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Abstract

A resolving set R in a graph G is a set of vertices such that every vertex of G is uniquely identified by
its distances to the vertices of R. Introduced in the 1970s, this concept has been since then extensively
studied from both combinatorial and algorithmic points of view. We propose a generalization of the
concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-
steps. In this setting, the temporal distance from u to v is the earliest possible time-step at which a
journey with strictly increasing time-steps on edges leaving u reaches v, i.e., the first time-step at which v
could receive a message broadcast from u. A temporal resolving set of a temporal graph G is a subset R of
its vertices such that every vertex of G is uniquely identified by its temporal distances from vertices of R.
We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete
even on very restricted graph classes and with strong constraints on the time-steps: temporal complete
graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears
in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears
in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time
algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and
give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear
in periodic time-steps.

Temporal graphs, Resolving sets, Metric dimension, Trees, Graph algorithms, Complexity

1 Introduction

For a set R of vertices of a graph G, every vertex of G can compute a vector of its distances from the vertices
of R (the distance, or number of edges in a shortest path, from u to v will be denoted by dist(u,v)). If all
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such computed vectors are unique, then we call R a resolving set of G. This notion was introduced in the
1970s and gave birth to the notion of metric dimension of G, that is, the smallest size of a resolving set of G.
Metric dimension is a well-studied topic, with both combinatorial and algorithmic results, see for example
surveys [33] [38].

A temporal graph can be defined as a graph on a given vertex set, and with an edge set that changes over
discrete time-steps. Their study gained traction as a natural representation of dynamic, evolving networks [7,
25,126, [35]. However, in the temporal setting, the notion of distance differs from the static setting: two vertices
can be topologically close, but the journey (i.e., a path in the underlying graph with strictly increasing time-
step{l) between them can be long, or even impossible. The smallest time-step at which a journey from u
reaches v is called the temporal distance from u to v and is denoted by dist,(u,v). Note that in a temporal
graph, there might be vertex pairs (u,v) such that there is no temporal journey from u to v, in which case
we set the temporal distance as infinite. Furthermore, the temporal distance of non-adjacent vertices is not
necessarily symmetric.

The notion of temporal distance allows us to define a temporal resolving set as a set R of vertices of a
temporal graph such that every vertex has a unique vector of temporal distances from the vertices of R. We
are interested in the problem of finding a minimum-size temporal resolving set.

Our motivation is both introducing a temporal variant of the well-studied problem of resolving sets
and studying its combinatorial and algorithmic properties, as well as the problem of location in dynamic
networks. Indeed, resolving sets are an analogue of geolocation in discrete structures [38], and thus temporal
resolving sets are similar: if we consider that transmitters placed on vertices of the temporal resolving set
emit continuously, we can locate ourselves by waiting long enough to receive the signals and constructing the
temporal distance vector.

In the remainder of this section, we give an overview of the static (i.e., non-temporal) version and some
variants of resolving set as well as an overview of temporal graphs, before giving a formal definition of the
TEMPORAL RESOLVING SET problem and an outline of our results.

Separating vertices. Standard resolving sets were introduced independently by Harary and Melter [23] and
by Slater [37], and have been well-studied due to their various applications (robot navigation [31], detection in
sensor networks [37], and more [38]). Their non-local nature makes them difficult to study from an algorithmic
point of view: finding a minimum-size resolving set is NP-hard even on very restricted graph classes (planar
graphs of bounded degree [I0], bipartite graphs [I1], and interval graphs of diameter 2 [I7], to name a few)
and W[2]- and W[1|-hard when parameterized by solution size [24] and feedback vertex set [19], respectively.
On the positive side, the problem is polynomial-time solvable on trees [8| 23, BT, [37], outerplanar graphs [10]
and cographs [I1], to name a few.

Note that there are two conditions for a set to be resolving: reaching (every vertex must be reached from
some vertex of the resolving set) and separating (no two vertices may have the same distance vector). A weak
resolving set is a set that is separating, but not necessarily reaching, all the vertices of a graph (alternatively,
some authors, e.g. [22], call a reaching and separating set a dominating resolving set). Minimum-size standard
and weak resolving sets can thus differ in size by at most 1 as only one vertex can be unreachable.

A natural variant of resolving sets consists in limiting the distance at which transmitters can emit. A
first constraint is that of a robot which can only perceive its direct neighborhood: an adjacency resolving
set |28] is a resolving set using the following distance: dist,(u,v) = min(dist(u,v),2). More generally, a k-
truncated resolving set [13] is a resolving set using the following distance: disty(u,v) = min(dist(u,v),k + 1)
(so an adjacency resolving set is a 1-truncated resolving set). Note that both variants were mostly studied
in their weak version. The k-truncated resolving sets have quickly attracted attention on the combinatorial
side |2 [I8, 20 21]. On the algorithmic side, the corresponding decision problem is known to be NP-hard [13],

IThose are sometimes called strict journeys in the literature, but as argued in [32], strict journeys are naturally suited to
applications where one cannot traverse multiple edges at the same time.



even on trees (although, in this case, it becomes polynomial-time solvable when % is fixed) [22]. Another
notable variant requires the resolving set to also be a dominating set [5], and has been applied on temporal
graph setup for machine learning applications [36].

Temporal graphs. A temporal graph G = (V, Ey,...,E; . ) is described by a sequence of edge sets
representing the graph at discrete time-steps, which are positive integers in {1,...,tmax} [7] (note that the
sequence might be infinite, in which case the number of time-steps is not bounded by ty,,x, and we can adapt
all definitions in consequence). An alternate, equivalent description of G is G = (V, E, A) (or (G, \) where
G = (V,FE)) with E = UZ:}" E; is called the underlying graph and X : E — 2{L-tmax} ig an edge-labeling
function called time labeling such that A(e) is the set of time-steps at which the edge e exists, i.e., i € A(e)
if and only if e € E; [30]. We call a time labeling a k-labeling if |\(e)| < k for every edge e. Furthermore, we
say that a temporal graph is a temporal tree (resp. temporal star, etc.) if its underlying graph, understood
as the graph induced by the union of all its edge sets, is a tree (resp. star, etc.). For a subgraph G’ of graph
G and a time labeling A of G, we denote by \g: the restriction of A to subgraph G".

A specific case of temporal graphs are those with a repeating sequence of edge sets, which have been
studied in contexts such as routing [I5} [16] 27] [34], graph exploration [3], cops and robbers games [9] [12]
and others [Il, B9] due to their natural applications in, e.g., transportation networks. Formally, a p-periodic
k-labeling is a time labeling such that both E;, = E; for every ¢ > 1 and |[A(e) N {1,...,p}| < k for every
edge e. A temporal graph with a periodic time labeling has an infinite sequence of edge sets, but can be
represented with its p first time-steps, understanding that the sequences will repeat after this.

A vertex v is said to be reachable from another vertex wu if there exists a journey from u to v. For a given
vertex v, the set of vertices which can be reached from vertex v is denoted by R(v). For a vertex set S such
that v € S, we denote by R®(v) C R(v) the set of vertices which can be reached from v but not from any
other vertex in S.

Temporal resolving sets. We extend the definition of resolving sets to the temporal setting: a resolving
set in a temporal graph is a reaching and separating set. More formally, a set R of vertices of a temporal
graph G = (V, E, \) is a temporal resolving set if (i) for every vertex v € V, there is a vertex s € R such that
v € R(s); (i) for every two different vertices u,v € V, there is a vertex s € R such that dist; (s, u) # dist¢(s, v).
Note that every vertex in a temporal resolving set is trivially separated from every other vertex. The problem
we are studying is the following:

TEMPORAL RESOLVING SET
Instance: A temporal graph G = (V, E,\); and an integer k.
Question: Is there a temporal resolving set of size at most k?

Due to the fact that temporal distance is not a metric in the usual sense (symmetry and the standard
definition of the triangle inequality might not hold), we call the minimum size of a temporal resolving set of
a graph G the temporal resolving number of G instead of temporal metric dimension.

Note that we can assume in the following that there is an edge e such that 1 € A(e) (otherwise, let m
be the smallest time-step and decrease every time-step by m — 1). Temporal resolving set can also be seen
as a generalization of standard and k-truncated resolving sets: if A(e) = {1,...,diam(G)} for every edge e
(where diam(G) = max{dist(u,v) | u,v € V}, then a temporal resolving set is a standard resolving set; and
if A(e) ={1,...,k} for every edge e, then a temporal resolving set is a k-truncated resolving seﬂ

Our results and outline. We focus on time labelings with few labels per edge, mostly limiting ourselves
to one or two labels per edge. Although the setting is more restricted than the general case, we prove that
these scenarios already yield NP-complete problems or non-trivial polynomial algorithms.

2Also called a k-truncated dominating resolving set in [22].



We present three sets of results. First, we focus in Section [2] on the computational complexity of finding
a minimum-size temporal resolving set in temporal graphs with 2-labelings. In particular, we prove that
the problem is NP-complete on temporal complete graphs, which contrasts heavily with other resolving set
problems. The problem is also NP-complete on temporal subdivided stars, and on temporal trees even when
the two time-steps are consecutive.

In Section [3] we give polynomial-time algorithms for some classes with 1-labelings. However, even for
temporal paths, while the algorithm is quite natural, proving optimality is non-trivial. We also give algorithms
for temporal stars, and for temporal subdivided stars when t,,x = 2.

Finally, in Section [} we take a more combinatorial approach to periodic time labelings. We find the
optimal bounds for the temporal resolving number of several graph classes under this setting, namely in
temporal paths, cycles, complete graphs, complete binary trees, and subdivided stars. We also prove that
TEMPORAL RESOLVING SET is FPT on trees with respect to number of leaves and XP on subdivided stars
with p-periodic 1-labelings with respect to the period p.

2 NP-hardness of TEMPORAL RESOLVING SET

In this section, we give hardness results for TEMPORAL RESOLVING SET on very restricted graph classes, and
with strong constraints on the time labeling.

In the static setting, complete graphs tend to be easy to work with: since all the vertices are twins, they
are indistinguishable from one another, and hence we need to take all of them but one in order to separate
them. Indeed, the metric dimension and location-domination number of K,, are both n — 1. However, this is
not the case with temporal complete graphs, since now the vertices are not necessarily twins anymore. We
even prove that it is NP-hard:

Theorem 1. TEMPORAL RESOLVING SET is NP-complete on temporal complete graphs with a 1-labeling,
even when there are only two time-steps.

Proof. We reduce from the problem of finding a minimum-size adjacency resolving set, which is NP-hard on
planar graphs [14].

Let G = (V, E) be a connected planar graph, and k be an integer. We construct the following temporal
complete graph G = (V, E',) \):

e For every e € E, A(e) = {1};
e For every pair of vertices u,v such that uv € E, A(uwv) = {2}.

An adjacency resolving set in G clearly is a temporal resolving set in G and vice versa: the edges e such that
A(e) = {2} in G are exactly the paths of length at least 2 in G. O

The next two results are both proved by reducing from 3-DIMENSIONAL MATCHING, one of the seminal
NP-complete problems [29], and are inspired by the NP-completeness proof for k-truncated resolving sets on
trees in [22], with nontrivial adaptations to constrain the setting as much as possible.

3-DIMENSIONAL MATCHING (3DM)

Instance: A set S C X xY x Z, where X, Y, and Z are disjoint subsets of {1,...,n} of size p;
and an integer £ < |S|.

Question: Does S contain a matching of size at least ¢, i.e., a subset M C S such that |M| > ¢
and no two elements of M agree in any coordinate?

Theorem 2. TEMPORAL RESOLVING SET is NP-complete on temporal stars, in which every edge is subdivided
twice, with a 2-labeling.



Proof. We note that the problem is clearly in NP: a certificate is a set of vertices, and for each vertex, we
can compute the time vectors and check that they are all different and that every vertex is reached by at
least one vertex from the set in polynomial time. To prove completeness, we reduce from 3DM.

Starting from an instance (S, ¢) of 3DM, denoting s = |S| and the i-th triple in S by (z;,y;, z;) with
z; € X,y; € Y,2; € Z, we construct an instance (G,s + 2 — ¢) of TEMPORAL RESOLVING SET, where
G = (T, ). This construction is detailed below, see Figure

S
Let V(T) = {u,t1,t2,t3} U U{ai,bi,ci}. We will arrange the vertices in the following way as a twice
i=1
subdivided star. The center vertex is u and it is attached to vertices a; which are adjacent to vertices b;
which are adjacent to vertices ¢; for each 1 < i < s. Moreover, u is also adjacent to t; which is adjacent to
to and which is adjacent to t3. Vertices {a;,b;, ¢;} correspond to elements {x;,y;, z;} so that a; < b; < ¢;.
Edges are labeled as follows:

For every i € {1,...,s}, AMua;) = {2,a; + 4};
For every i € {1,..., s}, A(a;b;) = {3,b; + 4};

For every i € {1,...,s}, A(bici) = {4, ¢; + 4};
We have A(ut1) = {2}, A(t1t2) = {1} and A(¢2t3) = {3};

Observe that the constructed graph is a star whose every edge is subdivided exactly twice. Moreover,
every edge has at most two labels.

We shall now prove that we decide YES for 3DM on (S, ¢) if and only if we decide YES for TEMPORAL
RESOLVING SET on ((T,A),s +1 —¥).

(=) Assume that S contains a matching M of size at least {. We construct the following set: R =
Uigartait U {t1}. Note that R contains ; and each a; such that the corresponding element of S is not in
M. Furthermore, every vertex of T is reached from t;, so we need only consider the separation part.

First observe that t; separates u and each t¢;. Furthermore, it reaches each vertex of type a; at moment
a; + 4, vertices b; at moment b; + 4 and vertices ¢; at moment ¢; + 4. Consider then some aj, € R. It reaches
vertex by at moment 3 and ¢, at moment 4. Hence, together with vertex t;, vertex a; separates vertices
ap, by and c¢p, from all other vertices. Furthermore, vertex aj reaches other vertices of types a;,b; and ¢; at
the same moment as vertex t;. Hence, we have uniquely separated vertices u,t1,t2,t3 and every ap, by, ch
such that ap € R. Recall that sets X,Y and Z are disjoint. Thus, each vertex a; is separated from vertices
of type b; for any 7 and j and the same is true for a; and c; as well as b; and ¢;. Let us next consider when
we might not separate a; from a; (the same argument holds for pairs b;,b; and ¢;, ¢;). We may assume that
{ai,a;} N R = (). Thus, corresponding elements belong to M. Therefore a; # a; and hence, they are reached
at different time moments from vertex t1, a contradiction. Therefore, R is a temporal resolving set of the
claimed cardinality.

(<) Assume that there is a temporal resolving set R of size at most s — £ + 1. Since every vertex must
be reached from a vertex of R, we must have one of vertices ¢1,ts or t3 in R. Now, as in the previous case,
only the a’s b’s and ¢’s must be reached and resolved. If each a;, b; and ¢; is unique, then t; is a resolving
set of size 1 < s — ¢+ 1. Moreover, if for example a; = a; (similar argument holds for b; = b; and ¢; = ¢;),
then at most one of corresponding tuples can belong to the matching. Moreover, to separate a; and a;, we
need a vertex in resolving set to belong to one of the branches. Hence, we may choose as our matching M
the sets corresponding to branches which contain no members of the temporal resolving set. There are at
least ¢ such branches and the claim follows. O

Theorem 3. TEMPORAL RESOLVING SET is NP-complete on temporal trees, even with only one vertex of
degree at least 5, with a 2-labeling where the labels are consecutive.



3,bs + 4

4,cs+4

Figure 1: The construction of the proof of Theorem 2] Only the branches 1 and s are detailed together with
the control branch. We have {a;, b;, ¢;} = {x;, s, z;} where a; < b; < ¢;.

Proof. First, note that the problem is clearly in NP: a certificate is a set of vertices, and for each vertex, we
can compute the time vectors, check that they are all different and check that every vertex is reached by at
least one vertex from the set in polynomial time. To prove completeness, we reduce from 3-DIMENSIONAL
MATCHING.

Starting from an instance (S, ¢) of 3-DIMENSIONAL MATCHING, denoting s = |S| and the 4-th triple in
S by (x;,yi,2;) with 2; € X,y; €Y,z € Z, we will construct an instance (G, ¢') of TEMPORAL RESOLVING
SET. This construction is detailed below. Note that the time-steps cover the interval [n — 1,n% + 1] in order
to simplify the notations but, as discussed in the introduction, they can be brought down to the interval
[1,n? —n + 2] instead. Let:

s n n—Iln—1
Vv :{u} U U {ai7bi7ci} U U{U?,Sg,ti} U U U{wg’JJrLkvSg7j+l,kat‘1?7]+17k}
i=1 j=1 j=1k=1

We will arrange the vertices in the following way, which will be formalized below: u will be connected to
every v} which will be the start of the i-th branch corresponding to the i-th element of S, every ¢ will be

connected to its corresponding s and either v or w, all the wf JHLE Wil form a path linking vf and vf +1,

and the vertices a;, b;, ¢; will represent the tuple elements x;, y;, z;. The edges and their labels are as follows
(edges not described do not exist):

e For every i€ {1,...,s}, Nuv}) ={n—1,n};
e For every i € {1,...,s}, N(v]"a;) = {xin, zin+ 1}, AM(v!°b;) = {yin,yin + 1}, AN(v]'¢;) = {zin, zin + 1};

e For every i € {1,...,s} and j € {1,...,n — 1}, AW/ w/’*"") = {jn, jn + 1} and A(w!7TH"v; ) =
{G+Dn—=1,G+1)n};

e Foreveryie€{l,...,s},j€{l,...,n—1}and k € {1,...,n — 2}, set

Aw] 7T El Y = i+ ko + k4 1)



e For every i € {1,...,s} and j € {1,...,n}, set
M) = AEd) = i+ 1)
e Foreveryie {l,...,s},j€{l,...,n—1}and k € {1,...,n — 1}, set
N(gl I TLRITLRY — (LR IRy — 2 4 1)

Note that the underlying graph T thus constructed is a tree, and that every edge has, as time labels, an
interval of size at most 2. Furthermore, u is the only vertex with degree at least 5. This construction is
depicted on Figure

Let ¢/ = s(n(n—1)4+1)+ (s —¥¢). We prove that we decide YES for 3-DIMENSIONAL MATCHING on (.5, )
if and only if we decide YES for TEMPORAL RESOLVING SET on ((T, A),¢').

(=) Assume that S contains a matching M of size at least £. We construct the following set:

s n n—1n
#= o Uero YU 4.
i¢gM i=1 \(j=1 j=1k=1

i.e., R contains every t and all the first vertices of every branch of T" such that the corresponding element
of S is not in M. Note that every vertex of T is reached from an element of R, so we need to consider the
separation part. First, note that u and each s, ¢, v, and w is uniquely separated by R (u by the v}’s we
selected, the other ones by the ¢’s). Hence, the only possible vertices not separated by R are a’s, b’s and ¢’s.
Note that, by construction, a; (resp. b;, ¢;) will be reached at time x;n + 1 (resp. y;n + 1, z;n + 1) from
any vertex vjl- such that j # i, and at time z;n (resp. y;n, z;n) from v}. Hence, all the a;’s, b;’s and ¢;’s in
branches i such that i ¢ M are separated by R. Furthermore, for every branch 4, the vertices a;, b; and ¢;
are separated from each other. Assume now that two vertices are not separated by R, they have to be a;
and a; (without loss of generality) such that i # j and ¢, j € M. However, this is only possible if z; = z;, in
which case the elements ¢ and j from M cannot be in the same matching, which is a contradiction. Hence,
R is a temporal resolving set of size s(n(n — 1) + 1) + (s — £): it contains (s — ¢) vertices v}, and there are
n(n — 1) + 1 vertices t for each of the s branches.

(<) Assume that there is a temporal resolving set R of size at most £ = s(n(n — 1) + 1) + (s — £). Since
every vertex must be reached from a vertex of R, for every pair of adjacent s and t, at least one of them must
be in R. Without loss of generality, assume that every ¢ is in R (since this allows to reach and separate every
v and w): this means that the number of non-t vertices in R is at most s — £ (since every branch contains
n(n — 1)+ 1 pairs of adjacent s and t). Now, as in the previous case, only the a’s b’s and ¢’s must be reached
and separated, as well as u. Selecting either u or any v} will take care of u and allow to reach the a’s, b’s
and ¢’s. Again, the possible conflicts among those vertices are the ones such that (without loss of generality)
x; = x; for 7 # j. In this case, the only way to separate the pair would have been to either select a; or a;, or
to select any vertex above them in either (or both) of the branches i and j. Since R is a temporal resolving
set, all such pairs have been separated. We construct M the following way: add to M every i such that the
only vertices of the branch ¢ in R are its s’s and t’s. No two elements of M can verify z; = z; (resp. y; = y;,
z; = zj), since that would imply that the corresponding pair (a;,a;) (resp. (b;,b;), (ci,c;)) would not be
separated: no vertex of branch ¢ would have been in R, and thus R would not be a temporal resolving set.
Hence, M is a matching of size at least £: at most (s — £) branches contain a vertex of R that is not a ¢, and
thus at least ¢ branches do not. O

Remark 4. We can set A(t7v7) = At Fd 7 T0RY — (2 49 02 43} and A(s7t]) = A(sI7THREIHER) =
{n? + 1,n% + 2}, to obtain a construction with time intervals of size exactly 2.
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Figure 2: The construction of the proof of Theorem [3| Only the branch 1 is detailed, we have 1 =1, y; = n
and z; = 3. Dashed lines represent longer paths.

3 Polynomial-time algorithms for subclasses of trees

In this section, we give polynomial-time algorithms for TEMPORAL RESOLVING SET. We study temporal
paths and stars with one time label per edge, and temporal subdivided stars with one time label per edge and
where every label is in {1,2}. Recall that TEMPORAL RESOLVING SET is already NP-complete on temporal
subdivided stars with 2-labeling (Theorem [2)), so these results are a first step for bridging the gap between
polynomial-time and NP-hard.

3.1 Temporal paths

Throughout this subsection, we denote by P, a path on n vertices vy, ..., v,, with edges v;v;41 for 1 < i <
n — 1. Furthermore, we assume that A is a 1-labeling. Algorithm [I] constructs a minimum-size temporal
resolving set R of P = (P,, ). The core of the algorithm consists in adding to R the last vertex that can
reach a leaf, then check if it separates everything in the two directions. If so, we can iterate on the vertices it



cannot reach, and otherwise we have to add a vertex that separates the conflicting vertices before iterating.
We denote A(v;viy1) by t; and the elements of R by {r1,...,7|g}, and we assume that if r; = v; and r, = v
for h > 4, then k > j. Consider vertex v;, we say that v; is on its right (resp. left) side if j > 4 (resp. j < i).
The set of vertices on the left side of vertex v; is denoted by £(v;).

Algorithm 1: Temporal resolving set for temporal paths with 1-labeling
Input : A temporal path P = (P,, \).
Output: A minimum-size temporal resolving set R of P.

1 Set v =v; and R = 0.

2 while true do

3 Set s = v; where i is the largest integer such that v; reaches v. Add s to R and set a = i.
4 if within R%(s) every vertex has unique distance to s then

5 Set w = v; where j is the smallest integer with j > ¢ for each v; € R(s).

6 if v, € RR(S) or v, € R then

7 L return R.

8 else

9 Set w = vy, where v, € R (s) is the vertex which does not have unique distance among

vertices in R (s) to s and among those vertices b is minimal such that b > a.

10 | Letv=w.

Lemma 5. Let P = (P,,\) be a temporal path, P, be a subpath of P, containing one leaf of P,, and
P" = (Pm,\|p,,). The temporal resolving number of P is at least as large as the temporal resolving number

of P'.

Proof. We may assume without loss of generality that the temporal subpath P’ contains vertices vg, Vai1, - - -, Un
for some 1 < a < n. Let R C V(P,) (resp. R’ C V(P,,)) be a minimum-size temporal resolving set of P
(resp. P'). If |R| > |R'|, then the claim follows. Thus, assume by contradiction that |R| < |R’|. First observe
that if R C V(P,,), then R is a temporal resolving set in P’ and thus |R| > |R’|, a contradiction. Hence, we
may assume that there exists some vertex s € R\ V(P,,). Let us consider the set R” = {v,} URNV(Pp,).
Note that |R”| < |R|. First of all, every vertex in P’ is reached by some vertex of R”. Secondly, if two
vertices of P’ are not separated by vertices in R” \ {v,}, then they were separated by s in P. Moreover, in
R” they are separated by v,. Indeed, if w € R(s)NV(P,,), then w € R(v,) NV (P,,). Moreover, since v, is a
leaf in P,,, every vertex in R(v,) NV (P,,) has a unique temporal distance to v,. Therefore, R” is a resolving
set in P’ with cardinality |R”| < |R’|, a contradiction. Thus, the claim follows. O

Theorem 6. There is an O(n) algorithm solving TEMPORAL RESOLVING SET on temporal paths on n vertices
with a 1-labeling.

Proof. In the following, we first show that Algorithm (1| returns a temporal resolving set R of P =(FP,, \).
After that, we prove that R is minimum-sized and finally, that the algorithm has linear-time complexity.

First of all, consider vertices in R(r1). Note that if there are vertices u, v, € R(r1) such that dist;(ry,u) =
dist;(r1,vp), then one of them is on the left side of r; and other one is on its right side. Let us assume,
without loss of generality, that u is on the left side of r;. Moreover, no third vertex w can have dist;(r1,u) =
disty(r1, vp) = disty(r1,w). Let us assume that vy, is the vertex with the smallest index on the right side of
such that it is not separated by r; from some other vertex (in this case, from u).

In this case, Algorithm [T has chosen w = v, on Step [9] and set v = w after that on Step Hence, in the
following while-loop, we choose 72 as the rightmost vertex which reaches v(= vp). Furthermore, o cannot



reach u. Indeed, since r; cannot separate u and vy, there are two edges with the same time label on the path
from u to v,. Therefore, on the path from ry to u, there are two edges with the same time label. Hence,
separates vy, from u. Consequently, if there were any other vertices in R{”}(rl) which were not separated
by 71, then they would be separated by r2. A similar argument works for all pairs r;,7;11. Note that in the
end, either we choose 7|r| = vy, or 7|g| separates every vertex in R% (rr))- Hence, we eventually enter the
if-clause on Step [0 and return R.

We now show that there does not exist any resolving set of smaller size than R in P. We do this by
induction on the number n of vertices. First of all, Algorithm [I] outputs a temporal resolving set of size 1
when n € {1,2}, which is optimal. Thus, we assume from now on that it outputs a minimum-size temporal
resolving set for n < n'.

Let n = n’ + 1, and R be the temporal resolving set constructed using Algorithm [l| on P = (P,, ).
Assume first that r; separates every vertex in R(rq). Observe that if |[R| = 1, then it is minimum-size.
Hence, we may assume that P’ = P\ R(r1) (where G \ V' for a temporal graph G = (V, E, \) denotes the
temporal subgraph G’ = (V\V/,E\ {uv : w € V' or v € V'},\)) is nonempty. By induction, Algorithm
outputs a minimum-size temporal resolving set R\ {r1} of P’. Observe that £(r;) N R(w) = @ for any w
on the rightside of r;. Moreover, we require at least one vertex in set £(r;) U {r1} in any resolving set of
P to reach vertex v;. Observe that Algorithm [If returns the temporal resolving set R\ {r1} for P\ R(r1).
By induction, set R\ {r1} has minimum size. By Lemma [5| we require in any temporal path containing
P\ R(r1) (and having v, as a leaf) at least |R| — 1 vertices. Furthermore, by our observations, we require in
a set £(ry) U {ri} at least one vertex to reach v;. Furthermore, since these vertices do not reach any vertex
in V(P) \ R(r1), we require at least |R| vertices in a resolving set of P, as claimed.

Assume next that there are vertices vy and v, in R(r1) which are not separated by r;. Further assume
that vy (resp. wv,) is on the left (resp. right) side of r1. Consequently, ro is the rightmost vertex which
reaches v,.. We show that if vy, # v, then the claim follows. Assume that ¢ > 2. Consider the temporal
path P’ = P\ {v1}. Note that ry is the rightmost vertex which reaches vo. Moreover, 1 does not separate
vertices vy and v,.. Thus, Algorithm [If outputs R as a resolving set for P’. By our induction hypothesis, R is
minimum-size. By Lemma [5] we know that R is at least as large as a minimum-size temporal resolving set
of P’. Thus, R is also a minimum-size temporal resolving set for P. Note that this implies that r; separates
every pair of vertices in R(r1) except for (vy,v,).

We now need to analyze several cases depending on whether ¢,_; < ¢, and whether ¢, < ¢,.,1. We
distinguish four cases and for all of them, we conclude that at least |R| vertices are necessary in a temporal
resolving set of P.

Our aim is to conclude that temporal resolving set is of size at least |R| in P in all of the cases.

Assume first that t._; < t,. and ¢, < t,1. Thus, 79 = v,;1. Furthermore, ry separates every vertex in
R(r2)\{v}. Indeed since ry reaches v,., we have R(r2)\ {v,} = R(r2)\ £(r2), and ry pairwise separates every
vertex on its right side. Denote by P, the temporal subpath P\ (R(r1) UR(rz2)). Note that Algorithm
outputs R\ {r1,r2} as a temporal resolving set of P, and, by induction, this has minimum cardinality in P,..
Note that if |R| = 2, then R has the smallest possible size in P. Hence, we assume that |R| > 2. By Lemma
any subpath of P containing P’ and leaf v,, has temporal resolving number at least |R| — 2. Furthermore,
we require at least two vertices in a temporal resolving set of P among vertices £(r2) U {rz}. Note that none
of these vertices reach any vertex in V(P’). Thus, at least |R| vertices are necessary in a temporal resolving
set of P as claimed.

Consider now the case with t._; = ¢, and ¢, > t,11. We have R(r1) = {v1,...,v.}. Consider subpath
P’ =P\ R(r1). Note that Algorithm [1| outputs R\ {r1} for P’ since ro # v,41 as ¢, > t,.y1. Moreover,
R\ {r1} is a minimum-sized temporal resolving set by induction assumption. By Lemma any subpath of
P containing P’ and v,, requires at least |R| — 1 vertices in any temporal resolving set. Moreover, we require
at least one vertex in ¢(ry) U {r1} for any temporal resolving set of P. Note that vertices in ¢(r1) U {r1} do
not reach vertices in V(P’). Hence, we require at least |R| vertices in any minimum-sized temporal resolving
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set of P.

Consider next the case with ¢,_1 < t, and ¢, > t,11. We have R(ry) = {v1,...,v,.41}. Consider P’ such
that V(P') = {v,—1,...,vn}, E(P") C E(P), Mvp—1v,) = t, and A(vp440,4441) = tr4; for each ¢ > 0. Note
that Algorithm [I| now outputs the temporal resolving set R' = (RU {v,}) \ {r1}. By induction assumption,
R’ has minimum cardinality in P’. In particular, any temporal resolving set of P’ requires one of the vertices
v,_1 or v, as these are the only vertices which reach v,._;. Consider a temporal resolving set R’ of P. Let
R* = R"Nl(vy41). Observe that (R”\ R*)U{v,} is a temporal resolving set of P’. Hence, |R"|—|R*|+1 > |R).
Since we require at least one vertex in R* to reach vy, we have |R”| > |R|. Therefore, |R| has the minimum
cardinality over temporal resolving sets of P, as claimed.

Next, we consider the case where t,_1 > ¢, and ¢, # t,41. Observe that v,11 € R(r1). Since v, = vy,
r1 separates v,1 from other vertices in R(r;). Assume next that all time labels have even values. This has
no effect on the temporal resolving set or the algorithm (we can multiply every time label by two without
changing any reachability in the temporal path). We do the following modification to the time labeling of
P, obtaining path P,,,. We change ¢, into ¢, = ¢, — 1. Note that since we assumed that every time label has
even value, time label ¢/ has an odd value unlike all other time labels, and ,._y > t,.. Moreover if ¢, 11 > ¢,
then t,41 > t, and if ¢, 1 < t,, then ¢,.; < t/.. Note that in this change we maintain v, and v, unseparable
by r1 and every set R(v;) remains unchanged.

Observe that Algorithm [I] returns the same temporal resolving set R for P, since rs is still the rightmost
vertex which reaches v,.. Moreover, any temporal resolving set for P remains as a temporal resolving set
for P, since sets R(v;) remain unchanged and, since the label ¢/ is the only odd label, it cannot cause any
two vertices to become unseparated. Let P;, = P, \ R(r1). Observe that Algorithm [1| outputs a temporal
resolving set R' = R\ {r1} for P/ . Furthermore, by the induction hypothesis, it is minimum-size. Consider
next a temporal resolving set R’ of P,,. Assume first that there are at least two vertices in R(r;) N R”
and let us denote the rightmost of them by w. Denote P, = Py, \ £(w). Note that R” \ {(w) is a temporal
resolving set of P,,. Observe that P}, is a subgraph of P,,. Thus, by Lemma [5| we have |[R”\ {(w)| > |R| —1
and |R”| > |R|. Assume then that we have |[R" NR(r1)| = 1. Let wy; € R” NR(r1). Note that if v, € R(w1),
then wy does not separate vy and v,. Thus, some other vertex in R” \ R(r1) reaches v, and due to the odd
time label, R” \ R(r1) is a temporal resolving set of P,,. Hence, by Lemma [5] we have |R”| > |R|, allowing
us to conclude that R is a minimum-size temporal resolving set of P,,. If we have a temporal resolving set
R* of P with |R*| < |R|, then R* is also a temporal resolving set of P, with |R*| < |R|, a contradiction.

As the last case, we consider t,_1 > ¢, = t,+1. Again, observe that v,.11 € R(r1). Furthermore, v, 1 = 7.
Hence, together, r; and ro separate all vertices in R(r;) U R(r2). Furthermore, since at least one vertex in
£(r1) U{r1} is required, note that if |R| = 2, then it has minimum size in P. Thus, assume that |R| > 3. Let
P'=P\ (R(r1) UR(r2)). Note that set R\ {ri,72} is a minimum-size temporal resolving set of P’ since ry
and ro separate all vertices in R(r1) UR(rg). Furthermore, Algorithm [1| outputs set R\ {rq,r2} for P’. By
the induction assumption, set R\ {ry,72} is a smallest temporal resolving set of P’. Hence, by Lemma
any subpath of P containing P’ and leaf v,, requires at least |R| — 2 vertices in any temporal resolving set.
Furthermore, at least two vertices £(ry) U {rq} are required in any temporal resolving set of P, and these
vertices do not reach any vertex in V(P’). Thus, P does not have any temporal resolving set with cardinality
less than |R|, as claimed.

Finally, we show that Algorithm [I] has linear time complexity. First of all, the while-loop ends at some
point since every temporal path has a temporal resolving set by taking every vertex in the underlying path.
Secondly, Step [ uses at most i + 1 — a comparisons and in total at most 2n comparisons. In Step [4 observe
that sets RR(S) do not overlap. Thus, each vertex is considered only once. Moreover, the time labels on the
left and the right side of s are ordered from small to large. Thus, checking if each time label has a unique
value can be done in linear time on | R¥(s)|. Again, in Step|5] the sets R(s)\ £(s) do not overlap. Thus, this
step takes at most linear time on n in total. Finally, all the other steps take at most constant time. Hence,
the algorithm has linear-time complexity. O
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The following lemma gives some structure on the minimum-size temporal resolving sets of temporal paths,
with respect to the one output by Algorithm[I] In particular, it states that the constructed temporal resolving
set R places each vertex in R as far away from the leaf v, as possible. It will be used in the case of subdivided
stars, allowing us to reuse Algorithm [I] to find a partial solution.

Lemma 7. Let P be a temporal path on n > 2 vertices with 1-labeling A on wvertices vy,...,v, and edges
vivq1 for 1 <i <n—1 where v; is on the left side of viy1 for eachi. Let R = {r1,...,7g} be the temporal
resolving set output by Algom'thm where r; is on the left side of r;11 for each i. Let ' ={r},... ’TI/RI} be
another temporal resolving set of P. We have r; € £(r;) U{r;} for each i.

Proof. Recall that by Theorem [6] Algorithm [I] returns a temporal resolving set of minimum size for P.
Consider first the case with |R| = 1. Notice that 7 is the rightmost vertex which reaches v;. Thus, the
claim holds in this case. Consequently, by the same argument, we have that r] € £(r1) U {r1} even when
|R| > 1. Assume next that the claim does not hold for some P, R and R'. Furthermore, let v} & £(r;) U {r;}
and 7 € £(r;) U {r;} for every j < i. Let us assume first that r;_; = r;_,. Denote by R; = {ry,...,r;} and
Ry ={ri,...,r}} for any j <|R]|.

Consider first the case where r;_1 separates all vertices in R (ri—1). Let w be the leftmost vertex which
is not reached by R;_;. In this case, Algorithm [I] chooses r; as the rightmost vertex which reaches w. Since
also 7/ reaches w, we have 7} € £(r;) U {r;}, a contradiction. Hence, there exist vertices u,w € R~ (r;_;)
which are not separated r;_1. Let u € £(r;—1) and w € R(r;—1) \ £(r;—1). Furthermore, we assume that w is
the leftmost vertex with these properties. Notice that r; is the rightmost vertex which reaches w. Moreover, if
u,w € RFi-1 (rf_y) and ri_; # u, then r;_, does not separate v and w. Thus, vertex r} reaches w. However,
since r; was the rightmost such vertex, we have r, € £(r;) U {r;}, a contradiction. Furthermore, if 7;_; = u,
then w € R(r}_,). Indeed, there are two edges with the same time label on the path from u to w since r;_;

does not separate them. Therefore, to reach w, we have w € R(r}). Again, this leads to a contradiction

since r; was the rightmost vertex reaching w. Hence, u ¢ R7i-1 (ri_,) and r;_, is on the rightside of u. In

particular, this implies that v € R(r,_,). Furthermore, we have u & R(r;_2). Indeed, otherwise r;_5 or r;_;
would separate w and u. Moreover, v is on the rightside of r;_2. Since u € R(r}_,) but u & R(r;_2), we
have r;_, on the rightside of r;_». However, this is a contradiction with the minimality of i. Therefore, the
claim holds. O

3.2 Temporal stars

In this subsection, we give polynomial-time algorithms for finding minimum-size temporal resolving sets for
temporal stars with 1-labeling A and temporal subdivided stars with 1-labeling using only values 1 and 2.
For both these classes, the central vertex is denoted by c.

Theorem 8. Let S be a star, \ be a I-labeling, and X be a maximum-size set of leaves of S such that, for
distinct u,v € X, Acu) # Mcv). The set V(S)\ X is a minimum-size temporal resolving set of (S, \).

Proof. Throughout this proof, we denote by S,, the star with central vertex ¢ and n leaves vq,...,v,. We
furthermore assume that the time labeling A uses time labels from 1 to m and does not contain any gaps
(we can remove gaps without changing reachability); since A(cv;) contains only one integer, we will use it to
denote the integer it contains by abuse of notation. We can further assume without loss of generality that
A(cvi) < M(evigr) foreach 1 <i<n—1. Let VL; = {v; : Aev;) = j} and L; = |V L;|. We denote by VL’
a set VL; \ {v} where v is an arbitrary vertex of V.L,.

We first prove that R = V(S,) \ X from the statement of the theorem is a temporal resolving set of
S = (S,A). First, we have V(S5,) C R(c) and ¢ € R. Furthermore, by the definition of the sets VL, c
separates every vertex in V(S,) \ R. Hence, R is a temporal resolving set of S.
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Next, let us prove the minimality of R. First, assume that for some j, we have u,v € VL; \ R. However,
we have A(cu) = A(cv) = j. Thus, these vertices cannot be separated and we have |VL; \ R| < 1 for each
j. Assume then that [VL; \ R| =1 for each 1 < j < m and that ¢ ¢ R. However, now there is a vertex
v € VL \ R and the only vertices that can reach v are v and ¢ since 1 is the smallest label. Thus, no vertex
in R reaches v and hence, we cannot simultaneously have |[VL; \ R| = 1 for each 1 < j < m and ¢ ¢ R.
Therefore, R has minimum cardinality. O

We next consider subdivided stars together with a 1-labeling A using only values 1 and 2. In particular,
we present a polynomial-time algorithm for this case. Let SSa be a subdivided star of maximum degree A
and central vertex c. By a branch of SSa, we mean a maximal path starting from the central vertex ¢ but
not containing c itself. Branches are denoted by By, ..., Ba and the leaves by ¢1,...,¢A. The three vertices
in branch B; closest to ¢ are denoted by v;, u; and w;, respectively (note that w; and w; may not exist if
|B;] <1 or |B;| < 2; in theses cases, one of these three vertices may also be ¢;). We further assume that
branches are ordered so that A(cv;) < A(cv;41) for each i < A — 1. We assume that A(cv;) =1 if and only if
i < I; where 0 < I; < A and denote B! = Uflzl B; and B? = UiA:11+1 B;.

The basic principles of Algorithm [2] on temporal subdivided star SSa = (SSa, A) are as follows:

1. For each path from /¢; to ¢, we apply Algorithm [I| starting from ¢; creating temporal resolving set R;
for this path. Denote (Uf:1 R)\ {c} by R

2. Let B.=U B;. If B, =0, then we are done.

cER;

3. We construct an O(n®) number of sets R” containing vertices in the vicinity of ¢ such that R’ U R” is
a temporal resolving set, and select the smallest such set.

The following theorem shows that Algorithm [2] returns a minimum-size temporal resolving set in poly-
nomial time for a given temporal subdivided star using only values 1 and 2 in its 1-labeling. In order to do
this, we show that there is a minimum-size temporal resolving set of the form R’ U R” as constructed above.

Theorem 9. Given a subdivided star SSa of mazximum degree A > 3 and a 1-labeling of edges A restricted to
values 1 and 2, Algom'thm returns a minimum-size temporal resolving set of SSa = (SSa, A) in polynomial-
time on the number of vertices.

Proof. We consider that the central vertex c is the rightmost vertex and the leaves are the leftmost vertices
of their branches whenever reasoning on Algorithm [I] We first show that Algorithm [2] returns a temporal
resolving set, then that the temporal resolving set has minimum possible size, and finally that the algorithm
operates in polynomial time.

First of all, by Theorem [6] Algorithm [I]returns a minimum-size temporal resolving set R; for a path from
¢; to c in Step [I} Denote this path together with its time labeling A by P;. Let us first consider the set R’
which is returned in Step [5| If we enter the if-clause on Step , then we have B. = () and ¢ & Ule R;. Thus,
R = Ule R;. Since each R; is a temporal resolving set for path from ¢; to ¢, each vertex in the substar is
reached by some vertex in R’. Moreover, each of these sets separates all vertices within the same path P;.
Thus, if two vertices u € V(B;) and v € V(B;) are not separated by R', then we have ¢ # j. However, since
¢ € R', vertices u and v are reached by at least two different vertices in R’, from two different sets R; and R,;.
Let u € R(r,,) for some r, € R;. If v € R(ry), then r, separates u and v. If there is a path from r,, to u to v,
then 7, separates vertices u and v. Thus, r, is on the path from w to v. Similarly, we have r, € R; between
vertices v and u. Thus, neither of u nor v can be vertex ¢. Consequently, also ¢ € R’ is on the path from u
to v. Moreover, since our labeling consists of values 1 and 2, vertex r, cannot reach u. We conclude that u
and v are separated. Hence, if R’ is returned in Step |5, then it is a temporal resolving set of the subdivided
star.
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Algorithm 2: Computing in polynomial-time a minimum-size temporal resolving set of a temporal
subdivided star SSa = (SSa, A) such that, for any edge e, either A(e) =1 or A(e) = 2.
Input : Subdivided star SSa of degree A > 3 together with time labeling A for each edge
e € E(SSa) such that A(e) € {1,2}.
Output: A minimum-size temporal resolving set R of SSa.
For each path from /¢; to ¢, we create temporal resolving set R; using Algorithm
Let R = (U2, Ri) \ {c}.
Let B. = U.cr, Bi-
if B. = () then
L return R’.
for j € {1,2} and 1 <i< A do
if v; € V(B.) and B; € B?, for some i < A, and R; \ {c} does not separate v; from some other
vertex in B; but v; € R(R; \ {c}) then
L add v; to Q;.

ok W N =

-

®

for 1 <i< A do

10 L Remove branch B; from B. if Qa NV (B;) # 0.

11 Let r = |{i | Q1 NV (B;) # 0}

12 for 0 < j <2do

13 for each vertex set R"” such that R C R(c) N (V(B.) U{c})\ R, |R" NV (B;)| <1 for every
B, € B, |[R'NQ1| <1, |R"Nn{a|dist(c,a) =2} <1 and |R"|=|B.]—1—7r+j do

14 L if " UR" is a temporal resolving set of SSa then

©

[y

15 L return R’ UR"

In the for-clause between Steps |§| and |8 we consider each vertex v € N(c) in some branch B; € B? which
is reached by R; \ {c} but not separated from some other vertex in B;. Each such vertex is added to set Q;
for j corresponding to B7. Observe that any vertex in N[c] which reaches v € Q;, also separates it from all
other vertices together with R;.

In the for-clause between Steps [9] and every branch which has non-empty intersection with Qs is
removed from B.. Notice that if v € @9, then v € N(¢). Hence, if we remove a branch B; during this step
from B, then we had R(c) NV (B;) = {v}.

In the for-clause between Steps[I2] and [I5] we construct a temporal resolving set for the substar. Observe
that in particular the for-clause can always find, with j = 3, the set R” which contains ¢ and the first vertex in
every branch in B, which has empty intersection with ;. Together with R’, this forms a temporal resolving
set of the substar (although not always minimum-size). Indeed, recall that R; U {c} is a temporal resolving
set for P;. Thus, (R; U{v;})\ {c} is also a temporal resolving set for P; \ {c}. Furthermore, each v; can only
reach the first vertices of other branches in B? and no vertices in branches in B'. These vertices are either
in R"UR", in @2, or in a branch which has temporal resolving set R; \ {c}. Since we have ¢ € R”, vertices
in Q; for j € {1,2} are reached and separated from other vertices. By these considerations, the only vertex
pairs which might not be separated belong to two different branches and do not belong to ;. Let v € V(B;)
and u € V(B;) be two vertices which are not separated. Note that if u ¢ N(c), then it cannot be reached by
any vertex in V(B;) and vice versa. Thus, v,u € N(c) \ R”. However, now v (u) is reached by some vertex
ry (ry) in RN V(B;) (R NV(Bj)). Moreover, we have u & R(r,) (v & R(r,)). Thus, u and v are separated
and R’ U R" is a temporal resolving set of the substar.
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Let us next show that the returned temporal resolving set has the minimum size. Consider first set R’
on Step |5| and assume that it is returned. In this case, we have B, = ) and thus, ¢ & Ule R;. Consider
path P; — R(c). Note that for this path, Algorithm [l| returns a temporal resolving set of cardinality equal
to |R;|. Furthermore, by Theorem |§|, this set has minimum possible cardinality. By Lemma |z|, there is no
temporal resolving set of cardinality |R;| for path P; that contains vertex c¢. Moreover, we require for each
path P; —R(c) at least | R;| vertices in a temporal resolving set. Thus, R’ has the smallest possible cardinality.

Let us then show that if R’ is not returned on Step |5, then R’ U R” has the minimum cardinality for a
temporal resolving set in SSa. By our earlier considerations, R’ U R” is a temporal resolving set for some
suitable R”. Let us first show that we may assume that R’ is a subset of some minimum-size temporal
resolving set of SSa. First of all, in Step [I] Algorithm [I] returns a minimum-size temporal resolving set R;
for each path P;. Furthermore, for path P; — R(c) \ (R; \ {c}), Algorithm [I| returns the temporal resolving
set R; \ {c}. Indeed, P; — R(c) \ (R; \ {c}) is a path since Algorithm [1| always picks the last vertex to reach
previously considered vertices and we only use labels 1 and 2. When traversing the path from a leaf to the
center, the algorithm does not consider how to separate/reach vertices ahead of it. Let r; € R; \ {c} be
the vertex closest to ¢ in R; \ {c}. If ¢ € R;, then by Lemma (7| any temporal resolving set containing a
vertex in P; closer to ¢ than vertex r; has at least |R;| 4+ 1 vertices. Moreover, if ¢ € R;, then any temporal
resolving set containing a vertex in P; closer to ¢ than vertex r; has at least |R;| vertices other than c. By
these considerations, r; is the vertex closest to center ¢ other than ¢ which can be contained in any temporal
resolving set of cardinality |R; \ {c}| over all subpaths of P; containing leaf ¢;.

Furthermore, if R is a resolving set of SSa and Rp, = RNV (P!) (where P/ is the subpath of P; from ¢;
to r;), then if |Rp,| = |R; \ {c}|, then Rp = (R\ Rp,) U(R;\ {c}) is also a temporal resolving set of SSa and
if |Rp,| > R; \ {c}, then R, = {c} U(R\ Rp,) U (R; \ {c}) is also a temporal resolving set of SSa. Consider
first the case with |Rp,| = |R; \ {c}|. In this case, R; reaches and separates every vertex in P! and r; is a leaf
of PI. Assume on the contrary that Rp is not a temporal resolving set of SSa. In this case, there are (at
least) two vertices in R(r;) which are not separated by r;. Note that one of them is on the right side (call
this u) of 7; and one is on the left side (call this v). Moreover, if r; € R, then we have some r; € R on the
left side of r; which is the rightmost vertex of Rp,. If r} separates u and v, then v ¢ R(r}). In this case, a
vertex in R\ Rp, reaches u and separates it from v. Thus, r; € R. Let r,_; (r;_1) be the first vertex on the
left side of r; in R (R;). By Lemma [7] the vertex r;_; is not on the right side of r;_1. Thus, Rp, does not
separate vertices u and v but set R\ Rp, does separate them. Therefore, Rp also separates u and v. Thus,
Rp is a temporal resolving set of P. Moreover, we have |[Rp| = |R].

Let us next consider the case with |Rp,| > |R; \ {c}|. Recall that R; is a temporal resolving set of P;.
Thus, if R, = Rp U {c} does not separate some vertices, then those vertices belong to different branches
of SSA and are only reached by c. However, in this case they are also not reached by Rp, and thus, not
separated by R, a contradiction. Thus, R/ is a temporal resolving set of SSa with |R| < |R|. Therefore,
we have shown that R’ or R’ U {c} is a subset of some minimum-size temporal resolving set of SSa.

In the following, we consider R” from Step Observe that there are at most |B.| — r vertices v; in
N(c) which are not reached by any vertex in R’. Let us have |B. N B!| = ¢; and |B. N B?| = cp. Out of
these vertices, note that ¢ cannot separate any two vertices v;,v; € N(c) N V(B.) NV (B") for h € {1,2}.
Moreover, to reach every vertex v; in B, N B!, we require either ¢ to be in R” or some vertex from B; to
be in set R”. Thus, we have |R"| > |B.| —r — 1. We have earlier shown that for |R”| = |B.| — r + 1, there
always exists a temporal resolving set. Thus, |B.| —r —1 < |R"| < |B;| — r + 1. Let us next show that we
may assume that R” C R(c) N (V(B.) U {c}) \ R’. We immediately note, that assuming R’ N R” = () does
not affect on R’ U R”. Assume first on the contrary, that for every minimum set R* such that R’ U R* is
a temporal resolving set of SSa, we have w € R* and w ¢ R(c). Furthermore, assume that among such
sets, R* contains the smallest possible number of vertices outside of R(c). Since R’ separates vertices of
SSa — R(c), we have a vertex v € R(w) NR(c). Otherwise, R’ U R* \ {w} would be a temporal resolving
set of smaller size. If R(w) NR(c) \ {¢} = v, then R' U (R* \ {w}) U {v} is a temporal resolving set of SSa,
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a contradiction. Thus, u,v € R(w) N R(c). Note that u and v belong to the same branch. Assume that
dists(c,u) = 2 and dist¢(c,v) = 1. In this case, R’ U (R* \ {w}) U {u} is a temporal resolving set of SSa, a
contradiction. Thus, we may assume that R” C R(c).

Let us next show that we may assume that R” C V(B.) U {c¢}. Suppose next on the contrary that for
every minimum-size set R* such that R’ U R* is a temporal resolving set of SSa, we have w € R* and w ¢
V(B.)N{c}. Furthermore, assume that among such sets, R* contains the smallest possible number of vertices
outside of V(B.) N {c}.By earlier arguments, we may assume that R* C R(c). Hence, dist:(c,w) € {1,2}.
Observe that R’ reaches and separates every vertex in the branch w is located since w ¢ V(B,).

Assume next that dist(c,w) = 2, then the only vertex, which is possibly separated from some other
vertex by w but not by R’ U (R*\ {w}), is ¢. Thus, R'U (R*\ {w})U{c} is a temporal resolving set of SSa,
a contradiction.

Assume then that dist;(c,w) = 1. Thus, w € N(¢). Now, R(c) N R(w) = {c} U {w} U (N(c) N {u |
diste(c,u) = 2}) U(N(w)N{u | dists(c,u) = 2}). Note that vertices in {w}U (N (w)N{u | dist(c,u) = 2}) are
already separated from other vertices by R’. Consider a pair of vertices u.,u,, which is separated by w but
not by ¢ and let u, € R(c)\R(w) and v,, € R(w)NR(c). Furthermore, we have dist;(c, vy,) = dist;(c, ue) = 2.
Hence, v, € N(c) N {u | disty(c,u) = 2} and u, € {u | disty(c,u) = 2 = dist(c,u)}). Moreover, since the
pair vy, u. is not separated by R’ U R* \ {w}, there is another a vertex z # w in R’ U R* which reaches u,
but does not separate v,, and u. since R’ U R* is a temporal resolving set of SSa. Let u. belong to branch
By,. Observe that there are exactly two options for z since dists(x, v,,) = diste(z,u.) < 2: ¢ and the single
vertex, say v., on the path from ¢ to u.. Note that v, € R’ by Lemma m since Algorithm Would place ¢ into
the temporal resolving set rather than vertex v.. Therefore, By € B.. Let assume next that R’ U R* \ {w}
separates all other vertex pairs except for u.,v,,. However, in this case {u.} U R’ U R* \ {w} is a temporal
resolving set of SSa, a contradiction. Hence, we assume that there is also another vertex pair u’, v/, which
is not separated by R’ U R*\ {w}. Note that the same restrictions apply for u/, and v), as we have for u, and
Uy. Furthermore, if we cannot choose u, # u., then {u.} U R U R*\ {w} is a temporal resolving set of SSa.
Thus, let us assume that u] # u.. Since u.,u, ¢ R(w) and since R’ U R* is a temporal resolving, there is
a vertex z € R’ U R* \ {w} which separates u. and u,. Assume without loss of generality that u, € R(z).
Again, {u.} UR U R*\ {w} is a temporal resolving set of SSa. Therefore, R” C V(B.) U {c} and hence,
R" CR(c) N (V(B.) N{c}).

Let us next show that we may assume that |[R” N V(B;)] < 1 for each i. Observe first that since
R’ C R(e), we have |[R" NV (B;)| < 2. Suppose to the contrary, that we have |[R” NV (B;)| = 2 for some ¢
and R has the smallest number of such branches among all minimum-size temporal resolving sets R’ U R”.
Thus, we have v;,u; € R”, AMcv;) = 1 and A(v;u;) = 2. Since R’ C V(B.) U {c}, we have B; € B.. Since
R'UR"\ {v;} is not a temporal resolving set, vertex v; separates a pair of vertices v;,uy in V(B.) with
disty(c,v;) = dist(c,ur) = 2. Note that R’ U {u;} separates every vertex in B; since u; ¢ R’. Since v;
separates u, and v;, exactly v; € R(v;) and dist(c, v;) = 1, dists(c, v;) = 2 and dist(c, ug) = dist,(c, ug) = 2.
Since R’ U R" is a temporal resolving set, there is a vertex in R’ U R” which reaches uy and since it does not
separate uj, and v, that vertex is either ¢ or v. Furthermore, R' U R"” \ {v;} separates uj from each vertex
except v;. Indeed, if we had v, which is not separated from wuy, then v, and v; would not be separated by
R'UR" since v; does not separate v, and v;. Similarly, if we had w, which is not separated from uy, then they
are also not separated by R’ UR”. Thus, v; and uy are the only vertices which are not separated by R’ UR".
Furthermore, we may observe that the only vertices which might be in R’ UR" at temporal distance one from
c are v; and vy, since any other vertex would separate u; and v;. Consider now set {v;} UR U R" \ {v;}.
Since v; separates v; and uy and vertices u; and either ¢ or v, together reach every vertex which is reached
by v;, the set {v;} U R’ UR"\ {v;} is a temporal resolving set, a contradiction.

Let us next show that we may assume that |[R” N Q1| < 1. Recall that @1 C N(c) N {v | dist¢(c,v) = 1}.
Assume on the contrary that we have v;,v; € R" N Q. Then, R = R’ U (R"” \ {v;}) U{c} is a temporal
resolving set of SSa. Indeed, recall that ¢, together with R’, separates vertices in @1 from all other vertices.
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Furthermore, the only vertex which v; could separate which is not separated by ¢ or v; is u; if dist(c, u;) = 2.
However, since, by the definition of ()1, the set R’ reaches vertex v; € (J1, the set R’ also reaches u;. Hence,
R’ separates u; from other vertices at temporal distance 2 from ¢, and R is a temporal resolving set of SSa.

Let us next show that we may assume that |[R” N {a | dist(c,a) = 2}| < 1. We assume on the contrary
that we have two vertices w;,u; € R” N {a | dist(c,a) = 2}. By our assumptions, we have R’ C R(c).
Hence, dist;(c,u;) = dist¢(c,u;) = 2. We claim that R = R' U (R" \ {u;,u;}) U {v;,v;} is a temporal
resolving set of SSa. Indeed, the only vertices in R(c) which are reached by u; and w; are in the set
{vi,vj,u;, u;}. Out of these, v; and v; separate themselves. Furthermore, u; is separated from vertices in
{u | dist(c,u) = dist¢(c,u) = 2} by v; and from vertices in {v | dist(c,v) = 1 and dist(c,v) = 2} by v;.
Similar arguments hold for u;. Hence, R is a temporal resolving set of SSa.

Since we obtain a temporal resolving set in Steps[12|to[15|and there is a minimum-size temporal resolving
set of the form R’ U R”, we conclude that we find a minimum-size temporal resolving set in Steps [12] to
(or in Step [5).

Let us finally show that Algorithm [2] ends in polynomial time. Recall that it takes polynomial time on
the number of vertices n, especially when the time labels are in the set {1,2}, to check if a given set is a
temporal resolving set of a graph. Furthermore, in Step [I} Algorithm [I] works in linear-time and we need to
apply it at most n times. Steps|2] to [L1] clearly operate in polynomial-time. In Steps [12]to we test for a
given j € {0,1,2}, at most (‘B:;_lj ) -7 -|Be| € O(n®) times if a given set is a temporal resolving set. Hence,
Algorithm [2] works in polynomial time, completing the proof. O

4 Combinatorial results for p-periodic 1-labelings

In this section, we focus on p-periodic 1-labelings, i.e., the time labelings where each edge appears once in
every interval of p consecutive time-steps. Given a temporal graph G = (G, A) where A is a p-periodic 1-
labeling, we denote by M, (G) the temporal resolving number (i.e., the minimum size of a temporal resolving
set) of G. Furthermore, if A(e) = {i,i+ p,i+ 2p, ...}, then, by abuse of notation, we denote A\(e) = i. When
p =1 or A(e) is the same for every edge e, those are exactly the usual resolving sets. We bound the minimum
size of temporal resolving sets for several graph classes.

Note that, in this section, reachability is trivially assured (since the time-steps repeat indefinitely and the
considered graphs are connected), so to prove that a given set is a temporal resolving set, we only need to
prove that it is separating.

Theorem 10. Let P, be a path on n wvertices, A be a p-periodic 1-labeling, and P = (P,,\). We have

M,(P)=1.

Proof. Let uy,...,u, be the vertices of P,, with edges u;u;11 for 1 < i < n—1. Let R = {u;}. For
i €{2,...,n—1}, u; is reached from u; strictly before u;11. The same reasoning works for R = {u,,}. Hence,
any of the leaves (clearly) forms a minimum-size temporal resolving set. O

Remark 11. Theorem [10] also holds for general p-periodic labelings.

In particular, the proof of Theorem [I0] implies that in a temporal tree 7 with p-periodic 1-labeling if we
have a path from r to u to v, then r separates vertices u and v. In this case, we say that vertices u and v
are path-separated (by r). In the following two theorems, we introduce combinatorial results for some simple
graph classes. Note that the following theorem implies a polynomial-time algorithm by testing each vertex
set containing at most two vertices.

Theorem 12. Let C,, be a cycle on n wvertices, A be a p-periodic 1-labeling, and C = (C,, ). We have
1 <M, (C)<2.
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Proof. Let C, be a cycle on n vertices, A be a p-periodic 1-labeling, and C = (C,,, \). Let e = uv be a locally
maximally labeled edge of C, i.e, an edge with A(e) such that the adjacent edges have labels at most A(e)
(such an edge has to exist). We claim that « and v form a resolving set.

Suppose for a contradiction that there are two vertices, « and y, not separated by v and v. That means
that they have the same temporal distance from u and from v.

Let us first consider temporal distances from u. By e being locally maximally labeled edge, it must be
that precisely one of the paths from u to x and from u to y attaining the minimal temporal distance must go
through e. Otherwise, u path-separates x and y. Without loss of generality, let e be on the path from u to
y. Thus, dist¢(v,y) = dist;(u, y) — p. However, by the same reasoning as above, path attaining the temporal
distance from v to  must now use edge e and thus, dist;(u, z) = dist(v, z) —p. Since dist;(u, x) = dists (v, x).
We have dist; (v, y) = dist¢(v, x) — 2p, a contradiction. O

The previous theorem shows how to solve periodic cycles with 1-labelings. However, the case with periodic
k-labelings is open for cycles.

Open Problem 1. Does there exist a p-periodic time labeling A and some n such that for C = (C,, \) we
have M, (C) > 37

In the following theorem, we give tight bounds for temporal resolving number of temporal complete graphs
with p-periodic 1-labeling.

Theorem 13. Let K,, be a complete graph on n = b+ p® vertices with b > 1, X be a p-periodic 1-labeling,
and K = (K,,,A). We have b < M,(K) <n —1 and both bounds are tight.

Proof. The upper bound is trivial. To prove its tightness, consider = (K, A) with A assigning the same
time label to all edges. All pairs of vertices in the graph are twins and therefore, we have to take at least one
of the vertices in all such pairs. This results in taking n — 1 vertices.

Let us prove the lower bound. For a contradiction, suppose there would be less than b vertices in a
temporal resolving set, say b’ < b. There are still more than p® vertices to separate but there are just pr
possible distance vectors to the vertices outside of our chosen set, less than p?. This means that some vertices
have to share a distance vector and thus, they are not separated, a contradiction.

We shall now construct a complete graph K,, with a p-periodic 1-labeling which attains the lower bound.
To this end, take a subset B of b vertices in a fixed order. Then, give every vertex v € V(K,) \ B a unique
p-ary tuple £(v) of length b containing values from 1 to p. We label an edge between i-th element of B and
v € V(K,) \ B by j if the i-th position of £(v) is j. The remaining edges of the graph, i.e., edges running
between the vertices of B and between the vertices outside of B will get label p. Clearly, the vertices of B
now form a resolving set since the constructed b-tuples are precisely the vectors of distances. O

The following lemma will help us to simplify the remaining results on trees, as we will be able to consider
only temporal resolving sets composed of leaves.

Lemma 14. Let T be a tree, X be a p-periodic 1-labeling, T = (T, \) with M,(T) > 2. There is a temporal
resolving set of T of size M,(T) containing only leaves of T'.

Proof. Let T be a tree, A a p-periodic 1-labeling, and 7 = (T, A). Suppose we have a minimum temporal
resolving set R of size at least two with the minimum number of non-leaves.

If every leaf is in the resolving set, then every two non-leaf vertices are path-separated by a leaf and thus
there can be no non-leaves in R, as otherwise we can construct a smaller temporal resolving set. Hence, we
may assume that not all leaves do belong to R.

Assume next that there is at least one non-leaf vertex v € R. We root the tree in v. Our aim is to find
a suitable leaf ¢ ¢ R, which will be exchanged with v in order to get a same-size temporal resolving set with
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a greater number of leaves. Let us denote, for a branch B, the label of the edge between v and the vertex
adjacent to v in V(B) by A(B). Let m = min{A(B) | B is a branch}. Denote by B™ the set of branches B
which have A(B) = m. If there is a branch B € B™ such that RN V(B) = 0, then we choose £ as a leaf of
B. Otherwise, if there exists a branch B’ such that RN V(B’) = ), then we select £ as a leaf of B’ and if
such B’ does not exist, then we select ¢ as an arbitrary leaf not in R. Let R’ = (RU {¢}) \ {v}. Notice that
since R is a temporal resolving set of T, after this process we have R’ NV (B) # () for each B € B™. In the
following, for z,y € V(T), we always assume that x € V(B,) N R’ where B, is the branch in which z resides,
B, € B"™, and y € R\ V(By).

We now consider different cases for a pair of vertices a,b € V(T) separated by v (which is in R). In
particular, we show that R’ separates them as well.

Case 1. a € V(B),b € V(B') for any B, B’ ¢ B™: Note that we may have B = B’. Recall that x € V(B,)N
R and B, € B™. We have dist;(z, a) = dist;(x, v)+dist; (v, a)—m and dist;(z, b) = disty(z, v)+dists (v, b) —m.
Since v separates a and b, we have dist:(v, a) # dist;(v,b). Hence, dist;(z,a) # dist¢(z, b).

Case 2. a,b € V(B) for Be€ B™: Let y € V(By) N R and B, # B. We have dist;(y,a) = dist;(y,v) +
dists(v, a) + (p — A(By)) and dist¢(y, b) = dists(y, v) + dist¢(v,b) + (p — A(By)) since A(B) < A(By). Since v
separates a and b, we have dist:(v, a) # dist¢(v, b). Hence, dist:(y,a) # dist:(y, ).

Case 3. a € V(B),b ¢ V(B) for B € B™: Since B € B™, we have V(B) N R’ # (). Assume without loss of
generality, that B = B,. Recall that x € V/(B,;) N R’. Let ¢ be the last vertex on the common paths from z
to a and  to b (possibly ¢ = ). We have ¢ € V(B,). Note that if ¢ = a, then x path-separates a and b. Let
us denote by A(a) (A\(b)) the time label of the first edge on the path from ¢ to a (to b). Furthermore, denote
by A(X) the label of the last edge on the path from x to c. We let A\(X) =0if z = c.

When we have A(X) < min{A(a),\(b)} or A(X) > max{A(a),\(b)}, vertex x separates a and b if and
only if ¢ separates @ and b. If A(a) < A(X) < A(D), then vertex x separates vertices a and b if and only if
disty (¢, b) # diste(c, a) + p.

Similarly, if A(b) < A(X) < A(a), then vertex x separates vertices a and b if and only if dist¢(c,a) #
dist¢(c,b) + p. Moreover, in all three subcases we have dist:(c,a) < dist;(v,a) and dists(c,b) > disty(v,b).
Observe that if x does not separate vertices a and b, then the time label of the last edge on the paths from
v to a and from v to b is the same.

We conclude that dist;(v,a) = dist¢(v,b) + h - p for some integer h. We denote by By, the branch in which
b is located. We shall now prove a crucial claim, saying that in all the cases, h is a positive integer.

Claim 1. In all four aforementioned cases, if © does not separate a and b, then, we have h > 1.

Proof. We shall divide the proof according to the cases which might occur.

Subcase 3.a. \(X) < min{A(a), \(b)} or A(X) > max{A(a), A(b)}: In this case, = separates a and b if and
only if ¢ separates a and b. We have dist;(c,a) < dist:(v,a) and dist¢(c,b) > dist;(v,b) and at least one of
these two inequalities is strict (otherwise ¢ separates a and b). Hence, if ¢ does not separate a and b, then
dist¢ (v, a) = dists(v,b) + h - p for some positive integer h. Indeed, the time label of the last edge on the paths
from v to a and from v to b is identical since ¢ does not separate these vertices.

Subcase 3.b. A(b) < AM(X) < Aa): In this case, x separates vertices a and b if and only if dist;(c,a) #
dist¢(c,b) + p. Hence, we assume that dist:(c, a) = dist¢(c,b) + p. We have dists(v, a) = dist(v,b) + h - p for
some integer h # 0. Recall that we have dist;(c, b) > dist,(v,d) and dist;(c, b) + p = disti(c, a) < dist,(v, a).
Hence, dist;(v,b) + p < disty(c, a) < dist¢(v,a). Thus, h > 2.

Subcase 3.c. Aa) < MX) < A(b): In this case, x separates vertices a and b if and only if dist;(c,b) #
dist¢(c,a) + p. Assume that this is not the case and dist:(c,b) = disti(c,a) + p. Recall that we have
dist¢ (v, a) = dists(v,b) + h - p for some integer h # 0. We have dist,(v, a) = dist¢(v, ¢) + dist¢(c, a) + (p — A(D))
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because A(b) > A(a). Since dist:(v,c) > A(b), we have dist;(v,a) > dist¢(c,a) + p. Recall that, we have
disty (¢, b) > disty(v, b). Further,

dist; (v, b) + h - p = disty (v, a) > dists(c,a) + p = disty(c, b) > dist (v, b).

Finally, since dist;(v, a) # dist;(v,b), we have h > 1.
With this, we have proved the claim for all the subcases. O

We next proceed with the proof of Case 3 together with the assumption dist;(v, a) = dist¢(v,b) + h - p for
a positive integer h.
Consider now a vertex r € R’ NV(B,) for B, ¢ B, U By, (if such a r exists). We have

disty(r,a) = disty(r, v) 4 dist¢ (v, a) + (p — M(B))
= disty(r,v) + disty(v,0) + (A + 1) - p — A(B;)
> disty(r, v) + dist¢ (v, b) + 2p — A(By).

Moreover, if A(Bp) < A(B,.), then dist:(r,b) = dist;(r, v) +dist¢(v,b) + (p— A(B,)) < dist;(r, a). Furthermore,
if A\(Bp) > A(B,), then dist:(r,b) = dist;(r,v) + dist¢(v,b) — A(B,) < dist¢(r,a). Hence, r separates a and b
if r exists.

If we have a vertex y € V(Bp) N R, then we denote by ¢’ the last common vertex on the path from y to
a and from y to b. Since B, € B™, we have

dists(¢', a) = dist¢ (v, a) + dists(¢',v) + (p — M(By)) > dists(v,a) + p. (1)

We denote by A(a’) and A(b') the time label of the first edge on the path from ¢ to a and from ¢’ to b,
respectively. Furthermore, denote by A(Y) the label of the last edge on the path from y to ¢. We let
AY) =0if y = ¢. Similarly to , when we have A(Y) < min{A(a’),A(t')} or A(Y) > max{\(a), A\(V')},
vertex y separates a and b if and only if ¢/ separates a and b. If A(a’) < A(Y) < A(V'), then vertex y separates
vertices a and b if and only if dist,(c¢’,b) # dist;(¢/, a) + p. Similarly, if A(d') < A(Y) < A(d’), then vertex y
separates vertices a and b if and only if dist; (¢, a) # dist¢(¢’, b)+p. In particular, if dist;(¢’, a) > dist¢(c’, b)+p,
then y separates a and b.
We have
dist,(c’, b) < disty(v,b) < disty(v,a) —p < disty(c’,a) — 2p.

The second inequality is due to Claim and the last inequality is due to Equation . Hence, dist:(c,a) >
dist;(¢’,b) + p. Therefore, y separates a and b for every ordering of A(a’), A(V') and A(Y).

Case 4. a € V(B),b=wv: Let y € R"\ V(B). In this case, y simply path-separates a and b.

Therefore, R’ separates all vertices which are separated by R in all cases. Since |R| = |R’|, this contradicts
the assumption that R has the minimum possible number of non-leaves. Hence, the statement follows. [

We note that it is unclear if the previous lemma also holds for temporal trees with periodic k-labeling.
Open Problem 2. Does Lemma [I4] hold for temporal trees with periodic k-labeling for k > 27

Lemmal[I4] gives us an FPT algorithm for TEMPORAL RESOLVING SET in trees with respect to the number
of leaves. It also allows us to prove a brute force-like polynomial-time algorithm for temporal subdivided
stars with a p-periodic 1-labeling for fixed p. This shows that TEMPORAL RESOLVING SET is in XP with
respect to the period of the time labeling in this context.

Theorem 15. TEMPORAL RESOLVING SET is polynomial-time solvable in temporal subdivided stars with a
p-periodic labeling for a fized constant p.
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Proof. Let S be a subdivided star with central vertex ¢ and ¢ leaves, A be a p-periodic 1-labeling, and
S = (S,)\). By Lemma there exists a minimum-size temporal resolving set in S which contains only
leaves of S, if M,(S) > 1.

Note that if some branches, say b of them, share the same time label on their edges incident with ¢, then,
to separate vertices in these branches, we need to select at least b —1 leaves in a temporal resolving set. Since
there are at most p distinct labels, we have, for any temporal resolving set R of S, |R| > ¢ — p. Furthermore,
checking whether a given vertex set is a temporal resolving set of S can be done in polynomial time.

If n is the order of S, then there are (@fp) = (ﬁ) € O(nP) ways to select a vertex set containing exactly
¢ — p leaves. Since p is a fixed constant, we can check all these sets in polynomial time. If any of them is a
temporal resolving set, then we found a minimum-size temporal resolving set of S. Otherwise, we iterate the
process by examining all vertex sets of size { —p+1, /—p+2, ..., until we find a temporal resolving set. The
process will eventually stop as the set containing all leaves of S is a temporal resolving set of S. Thus, we
need to check at most Y 7_, (pfi) vertex sets, that is, we need to do O(nP) polynomial-time operations. [J

We end this section with two combinatorial results for other two subclasses of temporal trees: subdivided
stars and complete binary trees.

Theorem 16. Let S be a subdivided star on £ > 2 leaves, \ be a p-periodic 1-labeling, and S = (S, ). We
have max(1,¢ — p) < Mp,(S) < £ —1 and both bounds are tight.

Proof. Suppose that we have a subdivided star S with a p-periodic 1-labeling. Denote by c¢ the central vertex
of S. By Lemma if M,(S) > 2, then there exists a minimum-size temporal resolving set of S containing
only leaves. Again, as in the proof of Theorem one can argue by a simple application of the pigeonhole
principle applied to the distinct labels of edges incident with ¢ that at least £ — p leaves have to be chosen in
order to separate vertices in N(c). For £ — p < 1, a trivial bound saying that at least one vertex has to be
chosen is clearly better.

The lower bound is tight, as we can take a star on £ leaves such that first p edges will have different labels
and the remaining ¢ — p leaves will all share the same label, say 1. As there are £ — p + 1 vertices being
mutually twins, any minimum-size temporal resolving set has to be of size at least ¢ — p.

For the upper bound, we show that taking any ¢ — 1 leaves is enough to form a temporal resolving set R,
taking Lemma [I4] into account. Indeed, a leaf ¢ € R path-separates every vertex in the same branch from
each other and from vertices in other branches. Furthermore, ¢ also path-separates vertices in the single
branch with leaf outside of R from each other. Thus, R separates all vertices in S.

The tightness can be exemplified by a subdivided star with ¢ leaves with exactly same labels on all its
edges. In this case, all leaves are twins and we are forced to take all but one to separate them. O

Theorem 17. Let T be a complete binary tree on 2™ —1 vertices, A be a 2-periodic 1-labeling, and T = (T, \).
We have 273 < My(T) < 2"=2, Both bounds are tight.

Proof. The center of a tree is a vertex v such that the maximum distance between the vertex v and any other
vertex of the tree is minimal. (In this case, the center is a unique vertex.) For convenience, we consider all
trees in this proof as rooted in the center. Based on the distance from the center, we say that vertices at
distance i from the center are on level i. For a given i, higher levels are levels from 0 to ¢ — 1, and lower
levels are those with value at least i + 1. A complete binary tree on 2™ — 1 vertices has 2" ! leaves and they
are on level n — 1; the center is on level 0. We shall say that leaves are close if they are at distance 2 in
the underlying tree. Finally, subtrees of order seven rooted in a vertex on level n — 3 and induced by all the
vertices under such a vertex are called essential.

Again, by Lemma we consider only sets of leaves as candidates for optimal temporal resolving sets if
these are of size at least two.
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For the lower bound, let 7 = (T, ), where T is a complete binary tree on 2" — 1 vertices and A is a
2-periodic 1-labeling. We focus on essential subtrees. If we take less than 2"~3 vertices into our candidate
set R, then necessarily at least one of the essential subtrees will have none of its leaves in R. Let us denote
its root by r. In such a subtree, the four paths from r to the leaves have to be labeled by all four possible
combinations of labels 1 and 2, otherwise we easily find two vertices not separated by R. However, even if
this is the case, none of the vertices from R are able to separate the leaf with labels 1 and 1 on the path from
r (denote the leaf by ;) and the leaf with labels 2 and 1 on the path from r (denote this leaf by l5). Indeed,
the temporal distance of any vertex ¢ of R to [; and Iy is d + 3 where d is the temporal distance of ¢ to r.
Thus at least 273 leaves are needed in any temporal resolving set of 7.

To show that the lower bound is tight, consider 7 with a 2-periodic 1-labeling A, constructed in a top-
down fashion, proceeding level by level we label one of the edges going to the lower level with 1 and the other
one with 2. We shall form a temporal resolving set R of size 2" 3 by taking one leaf from each essential
subtree: the one connected to the root of the respective essential subtree by path labeled only with 1. We
have to prove that all vertices are now separated. Let us have two different vertices, say u and v, outside of
R and suppose they are not path-separated. We distinguish the following cases.

o Vertices u and v are both on levels n — 3 or higher: In this case v and v are path separated and thus,
this case cannot occur.

o Vertices u and v are on levels n — 2 and/or n — 1: Either u and v are in the same essential subtree 7
and then, by a simple calculation, the temporal distances from the unique vertex from R in 7, separate
these two vertices. (Temporal distances in 7. range from 0 to 6 and they appear uniquely.) Assume
then that v and v are in different essential subtrees. Let u € V(7;) and v € V(7). We observe that
the distance from the leaf, say I, in RNV (T.), to v is at least 7. Thus, l. separates vertices u and v.

o Vertex u is on level at most n — 3, while v is on a level between n — 3 and n — 1, or vice versa: In this
case, u and v are path-separated unless we are in the special case of 7 having precisely 7 vertices and
being itself an essential subtree. However, we already know that separation is guaranteed in this case.

We have covered all the possible cases and hence the tightness follows.

For the upper bound, we consider temporal tree T = (T, A), where X is a 2-periodic 1-labeling. We show
that taking one of the leaves in each of the 2"~2 subtrees rooted in a vertex on level n — 2 suffices to separate
all vertices in 7. Let us denote such a set by R. Again, we have to be careful only about the pairs of vertices
that are not path-separated. Suppose we have such a pair of different vertices u,v ¢ R so that there is no
vertex ¢ € R such that either v is on the path from ¢ to v, or v is on the path from w to ¢. Based on our choice
of R, both u and v have to be leaves. We observe that distance from a vertex r € R close to u has distance
in set {2,3,4} while the distance to other leaves is at least 4. However, if dist(r,v) = 4, then dist;(r,u) < 3.
Thus, R separates all vertices and the claim is proved.

To show that the upper bound is tight, consider 7 = (T, \) with a 2-periodic 1-labeling A where all edges
have the same label. Take any subset R’ of leaves of size at most 2”~2 — 1. In such a way, there has to be at
least one subtree rooted at level n — 2 out of all 272 possible ones with no leaves in R’. The leaves of such
a subtree are not separated by R’ and thus, the tightness is proved. O

5 Conclusion

We have introduced the notion of temporal resolving sets. Our hardness results show, that TEMPORAL
RESOLVING SET is NP-hard on temporal complete graphs with 2-labelings, on temporal subdivided stars
with 2-labelings, on temporal trees with only one vertex of degree 5 or greater with 2-labelings and edges
appearing in consecutive time-steps. On the positive side, we have given a linear time algorithm for temporal
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Standard k-truncated
TEMPORAL RESOLVING SET

resolving set resolving set
NP-hard (2-labelings with consecutive time
Trees poly [8, 23] [31] NP-hard, labels): Theorem
37 XP wrt k [22] FPT wrt number of leaves (p-periodic
1-labeling): Lemma
.. NP-hard (2-labeling): Theorem [2]
Sub‘(j;\;lsded poly open poly (1-labeling and ¢yax = 2): Theorem [9)
° XP wrt p (p-periodic 1-labeling): Theorem
lsj?tilbs? trivial poly [18] poly (1-labeling): Theorems [6] and
Complete trivial trivial NP-hard (1-labeling and ¢;,.x = 2):
graphs Theorem [I]

Table 1: Summary of complexity results for standard, k-truncated and temporal resolving sets on the graph
classes studied in this paper.

paths with 1-labelings, a polynomial algorithm for temporal stars and temporal subdivided stars with 1-
labelings where each edge has label 1 or 2. We have also presented multiple combinatorial and algorithmic
results for temporal graphs with a p-periodic 1-labeling, including the exact value of temporal resolving
number paths, tight bounds for temporal cycles, temporal complete graphs, temporal subdivided stars and
temporal complete binary trees. Those results also gave us FPT and XP parameters for trees wrt the number
of leaves and for subdivided stars wrt the temporal period, respectively. The results are summarized in Table[T]
along with complexity results on standard and k-truncated resolving sets, which highlight the difficulty of
TEMPORAL RESOLVING SET compared to static versions of the problem.

Since periodic 1-labelings seem easier to solve than non-periodic ones, the following open problem seems
the next step in the study of temporal resolving sets:

Open Problem 3. Is TEMPORAL RESOLVING SET polynomial in temporal trees with periodic 1-labelings?

Note that if there is a positive answer to Open Problem [2] then generalizing Open Problem [3| for periodic
k-labelings becomes tempting.

As a resolving set is equivalent with a temporal resolving set in a temporal graph G where every edge
has time labels from 1 to diam(G) and there are more positive algorithmic results for resolving sets (they
can be solved in polynomial-time in some classes for which TEMPORAL RESOLVING SET is NP-hard, such
as complete graphs or trees) than temporal resolving sets, it might be possible that each edge having many
time labels makes the problem easier. This problem might also be easier in general graphs with p-periodic
labelings. Moreover, since minimum k-truncated resolving sets can be found in polynomial-time in trees
when k is fixed, a potential direction would be to study the parameterized complexity of temporal resolving
sets, with the total number of available time-steps as a natural parameter (this parameter is unbounded in
our NP-hardness reductions for trees). Other potential future research in this direction would be the study
of TEMPORAL RESOLVING SET when parameterized by temporal measures that, when bounded, restrict the
changes to the graph at each time-step, or access to portions of the graph at some point in time, such as
interval membership width [6].

Another possible direction for future research is considering other kinds of temporal distances. For
example, instead of considering the first time-step at which we may arrive, we could take into account the
time-step at which we started the journey, that is, we could consider the total number of time-steps it takes to
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make the journey. Another option would be to consider the temporal distance from vertices to the temporal
resolving set. This could yield new results as the temporal distance is not symmetric and would correspond
to a setup where we are tracking an object.
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