
HAL Id: hal-04511235
https://hal.science/hal-04511235

Preprint submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resolving Sets in Temporal Graphs
Jan Bok, Antoine Dailly, Tuomo Lehtilä

To cite this version:

Jan Bok, Antoine Dailly, Tuomo Lehtilä. Resolving Sets in Temporal Graphs. 2024. �hal-04511235�

https://hal.science/hal-04511235
https://hal.archives-ouvertes.fr

Resolving Sets in Temporal Graphs∗†

Jan Bok1, Antoine Dailly1, and Tuomo Lehtilä1,2,3

1Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP,
LIMOS, 63000 Clermont-Ferrand, France

2Department of Computer Science, University of Helsinki, Helsinki, Finland
3Helsinki Institute for Information Technology (HIIT), Espoo, Finland

Abstract
A resolving set R in a graph G is a set of vertices such that every vertex of G is uniquely identified by

its distances to the vertices of R. Introduced in the 1970s, this concept has been since then extensively
studied from both combinatorial and algorithmic point of view. We propose a generalization of the
concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-
steps. In this setting, the temporal distance from u to v is the earliest possible time-step at which a
journey with strictly increasing time-steps on edges leaving u reaches v, i.e., the first time-step at which v
could receive a message broadcast from u. A temporal resolving set of a temporal graph G is a subset R of
its vertices such that every vertex of G is uniquely identified by its temporal distances from vertices of R.
We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete
even on very restricted graph classes and with strong constraints on the time-steps: temporal complete
graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears
in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears
in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time
algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and
give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear
in periodic time-steps.

Temporal graphs, Resolving sets, Metric dimension, Trees, Graph algorithms, Complexity

1 Introduction
For a set R of vertices of a graph G, every vertex of G can compute a vector of its distances from the vertices
of R (the distance, or number of edges, in a shortest path from u to v will be denoted by dist(u, v)). If all
such computed vectors are unique, then we call R a resolving set of G. This notion was introduced in the
1970s and gave birth to the notion of metric dimension of G, that is, the smallest size of a resolving set of G.
Metric dimension is a well-studied topic, with both combinatorial and algorithmic results, see for example
surveys [30, 34].

A temporal graph can be defined as a graph on a given vertex set, and with an edge set that changes over
discrete time-steps. Their study gained traction as a natural representation of dynamic, evolving networks [4,

∗This work was supported by the International Research Center "Innovation Transportation and Production Systems" of
the I-SITE CAP 20-25 and by the ANR project GRALMECO (ANR-21-CE48-0004). The research of the third author was
supported by Business Finland Project 6GNTF, funding decision 10769/31/2022.

†A shorter conference version of this manuscript was submitted to IWOCA 2024 conference.

1

22, 23, 32]. However, in the temporal setting, the notion of distance differs from the static setting: two vertices
can be topologically close, but the journey (i.e., a path in the underlying graph with strictly increasing time-
steps1) between them can be long, or even impossible. The shortest time-step at which a journey from u
reaches v is called the temporal distance from u to v and is denoted by distt(u, v). Note that in a temporal
graph, there might be vertex pairs (u, v) such that there is no temporal journey from u to v, in which case
we set the distance as infinite. Furthermore, the temporal distance of non-adjacent vertices is not necessarily
symmetric.

The notion of temporal distance allows us to define a temporal resolving set as a set R of vertices of a
temporal graph such that every vertex has a unique vector of temporal distances from the vertices of R. We
are interested in the problem of finding a minimum-size temporal resolving set.

Our motivation is both introducing a temporal variant of the well-studied problem of resolving sets
and studying its combinatorial and algorithmic properties, as well as the problem of locating in dynamic
networks. Indeed, resolving sets are an analogue of geolocation in discrete structures [34], and thus temporal
resolving sets are similar: if we consider that transmitters placed on vertices of the temporal resolving set
emit continuously, we can locate ourselves by waiting long enough to receive the signals and constructing the
temporal distance vector.

In the remainder of this section, we give an overview of the static (i.e., non-temporal) version and some
variants of resolving set as well as an overview of temporal graphs, before giving a formal definition of the
Temporal Resolving Set problem and an outline of our results.

Separating vertices. Standard resolving sets were introduced independently by Harary and Melter [20] and
by Slater [33], and have been well-studied due to their various applications (robot navigation [28], detection in
sensor networks [33], and more [34]). Their non-local nature makes them difficult to study from an algorithmic
point of view: finding a minimum-size resolving set is NP-hard even on very restricted graph classes (planar
graphs of bounded degree [7], bipartite graphs [8], and interval graphs of diameter 2 [14], to name a few) and
W[2]- and W[1]-hard when parameterized by solution size [21] and feedback vertex set [16], respectively. On
the positive side, the problem is polynomial-time solvable on trees [5, 20, 28, 33], outerplanar graphs [7] and
cographs [8], to name a few. Note that there are two conditions: reaching (every vertex must be reached
from some vertex of the resolving set) and separating (no two vertices may have the same distance vector). A
weak resolving set is a set that requires only separating vertices. Minimum-size standard and weak resolving
sets can thus differ in size by at most 1.

A natural variant of resolving sets consists in limiting the distance at which transmitters can emit. A first
constraint is that of a robot which can only perceive its direct neighborhood: an adjacency resolving set [25]
is a resolving set using the following distance: dista(u, v) = max(dist(u, v), 2). More generally, a k-truncated
resolving set [10] is a resolving set using the following distance: distk(u, v) = min(dist(u, v), k+1) (we can see
that an adjacency resolving set is a 1-truncated resolving set). Note that both variants were mostly studied
in their weak version. The k-truncated resolving sets have quickly attracted attention on the combinatorial
side [2, 15, 17, 18]. On the algorithmic side, the corresponding decision problem is known to be NP-hard [10],
even on trees (although, in this case, it becomes polynomial-time solvable when polynomial-time solvable
when k is fixed) [19].

Temporal graphs. A temporal graph G = (V,E1, . . . , Etmax
) is described by a sequence of edge sets

representing the graph at discrete time-steps, which are positive integers in {1, . . . , tmax} [4] (note that the
sequence might be infinite, in which case the number of time-steps is not bounded by tmax, and we can adapt
all definitions in consequence). An alternate, equivalent description of G is G = (V,E, λ) (or (G,λ) where
G = (V,E)) with E =

⋃tmax

i=1 Ei is called the underlying graph and λ : E → 2{1,...,tmax} is an edge-labeling
function called time labeling such that λ(e) is the set of time-steps at which the edge e exists, i.e., i ∈ λ(e)

1Those are sometimes called strict journeys in the literature, but as argued in [29], strict journeys are naturally suited to
applications where one cannot traverse multiple edges at the same time.

2

if and only if e ∈ Ei [27]. We call a time labeling a k-labeling if |λ(e)| ≤ k for every edge e. Furthermore, we
say that a temporal graph is a temporal tree (resp. temporal star, etc.) if its underlying graph, understood
as the graph induced by the union of all its edge sets, is a tree (resp. star, etc.).

A specific case of temporal graphs are those with a repeating sequence of edge sets, which have been
studied in contexts such as routing [12, 13, 24, 31], graph exploration [3], cops and robbers games [6, 9]
and others [1, 35] due to their natural applications in e.g. transportation networks. Formally, a p-periodic
k-labeling is a time labeling such that both Ei+p = Ei for every i ≥ 1 and |λ(e) ∩ {1, . . . , p}| ≤ k for every
edge e. A temporal graph with a periodic time labeling has an infinite sequence of edge sets, but can be
represented with its p first time-steps, understanding that the sequences will repeat after this.

A vertex v is said to be reachable from another vertex u if there exists a journey from u to v. For a given
vertex v, the set of vertices which can be reached from vertex v is denoted by R(v). For a vertex set S such
that v ∈ S, we denote by RS(v) ⊆ R(v) the set of vertices which can be reached from v but not from any
other vertex in S.

Temporal resolving sets. We extend the definition of resolving sets to the temporal setting: a resolving
set in a temporal graph is a reaching and separating set. More formally, a set R of vertices of a temporal
graph G = (V,E, λ) is a temporal resolving set if (i) for every vertex v ∈ V , there is a vertex s ∈ R such that
v ∈ R(s); (ii) for every two different vertices u, v ∈ V , there is a vertex s ∈ R such that distt(s, u) ̸= distt(s, v).
Note that every vertex in a temporal resolving set is trivially separated from every other vertex. The problem
we are studying is the following:

Temporal Resolving Set
Instance: A temporal graph G = (V,E, λ); and an integer k.
Question: Is there a temporal resolving set of size at most k?

Due to the fact that temporal distance is not a metric in the usual sense (symmetry and the standard
definition of the triangle inequality might not hold), we call the minimum size of a temporal resolving set of
a graph G the temporal resolving number of G instead of temporal metric dimension.

Note that we can assume in the following that there is an edge e such that 1 ∈ λ(e) (otherwise, let m
be the smallest time-step and decrease every time-step by m − 1). Temporal resolving set can be seen as
a generalization of standard and k-truncated resolving sets: if λ(e) = {1, . . . ,diam(G)} for every edge e
(where diam(G) = max{dist(u, v) | u, v ∈ V }, then a temporal resolving set is a standard resolving set; and
if λ(e) = {1, . . . , k} for every edge e, then a temporal resolving set is a k-truncated resolving set2.

Our results and outline. We focus on time labelings with few labels per edge, mostly limiting ourselves
to one or two labels per edge. Although the setting is more restricted than the general case, we shall prove
that these scenarios already yield NP-complete problems or non-trivial polynomial algorithms.

We present three sets of results. First, we focus in Section 2 on the computational complexity of finding
a minimum-size temporal resolving set in temporal graphs with 2-labelings. In particular, we prove that
the problem is NP-complete on temporal complete graphs, which contrasts heavily with other resolving set
problems. The problem is also NP-complete on temporal subdivided stars, and on temporal trees even when
the two time-steps are consecutive.

In Section 3, we give polynomial-time algorithms for some classes with 1-labelings. However, even for
temporal paths, while the algorithm is quite natural, proving optimality is non-trivial. We also give algorithms
for temporal stars, and temporal subdivided stars when tmax = 2.

Finally, in Section 4, we take a more combinatorial approach to periodic time labelings. We find the
optimal bounds for the temporal resolving number of several graph classes under this setting, namely in
temporal paths, cycles, complete graphs, complete binary trees, and subdivided stars. We also prove that

2Also called a k-truncated dominating resolving set in [19].

3

Temporal Resolving Set is FPT on trees with respect to number of leaves and XP on subdivided stars
with p-periodic 1-labelings with respect to the period p.

2 NP-hardness of Temporal Resolving Set

In this section, we give hardness results for Temporal Resolving Set on very restricted graph classes, and
with strong constraints on the time labeling.

In the static setting, complete graphs tend to be easy to work with: since all the vertices are twins, they
are indistinguishable from one another, and hence we need to take all of them but one in order to separate
them. Indeed, the metric dimension and location-domination number of Kn is n − 1. However, this is not
the case with temporal complete graphs, since now the vertices are not necessarily twins anymore. We even
prove that it is NP-hard:

Theorem 1. Temporal Resolving Set is NP-complete on temporal complete graphs with a 1-labeling,
even when there are only two time-steps.

Proof. We reduce from the problem of finding a minimum-size adjacency resolving set, which is NP-hard on
planar graphs [11].

Let G = (V,E) be a connected planar graph, and k be an integer. We construct the following temporal
complete graph G = (V,E′, λ):

• For every e ∈ E, λ(e) = {1};

• For every pair of vertices u, v such that uv ̸∈ E, λ(uv) = {2}.

An adjacency resolving set in G clearly is a temporal resolving set in G and vice versa: the edges e such that
λ(e) = {2} in G are exactly the paths of length at least 2 in G.

The next two results are both proved by reducing from 3-Dimensional Matching, one of the seminal
NP-complete problems [26], and are inspired by the NP-completeness proof for k-truncated Metric Dimension
on trees in [19], with nontrivial adaptations to constrain the setting as much as possible.

3-Dimensional Matching (3DM)
Instance: A set S ⊆ X × Y × Z, where X, Y , and Z are disjoint subsets of {1, . . . , n} of size p;
and an integer ℓ < |S|.
Question: Does S contain a matching of size at least ℓ, i.e., a subset M ⊆ S such that |M | ≥ ℓ
and no two elements of M agree in any coordinate?

Theorem 2. Temporal Resolving Set is NP-complete on temporal stars in which every edge is subdivided
twice, and when each edge appears in at most two time-steps.

Proof. We note that the problem is clearly in NP: a certificate is a set of vertices, and for each vertex, we
can compute the time vectors and check that they are all different and that every vertex is reached by at
least one vertex from the set in polynomial time. To prove completeness, we reduce from 3DM.

Starting from an instance (S, ℓ) of 3DM, denoting s = |S| and the i-th triple in S by (xi, yi, zi) with
xi ∈ X, yi ∈ Y, zi ∈ Z, we construct an instance (G, s + 2 − ℓ) of Temporal Resolving Set. This
construction is detailed below, see Figure 1.

Let V = {u, t1, t2, t3} ∪
s⋃

i=1

{ai, bi, ci}. We will arrange the vertices in the following way as a twice

subdivided star. Center vertex is u and it is attached to vertices ai which are adjacent to vertices bi which

4

are adjacent to vertices ci for each 1 ≤ i ≤ s. Moreover, u is also adjacent to c1 which is adjacent to c2 and
which is adjacent to c3. Vertices {ai, bi, ci} correspond to elements {xi, yi, zi} so that ai < bi < ci. Edges are
labeled as follows:

• For every i ∈ {1, . . . , s}, λ(uai) = {1, ai + 2};

• For every i ∈ {1, . . . , s}, λ(aibi) = {1, bi + 2};

• For every i ∈ {1, . . . , s}, λ(bici) = {1, ci + 2};

• We have λ(ut1) = {1}, λ(t1t2) = {1} and λ(t2t3) = {2};

Observe that the constructed graph is a star whose every edge is subdivided exactly twice. Moreover,
every edge has at most two labels.

We shall now prove that we decide YES for 3DM on (S, ℓ) if and only if we decide YES for Temporal
Resolving Set on ((T, λ), s+ 1− ℓ).

(⇒) Assume that S contains a matching M of size at least ℓ. We construct the following set: R =⋃
i ̸∈M{ai} ∪ {t1}. Note that R contains t1 and each ai such that the corresponding element of S is not in

M . Furthermore, every vertex of T is reached from t1, so we need only consider the separation part.
First observe that t1 separates u and each ti. Furthermore, it reaches each vertex of type ai at moment

ai +4, vertices bi at moment bi +4 and vertices ci at moment ci +4. Consider then some ah ∈ R. It reaches
vertex bh at moment 3 and ch at moment 4. Hence, together with vertex t1, vertex ah separates vertices
ah, bh and ch from all other vertices. Furthermore, vertex ah reaches other vertices of types ai, bi and ci at
the same moment as vertex t1. Hence, we have uniquely separated vertices u, t1, t2, t3 and every ah, bh, ch
such that ah ∈ R. Recall that sets X,Y and Z are disjoint. Thus, each vertex ai is separated from vertices
of type bj for any i and j and the same is true for ai and cj as well as bi and cj . Let us next consider when
we might not separate ai from aj (the same argument holds for pairs bi, bj and ci, cj). We may assume that
{ai, aj} ∩R = ∅. Thus, corresponding elements belong to M . Therefore ai ̸= aj and hence, they are reached
at different time moments from vertex t1, a contradiction. Therefore, R is a temporal resolving set of the
claimed cardinality.

(⇐) Assume that there is a temporal resolving set R of size at most s − ℓ + 1. Since every vertex must
be reached from a vertex of R, we must have one of vertices t1, t2 or t3 in R. Now, as in the previous case,
only the a’s b’s and c’s must be reached and resolved. If each ai, bi and ci is unique, then t1 is a resolving
set of size 1 ≤ s − ℓ + 1. Moreover, if for example ai = aj (similar argument holds for bi = bj and ci = cj),
then at most one of corresponding tuples can belong to the matching. Moreover, to separate ai and aj , we
need a vertex in resolving set to belong to one of the branches. Hence, we may choose as our matching M
the sets corresponding to branches which contain no members of the temporal resolving set. There are at
least ℓ such branches and the claim follows.

Theorem 3. Temporal Resolving Set is NP-complete on temporal trees, even with only one vertex of
degree at least 5, and when each edge appears in at most two, consecutive, time-steps.

Proof. First, note that the problem is clearly in NP: a certificate is a set of vertices, and for each vertex, we
can compute the time vectors, check that they are all different and check that every vertex is reached by at
least one vertex from the set in polynomial time. To prove completeness, we reduce from 3-Dimensional
Matching.

Starting from an instance (S, ℓ) of 3-Dimensional Matching, denoting s = |S| and the i-th triple in
S by (xi, yi, zi) with xi ∈ X, yi ∈ Y, zi ∈ Z, we will construct an instance (G, ℓ′) of Temporal Resolving
Set. This construction is detailed below. Note that the time-steps cover the interval [n− 1, n2 + 1] in order

5

u

a1

b1

c1

as

bs

cs

t1

t2

t3

2, a1 +
4 2, as + 4

2

1

3

3, b1 + 4

4, c1 + 4

3, bs + 4

4, cs + 4

• • • • • •

Figure 1: The construction of the proof of Theorem 2. Only the branches 1 and s are detailed together with
the control branch. We have {ai, bi, ci} = {xi, yi, zi} where ai < bi < ci.

to simplify the notations but, as discussed in the introduction, they can be brought down to the interval
[1, n2 − n+ 2] instead. Let:

V ={u} ∪
s⋃

i=1

{ai, bi, ci} ∪

 n⋃
j=1

{vji , s
j
i , t

j
i}

 ∪

n−1⋃
j=1

n−1⋃
k=1

{wj,j+1,k
i , sj,j+1,k

i , tj,j+1,k
i }

 .

We will arrange the vertices in the following way, which will be formalized below: u will be connected to
every v1i which will be the start of the i-th branch corresponding to the i-th element of S, every t will be
connected to its corresponding s and either v or w, all the wj,j+1,k

i will form a path linking vji and vj+1
i ,

and the vertices ai, bi, ci will represent the tuple elements xi, yi, zi. The edges and their labels are as follows
(edges not described do not exist):

• For every i ∈ {1, . . . , s}, λ(uv1i) = {n− 1, n};

• For every i ∈ {1, . . . , s}, λ(vxi
i ai) = {xin, xin+ 1}, λ(vyi

i bi) = {yin, yin+ 1}, λ(vzii ci) = {zin, zin+ 1};

• For every i ∈ {1, . . . , s} and j ∈ {1, . . . , n − 1}, λ(vjiw
j,j+1,1
i) = {jn, jn + 1} and λ(wj,j+1,n

i vj+1) =
{(j + 1)n− 1, (j + 1)n};

• For every i ∈ {1, . . . , s}, j ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n− 2}, set

λ(wj,j+1,k
i wj,j+1,k+1

i) = {jn+ k, jn+ k + 1};

• For every i ∈ {1, . . . , s} and j ∈ {1, . . . , n}, set

λ(sji t
j
i) = λ(tjiv

j
i) = {n2 + 1};

• For every i ∈ {1, . . . , s}, j ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n− 1}, set

λ(sj,j+1,k
i tj,j+1,k

i) = λ(tj,j+1,k
i wj,j+1,k

i) = {n2 + 1}.

6

Note that the underlying graph T thus constructed is a tree, and that every edge has, as time labels, an
interval of size at most 2. Furthermore, u is the only vertex with degree at least 5. This construction is
depicted on Figure 2.

Let ℓ′ = s(n(n− 1)+1)+ (s− ℓ). We prove that we decide YES for 3-Dimensional Matching on (S, ℓ)
if and only if we decide YES for Temporal Resolving Set on ((T, λ), ℓ′).

(⇒) Assume that S contains a matching M of size at least ℓ. We construct the following set: R =⋃
i ̸∈M

{v1i }∪
s⋃

i=1


n⋃

j=1

{tji} ∪
n−1⋃
j=1

n⋃
k=1

{tj,j+1,k
i }

, i.e., R contains every t and all the first vertices of every branch

of T such that the corresponding element of S is not in M . Note that every vertex of T is reached from
an element of R, so we need to consider the separation part. First, note that u and each s, t, v, and w is
uniquely separated by R (u by the v1i ’s we selected, the other ones by the t’s). Hence, the only possible
vertices not separated by R are a’s, b’s and c’s. Note that, by construction, ai (resp. bi, ci) will be reached
at time xin+ 1 (resp. yin+ 1, zin+ 1) from any vertex v1j such that j ̸= i, and at time xin (resp. yin, zin)
from v1i . Hence, all the ai’s, bi’s and ci’s in branches i such that i ̸∈ M are separated by R. Furthermore,
for every branch i, the vertices ai, bi and ci are separated from each other. Assume now that two vertices
are not separated by R, they have to be ai and aj (without loss of generality) such that i ̸= j and i, j ∈ M .
However, this is only possible if xi = xj , in which case the elements i and j from M cannot be in the same
matching, which is a contradiction. Hence, R is a temporal resolving set of size s(n(n− 1) + 1) + (s− ℓ): it
contains (s− ℓ) vertices v1i , and there are n(n− 1) + 1 vertices t for each of the s branches.

(⇐) Assume that there is a temporal resolving set R of size at most ℓ′ = s(n(n− 1) + 1) + (s− ℓ). Since
every vertex must be reached from a vertex of R, for every pair of adjacent s and t, at least one of them must
be in R. Without loss of generality, assume that every t is in R (since this allows to reach and separate every
v and w): this means that the number of non-t vertices in R is at most s − ℓ (since every branch contains
n(n− 1)+1 pairs of adjacent s and t). Now, as in the previous case, only the a’s b’s and c’s must be reached
and separated, as well as u. Selecting either u or any v1i will take care of u and allow to reach the a’s, b’s
and c’s. Again, the possible conflicts among those vertices are the ones such that (without loss of generality)
xi = xj for i ̸= j. In this case, the only way to separate the pair would have been to either select ai or aj , or
to select any vertex above them in either (or both) of the branches i and j. Since R is a temporal resolving
set, all such pairs have been separated. We construct M the following way: add to M every i such that the
only vertices of the branch i in R are its s’s and t’s. No two elements of M can verify xi = xj (resp. yi = yj ,
zi = zj), since that would imply that the corresponding pair (ai, aj) (resp. (bi, bj), (ci, cj)) would not be
separated: no vertex of branch i would have been in R, and thus R would not be a temporal resolving set.
Hence, M is a matching of size at least ℓ: at most (s− ℓ) branches contain a vertex of R that is not a t, and
thus at least ℓ branches do not.

Remark 4. We can set λ(tjiv
j
i) = λ(tj,j+1,k

i wj,j+1,k
i) = {n2 + 2, n2 + 3} and λ(sji t

j
i) = λ(sj,j+1,k

i tj,j+1,k
i) =

{n2 + 1, n2 + 2}, to obtain a construction with time intervals of size exactly 2.

3 Polynomial-time algorithms for subclasses of trees
In this section, we give polynomial-time algorithms for Temporal Resolving Set. We study temporal
paths and stars with one time label per edge, and temporal subdivided stars with one time label per edge and
where every label is in {1, 2}. Recall that Temporal Resolving Set is already NP-complete on temporal
subdivided stars with 2-labeling (Theorem 2), so these results are a first step for bridging the gap between
polynomial-time and NP-hard.

7

u

a1

b1

c1

v11

v21

v31

vn1

v1s

w1,2,1
1

w1,2,n−1
1

w2,3,1
1

w2,3,n−1
1

w3,4,1
1

s11 t11

s21 t21

s31 t31

sn1 tn1

s1s t1s

s1,2,11 t1,2,11

s1,2,n−1
1 t1,2,n−1

1

s2,3,11 t2,3,11

s2,3,n−1
1 t2,3,n−1

1

s3,4,11 t3,4,11

n− 1, n n− 1, n

n, n+ 1

n2, n2 + 1

3n, 3n+ 1

n, n+ 1

2n− 1, 2n

2n, 2n+ 1

3n− 1, 3n

3n, 3n+ 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

• • •

Figure 2: The construction of the proof of Theorem 3. Only the branch 1 is detailed, we have x1 = 1, y1 = n
and z1 = 3. Dashed lines represent longer paths.

3.1 Temporal paths
Throughout this subsection, we denote by Pn a path on n vertices v1, . . . , vn, with edges vivi+1 for 1 ≤ i ≤
n − 1. Furthermore, we assume that λ is a 1-labeling. Algorithm 1 constructs a minimum-size temporal
resolving set R of P = (Pn, λ). The core of the algorithm consists in adding to R the last vertex that can
reach a leaf, then check if it separates everything in the two directions. If so, we can iterate on the vertices it
cannot reach, and otherwise we have to add a vertex that separates the conflicting vertices before iterating.
We denote λ(vivi+1) by ti and by {r1, . . . , r|r|} the elements of R, and we assume that if ri = vj and rh = vk
for h > i, then k > j. Consider vertex vi, we say that vj is on its right (resp. left) side if j > i (resp. j < i).
The set of vertices on the left side of vertex vj is denoted by ℓ(vj).

Lemma 5. Let P = (Pn, λ) be a temporal path and P ′ = (Pm, λ) be a temporal subpath of P containing one
of the leaves of Pn. The temporal resolving number of P is at least as large as the temporal resolving number
of P ′.

Proof. We may assume without loss of generality that the temporal subpath P ′ contains vertices va, va+1, . . . , vn

8

Algorithm 1 Temporal resolving set for temporal paths with 1-labeling
Input: A temporal path P = (Pn, λ).
Output: A minimum-size temporal resolving set R of P.
1: Set v = v1 and R = ∅.
2: while true do
3: Let s = vi where i is the largest integer such that vi reaches v. Add s to R and set a = i.
4: if Each vertex in RR(s) has unique distance among vertices in RR(s) to s then
5: w = vj where j is the smallest integer satisfying j > i for each vi ∈ R(s).
6: if vn ∈ RR(s) or vn ∈ R then return R.
7: end if
8: else Let w = vb where vb ∈ RR(s) is the vertex which does not have unique distance among vertices

in RR(s) to s and among those vertices b is minimal such that b > a.
9: end if

10: Let v = w.
11: end while

for some 1 ≤ a ≤ n. Let R ⊆ V (Pn) (resp. R′ ⊆ V (Pm)) be a minimum-size temporal resolving set of P
(resp. P ′). If |R| ≥ |R′|, then the claim follows. Thus, assume by contradiction that |R| < |R′|. First observe
that if R ⊆ V (Pm), then R is a temporal resolving set in P ′ and thus |R| ≥ |R′|, a contradiction. Hence, we
may assume that there exists some vertex s ∈ R \ V (Pm). Let us consider the set R′′ = {va} ∪ R ∩ V (Pm).
Note that |R′′| ≤ |R|. First of all, every vertex in P ′ is reached by some vertex of R′′. Secondly, if two
vertices of P ′ are not separated by vertices in R′′ \ {va}, then they were separated by s in P. Moreover, in
R′′ they are separated by va. Indeed, if w ∈ R(s)∩V (Pm), then w ∈ R(va)∩V (Pm). Moreover, since va is a
leaf in Pm, every vertex in R(va)∩V (Pm) has a unique temporal distance to va. Therefore, R′′ is a resolving
set in P ′ with cardinality |R′′| < |R′|, a contradiction. Thus, the claim follows.

Theorem 6. There is a linear-time algorithm solving Temporal Resolving Set on temporal paths where
each edge appears only once.

Proof. In the following, we first show that Algorithm 1 returns a temporal resolving set R of P =(Pn, λ).
After that, we prove that R is minimum-sized and finally, that the algorithm has linear time complexity.

First of all, consider vertices in R(s1). Note that if there are vertices u, vb ∈ R(s1) such that distt(r1, u) =
distt(r1, vb), then one of them is on the left side of r1 and other one is on its right side. Let us assume,
without loss of generality, that u is on the left side of r1. Moreover, no third vertex w can have distt(r1, u) =
distt(r1, vb) = distt(r1, w). Let us assume that vb is the vertex with the smallest index on the right side of r1
such that it is not separated by r1 from some other vertex (in this case, from u).

In this case, Algorithm 1 has chosen w = vb on Step 8 and set v = w after that on Step 10. Hence, in the
following while-loop, we choose r2 as the rightmost vertex which reaches v(= vb). Furthermore, r2 cannot
reach u. Indeed, since r1 cannot separate between u and vb, there are two edges with the same time labels
on the path from u to vb. Therefore, on the path from r2 to u, there are two edges with the same time
labels. Hence, r2 separates vb from u. Consequently, we may observe that if there were any other vertices in
R{r1}(r1) which were not separated by r1, they are separated by r2. A similar argument works for all pairs
ri, ri+1. Note that in the end, either we choose r|R| = vn or r|R| separates every vertex in RR(r|R|). Hence,
we eventually enter the if-clause on Step 6 and return R.

We now show that there does not exist any resolving set of smaller size than R in P. We do this by
induction on the number n of vertices. First of all, Algorithm 1 outputs a temporal resolving set of size 1
when n ∈ {1, 2}, which is optimal. Thus, we assume from now on that it outputs a minimum-size temporal
resolving set for n ≤ n′.

9

Let n = n′ + 1, and R be the temporal resolving set constructed using Algorithm 1 on P = (Pn, λ).
Assume first that r1 separates every vertex in R(r1). Observe that if |R| = 1, then it is minimum-size.
Hence, we may assume that P ′ = P \R(r1) (where G \ V ′ for a temporal graph G = (V,E, λ) denotes the
temporal subgraph G′ = (V \ V ′, E \ {uv : u ∈ V ′ or v ∈ V ′}, λ)) is nonempty. By induction, Algorithm 1
outputs a minimum-size temporal resolving set R \ {r1} of P ′. Observe that ℓ(r1) ∩ R(w) = ∅ for any w
on the rightside of r1. Moreover, we require at least one vertex in set ℓ(r1) ∪ {r1} in any resolving set of
P to reach vertex v1. Observe that Algorithm 1 returns the temporal resolving set R \ {r1} for P \R(r1).
By induction, set R \ {r1} has minimum size. By Theorem 5, we require in any temporal path containing
P \R(r1) (and having vn as a leaf) at least |R| − 1 vertices. Furthermore, by our observations, we require in
a set ℓ(r1) ∪ {r1} at least one vertex to reach v1. Furthermore, since these vertices do not reach any vertex
in V (P) \R(r1), we require at least |R| vertices in a resolving set of P, as claimed.

Assume next that there are vertices vℓ and vr in R(r1) which are not separated by r1. Further assume
that vℓ (resp. vr) is on the left (resp. right) side of r1. Consequently, r2 is the rightmost vertex which
reaches vr. We show that if vℓ ̸= v1, then the claim follows. Assume that ℓ ≥ 2. Consider the temporal
path P ′ = P \ {v1}. Note that r1 is the rightmost vertex which reaches v2. Moreover, r1 does not separate
vertices vℓ and vr. Thus, Algorithm 1 outputs R as a resolving set for P ′. By our induction hypothesis, R is
minimum-size. By Theorem 5, we know that R is at least as large as a minimum-size temporal resolving set
of P ′. Thus, R is also a minimum-size temporal resolving set for P. Note that this implies that r1 separates
every pair of vertices in R(r1) except for (v1, vr).

We now need to analyze several cases depending on whether tr−1 ≤ tr and whether tr ≤ tr+1. We
distinguish four cases and for all of them, we conclude that at least |R| vertices are necessary in a temporal
resolving set of P.
Our aim is to conclude that temporal resolving set is of size at least |R| in P in all of the cases.

Assume first that tr−1 ≤ tr and tr ≤ tr+1. Thus, r2 = vr+1. Furthermore, r2 separates every vertex in
R(r2)\{vr}. Indeed since r1 reaches vr, we have R(r2)\{vr} = R(r2)\ℓ(r2), and r2 pairwise separates every
vertex on its right side. Denote by Pr the temporal subpath P \ (R(r1) ∪ R(r2)). Note that Algorithm 1
outputs R \ {r1, r2} as a temporal resolving set of Pr and, by induction, this has minimum cardinality in
Pr. Note that if |R| = 2, then R has the smallest possible size in P. Hence, we assume that |R| > 2. By
Theorem 5, any subpath of P containing P ′ and leaf vn has temporal resolving number at least |R| − 2.
Furthermore, we require at least two vertices in a temporal resolving set of P among vertices ℓ(r2) ∪ {r2}.
Note that none of these vertices reach any vertex in V (P ′). Thus, at least |R| vertices are necessary in a
temporal resolving set of P as claimed.

Consider now the case with tr−1 = tr and tr > tr+1. We have R(r1) = {v1, . . . , vr}. Consider subpath
P ′ = P \ R(r1). Note that Algorithm 1 outputs R \ {r1} for P ′ since r2 ̸= vr+1 as tr > tr+1. Moreover,
R \ {r1} is a minimum-sized temporal resolving set by induction assumption. By Theorem 5, any subpath of
P containing P ′ and vn requires at least |R| − 1 vertices in any temporal resolving set. Moreover, we require
at least one vertex in ℓ(r1) ∪ {r1} for any temporal resolving set of P. Note that vertices in ℓ(r1) ∪ {r1} do
not reach vertices in V (P ′). Hence, we require at least |R| vertices in any minimum-sized temporal resolving
set of P.

Consider next the case with tr−1 < tr and tr > tr+1. We have R(r1) = {v1, . . . , vr+1}. Consider P ′ such
that V (P ′) = {vr−1, . . . , vn}, E(P ′) ⊆ E(P), λ(vr−1vr) = tr and λ(vr+ivr+i+1) = tr+i for each i ≥ 0. Note
that Algorithm 1 now outputs the temporal resolving set R′ = (R ∪ {vr}) \ {r1}. By induction assumption,
R′ has minimum cardinality in P ′. In particular, any temporal resolving set of P ′ requires one of the vertices
vr−1 or vr as these are the only vertices which reach vr−1. Consider a temporal resolving set R′′ of P. Let
R∗ = R′′∩ℓ(vr+1). Observe that (R′′\R∗)∪{vr} is a temporal resolving set of P ′. Hence, |R′′|−|R∗|+1 ≥ |R|.
Since we require at least one vertex in R∗ to reach v1, we have |R′′| ≥ |R|. Therefore, |R| has the minimum
cardinality over temporal resolving sets of P, as claimed.

Next, we consider the case where tr−1 > tr and tr ̸= tr+1. Observe that vr+1 ̸∈ R(r1). Since vℓ = v1,

10

r1 separates vr+1 from other vertices in R(r1). Assume next that all time labels have even values. This has
no effect on the temporal resolving set or the algorithm (we can multiply every time label by two without
changing any reachability in the temporal path). We do the following modification to the time labeling of
P, obtaining path Pm. We change tr into t′r = tr − 1. Note that since we assumed that every time label has
even value, time label t′r has an odd value unlike all other time labels, and tr−1 > t′r. Moreover if tr+1 > tr,
then tr+1 > t′r and if tr+1 < tr, then tr+1 < t′r. Note that in this change we maintain vr and v1 unseparable
by r1 and every set R(vi) remains unchanged.

Observe that Algorithm 1 returns the same temporal resolving set R for Pm since r2 is still the rightmost
vertex which reaches vr. Moreover, any temporal resolving set for P remains as a temporal resolving set
for Pm since sets R(vi) remain unchanged and, since the label t′r is the only odd label, it cannot cause any
two vertices to become unseparated. Let P ′

m = Pm \R(r1). Observe that Algorithm 1 outputs a temporal
resolving set R′ = R \ {r1} for P ′

m. Furthermore, by the induction hypothesis, it is minimum-size. Consider
next a temporal resolving set R′′ of Pm. Assume first that there are at least two vertices in R(r1)∩R′′ and let
us denote the rightmost of them by w. Denote Pw = Pm \ ℓ(w). Note that R′′ \ ℓ(w) is a temporal resolving
set of Pw. Observe that P ′

m is a subgraph of Pw. Thus, by Theorem 5, we have |R′′ \ ℓ(w)| ≥ |R| − 1 and
|R′′| ≥ |R|. Assume then that we have |R′′ ∩ R(r1)| = 1. Let w1 ∈ R′′ ∩ R(r1). Note that if vr ∈ R(w1),
then w1 does not separate vℓ and vr. Thus, some other vertex in R′′ \R(r1) reaches vr and due to the odd
time label, R′′ \R(r1) is a temporal resolving set of P ′

m. Hence, by Theorem 5, we have |R′′| ≥ |R|, allowing
us to conclude that R is a minimum-size temporal resolving set of Pm. If we have a temporal resolving set
R∗ of P with |R∗| < |R|, then R∗ is also a temporal resolving set of Pm with |R∗| < |R|, a contradiction.

As the last case, we consider tr−1 > tr = tr+1. Again, observe that vr+1 ̸∈ R(r1). Furthermore, vr+1 = r2.
Hence, together, r1 and r2 separate all vertices in R(r1) ∪R(r2). Furthermore, since at least one vertex in
ℓ(r1)∪ {r1} is required, note that if |R| = 2, then it has minimum size in P. Thus, assume that |R| ≥ 3. Let
P ′ = P \ (R(r1) ∪R(r2)). Note that set R \ {r1, r2} is a minimum-size temporal resolving set of P ′ since r1
and r2 separate all vertices in R(r1) ∪R(r2). Furthermore, Algorithm 1 outputs set R \ {r1, r2} for P ′. By
the induction assumption, set R \ {r1, r2} is a smallest temporal resolving set of P ′. Hence, by Theorem 5,
any subpath of P containing P ′ and leaf vn requires at least |R| − 2 vertices in any temporal resolving set.
Furthermore, at least two vertices ℓ(r2) ∪ {r2} are required in any temporal resolving set of P, and these
vertices do not reach any vertex in V (P ′). Thus, P does not have any temporal resolving set with cardinality
less than |R|, as claimed.

Finally, we show that Algorithm 1 has linear time complexity. First of all, the while-loop ends at some
point since every temporal path has a temporal resolving set by taking every vertex in the underlying path.
Secondly, Step 3 uses at most i+1− a comparisons and in total at most 2n comparisons. In Step 4, observe
that sets RR(s) do not overlap. Thus, each vertex is considered only once. Moreover, the time labels on the
left and the right side of s are ordered from small to large. Thus, checking if each time label has a unique
value can be done in linear time on |RR(s)|. Again, in Step 5, the sets R(s) \ ℓ(s) do not overlap. Thus, this
step takes at most linear time in total. Finally, all the other steps take at most constant time. Hence, the
algorithm has linear-time complexity.

The following lemma gives some structure on the minimum-size temporal resolving sets of temporal paths,
with respect to the one output by Algorithm 1. In particular, it states that the constructed temporal resolving
set R places each vertex in R as far away from the leaf v1 as possible. It will be used in the case of subdivided
stars, allowing us to reuse Algorithm 1 in order to find a partial solution.

Lemma 7. Let P be a temporal path on n ≥ 2 vertices with 1-labeling λ on vertices v1, . . . , vn and edges
vivi+1 for 1 ≤ i ≤ n− 1 where vi is on the left side of vi+1 for each i. Let R = {r1, . . . , r|R|} be the temporal
resolving set output by Algorithm 1, where ri is on the left side of ri+1 for each i. Let R′ = {r′1, . . . , r′|R|} be
another temporal resolving set of P. We have r′i ∈ ℓ(ri) ∪ {ri} for each i.

11

Proof. Recall that by Theorem 6, Algorithm 1 returns a temporal resolving set of minimum size for path
P. Consider first the case with |R| = 1. Notice that r1 is the rightmost vertex which reaches v1. Thus, the
claim holds in this case. Consequently, by the same argument, we have that r′1 ∈ ℓ(r1) ∪ {r1} even when
|R| > 1. Assume next that the claim does not hold for some P, R and R′. Furthermore, let r′i ̸∈ ℓ(ri) ∪ {ri}
and r′j ∈ ℓ(rj) ∪ {rj} for every j < i. Let us assume first that ri−1 = r′i−1. Denote by Rj = {r1, . . . , rj} and
R′

j = {r′1, . . . , r′j} for any j ≤ |R|.
Consider first the case where ri−1 separates all vertices in RRi−1(ri−1). Let w be the leftmost vertex which

is not reached by Ri−1. In this case, Algorithm chooses ri as the rightmost vertex which reaches w. Since also
r′i reaches w, we have r′i ∈ ℓ(ri)∪ {ri}, a contradiction. Hence, there exist vertices u,w ∈ RRi−1(ri−1) which
are not separated ri−1. Let u ∈ ℓ(ri−1) and w ∈ R(ri−1) \ ℓ(ri−1). Furthermore, we assume that w is the
leftmost vertex with these properties. Notice that ri is the rightmost vertex which reaches w. Moreover, if
u,w ∈ RR′

i−1(r′i−1) and r′i−1 ̸= u, then r′i−1 does not separate u and w. Thus, vertex r′i reaches w. However,
since ri was the rightmost such vertex, we have r′i ∈ ℓ(ri) ∪ {ri}, a contradiction. Furthermore, if r′i−1 = u,
then w ̸∈ R(r′i−1). Indeed, there are two edges with the same time label on the path from u to w since ri−1

does not separate them. Therefore, to reach w, we have w ∈ R(r′i). Again, this leads to a contradiction
since ri was the rightmost vertex reaching w. Hence, u ̸∈ RR′

i−1(r′i−1) and r′i−1 is on the rightside of u. In
particular, this implies that u ∈ R(r′i−2). Furthermore, we have u ̸∈ R(ri−2). Indeed, otherwise ri−2 or ri−1

would separate w and u. Moreover, u is on the rightside of ri−2. Since u ∈ R(r′i−2) but u ̸∈ R(ri−2), we
have r′i−2 on the rightside of ri−2. However, this is a contradiction with the minimality of i. Therefore, the
claim holds.

3.2 Temporal stars
In this subsection, we give polynomial-time algorithms for finding minimum-size temporal resolving sets for
temporal stars with 1-labeling and temporal subdivided stars with 1-labeling using only values 1 and 2.

Theorem 8. Let S be a star, λ be a 1-labeling, and S = (S, λ). The set R = {c}∪
⋃m

j=1 V L′
j is a minimum-

size temporal resolving set of S.

Proof. Throughout this proof, we denote by Sn the star with central vertex c and n leaves v1, . . . , vn. We
furthermore assume that the time labeling λ uses time labels from 1 to m and does not contain any gap (the
underlying graph being a star, we can remove gaps without changing reachability); since λ(cvi) contains only
one integer, we will use it to denote the integer it contains by abuse of notation. We can further assume
without loss of generality that λ(cvi) ≤ λ(cvi+1) for each 1 ≤ i ≤ n − 1. Let V Lj = {vi : λ(vi) = j} and
Lj = |V Lj |. We denote by V L′

j a set V Lj \ {v} where v is an arbitrary vertex of V Lj .
We first prove that R is a temporal resolving set of S. First, we have V (Sn) ⊆ R(c) and c ∈ R.

Furthermore, by the definition of the sets V L′
j , c separates every vertex in V (Sn)\R. Hence, R is a temporal

resolving set of S.
Next, let us prove the minimality of R. First, assume that for some j, we have u, v ∈ V Lj \R. However,

we have λ(cu) = λ(cv) = j. Thus, these vertices cannot be separated and we have |V Lj \ R| ≤ 1 for each
j. Assume then that |V Lj \ R| = 1 for each 1 ≤ j ≤ m and that c ̸∈ R. However, now there is a vertex
v ∈ V L1 \R and the only vertices that can reach v are v and c since 1 is the smallest label. Thus, no vertex
in R reaches v and hence, we cannot simultaneously have |V Lj \ S| = 1 for each 1 ≤ j ≤ m and c ̸∈ R.
Therefore, R has minimum cardinality.

We now consider subdivided stars together with 1-labeling λ using only values 1 and 2. In particular,
we present a polynomial-time algorithm for this case. The central vertex of a subdivided star is denoted
by c. By a branch of a subdivided star, we mean a path starting from vertex c without the vertex c itself.
Branches are denoted by Bi, . . . , B∆ and the leaves by ℓ1, . . . , ℓ∆. Furthermore, the vertex in Bi adjacent

12

to c is denoted by vi, the vertex adjacent to by ui and the third vertex of branch by wi (if they exist, note
that some of these vertices might also be denoted ℓi). We further assume that branches are ordered so that
λ(cvi) ≤ λ(cvi+1) for each i ≤ ∆ − 1. We assume that λ(cvi) = 1 for each i ≤ I1 where 0 ≤ I1 ≤ ∆ and
denote B1 =

⋃I1
i=1 Bi and B2 =

⋃∆
i=I1+1 Bi.

The following theorem shows that Algorithm 2 returns a minimum-size temporal resolving set in polyno-
mial time for a given temporal subdivided star using only values 1 and 2 in its 1-labeling.

Algorithm 2 Temporal metric dimension for subdivided star SS∆ with 1-labels using values 1 and 2

Input: Subdivided star SS∆ of degree ∆ ≥ 3 together with time labeling λ for each edge e ∈ E(SS∆) such
that λ(e) ∈ {1, 2}.

Output: An optimal temporal resolving set R on SS∆.
1: For each path from ℓi to c, we create temporal resolving set Ri using Algorithm 1.
2: Let R′ = (

⋃∆
i=1 Ri) \ {c}.

3: Let Bc =
⋃

c∈Ri
Bi.

4: if Bc = ∅ then return R′.
5: end if
6: for j ∈ {1, 2} do
7: if v ∈ N(c) ∩ V (Bc) and v ∈ V (Bi) and Bi ∈ Bj , for some i ≤ ∆, and Ri \ {c} does not separate v

from some other vertex in Bi but v ∈ R(Ri \ {c}) then
8: add v to Qj .
9: end if

10: end for
11: for 1 ≤ j ≤ ∆ do
12: Remove branch Bj from Bc if Q2 ∩ V (Bj) ̸= ∅.
13: end for
14: Let r = |{i | Q1 ∩ V (Bi) ̸= ∅}|.
15: for 0 ≤ j ≤ 2 do
16: for each vertex set R′′ such that R′′ ⊆ R(c) ∩ (V (Bc) ∪ {c}), |R′′ ∩ V (Bi)| ≤ 1 for every Bi ∈ Bc,

|R′′ ∩Q1| ≤ 1, |R′′ ∩ {r | dist(c, r) = 2}| ≤ 1 and |R′′| = |Bc| − 1− r + j do
17: if R′ ∪R′′ is a temporal resolving set of SS∆ then return R′ ∪R′′

18: end if
19: end for
20: end for

Theorem 9. Given a subdivided star SS∆ of maximum degree ∆ ≥ 3 and 1-labeling of edges restricted to
values 1 and 2, Algorithm 2 returns a minimum size temporal resolving set of SS∆ in polynomial time.

Proof. For brevity, we say that center c is the rightmost vertex and consider the leaves as leftmost vertices
of their branches.

We first show that Algorithm 2 returns a temporal resolving set, then that the temporal resolving set has
minimum possible size, and finally that the algorithm operates in polynomial time.

First of all, by Theorem 6, Algorithm 1 returns a minimum size temporal resolving set Ri for a path from
ℓi to c in Step 1. Denote this path together with its time labeling λ by Pi. Let us first consider the set R′

which is returned in Step 4. If we enter the if-clause on Step 4, then we have Bc = ∅ and c ̸∈
⋃∆

i=1 Ri. Thus,
R′ =

⋃∆
i=1 Ri. Since each Ri is a temporal resolving set for path from ℓi to c, each vertex in the substar is

reached by some vertex in R′. Moreover, each of these sets separates all vertices within the same path Pi.
Thus, if two vertices u ∈ V (Bi) and v ∈ V (Bj) are not separated by R′, then we have i ̸= j. However, since

13

c ̸∈ R′, u and v are reached by at least two different vertices in R′, from two different sets Ri. Let u ∈ R(ru)
for some ru ∈ Ri. If v ̸∈ R(ru), then ru separates u and v. If there is a path from ru to u to v, then ru
separates vertices u and v. Thus, ru is on the path from u to v. Similarly, we have rv ∈ Rj between vertices
v and u. Thus, neither of u nor v can be vertex c. Consequently, also c ̸∈ R′ is on the path from u to v.
Moreover, since our labeling consists of values 1 and 2, rv cannot reach u. We conclude that u and v are
separated. Hence, if R′ is returned in Step 4, then it is a temporal resolving set of the subdivided star.

In the for-clause between Steps 6 and 10, we consider each vertex v ∈ N(c) in some branch Bi ∈ Bj

which is reached by Ri \ {c} but not separated from some other vertex in Bi. Each such vertex is added to
set Qj for j corresponding to Bj . Observe that any vertex in N [c] which reaches v, also separates it from
other vertices.

In the for-clause between Steps 11 and 13, every branch which has non-empty intersection with Q2 is
removed from Bc. Notice that if v ∈ Q2, then v ∈ N(c). Hence, if we remove a branch Bj during this step
from Bc, then we had R(c) ∩ V (Bj) = {v}.

In the for-clause between Steps 15 and 20, we construct a temporal resolving set for the substar. Observe
that in particular the for-clause can always find, with j = 3, the set R′′ which contains c and the first vertex in
every branch in Bc which has empty intersection with Q1. Together with R′, this forms a temporal resolving
set of the substar (although not always minimum-size). Indeed, recall that Ri ∪ {c} is a temporal resolving
set for Pi. Thus, (Ri ∪ {vi}) \ {c} is also a temporal resolving set for Pi − c. Furthermore, each vi can only
reach the first vertices of other branches in B2 and no vertex in branches in B1. These vertices are either
in R′ ∪ R′′, in Q2, or in a branch which has temporal resolving set Rj \ {c}. Since we have c ∈ R′′, vertices
in Qj for j ∈ {1, 2} are reached and separated from other vertices. By these considerations, the only vertex
pairs which might not be separated belong to two different branches and do not belong to Qj . Let v ∈ V (Bi)
and u ∈ V (Bj) be two vertices which are not separated. Note that if u ̸∈ N(c), then it cannot be reached by
any vertex in V (Bi) and vice versa. Thus, v, u ∈ N(c) \ R′′. However, now v (u) is reached by some vertex
rv (ru) in R′ ∩ V (Bi) (R′ ∩ V (Bj)). Moreover, we have u ̸∈ R(rv) (v ̸∈ R(ru)). Thus, u and v are separated
and R′ ∪R′′ is a temporal resolving set of the substar.

Let us next show that the returned temporal resolving set has the minimum size. Consider first set R′ on
Step 4 and assume that it is returned. In this case, we have Bc = ∅ and thus, c ̸∈

⋃∆
i=1 Ri. Consider path

Pi −R(c). Note that for this path, Algorithm 1 returns a temporal resolving set of cardinality equal to |Ri|.
Furthermore, by Theorem 6, this set has minimum possible cardinality. By Theorem 7, there is no temporal
resolving set of cardinality |Ri| for path Pi which contains vertex c. Moreover, we require for each path
Pi −R(c) at least |Ri| vertices in a temporal resolving set. Thus, R′ has the smallest possible cardinality.

Let us then show that if R′ is not returned on Step 4, then R′ ∪ R′′ has the minimum cardinality for a
temporal resolving set in SS∆. By our earlier considerations, R′ ∪ R′′ is a temporal resolving set for some
suitable R′′. Let us first show that we may assume that R′ is a subset of some minimum-size temporal
resolving set of SS∆. First of all, in Step 1, Algorithm 1 returns a minimum-size temporal resolving set Ri

for each path Pi. Furthermore, for path Pi −R(c) \ (Ri \ {c}), Algorithm 1 returns the temporal resolving
set Ri \ {c}. Indeed, Pi −R(c) \ (Ri \ {c}) is a path since Algorithm 1 always picks the last vertex to reach
previously considered vertices and we only use labels 1 and 2. When traversing the path from leaf to center/,
the algorithm does not consider how to separate/reach vertices ahead of it. Let ri ∈ Ri \ {c} be the vertex
closest to c in Ri \ {c}. If c ̸∈ Ri, then by Theorem 7, any temporal resolving set containing a vertex in Pi

closer to c than vertex ri has at least |Ri|+ 1 vertices. Moreover, if c ∈ Ri, then any temporal resolving set
containing a vertex in Pi closer to c than vertex ri has at least |Ri| vertices. By these considerations, ri is
the vertex closest to center c other than c which can be contained in any temporal resolving set of cardinality
|Ri \ {c}| over all subpaths of Pi containing leaf ℓi.

Furthermore, if R is a resolving set of SS∆ and RPi
= R∩ V (Pr

i) (where Pr
i is the subpath of Pi from ℓi

to ri), then if |RPi | = |Ri \ {c}|, then RP = (R \RPi)∪ (Ri \ {c}) is also a temporal resolving set of SS∆ and
if |RPi | > Ri \ {c}, then R′

P = {c} ∪ (R \RPi) ∪ (Ri \ {c}) is also a temporal resolving set of SS∆. Consider

14

first the case with |RPi
| = |Ri \{c}|. In this case, Ri reaches and separates every vertex in Pr

i and ri is a leaf
of Pr

i . Assume on the contrary that RP is not a temporal resolving set. In this case, there are (at least) two
vertices in R(ri) which are not separated by ri. Note that one of them is on the right side (call this u) of ri
and one is on the left side (call this v). Moreover, if ri ̸∈ R, then we have some r′i ∈ R on the left side of ri
which is the rightmost vertex of RPi

. If r′i separates u and v, then u ̸∈ r′i. In this case, a vertex in R \ RPi

reaches u and separates it from v. Thus, ri ∈ R. Let r′i−1 (ri−1) be the first vertex on the left side of ri in
R (Ri). By Theorem 7, the vertex r′i−1 is not on the right side of ri−1. Thus, RPi

does not separate vertices
u and v but set R \RPi does separate them. Therefore, RP also separates u and v. Thus, RP is a temporal
resolving set of P. Moreover, we have |RP | = |R|.

Let us next consider the case with |RPi
| > |Ri \ {c}|. Recall that Ri is a temporal resolving set of Pi.

Thus, R′
P = RP ∪ {c} does not separate some vertices, those vertices belong to different branches of SS∆

and are only reached by c. However, in this case they are also not reached by RPi
and thus, not separated

by R, a contradiction. Thus, R′
P is a temporal resolving set of SS∆ with |R′

P | ≤ |R|. Therefore, we have
shown that R′ or R′ ∪ {c} is a subset of some minimum-size temporal resolving set of SS∆.

In the following, we consider R′′ from Step 16. Observe that there are at most |Bc| − r vertices vi in
N(c) which are not reached by any vertex in R′. Let us have |Bc ∩ B1| = c1 and |Bc ∩ B2| = c2. Out of
these vertices, note that c cannot separate any two vertices vi, vj ∈ N(c) ∩ V (Bc) ∩ V (Bh) for h ∈ {1, 2}.
Moreover, to reach every vertex vi in Bc ∩B1, we require either c to be in R′′ or some vertex from Bi to be
in set R′′. Thus, we have |R′′| ≥ |Bc|−r−1. We have earlier shown that for |R′′| = |Bc|−r+1, there always
exists a temporal resolving set. Thus, |Bc| − r − 1 ≤ |R′′| ≤ |Bc| − r + 1. Let us next show that we may
assume that R′′ ⊆ R(c) ∩ (V (Bc) ∪ {c}). Assume first on the contrary, that for every minimum set R∗ such
that R′ ∪ R∗ is a temporal resolving set of SS∆, we have w ∈ R∗ and w ̸∈ R(c). Furthermore, assume that
among such sets, R∗ contains the smallest possible number of vertices outside of R(c). Since R′ separates
vertices of SS∆ −R(c), we have a vertex v ∈ R(w) ∩R(c). Otherwise, R′ ∪ R∗ \ {w} would be a temporal
resolving set of smaller size. If R(w)∩R(c) \ {c} = v, then R′ ∪ (R∗ \ {w})∪ {v} is a temporal resolving set
of SS∆, a contradiction. Thus, u, v ∈ R(w) ∩R(c). Note that u and v belong to the same branch. Assume
that distt(c, u) = 2 and distt(c, v) = 1. In this case, R′ ∪ (R∗ \ {w})∪{u} is a temporal resolving set of SS∆,
a contradiction. Thus, we may assume that R′′ ⊆ R(c).

Let us next show that we may assume that R′′ ⊆ V (Bc) ∪ {c}. Assume next on the contrary that
for every minimum set R∗ such that R′ ∪ R∗ is a temporal resolving set of SS∆, we have w ∈ R∗ and
w ̸∈ V (Bc) ∩ {c}. Furthermore, assume that among such sets, R∗ contains the smallest possible number of
vertices outside of V (Bc) ∩ {c}. We may assume that R∗ ⊆ R(c). Let us first assume that w ∈ Q2 ∩ R∗.
Observe that R(w) ∩ R(c) = {w, c}. Furthermore, set R′ ∪ (R∗ \ {w}) ∪ {c} is a temporal resolving set of
SS∆, a contradiction.

Thus, we may assume that w ∈ R(c) \ (V (Bc) ∪Q2 ∪ {c}). Observe that R′ reaches and separates every
vertex in the branch w is located. Furthermore, if distt(w, c) = 2, then the only vertex, which is possibly
separated from some other vertex by w but not by R′ ∪ (R∗ \ {w}), is c. Thus, R′ ∪ (R∗ \ {w}) ∪ {c} is
a temporal resolving set of SS∆, a contradiction. Assume next that distt(w, c) = 1. Now, R(c) ∩ R(w) =
{c}∪{w}∪(N(c)∩{u | distt(c, u) = 2})∪(N(w)∩{u | distt(c, u) = 2}). Note that vertices in {w}∪(N(w)∩{u |
distt(c, u) = 2}) are already separated from other vertices by R′. Furthermore, for each pair of vertices which
might be separated by w but not by c, there is one, say uc, in R(c) \R(w) and another one in R(w)∩R(c),
say uw. Furthermore, we have distt(c, uw) = distt(c, uc) = 2. Hence, uw ∈ N(c) ∩ {u | distt(c, u) = 2} and
uc ∈ {u | distt(c, u) = 2 and dist(c, u) = 2}). Furthermore, if a pair uw, uc is not separated by R′ ∪R∗ \ {w},
then there is still a vertex x in R∗ which reaches uc since w does not reach it and R′ ∪ R∗ is a temporal
resolving set of SS∆. Observe that there are exactly two options for x since distt(x, uw) = 2: c and the single
vertex, say vc, on the path from c to uc (note that we cannot have uc ∈ R∗ since uc would separate uw and
uc). Assume next that there is a vertex vx ∈ N(c) ∩ V (Bc) \ {vc} such that distt(c, vx) = 1. In this case,
R′ ∪ (R∗ \ {w})∪{vx} is a temporal resolving set of SS∆. If vx does not exist, then R′ ∪ (R∗ \ {w})∪{uc} is

15

a temporal resolving set of SS∆. Indeed, both vertices vc and c reach vertices in N(c) at temporal distance
2 from c at the same time-step as w. Furthermore, uc separates itself from uw. Therefore, R′′ ⊆ V (Bc)∪{c}
and hence, R′′ ⊆ R(c) ∩ (V (Bc) ∩ {c}).

Let us next show that we may assume that |R′′∩V (Bi)| ≤ 1 for each i. Observe first that since R′′ ⊆ R(c),
we have |R′′∩V (Bi)| ≤ 2. Assume on the contrary, that we have |R′′∩V (Bi)| = 2 for some i. Thus, we have
vi, ui ∈ R′′, λ(cvi) = 1 and λ(viui) = 2. Let us first assume that for every vj ∈ V (Bc) with j ̸= i, we have
λ(cvj) = 2. Then, R = R′ ∪ (R′′ \ vi) ∪ {c} is a temporal resolving set of SS∆. Indeed, ui separates vertices
vi, ui from other vertices in V (Bc). Furthermore, c reaches exactly the same set of vertices in R(c) ∩ V (Bc)
as vi does and the only distances which differ among these vertices are those to c and vi themselves. Thus,
R is a temporal resolving set in this case. Assume then that there exists a vertex vj ∈ V (Bc) with j ̸= i such
that λ(cvj) = 1. In this case, R = R′ ∪ (R′′ \ {ui, uj})∪ {vj} is a temporal resolving set of SS∆. Indeed, the
only vertices in V (Bc)∪ {c} which were separated from other vertices only by vertices ui and uj were in the
set {vj , ui, uj}. However, ui and uj (if it exists) are separated from other vertices in V (Bc) ∪ {c} by vi and
vj while vi and vj are separated from other vertices by themselves. Thus, R is a temporal resolving set.

Let us next show that we may assume that |R′′ ∩Q1| ≤ 1. Recall that Q1 ⊆ N(c) ∩ {v | distt(c, v) = 1}.
Assume on the contrary that we have vi, vj ∈ R′′ ∩ Q1. Then, R = R′ ∪ (R′′ \ {vi}) ∪ {c} is a temporal
resolving set of SS∆. Indeed, recall that c, together with R′, separates vertices in Q1 from all other vertices.
Furthermore, the only vertex which vi could separate which is not separated c or vj is uj if distt(c, uj) = 2.
However, since by the definition of Q1, the set R′ reaches vertex vj ∈ Q1, R′ also reaches uj . Hence, R′

separates uj from other vertices at temporal distance 2 from c, and R is a temporal resolving set of SS∆.
Let us next show that we may assume that |R′′ ∩ {a | dist(c, a) = 2}| ≤ 1. We assume on the contrary

that we have two vertices ui, uj ∈ R′′ ∩ {a | dist(c, a) = 2}. By our assumptions, we have R′′ ⊆ R(c).
Hence, distt(c, ui) = distt(c, uj) = 2. We claim that R = R′ ∪ (R′′ \ {ui, uj}) ∪ {vi, vj} is a temporal
resolving set of SS∆. Indeed, the only vertices in R(c) which are reached by ui and uj are in the set
{vi, vj , ui, uj , c}. Out of these, vi and vj separate themselves. Furthermore, ui is separated from vertices
in {u | distt(c, u) = distt(c, u) = 2} by vi and from vertices in {u | distt(c, u) = 1 and distt(c, u) = 2} by
vj . Similar arguments hold for uj . Finally, c is the only vertex at temporal distance 1 from both vi and vj .
Hence, R is a temporal resolving set of SS∆.

Since we are getting a temporal resolving set in Steps 15 to 20 and there is a minimum-size temporal
resolving set of the form R′ ∪R′′, we conclude that we have found a minimum-size temporal resolving set in
Steps 15 to 20 (or in Step 4).

Let us finally show that Algorithm 2 ends in polynomial time. Recall that it takes polynomial time on
the number of vertices n, especially when the time labels are in set {1, 2}, to check if a given set is a temporal
resolving set of a graph. Furthermore, in Step 1, Algorithm 1 works in linear-time and we need to apply it
at most n times. Steps 2 to 14 clearly operate in polynomial-time. In Steps 15 to 20, we test for a given
j ∈ {0, 1, 2}, at most

(|Bc|+1
3−j

)
· r · |Bc| ∈ O(n5) times if a given set is a temporal resolving set. Hence,

Algorithm 2 works in polynomial time, finishing the proof.

4 Combinatorial results for p-periodic 1-labelings
In this section, we focus on p-periodic 1-labelings, and bound the minimum size of temporal resolving sets for
several graph classes. When p = 1 or λ(e) is the same for every edge e, those are exactly the usual resolving
sets.

Given a temporal graph G = (G,λ) where λ is a p-periodic 1-labeling, we denote by Mp(G) the minimum
size of a temporal resolving set of G. Furthermore, if λ(e) = {i, i+ p, i+ 2p, . . .}, then, by abuse of notation,
we denote λ(e) = i.

Note that, in this section, reachability is trivially assured (since the time-steps repeat indefinitely and

16

considered graphs are connected), so to prove that a given set is a temporal resolving set, we only need to
prove that it is separating.

Theorem 10. Let Pn be a path on n vertices, λ a p-periodic 1-labeling, and P = (Pn, λ). We have Mp(P) = 1.

Proof. Let u1, . . . , un be the vertices of Pn, with edges uiui+1 for 1 ≤ i ≤ n − 1. Let R = {u1}. For
i ∈ {2, . . . , n−1}, ui is reached from u1 strictly before ui+1. The same reasoning works for R = {un}. Hence,
any of the leaves (clearly) forms a minimum-size temporal resolving set.

In particular, the proof of Theorem 10 implies that in a temporal tree T with p-periodic 1-labeling if we
have a path from r to u to v, then r separates vertices u and v. In this case, we say that vertices u and v
are path-separated (by r). In the following two theorems, we introduce combinatorial results for some simple
graph classes.

Theorem 11. Let Cn be a cycle on n vertices, λ a p-periodic 1-labeling, and C = (Cn, λ). We have 1 ≤
Mp(C) ≤ 2.

Proof. Let Cn be a cycle on n vertices, λ be a p-periodic 1-labeling, and C = (Cn, λ). Let e = uv be a locally
maximally labeled edge of C, i.e, an edge with λ(e) such that the adjacent edges have labels at most λ(e)
(such an edge has to exist). We claim that u and v form a resolving set.

Suppose for a contradiction that there are two vertices, x and y, not separated by u and v. That means
that they have the same temporal distance from u and from v.

Let us first consider temporal distances from u. By e being locally maximally labeled edge, it must be
that precisely one of the paths from u to x and from u to y attaining the minimal temporal distance must go
through e. Otherwise, u path-separates x and y. Without loss of generality, let e be on the path from u to
y. Thus, distt(v, y) = distt(u, y)− p. However, by the same reasoning as above, path attaining the temporal
distance from v to x must now use edge e and thus, distt(u, x) = distt(v, x)−p. Since distt(u, x) = distt(v, x).
We have distt(v, y) = distt(v, x)− 2p, a contradiction.

Theorem 12. Let Kn be a complete graph on n = b+ pb vertices with b ≥ 1, λ a p-periodic 1-labeling, and
K = (Kn, λ). We have b ≤ Mp(K) ≤ n− 1 and both bounds are tight.

Proof. The upper bound is trivial. To prove its tightness, consider K = (Kn, λ) with λ assigning the same
time label to all edges. All pairs of vertices in the graph are twins and therefore, we have to take at least one
of the vertices in all such pairs. This results in taking n− 1 vertices.

Let us prove the lower bound. For a contradiction, suppose there would be less than b vertices in a
temporal resolving set, say b′ < b. There are still more than pb vertices to separate but there are just pb

′

possible distance vectors to the vertices outside of our chosen set, less than pb. This means that some vertices
have to share a distance vector and thus, they are not separated, a contradiction.

We shall now construct a complete graph Kn with a p-periodic 1-labeling which attains the lower bound.
To this end, take a subset B of b vertices in a fixed order. Then, give every vertex v ∈ V (Kn) \ B a unique
p-ary tuple ℓ(v) of length b containing values from 1 to p. We label an edge between i-th element of B and
v ∈ V (Kn) \ B by j if the i-th position of ℓ(v) is j. The remaining edges of the graph, i.e., edges running
between the vertices of B and between the vertices outside of B will get label p. Clearly, the vertices of B
now form a resolving set since the constructed b-tuples are precisely the vectors of distances.

The following lemma will help us to simplify the remaining results on trees, as we will be able to consider
only temporal resolving sets composed of leaves.

Lemma 13. Let T be a tree, λ a p-periodic 1-labeling, T = (T, λ) with Mp(T) ≥ 2. There is a temporal
resolving set of T of size Mp(T) containing only leaves of T .

17

Proof. Let T be a tree, λ a p-periodic 1-labeling, and T = (T, λ). Suppose we have a minimum temporal
resolving set R of size at least two with the minimum number of non-leaves.

If every leaf is in the resolving set, then every two non-leaf vertices are path-separated by a leaf and thus
there can be no non-leaves in R, as otherwise we can construct a smaller temporal resolving set. Hence, we
may assume that not all leaves do belong to R.

Assume next that there is at least one non-leaf vertex v ∈ R. We root the tree in v. Our aim is to find
a suitable leaf ℓ ̸∈ R, which will be exchanged with v in order to get a same-size temporal resolving set with
lesser number of leaves. Let us denote for branch B the label of the edge between v and the vertex adjacent
to v in V (B) by λ(B). Let m = min{λ(B) | B is a branch}. Denote by Bm the set of branches B which have
λ(B) = m. If there is a branch B ∈ Bm such that R∩V (B) = ∅, then we choose ℓ as a leaf of B. Otherwise,
if there exists branch B′ such that R ∩ V (B′) = ∅, then we select ℓ as a leaf of B′ and if such B′ does not
exist, then we select ℓ as an arbitrary leaf not in R. Denote R′ = (R ∪ {ℓ}) \ {v}. Notice that since R is a
temporal resolving set of T , after this process we have R′ ∩ V (B) ̸= ∅ for each B ∈ Bm. In the following, for
x, y ∈ V (T), we always assume that x ∈ V (Bx) ∩ R′ where Bx is the branch in which x resides, Bx ∈ Bm,
and y ∈ R \ V (Bx).

We now consider different cases for pair of vertices a, b ∈ V (T) that is separated by v (which is in R). In
particular, we show that R′ separates them as well.

Case 1. a ∈ V (B), b ∈ V (B′) for any B,B′ ̸∈ Bm: Note that we may have B = B′. Recall that x ∈ V (Bx)∩
R′ and Bx ∈ Bm. We have distt(x, a) = distt(x, v)+distt(v, a)−m and distt(x, b) = distt(x, v)+distt(v, b)−m.
Since v separates a and b, we have distt(v, a) ̸= distt(v, b). Hence, distt(x, a) ̸= distt(x, b).

Case 2. a, b ∈ V (B) for B ∈ Bm: Let y ∈ V (By) ∩ R′ and By ̸= B. We have distt(y, a) = distt(y, v) +
distt(v, a) + (p− λ(By)) and distt(y, b) = distt(y, v) + distt(v, b) + (p− λ(By)) since λ(B) ≤ λ(By). Since v
separates a and b, we have distt(v, a) ̸= distt(v, b). Hence, distt(y, a) ̸= distt(y, b).

Case 3. a ∈ V (B), b ̸∈ V (B) for B ∈ Bm: Since B ∈ Bm, we have V (B) ∩ R′ ̸= ∅. Assume without loss
of generality, that B = Bx. We have x ∈ V (Bx) ∩ R′. Let vertex c be the last vertex on the common paths
from x to a and x to b (possibly c = x). We have c ∈ V (Bx). Let us denote by λ(a) (λ(b)) the time label of
the first edge on the path from c to a (to b). Furthermore, denote by λ(X) the label of the last edge on the
path from x to c. We let λ(X) = 0 if x = c.

When we have λ(X) < min{λ(a), λ(b)} or λ(X) ≥ max{λ(a), λ(b)}, vertex x separates a and b if and
only if c separates a and b. If λ(a) ≤ λ(X) < λ(b), then vertex x separates vertices a and b if and only if
distt(c, b) ̸= distt(c, a) + p.

Similarly, if λ(b) ≤ λ(X) < λ(a), then vertex x separates vertices a and b if and only if distt(c, a) ̸=
distt(c, b) + p. Moreover, in all three subcases we have distt(c, a) ≤ distt(v, a) and distt(c, b) ≥ distt(v, b).
Observe that if x does not separate vertices a and b, then the time label of the last edge on the paths from
v to a and from v to b is the same.

We conclude that distt(v, a) = distt(v, b) + h · p for some integer h. Again, we denote by Bb the branch
in which b is located. We shall now prove a crucial lemma, saying that in all the three cases, h is a positive
integer.

Claim 1. In all the three aforementioned cases we have h ≥ 1 if x does not separate a and b.

Proof. We shall divide the proof according to the cases which might occur.

Subcase 3.a. λ(X) < min{λ(a), λ(b)} or λ(X) ≥ max{λ(a), λ(b)}: In this case, x separates a and b if and
only if c separates a and b. We have distt(c, a) ≤ distt(v, a) and distt(c, b) ≥ distt(v, b) and at least one of
these two inequalities is strict (otherwise c separates a and b). Hence, if c does not separate a and b, then
distt(v, a) = distt(v, b)+h · p for some positive integer h. Indeed, the time label of the last edge on the paths
from v to a and from v to b is identical since c does not separate these vertices.

18

Subcase 3.b. λ(b) ≤ λ(X) < λ(a): In this case, x separates vertices a and b if and only if distt(c, a) ̸=
distt(c, b) + p. Hence, we assume that distt(c, a) = distt(c, b) + p. We have distt(v, a) = distt(v, b) + h · p for
some integer h ̸= 0. Recall that we have distt(c, b) ≥ distt(v, b) and distt(c, b) + p = distt(c, a) ≤ distt(v, a).
Hence, distt(v, b) + p ≤ distt(c, a) ≤ distt(v, a). Thus, h ≥ 2.

Consider next vertex y ∈ R′ ∩ V (Bb). We have

distt(c
′, b) ≤ distt(v, b) ≤ distt(c, b) = distt(c, a) ≤ distt(v, a) ≤ distt(c

′, a)− p.

The last inequality is due to Equation (1). Since x does not separate a and b, at least one of the inequalities
distt(c, a) ≤ distt(v, a) and distt(c, b) ≥ distt(v, b) is strict. Hence, distt(c′, a) > distt(c

′, b) + p. Therefore, y
separates a and b for every possible linear ordering of λ(a′), λ(b′), and λ(Y).

Subcase 3.c. λ(a) ≤ λ(X) < λ(b): In this case, x separates vertices a and b if and only if distt(c, b) ̸=
distt(c, a) + p. Assume that this is not the case and distt(c, b) = distt(c, a) + p. Recall that we have
distt(v, a) = distt(v, b)+h ·p for some integer h ̸= 0. We have distt(v, a) = distt(v, c)+distt(c, a)+ (p−λ(b))
because λ(b) > λ(a). Since distt(v, c) ≥ λ(b), we have distt(v, a) ≥ distt(c, a) + p. Recall that, we have
distt(c, b) ≥ distt(v, b). Further,

distt(v, b) + h · p = distt(v, a) ≥ distt(c, a) + p = distt(c, b) ≥ distt(v, b).

Finally, since distt(v, a) ̸= distt(v, b), we have h ≥ 1.
With this, we have proved the claim for all the three subcases.

We now proceed with the proof of Case 3 together with the assumption distt(v, a) = distt(v, b) + h · p for
a positive integer h.

Consider now a vertex r ∈ R′ ∩ V (Br) for Br ̸∈ Bx ∪Bb (if such a r exists). We have

distt(r, a) = distt(r, v) + distt(v, a) + (p− λ(Br))

= distt(r, v) + distt(v, b) + (h+ 1) · p− λ(Br)

≥ distt(r, v) + distt(v, b) + 2p− λ(Br).

Moreover, if λ(Bb) ≤ λ(Br), then distt(r, b) = distt(r, v)+distt(v, b)+(p−λ(Br)) < distt(r, a). Furthermore,
if λ(Bb) > λ(Br), then distt(r, b) = distt(r, v) + distt(v, b) − λ(Br) < distt(r, a). Hence, r separates a and b
in this case.

If we have a vertex y ∈ V (Bb) ∩R′, then we denote by c′ the last common vertex on the path from y to
a and from y to b. Since Bx ∈ Bm, we have

distt(c
′, a) = distt(v, a) + distt(c

′, v) + (p− λ(Bb) ≥ distt(v, a) + p. (1)

We denote by λ(a′) and λ(b′) the time label of the first edge on the path from c′ to a and from c′ to b,
respectively. Furthermore, denote by λ(Y) the label of the last edge on the path from y to c′. We let
λ(Y) = 0 if y = c′. Similarly to x, when we have λ(Y) < min{λ(a′), λ(b′)} or λ(Y) ≥ max{λ(a′), λ(b′)},
vertex y separates a and b if and only if c′ separates a and b. If λ(a′) ≤ λ(Y) < λ(b′), then vertex y separates
vertices a and b if and only if distt(c′, b) ̸= distt(c

′, a) + p. Similarly, if λ(b′) ≤ λ(Y) < λ(a′), then vertex y
separates vertices a and b if and only if distt(c′, a) ̸= distt(c

′, b)+p. In particular, if distt(c′, a) > distt(c
′, b)+p,

then y separates a and b.
We have

distt(c
′, b) ≤ distt(v, b) ≤ distt(v, a)− p ≤ distt(c

′, a)− 2p.

The second inequality is due to Claim and the last inequality is due to Equation (1). Hence, distt(c′, a) >
distt(c

′, b) + p. Therefore, y separates a and b for every ordering of λ(a′), λ(b′) and λ(Y).

19

Case 4. a ∈ V (B), b = v: Let y ∈ R′ \ V (B). In this case, y simply path-separates a and b.

Therefore, set R′ separates all vertices which are separated by R in all cases. Since |R| = |R′|, this
contradicts the assumption that R has the minimum possible number of non-leaves. Hence, the theorem
follows.

Theorem 13 gives us an FPT algorithm for Temporal Resolving Set in trees with respect to the number
of leaves. It also allows us to prove a bruteforce-like polynomial-time algorithm for temporal subdivided stars
with a p-periodic 1-labeling for fixed p. This shows that Temporal Resolving Set is in XP with respect
to the period of the time labeling in this context.

Theorem 14. Temporal Resolving Set is polynomial-time solvable in temporal subdivided stars with a
p-periodic labeling for fixed p.

Proof. Let S be a subdivided star with central vertex c and ℓ leaves, λ be a p-periodic 1-labeling, and
S = (S, λ). By Theorem 13, there exists a minimum-size temporal resolving set in S which contains only
leaves of S, if Mp(S) > 1.

Note that if some branches, say b of them, share the same time label on their edges incident with c, then,
to separate vertices in these branches, we need to select at least b−1 leaves in a temporal resolving set. Since
there are at most p distinct labels, we have, for any temporal resolving set R of S, |R| ≥ ℓ− p. Furthermore,
checking whether a given vertex set is a temporal resolving set of S can be done in polynomial time.

If n is the order of S, then there are
(

ℓ
ℓ−p

)
=

(
ℓ
p

)
∈ O(np) ways to select a vertex set containing exactly

ℓ − p leaves. Since p is a fixed constant, we can check all these sets in polynomial time. If any of them is a
temporal resolving set, then we found a minimum-size temporal resolving set of S. Otherwise, we iterate the
process by examining all vertex sets of size ℓ−p+1, ℓ−p+2, . . ., until we find a temporal resolving set. The
process will eventually stop as the set containing all leaves of S is a temporal resolving set of S. Thus, we
need to check at most

∑p
i=0

(
ℓ

p−i

)
vertex sets, that is, we need to do O(np) polynomial-time operations.

We end this section with two combinatorial results for other two subclasses of temporal trees: subdivided
stars and complete binary trees.

Theorem 15. Let S be a subdivided star on ℓ ≥ 2 leaves, λ a p-periodic 1-labeling, and S = (S, λ). We have
max(1, ℓ− p) ≤ Mp(S) ≤ ℓ− 1 and both bounds are tight.

Proof. Suppose that we have a subdivided star S with a p-periodic 1-labeling. Denote by c the central vertex
of S. By Theorem 13, if Mp(S) ≥ 2, then there exists a minimum-size temporal resolving set of S containing
only leaves. Again, as in the proof of Theorem 14, one can argue by a simple application of the pigeonhole
principle applied to the distinct labels of edges incident with c that at least ℓ− p leaves have to be chosen in
order to separate vertices in N(c). For ℓ − p < 1, a trivial bound saying that at least one vertex has to be
chosen is clearly better.

The lower bound is tight, as we can take a star on ℓ leaves such that first p edges will have different labels
and the remaining ℓ − p leaves will all share the same label, say 1. As there are ℓ − p + 1 vertices being
mutually twins, any minimum-size temporal resolving set has to be of size at least ℓ− p.

For the upper bound, we show that taking any ℓ − 1 leaves is enough to form a temporal resolving set
R, taking Theorem 13 into account. Indeed, a leaf ℓ ∈ R path-separates every vertex in the same branch
from each other and from vertices in other branches. Furthermore, ℓ also path-separates vertices in the single
branch with leaf outside of R from each other. Thus, R separates all vertices in S.

The tightness can be exemplified by a subdivided star with ℓ leaves with exactly same labels on all its
edges. In this case, all leaves are twins and we are forced to take all but one to separate them.

Theorem 16. Let T be a complete binary tree on 2n − 1 vertices, λ a 2-periodic 1-labeling, and T = (T, λ).
We have 2n−3 ≤ M2(T) ≤ 2n−2. Both bounds are tight.

20

Proof. The center of a tree is a vertex v such that the maximum distance between the vertex v and any other
vertex of the tree is minimal. (In this case, the center is a unique vertex.) For convenience, we consider all
trees in this proof as rooted in the center. Based on the distance from the center, we say that vertices at
distance i from the center are on level i. For a given i, higher levels are levels from 0 to i − 1, and lower
levels are those with value at least i+1. A complete binary tree on 2n − 1 vertices has 2n−1 leaves and they
are on level n − 1; the center is on level 0. We say that a vertex u is a descendant, or ancestor of v if v is
on the unique path from root to u, or u is on the unique path from root to v, respectively. Finally, we shall
say that leaves are close if they are at distance 2 in the underlying tree. Seven vertex subtrees rooted in a
vertex on level n− 3 and induced by all the vertices under such a vertex are called essential.

Again, by Theorem 13, we consider only sets of leaves as candidates for optimal temporal resolving sets
if these are of size at least two.

For the lower bound, let us have T = (T, λ), where T is a complete binary tree on 2n− 1 vertices and λ is
a 2-periodic 1-labeling. We focus on essential subtrees. If we take less than 2n−3 vertices into our candidate
set R, then necessarily at least one of the essential subtrees will have none of its leaves in R. Let us denote
its root by r. In such a subtree, the four paths from r to the leaves have to be labeled by all four possible
combinations of labels 1 and 2, otherwise we easily find two vertices not separated by R. However, even if
this is the case, none of the vertices from R are able to separate the leaf with labels 1 and 1 on the path from
r (denote the leaf by l1) and the leaf with labels 2 and 1 on the path from r (denote this leaf by l2). Indeed,
the temporal distance of any vertex c of R to l1 and l2 is d + 3 where d is the temporal distance of c to r.
Thus at least 2n−3 leaves are needed in any temporal resolving set of T .

To show that the lower bound is tight, consider T with a 2-periodic 1-labeling λ, constructed in a top-
down fashion, proceeding level by level we label one of the edges going to the lower level with 1 and the other
one with 2. We shall form a temporal resolving set R of size 2n−3 by taking one leaf from each essential
subtree: the one connected to the root of the respective essential subtree by path labeled only with 1. We
have to prove that all vertices are now separated. Let us have two different vertices, say u and v, outside of
R and suppose they are not path-separated. We distinguish the following cases.

• Vertices u and v are both on levels n− 3 or higher : In this case u and v are path separated and thus,
this case cannot occur.

• Vertices u and v are on levels n− 2 and/or n− 1: Either u and v are in the same essential subtree Te
and then, by a simple calculation, the temporal distances from the unique vertex from R in Te separate
these two vertices. (Temporal distances in Te range from 0 to 6 and they appear uniquely.) Assume
then that u and v are in different essential subtrees. Let u ∈ V (T⌉) and v ∈ V (T ′

e). We observe that
the distance from the leaf, say le in R ∩ V (Te) to v is at least 7. Thus, ℓe separates vertices u and v.

• Vertex u is on level at most n− 3, while v is on a level between n− 3 and n− 1, or vice versa: In this
case, u and v are path-separated unless we are in the special case of T having precisely 7 vertices and
being itself an essential subtree. However, we already know that separation is guaranteed in this case.

We covered all the possible cases and the tightness follows.
For the upper bound, we consider temporal tree T = (T, λ), where λ is a 2-periodic 1-labeling. We show

that taking one of the leaves in each of the 2n−2 subtrees rooted in a vertex on level n−2 suffices to separate
all vertices in T . Let us denote such a set by R. Again, we have to be careful only about the pairs of vertices
that are not path-separated. Suppose we have such a pair of different vertices u, v ̸∈ R so that there is no
vertex c ∈ R such that either u is on the path from c to v, or v is on the path from u to c. Based on our choice
of R, both u and v have to be leaves. We observe that distance from a vertex r ∈ R close to u has distance
in set {2, 3, 4} while the distance to other leaves is at least 4. However, if distt(r, v) = 4, then distt(r, u) ≤ 3.
Thus, R separates all vertices and the claim is proved.

21

To show that the upper bound is tight, consider T = (T, λ) with a 2-periodic 1-labeling λ where all edges
have the same label. Take any subset R′ of leaves of size at most 2n−2 − 1. In such a way, there has to be at
least one subtree rooted at level n− 2 out of all 2n−2 possible ones with no leaves in R′. The leaves of such
a subtree are not separated by R′ and thus, the tightness is proved.

5 Conclusion
We extended the definition of resolving sets to temporal graphs. We have proved that Temporal Resolving
Set is hard even in very restricted graph classes for some labelings. On the other hand, it seems that the
problem might be easier with p-periodic labelings. In particular, the fact that the standard resolving sets are
somewhat easier (they can be solved in polynomial-time in some classes for which Temporal Resolving
Set is NP-hard, such as complete graphs or trees) suggests that having time labelings containing a large
number of labels or where the highest possible time-step is low might make the problem more tractable.
In particular, since minimum k-truncated resolving sets can be found in polynomial-time in trees when k
is fixed, a potential direction would be to study the parameterized complexity of temporal resolving sets,
with the total number of available time-steps as a natural parameter. This parameter is unbounded in our
NP-hardness reductions for trees.

References
[1] Arrighi, E., Grüttemeier, N., Morawietz, N., Sommer, F., Wolf, P.: Multi-parameter analysis of finding

minors and subgraphs in edge-periodic temporal graphs. In: International Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM 2024). pp. 283–297. Springer (2023)

[2] Bartha, Z., Komjáthy, J., Raes, J.: Sharp bound on the truncated metric dimension of trees. Discrete
Mathematics 346(8), 113410 (2023)

[3] Bellitto, T., Conchon-Kerjan, C., Escoffier, B.: Restless exploration of periodic temporal graphs. In: 2nd
Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2023)

[4] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic net-
works. International Journal of Parallel, Emergent and Distributed Systems 27(5), 387–408 (2012)

[5] Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric
dimension of a graph. Discrete Applied Mathematics 105(1-3), 99–113 (2000)

[6] De Carufel, J.L., Flocchini, P., Santoro, N., Simard, F.: Cops & robber on periodic temporal graphs:
Characterization and improved bounds. In: International Colloquium on Structural Information and
Communication Complexity (SIROCCO 2023). pp. 386–405. Springer (2023)

[7] Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: Complexity of metric dimension on planar graphs.
Journal of Computer and System Sciences 83(1), 132–158 (2017)

[8] Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy
cases. Algorithmica 72(4), 1130–1171 (2015)

[9] Erlebach, T., Spooner, J.T.: A game of cops and robbers on graphs with periodic edge-connectivity. In:
International Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2020). pp.
64–75. Springer (2020)

22

[10] Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: On the (k, t)-metric dimension of graphs.
The Computer Journal 64(5), 707–720 (2021)

[11] Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong
product graphs and their local variants: combinatorial and computational results. Discrete Applied
Mathematics 236, 183–202 (2018)

[12] Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Searching for black holes in subways. Theory of
Computing Systems 50, 158–184 (2012)

[13] Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theoretical Computer
Science 469, 53–68 (2013)

[14] Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination
and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica
78, 914–944 (2017)

[15] Frongillo, R.M., Geneson, J., Lladser, M.E., Tillquist, R.C., Yi, E.: Truncated metric dimension for
finite graphs. Discrete Applied Mathematics 320, 150–169 (2022)

[16] Galby, E., Khazaliya, L., Mc Inerney, F., Sharma, R., Tale, P.: Metric dimension parameterized by
feedback vertex set and other structural parameters. SIAM Journal on Discrete Mathematics 37(4),
2241–2264 (2023)

[17] Geneson, J., Yi, E.: The distance-k dimension of graphs. arXiv preprint arXiv:2106.08303 (2021)

[18] Geneson, J., Yi, E.: Broadcast dimension of graphs. Australasian Journal of Combinatorics 83, 243
(2022)

[19] Gutkovich, P., Yeoh, Z.S.: Computing truncated metric dimension of trees. arXiv preprint
arXiv:2302.05960 (2023)

[20] Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combinatoria 2(191-195), 1 (1976)

[21] Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension.
In: 2013 IEEE Conference on Computational Complexity. pp. 266–276. IEEE (2013)

[22] Holme, P.: Modern temporal network theory: a colloquium. The European Physical Journal B 88, 1–30
(2015)

[23] Holme, P., Saramäki, J.: Temporal network theory. Computational Social Sciences, Springer (2019)

[24] Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In:
Principles of Distributed Systems: 15th International Conference, OPODIS 2011, Toulouse, France,
December 13-16, 2011. Proceedings 15. pp. 451–464. Springer (2011)

[25] Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete
Mathematics 312(22), 3349–3356 (2012)

[26] Karp, R.M.: Reducibility Among Combinatorial Problems, pp. 219–241. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

[27] Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. In:
Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing (STOC 2000). pp.
504–513 (2000)

23

[28] Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Applied Mathematics 70(3),
217–229 (1996)

[29] Kunz, P., Molter, H., Zehavi, M.: In which graph structures can we efficiently find temporally disjoint
paths and walks? In: Elkind, E. (ed.) Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI-23. pp. 180–188. International Joint Conferences on Artificial Intelligence
Organization (8 2023)

[30] Kuziak, D., Yero, I.G.: Metric dimension related parameters in graphs: A survey on combinatorial,
computational and applied results. arXiv preprint arXiv:2107.04877 (2021)

[31] Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Transactions on Parallel and Dis-
tributed Systems 20(9), 1325–1338 (2008)

[32] Michail, O.: An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics
12(4), 239–280 (2016)

[33] Slater, P.: Leaves of trees. Congressus Numerantium 14, 549–559 (1975)

[34] Tillquist, R.C., Frongillo, R.M., Lladser, M.E.: Getting the lay of the land in discrete space: A survey
of metric dimension and its applications. SIAM Review 65(4), 919–962 (2023)

[35] Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding small separators in
temporal graphs. Journal of Computer and System Sciences 107, 72–92 (2020)

24

	Introduction
	NP-hardness of Temporal Resolving Set
	Polynomial-time algorithms for subclasses of trees
	Temporal paths
	Temporal stars

	Combinatorial results for p-periodic 1-labelings
	Conclusion

