∣∣∣∣(1+

h
t

)r

−1
∣∣∣∣∥w(t)∥= r|h|

t(1+ ch)1−r ∥w(t)∥ . (20)

We get the viscosity curve w(t) is Lipschitz continuous on each compact interval in ]t0,+∞[.
We conclude w(t) is absolutely continuous and then almost everywhere differentiable on
]t0,+∞[.
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Return to (20), dividing by h > 0 and letting h → 0, we obtain for almost every t > t0
that

∥ẇ(t)∥ ≤ r
t
∥w(t)∥ ≤ r

t
∥(x∗,λ ∗)∥,

meaning that (ii) is satisfied. □

We now provide the following needed control lemma:

Lemma 2.4. Suppose α,c > 0 and 0 < r < 1, then we have for each t > t0

d
dt

Lt(xt ,λt) =
cr

2tr+1

(
∥xt∥2 −∥λt∥2) .

Proof. Let’s fix t > t0. Since (xt ,λt) is a saddle-point of the saddle function Lt , we obtain
for each t > t0 and h small enough

Lt(xt ,λt+h)≤ Lt(xt ,λt)≤ Lt(xt+h,λt)

and

−Lt+h(xt ,λt+h)≤−Lt+h(xt+h,λt+h)≤−Lt+h(xt+h,λt).

By summing we get for h small enough the following two inequalities

Lt(xt ,λt)−Lt+h(xt+h,λt+h)≤ Lt(xt+h,λt)−Lt+h(xt+h,λt)

=
c

2tr (∥xt+h∥2 −∥λt∥2)− c
2(t +h)r (∥xt+h∥2 −∥λt∥2)

=
c

2tr

(
1−
(

1+
h
t

)−r)(
∥xt+h∥2 −∥λt∥2)

=

(
crh

2tr+1 +◦(h)
)(

∥xt+h∥2 −∥λt∥2)
and

Lt(xt ,λt)−Lt+h(xt+h,λt+h)≥ Lt(xt ,λt+h)−Lt+h(xt ,λt+h)

=
c

2tr

(
1−
(

1+
h
t

)−r)(
∥xt∥2 −∥λt+h∥2)

=

(
crh

2tr+1 +◦(h)
)(

∥xt∥2 −∥λt+h∥2) .
So dividing the previous inequalities by h > 0 and letting h → 0, we obtain the result. □
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3. FAST CONVERGENCE RESULTS

In this section we are going to derive fast convergence rates for the primal-dual Aug-
mented Lagrangian, the feasibility measure, and the objective function value along the
trajectories generated by the dynamical system (MIPDALS) which may be written for
c,α,r,τ > 0 as follows:

ẍ+α ẋ+ tr[∇ f (x)+A∗λ (t)]+ cx(t) = 0,

λ̇ (t)− tr [A(x(t)+ 1
τ
ẋ(t)
)
−b
]
+ cλ (t) = 0,

(x(t0),λ (t0)) = (x0,λ0) and ẋ(t0) = ẋ0.

We’ll also derive the main result on the strong convergence of trajectories x(t) towards the
minimizer of minimum norm. As mentioned in the introduction, our proof is based on the
Lyapunov function E which is formulated as follows:

E (t) := tr
(

Lt(x,λt)−Lt(xt ,λt)

)
+

1
2
∥v(t)∥2 +

τ

2
∥λ (t)−λt∥2 (E )

with v(t) = τ(x(t)− xt)+ ẋ(t).

The next theorem provides the analysis needed on the energy function E (t). So, we
need the following condition on the parameters α,τ:

Theorem 3.1. Suppose that f : H →R,A : X →Z and β (t) satisfy the conditions (H0),
(H1). Let (x(·),λ (·)) be a solution of the system (MIPDALS), and assume the following
condition

0 < r < 1,τ < α < τ +min(τ,c) and either α < 2
√

c or 2
√

c < α < τ +
c
τ
. (H1)

Then, there exists t̄ > t0 such that for each t ≥ t̄ , we have the following rate:

E (t)≤ e(α−τ)t̄E (t̄)
e(α−τ)t

+
∥z∗∥2

2(α − τ)

1
t1−r . (21)

Proof. Let’s derive the Lyapunov energy function E (t), then we have

d
dt

E (t) = rtr−1
(

Lt(x(t),λt)−Lt(xt ,λt)

)
+ tr d

dt

(
Lt(x(t),λt)−Lt(xt ,λt)

)
+⟨v(t), v̇(t)⟩− τ⟨λ̇t ,λ (t)−λt⟩+ τ⟨λ̇ (t),λ (t)−λt⟩. (22)
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Using the system (MIPDALS) and adapting calculation, we have

v̇(t) = τ(ẋ(t)− ẋt)+ ẍ(t)

= (τ −α)ẋ(t)− τ ẋt − tr
∇xLt(x(t),λ (t))

= (τ −α)ẋ(t)− τ ẋt − tr (∇xLt(x(t),λt)+A∗(λ (t)−λt))

and

⟨λ̇ (t),λ (t)−λt⟩ = tr
〈

∇λ Lt

(
x(t)+

1
τ

ẋ(t),λ (t)
)
,λ (t)−λt

〉
(23)

= tr
〈

∇λ Lt(xt ,λ (t))+A
(

x(t)− xt +
1
τ

ẋ(t)
)
,λ (t)−λt

〉
.

Then

⟨v(t), v̇(t)⟩ = (τ −α)∥ẋ(t)∥2 + τ(τ −α)⟨x(t)− xt , ẋ(t)⟩− τ
2⟨x(t)− xt , ẋt⟩

−τ ⟨ẋ(t), ẋt⟩− τtr⟨∇xLt(x(t),λ (t)),x(t)− xt⟩
−tr⟨∇xLt(x(t),λ (t)), ẋ(t)⟩. (24)

Moreover, for positive parameters a, p,q we have :

−τ⟨ẋ(t), ẋt⟩ ≤
τ

2a
∥ẋ(t)∥2 +

aτ

2
∥ẋt∥2, (25)

−τ⟨λ (t)−λt , λ̇t⟩ ≤
τ

2p
∥λ̇t∥2 +

pτ

2
∥λ (t)−λt∥2, (26)

−τ
2⟨x(t)− xt , ẋt⟩ ≤

τ

2q
∥ẋt∥2 +

qτ3

2
∥x(t)− xt∥2. (27)

By strong convexity of Lt(.,λt) (see Lemma 2.2 (i)), we get

⟨∇xLt(x(t),λt),x(t)− xt⟩ ≥
c

2tr ∥x(t)− xt∥2 +

(
Lt(x,λt)−Lt(xt ,λt)

)
(28)

Using
∇xLt(x(t),λ (t)) = ∇xLt(x(t),λt)+A∗(λ (t)−λt)

together with (28), we obtain

−τtr⟨∇xLt(x(t) , λ (t)),x(t)− xt⟩=−τtr⟨∇xLt(x(t),λt),x(t)− xt⟩
−τtr⟨A(x(t)− xt),λ (t)−λt⟩

≤ −τc
2
∥x(t)− xt∥2 − τtr

(
Lt(x,λt)−Lt(xt ,λt)

)
−τtr⟨A(x(t)− xt),λ (t)−λt⟩. (29)
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By the strong convexity of −Lt(xt , .) (see Lemma 2.2 (ii)) we also have

⟨−∇λ Lt(xt ,λ (t)),λ (t)−λt⟩ ≥
c

2tr ∥λ (t)−λt∥2.

Combining the above inequality with

∇λ Lt

(
x(t)+

1
τ

ẋ(t),λ (t)
)
= ∇λ Lt(xt ,λ (t))+A

(
x(t)− xt +

1
τ

ẋ(t)
)
,

we obtain

−τtr
〈
−∇λ Lt

(
x(t) +

1
τ

ẋ(t),λ (t)
)
,λ (t)−λt

〉
=−τtr⟨−∇λ Lt(xt ,λ (t)),λ (t)−λt⟩

+τtr⟨A(x(t)− xt),λ (t)−λt⟩+ tr⟨Aẋ(t),λ (t)−λt⟩

≤ −cτ

2
∥λ (t)−λt∥2 + τtr⟨A(x(t)− xt),λ (t)−λt⟩

+tr⟨Aẋ(t),λ (t)−λt⟩. (30)

On the other hand, we have

d
dt

Lt(x(t),λt) = ⟨∇ f (x(t)), ẋ(t)⟩+ ⟨Ax(t)−b, λ̇t⟩+ ⟨A∗
λt , ẋ(t)⟩+

c
tr ⟨x(t), ẋ(t)⟩

− c
tr ⟨λt , λ̇t⟩−

cr
2tr+1 (∥x(t)∥2 −∥λt∥2)

= ⟨∇xLt(x(t),λ (t)), ẋ(t)⟩+ ⟨A∗(λt −λ (t)), ẋ(t)⟩+ ⟨Ax(t)−b, λ̇t⟩

− c
tr ⟨λt , λ̇t⟩−

cr
2tr+1 (∥x(t)∥2 −∥λt∥2). (31)

Using Lemma 2.4, we get

tr d
dt

(Lt(x(t),λt)−Lt(xt ,λt))≤ tr⟨∇xLt(x(t),λ (t)), ẋ(t)⟩

+tr⟨A∗(λt −λ (t)), ẋ(t)⟩+ tr
(
⟨Ax(t)−b, λ̇t⟩−

c
tr ⟨λt , λ̇t⟩

)
+

cr
2t
(∥xt∥2 −∥x(t)∥2). (32)

Return to Axt −b = c
tr λt , we get for a positive parameter b

tr
(
⟨Ax(t)−b, λ̇t⟩ − c

tr ⟨λt , λ̇t⟩
)
= ⟨t(r−1)/2A(x(t)− xt), t(r+1)/2

λ̇t⟩

≤ ∥A∥2tr−1

2
∥x(t)− xt∥2 +

tr+1

2
∥λ̇t∥2.
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By combining the above inequalities (25), (26), (27), (29), (30), (32) with (22) and after
reduction, we obtain

d
dt

E (t) ≤ tr
(

rt−1 − τ

)(
Lt(x(t),λt)−Lt(xt ,λt)

)
+

1
2
(
qτ

3 − cτ +∥A∥2tr−1)∥x(t)− xt∥2 +
τ

2
(p− c)∥λ (t)−λt∥2

+

(
τ −α +

τ

2a

)
∥ẋ(t)∥2 +

cr
2t
(∥xt∥2 −∥x(t)∥2)+

τ

2

(
a+

1
q

)
∥ẋt(t)∥2

+
1
2

(
tr+1 +

τ

p

)
∥λ̇t∥2 + τ(τ −α)⟨ẋ(t),x(t)− xt⟩. (33)

Now, we set µ > 0 and estimate

µE (t) = µtr
(

Lt(x(t),λt)−Lt(xt ,λt)

)
+

µ

2
∥v(t)∥2 +

µτ

2
∥λ (t)−λt∥2

= µtr
(

Lt(x(t),λt)−Lt(xt ,λt)

)
+

µτ2

2
∥x(t)− xt∥2

+µτ⟨x(t)− xt , ẋ(t)⟩+
µ

2
∥ẋ(t)∥2 +

µτ

2
∥λ (t)−λt∥2. (34)

Adding (33) and (34) , we get

µE (t)+
d
dt

E (t)≤ tr
(
(µ − τ)+ rt−1︸ ︷︷ ︸

=−B(t)

)(
Lt(x,λt)−Lt(xt ,λt)

)

+
1
2

(
qτ

3 − cτ +∥A∥2tr−1 +µτ
2︸ ︷︷ ︸

=−C(t)

)
∥x(t)− xt∥2 +

τ

2

(
p− c+µ︸ ︷︷ ︸

=−D

)
∥λ (t)−λt∥2

+

(
τ −α +

τ

2a
+

µ

2︸ ︷︷ ︸
=−F

)
∥ẋ(t)∥2 +

cr
2t
(∥xt∥2 −∥x(t)∥2)

+
τ

2

(
a+

1
q

)
∥ẋt(t)∥2 +

1
2

(
tr+1 +

τ

p

)
∥λ̇t∥2 + τ

(
µ + τ −α︸ ︷︷ ︸

=−K

)
⟨x(t)− xt , ẋ(t)⟩.

(35)
⋆ By taking µ = α − τ > 0 we obtain K = 0.
⋆ Since B(t) = (τ −µ)− rt−1 = 2τ −α − rt−1 and lim

t→+∞
rt−1 = 0, we suppose in (H1)

α < 2τ to ensure existence of t1 > 0 such that, for all t ≥ t1, B(t)≥ 0.
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⋆ We have C(t) = cτ −qτ3−µτ2−∥A∥2tr−1. Since, for 0 < r < 1, lim
t→+∞

∥A∥2tr−1 = 0,

we then have to satisfy τ(c− qτ2 − µτ) = τ((1− q)τ2 −ατ + c) > 0. This is due to the
choice 0 < q < 1+ c−ατ

τ2 which is ensured by the assumption (H1). We deduce existence
of t2 ≥ t1 such that, for all t ≥ t2, C(t)> 0.

⋆ We have D = c− p− µ = c+ τ −α − p is nonnegative when we chose 0 < p ≤
c+ τ −α , so the condition c > α − τ is imposed in (H1).

⋆ Since F = 1
2a(aα − (1+a)τ), we also get the choice a ≥ τ

α−τ
to ensure that F ≥ 0.

Return to zt = (xt ,λt) and z∗ = (x∗,λ ∗), we obtain

∥xt∥ ≤ ∥zt∥ ≤ ∥z∗∥ and max
(
∥ẋt∥ , ∥λ̇t∥

)
≤ r

t
∥zt∥ ≤

r
t
∥z∗∥.

Thus, for all t ≥ t2,

τ

2

(
a+

1
q

)
∥ẋt(t)∥2 +

1
2

(
tr+1 +

τ

p

)
∥λ̇t∥2 +

cr
2t
∥xt∥2 (36)

≤ ∥z∗∥2

2

(
rc
t
+

[
τ

(
a+

1
p
+

1
q

)
+ tr+1

](
r
t

)2)
.

Summarizing the choices for t above, we conclude from inequalities (33) and (36) that, for
all t ≥ t2,

µE (t)+
d
dt

E (t)≤ ∥z∗∥2

2

(
rc
t
+

[
τ

(
a+

1
p
+

1
q

)
+ tr+1

](
r
t

)2)
. (37)

Multiplying by eµt , we get for k0 := τ

(
a+ 1

p +
1
q

)
and all t ≥ t3

d
dt

[
eµtE (t)

]
= eµt[

µE (t)+
d
dt

E (t)
]

≤ ∥z∗∥2

2

(
rc
t
+

[
τ

(
a+

1
p
+

1
q

)
+ tr+1

](
r
t

)2)
eµt

=
∥z∗∥2

2

(
rc
t
+

k0r2

t2 +
r2

t1−r

)
eµt . (38)

Since r < 1, we have, limt→+∞

(
rc
tr +

k0r2

t1+r +
1−r
µt

)
= 0 < (1− r)(1+ r) = 1− r2. We con-

clude, for t large enough (t ≥ t3 ≥ t2), rc
tr +

k0r2

t1+r +
1−r
µt ≤ 1− r2, which gives

rc
tr +

k0r2

t1+r + r2 ≤ 1
µ

(
µ − 1− r

t

)
.
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Then multiplying by et

t1−r , we get for t ≥ t3,(
rc
t
+

k0r2

t2 +
r2

t1−r

)
eµt ≤ 1

µ

(
µ

t1−r −
1− r
t2−r

)
eµt

Return to inequality (38), we have for t ≥ t3

d
dt

[
eµtE (t)

]
≤ ∥z∗∥2

2µ

(
µ

t1−r −
1− r
t2−r

)
eµt =

∥z∗∥2

2µ

d
dt

[
eµt

t1−r

]
. (39)

Integrating the above inequality between t3 and t and multiplying by e−µt , we obtain

E (t)≤ eµ(t3−t)E (t3)+
∥z∗∥2

2µ

(
1

t1−r −
eµ(t3−t)

t1−r
3

)
≤ eµt3E (t3)

eµt +
∥z∗∥2

2µ

1
t1−r , (40)

that leads to the desired estimate (21) for t̄ = t3. □

We can now state our main convergence result.

Theorem 3.2. Under conditions of Theorem 3.1, we have the strong convergence of tra-
jectories x(t),λ (t) to the minimum norm solutions x∗,λ ∗ of the primal problem (1) and the
associated dual one. In addition, we have the following convergence rates:

a) Lt(x(t),λt)−Lt(xt ,λt) = O

(
1
t

)
as t →+∞. (41)

b) L (x(t),λ ∗)−L (x∗,λ ∗) = O

(
1
tr

)
as t →+∞. (42)

c) f (x(t))−min
C

f = O

(
1
tr

)
as t →+∞; (43)

d) ∥Ax(t)−b∥= O

(
1
tr

)
as t →+∞; (44)

e) ∥x(t)− xt∥2 = O

(
1

t1−r

)
as t →+∞; (45)

f) ∥λ (t)−λt∥2 = O

(
1

t1−r

)
as t →+∞; (46)

g) ∥ẋ(t)∥= O

(
1

t1−r

)
as t →+∞. (47)

Proof. Firstly, we note that (21) gives

E (t) = O

(
1

t1−r

)
as t →+∞, (48)
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and returning to the expression of E (t), we conclude (41).
Using the strong convexity of Lt(·,λt) (see Lemma 2.2) and the definition of E (t), we

have for t ≥ t̄

∥x(t)− xt∥2 ≤ 2tr

c
Lt(x(t),λt)−Lt(xt ,λt)≤

2
c
E (t), (49)

which ensures (45).
Combining (45) with Lemma 2.3, i.e. the fact that xt → x∗ as t → +∞, we deduce the

strong convergence of x(t) to x∗ as t →+∞. Also, from the definition of E (t), we have

∥λ (t)−λt∥2 = O

(
1

t1−r

)
and then, since Lemma 2.3 justifies λt strongly converges to λ ∗, we conclude λ (t) also
strongly converges to λ ∗.

Returning to (MIPDALS), we have

λ̇ (t)+ cλ (t) = tr(Ax(t)−b)+
tr

τ
Aẋ(t),

then multiplying by ect , we obtain

d
dt

(
ect

λ (t)
)
= ect

(
λ̇ (t)+ cλ (t)

)
= ect

(
tr(Ax(t)−b)+

tr

τ
Aẋ(t)

)
.

Integrating from t̄ to t and using integration by parts on the last term, we deduce

λ (t)− λ (t̄)ect̄

ect =
1

ect

∫ t

t̄
srecs(Ax(s)−b)ds+

1
τect

∫ t

t̄
srecsd(Ax(s)−b)

=
tr(Ax(t)−b)

τ
− t̄rect̄(Ax(t̄)−b)

τect

+
∫ t

t̄

ecs

τect

(
τ − r

s
− c
)

sr(Ax(s)−b)ds,

Now, relying on the boundedness of λ (t), for all t ≥ t̄, we obtain∥∥∥∥tr(Ax(t)−b)+
∫ t

t̄
ec(s−t)

(
τ − r

s
− c
)

sr(Ax(s)−b)ds
∥∥∥∥≤ K1,

where K1 is positive constant. Using Lemma 2.1 for g(s) := sr(Ax(s)− b) and a(s) :=
ec(s−t)

(
τ − r

s
− c
)

, we obtain

sup
t≥t̄

∥tr(Ax(t)−b)∥<+∞.

Thus, we have (44).
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Knowing that (xt ,λt) is a saddle point of Lt , we have

Lt(xt ,λt)≤ Lt(x∗,λt),

thus

Lt(x(t),λt)−Lt(xt ,λt) ≥ Lt(x(t),λt)−Lt(x∗,λt)

= L (x(t),λt)−L (x∗,λt)+
c

2tr (∥x(t)∥2 −∥x∗∥2)

= L (x(t),λ ∗)−L (x∗,λ ∗)+ ⟨λt −λ
∗,Ax(t)−b⟩

+
c

2tr (∥x(t)∥2 −∥x∗∥2)

≥ L (x(t),λ ∗)−L (x∗,λ ∗)−∥λt −λ
∗∥∥Ax(t)−b∥

+
c

2tr (∥x(t)∥2 −∥x∗∥2).

This implies

0 ≤ L (x(t),λ ∗)−L (x∗,λ ∗)

≤ Lt(x(t),λt)−Lt(xt ,λt)+∥λt −λ
∗∥∥Ax(t)−b∥+ c

2tr

(
∥x∗∥2 −∥x(t)∥2

)
.

Since limt→+∞ ∥λt −λ ∗∥= limt→+∞

(
∥x∗∥2 −∥x(t)∥2

)
= 0, (41) and (44) ensure (42) .

Return to the definition of E (t), we have

E (t)≥ 1
2
∥v(t)∥2 =

1
2
∥τ(x(t)− xt)+ ẋ(t)∥2,

then, relaying on the definition of v(t), we get

∥ẋ(t)∥2 = ∥v(t)− τ(x(t)− xt)∥2 ≤ 2∥v(t)∥2 +2τ
2∥x(t)− xt∥2

≤ 4E (t)+2τ
2∥x(t)− xt∥2.

According to (45) and (48), we deduce that (47) is satisfied.
To conclude the rate of values, let’s go back to

f (x(t))− f (x∗) = ⟨λ ∗,Ax−b⟩− (L (x(t),λ ∗)−L (x∗,λ ∗))

and use (42),(44), then

f (x(t))−min
C

f = O

(
1
tr

)
.

□
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4. NUMERICAL EXAMPLE

In this subsection, we consider three numerical examples to illustrate the evolution of
our dynamical system (MIPDALS).

Example. Consider the constrained minimization problem where the objective function is
convex but not strictly convex

min f (x) =
1
2
(x2

1 +(x2 − x3)
2) under constraint: h(x) = 2x1 − x2 + x3 −2 = 0. (50)

The set of solutions of (50) is S = argminC f = {x ∈ R3 : x1 − x2 = 1,x2 − x3 = −2} and
the element of minimum norm of S is x∗ = (0,−1,1).

In this example, by setting α = 5.5,c= τ = 5 that satisfy the condition (H1), we analyze
in Figure 2 the evolution of the convergence rates (44), (45) and (47) demonstrated in
Theorem 3.2. We note in Figure 2 top left that the convergence estimate for the values in
(44) is well suited to this example.

Secondly, by positively varying only the parameter c when its values are tolerated by

FIGURE 1. Errors of the objective function, the trajectories, the constraint and the
velocity of our dynamical system (MIPDALS) with different values of Tikhonov regular-
ization parameters 0 < r < 1.

the condition (H1), we notice a slight and inverse evolution for the values f (x(t)−minC f
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and the convergence of x(t) towards x∗. This can be justified by the inequality (21) where

(E )(t) is increased by e(α−τ)t̄E (t̄)
eµt + ∥z∗∥2

2µ

1
t1−r and the condition (H1) imposes max(1,τ)µ <

c.

FIGURE 2. Errors of the objective function, the trajectories, the constraint and the
velocity of our dynamical system (MIPDALS) with different values of Tikhonov regular-
ization parameters 0 < r < 1.

Example. Now, we compare the convergence results of our dynamical system (MIPDALS)
with those of the very recent paper [29] dealing with the following dynamical system ẍ(t)+ α

t ẋ(t)+∇ f (x(t))+A∗λ (t)+ρA∗(Ax(t)−b)+ ε(t)x(t) = 0,

λ̇ (t)− t
[
A
(
x(t)+ t

α−1 ẋ(t)
)
−b
]

= 0.
(51)

We take the same convex constrained minimization problem shown in [29]:

min f (x1,x2,x3) = (5x1 + x2 + x3)
2 under constraints 5x1 − x2 + x3 = 0. (52)

Here we have f is a convex differentiable function. The solution set is S∗= {u(1,0,−1/5) :
u ∈ R} and the optimal value is equal to zero. Obviously, the minimizer of minimal norm
is the origine of R3. Figure 3 justifies the improvement in the convergence rate of values
and solutions for our proposed system when comparing it with that of Zhu et all [29]. We
also note that the values in this reference vary inversely to that of the parameter s in the

For this system, we deal with the same data as in this reference: x(1) = (1,1,1)T ,λ (1) = 1, ẋ(1) =
(1,1,1)T and m = 5,n = 1,e = 1,α = 13,ε(t) = 3t−s,ρ = 1.
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FIGURE 3. Here we compare the convergence rates for different values of 0 < r < 1 in
system (MIPDALS), and those of 0 < s < 2 in system (51).

estimate proposed for the augmented Lagrangian in [29, Theorem 7.4]:

Lρ(x(t),λ ∗)−Lρ(x∗,λ ∗) = O

(
1
ts

)
,

.

5. CONCLUSION AND PERSPECTIVE

To attain a solution of the constrained minimization problem minAx=b f (x) where f is a
general convex function and A is a linear continuous operator, we proposed the following
dynamical system

ẍ(t)+α ẋ(t)+ tr
∇xLt(x(t),λ (t)) = 0, λ̇ (t)− tr

∇λ Lt

(
x(t)+

1
τ

ẋ(t),λ (t)
)
= 0,

where Lt(x,λ ) = L (x,λ )+ c
2tr (∥x∥2 −∥λ∥2) is a quadratic penalty Lagrangian with the

penalty parameter function ε(t) = c
tr .
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This allowed us to initiate in this first bibliographic result (see Theorem 3.2) the strong
convergence of the solution (x(t),λ (t)) of the proposed system towards the metric pro-
jection of the origin onto the set of solutions of minAx=b f (x), as well as a better rate of
convergence of the values f (x(t))−minAx=b f (x).

As future works, we are eager to improve the rate of convergence of values firstly by
extending the values of the parameter r over the interval (0,1), and therefore for a gen-
eral time scale parameter β (t). This work provides also a basis for the development of
corresponding algorithmic results.
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