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Abstract 

This paper is devoted to model reduction of linear time invariant (LTI) systems whose parameters are random variables 
governed by probabilistic laws. A new and original method is proposed to deal with this challenging problem. It combines 
the truncation balanced realization (TBR) based method well known in model reduction of LTI systems and the generalized 
polynomial chaos (GPC) formalism known as a powerful tool for uncertainty propagation. The GPC formalism is used to 
represent and compute a random parameter-dependent balancing transformation (RPD-BT) which puts the random parame-
ters-dependent LTI system in a balanced form almost surely within the probabilistic range of random parameters. Model re-
duction is then performed by truncating states that are almost surely weakly controllable and observable. The truncation er-
ror is characterized by its moments. These are shown to be bounded by the Hankel singular values moments that are also 
estimated by using the GPC formalism. The proposed method is tested through its application on an simple mechanical sys-
tem model.   

Key words: Model reduction, uncertain systems, generalized polynomial chaos, random parameters, balanced transfor-
mation, controllability and observability gramians, Hankel singular values. 

 
 

 

1. Introduction 

Model reduction is of major importance in simulation, 
design and control theory. It includes different methodolo-
gies which help to generate, from a given complex model, 
a simpler one while keeping the most important properties 
of the original model.  

For system models which do not incorporate uncertain-
ties, there are numerous methods for model reduction, such 
as the Truncated Balanced Realization (TBR) (Moore, 
1981; Scherpen, 1993; Fujimoto and Tsubakino, 2008; 
Hahn and Edgar, 2002; Wood et al, 1996), Krylov Sub-
space Methods (also known as Moment Matching, Grimme 
et al, 1995; Antoulas, 2001; 2005) or Modal Reduction 
Methods (Davion, 1968; Varga, 1995), Singular Perturba-
tions based methods (Kokotovic, 1963; Djennoune and 
Bettayeb, 2003) or Proper Orthogonal Decomposition 
(POD) methods (Berkooz et al, 1993). However, model 
reduction when one or several systems parameters are like-
ly to change is more complicated. Indeed, the major diffi-
culty is to preserve the effects that changes in the parame-
ters have on the model behaviour. So, in this framework, 

methods for model reduction are not numerous. Most of 
existing methods are issued from extensions of determinis-
tic versions. For example, the balanced truncation method, 
which consists in ordering states variables with respect to 
their controllability and observability degrees measured by 
Hankel singular values, was extended to systems with 
structured uncertainty modeled by linear fractional trans-
formation (Beck et al, 1996). The proposed method defines 
how to build a state transformation putting the solutions of 
linear matrix inequalities (LMIs) equal and diagonal under 
some constraints on minimal eigenvalues. Truncation of 
the states having small singular values is then performed to 
obtain a reduced order model. This method requires that 
the system be represented as a linear fractional transfor-
mation (LFT). This condition is restrictive since the LFT 
representation is not easy to establish in particular for high 
dimension systems. Sun and Hahn have extended balanc-
ing and proper orthogonal decomposition (POD) tech-
niques to systems with uncertain parameters (Sun and 
Hahn, 2006). The developed method offers an important 
advantage which consists in retaining the effect that uncer-
tain parameters have on the original model by including 
the parametric uncertainty into the procedure used for 
computing the state transformation in the balancing and 
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POD techniques. The exploited idea is to lump both the 
inputs and the uncertain parameters in the same vector of 
inputs. Empirical gramians for balancing or the correlation 
matrix for POD are then computed for the system with the 
new input vector.  

The moment matching approach has been extended to deal 
with LTI systems with uncertain parameters. In (Weile et 
al, 1999), the case where the state matrix is linearly de-
pendent on one parameter has been considered. The main 
result in this study was about the calculating of the projec-
tion matrix which matches some of the first moments of 
the transfer function G (s,p) with respect to the parameter 
p. This result is in addition with the one established in the 
deterministic case where the project matrix matches some 
of the first moments of the transfer function with respect to 
s. A generalization of this result to LTI systems with mul-
tiple uncertain parameters is carried out in (Daniel et al, 
2005). However, these methods require a linear depend-
ence of the state matrix on the system parameters.  

The LMI approach was exploited by Trofino and Coutinho 
to solve a robust order reduction. Their method is based on 
the solution of an LMI optimization problem in which an 
upper bound on the 2H or H∞ norms of the approximation 
error is minimized (Trofino and Coutinho, 2004). In anoth-
er register, the Routh-Pade approximation method has been 
combined with interval arithmetic’s to deal with model re-
duction of interval systems (Bandyopadhyay et al, 1997). 
The instability of reduced models obtained is the main 
drawback of this approach. In this context, other studies 
have proposed algorithms to reduce the possibility of los-
ing the stability (Dolgin and Zeheb, 2003; Wang et al, 
2012).  

Recently, Panzer and co-authors have proposed a novel 
methodology for model reduction of parameter-dependent 
linear dynamic systems (Panzer et al, 2010). The main idea 
is, first, to calculate reduced order models at some given 
values of parameters by using suitable projection matrices. 
The reduced parametric model is then generated by inter-
polating the matrices of the local reduced order models. A 
similar idea was developed in (Amsallem and Farhat, 
2011).  In a previous work, Baur and Benner have com-
bined the balanced truncation method with interpolation 
algorithms to generate an LTI parametric reduced order 
model (Baur and Benner, 2009). The main principle in the 
developed procedure is to compute local reduced order 
model at some points in the parameter space then to inter-
polate them. Crucial steps are essentially the choice of the 
parameter points where the local models are to be calculat-
ed and reduced and the choice of the weighting functions. 
The first problem is dealt with the sparse grid technique 
while the weighting functions are chosen so as to minimize 
the interpolation error. The same method has been com-
bined with the interpolatory H2 optimal model reduction 
method (Baur and al, 2009). The main issue about these 
methods is related to the definition of an error estimation 
criterion to well assess the quality of reduced order models 
obtained. Otherwise, other methods have been developed 

for particular classes of systems as polytopic uncertain lin-
ear systems (Fen, 1996) and discrete linear systems de-
scribed by polygons (Dolgin and Zeheb, 2004, 2005). 

All the mentioned studies did not use any information 
about how evolves parameters uncertainty. However, in 
numerous practical cases, parameters can be described by 
probabilistic laws. These are obtained from experimental 
and/or simulation data. So, it is interesting to exploit this 
supplementary information in order to develop more effi-
cient methods for model reduction of LTI systems with un-
certain parameters. This is the main goal of this paper 
which is devoted to model order reduction of random pa-
rameter dependent (RPD)- LTI systems. In fact, the taking 
into account of the probabilistic aspects of the uncertainty 
related to parameters allows to exploit the polynomial cha-
os (PC) formalism. This theory, proposed by Wiener 
(Wiener, 1932), pioneered by Ghanem and Spanos 
(Ghanem and Spanos, 1991) and extended to the so-called 
generalized polynomial chaos (GPC) (Xiu and Karniada-
kis, 2002), sets the possibility to develop any second order 
stochastic process into series of weighted orthogonal poly-
nomials with respect to a given probability measure. The 
only problem with the use of the GPC is related to the cal-
culation of the weighting coefficients, namely, the stochas-
tic modes. For this objective intrusive or non-intrusive 
schemes have been developed (Babuska et al, 2004; 2007; 
Crestaux et al, 2009). The power of the GPC approach has 
been tested in numerous applications related to systems 
and control theories such as in, the stability analysis and 
the prediction of the dynamic behavior of uncertain  linear 
and nonlinear systems (Fisher, 2009; Nechak et al, 2011; 
2012, 2013a), the sensitivity analysis (Crestaux et. al, 
2009; Sudret, 2007), the parameter estimation and state ob-
server synthesis (Li and Xiu, 2009; Blanchard et. al, 2010, 
Smith et. al, 2007) and controller design problems, (Fisher 
and Bhatacharya, 2009; Hover and Triantafyllou, 2006). 

In this paper, a new method is proposed to deal with 
model reduction of RPD-LTI systems. The main originali-
ty of this work lies in the combination of the generalized 
polynomial chaos formalism with the TBR method. The 
objective is to derive an efficient methodology for model 
reduction of RPD-LTI systems in which parameters are 
modeled by random variables with given density functions. 
Recently, the GPC formalism is proposed to deal with 
model reduction of finite element models of electromag-
netic devices exhibiting statistical variability in their pa-
rameters (Sumant et al, 2012). The method proposed to 
represent the reduced order system matrices using polyno-
mial chaos expansions whose coefficients are computed 
using a certain number of deterministic reduced order fi-
nite element models obtained at specific values of random 
parameters issued from the multidimensional sparse grid 
through the Smolyak algorithm. In this paper, the method 
proposed does not use any model reduction procedure be-
fore the computation of the final reduced order model. In-
deed, the main idea is to use the GPC formalism to com-
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pute a random parameter dependent balanced transfor-
mation which puts the original model in a balanced form 
almost surely within the probabilistic range of system’s 
parameters.  A random parameter dependent truncated bal-
anced realization (RPD-TBR) is then generated by deleting 
states that are weakly controllable and observable almost 
surely. Controllability and observability degrees of state 
variables are determined by RPD-Hankel singular values. 
The latter are also characterized in a probabilistic way 
(mean value, standard deviation and density function) by 
using the GPC approach instead of the well-known prohib-
itive Monte Carlo (MC) method. The knowledge of Hankel 
singular values is crucial for the truncation of the balanced 
realization since they give information about how the sys-
tem states are simultaneously controllable and observable. 
In this context, the Sum of Square (SOS) formalism has 
been used in a recent study to quantify robust controllabil-
ity and observability degrees in LTI systems with uncertain 
parameters belonging to semi-algebraic sets (Sojoudi et al, 
2009). So, the GPC provides in the same framework an ef-
ficient and more general solution. A preliminary study has 
been proposed about this idea in (Nechak et al, 2013b). 
This paper gives a more complete study about the feasibil-
ity of the RPD-TBR based method. Moreover, an error 
bound is defined for the RPD-TBR generated. Indeed, in 
this paper, the truncation error, which has been shown to 
be bounded in the case of deterministic LTI systems, is 
characterized by statistical moments of Hankel singular 
values of the deleted state variables. Another important re-
sult is that effects of changes in the parameter values in the 
original model are retained in the reduced order model.  

This paper is organized as follows. First, the generalized 
polynomial chaos formalism is presented in Section 2. 
Model reduction of LTI models with random parameters is 
then developed in Section 3. Efficiency of the proposed 
method is studied in Section 4 through its application on a 
physical system. Conclusions and perspectives of this work 
are given at the end of this paper.   

2. Polynomial chaos 

Place Let ( )X ω be a random variable with a probability 
density function denoted byXf . The space Θ of functions 
which associate for each random event ω ∈ Ω  a value in 
ℝ  is an Hilbert space ( )2 , ,PrL βΩ provided with the inner 
scalar product [ ],X Y E XY= , [ ]E i  being the expecta-
tion operator, where Ω  is the sample space, β is the 
σ − algebra of the subsets of Ω and Pr is the probability 
measure. 

Definition 1: Let  ( ){ }
1i

ξ ω ∞

=
be an infinite countable set 

of normalized independent Gaussian random variables. 
The following spaces are then defined.  

- ˆ
pΓ is the space of all polynomial functions in 

variables ( ){ }
1i

ξ ω ∞

=
of degree less than or 

equal to p . 

- pΓ  is the set of polynomials in ˆ
pΓ that are or-

thogonal to those in the space 1ˆ
p−Γ  

- pΓɶ is the space spanned by pΓ such that 
1

ˆ ˆ
p p p−Γ = Γ ⊕ Γɶ and 

0
i

i

∞

=
Θ = ⊕ Γɶ  

The p-order homogenous chaos is defined by the sub-
space pΓɶ of Θ while pΓ is called the p-order polynomial 
chaos (PC). The latter consists of all orthogonal polynomi-
als of order p that are built from all possible combinations 
of the random variables in the set( ){ }

1i
ξ ω ∞

=
. The polyno-

mial chaos theory asks the possibility to express any se-
cond order random variable ( ) ( )2 , ,PrX Lω β∈ Ω by a 
polynomial chaos representation as follows: 

 

 
( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

1 1

1

1
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1 2

1 2

1 2 3 1 2 3

1 2 3

0 0 1
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1 1
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1 1 1

,

, ,

i

i i
i

i

i i i i
i i

i i

i i i i i i
i i i

X x x

x

x

ω ξ ω

ξ ω ξ ω

ξ ω ξ ω ξ ω

∞

=

∞

= =

∞

= = =

= Γ + Γ

+ Γ

+ Γ +

∑

∑∑

∑∑∑ ⋯

(1) 

 

 

where ( )pΓ ⋅ denote polynomials of the p- order polynomi-
al chaos pΓ that are functions in variables defined within 
the set ( ){ }

1i
ξ ω ∞

=
. 

For practical use, terms in the previous polynomial cha-
os expansion are rearranged which helps to rewrite it in a 
more compact form as:  

            ( )( ) ( )( )
0

j j
j

X xξ ω φ ξ ω
∞

=
=∑                                  (2) 

where there exists a correspondence between functions 

( )jφ ⋅ and ( )pΓ ⋅ , see (Ghanem and Spanos, 1991).  

Theorem 1 (Cameron and Martin, 1947): Let 
( )2 , ,PrX L β∈ Ω a real random variable square integrable, 

( ){ }
1i

ξ ω ∞

=
the infinite set of independent normalized 

Gaussian random variables and pΓ is the p-order polyno-
mial chaos. Then, the polynomial chaos representation of 
X is convergent in the least square sense as: 

       

  

( )( ) ( )
2

0

lim 0
P

j jP
j

E x Xφ ξ ω ω
→∞ =

  
 − = 
   
∑              (3) 

 

In theory, each polynomial chaos is a set of polynomial 
functions in the infinite set of random variables{ }iξ .The 
polynomial chaos is then said to be with infinite dimen-
sion. However, as the number of uncertain parameters in a 
physical system is finite, we instead use the finite dimen-
sional polynomial chaos. Otherwise, as a series expansion 
at infinity can’t be used in practice, the sum (2) is truncat-
ed to a finite number of termsP which depends on the di-
mension d and the orderp  of the polynomial chaos as fol-
lows: 

                            
( )!

1
! !

p d
P

p d

+
+ =                                (4) 
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To summarize, the development in the polynomial chaos 
basis uses two types of approximations. The first is to con-
sider only the polynomial chaos to some orderp . The se-
cond is an approximation of the stochastic dimension con-
sequence of the finite number of uncertainty sources in 
physical systems. So the dimension is truncated to the 
number d . Thus, the polynomial chaos expansion (2) is 
re-written: 

                            

   

( ) ( )
0

P

j j
j

X xξ φ ξ
=
∑≃                            (5) 

with    ( )1 2 dξ ξ ξ ξ= ⋯ . 

The set { }iφ includes orthogonal polynomial functions 
with respect to the Gaussian measure of probability. They 
form a basis in ( )2 , ,PrL βΩ space provided with the scalar 
product i defined as:

                                      

          
( ) ( ) ( ) ( ), ,i j i i ijφ ξ φ ξ φ ξ φ ξ δ=           (6) 

ijδ being the Kronecker symbol given by:  

                   

1 if

0 ifij

i j

i j
δ

=
=  ≠

                                      (7) 

and 

                           

                

( ) ( ) ( ) ( ) ( ),i i i i f d
ξ

φ ξ φ ξ φ ξ φ ξ ξ ξ= ∫             (8) 

where ( )f ξ
 
is the probability density function of ξ  given 

by: 

                  
( ) ( )2

1

exp / 2

2

d
l

l

f
ξ

ξ
π=

−
= ∏                            (9) 

Ghanem and Spanos have proposed a method to construct 
the polynomial chaos basis. They have shown that with 
Gaussian random variables, the most suitable orthogonal 
functions are Hermite polynomials (Ghanem and Spanos, 
1991). 

The polynomial chaos expansion defines a separation of 
the stochastic character of the random function from its 
deterministic character. The latter is modeled by the so-
called stochastic modes jx  defining coordinates of ( )X ξ  
in the orthogonal basis formed by polynomials 

( )jφ ξ which model the random character of( )X ξ . 
Mode 0x represent the mean value of random func-
tion ( )X ξ while ( )1,...,j j Px = define the dispersion of ( )X ξ  
around the mean value 0x . So, the variance of ( )X ξ is 
approximated by: 

                              

2 2

1

,
P

X j j j
j

xτ φ φ
=
∑≃                        (10) 

 

2.1. Generalized polynomial chaos 

The representation in the PC basis, named also Wiener-
Hermite expansion, helps to describe accurately random 
functions. Its convergence demonstrated by the Cameron-
Martin theorem has been verified in numerous practical 

cases. However, it turned out that convergence properties 
(speed and accuracy) are unsuitable when random func-
tions are with non-Gaussian distributions. So, Xiu and 
Karniadakis have shown that convergence properties de-
pend on the probabilistic coordinates of random variables 
{ } 1

d

i
ξ

=
in the probability space (Xiu and Karniadakis, 2002). 

Indeed, they have carried out an optimal correspondence 
between families of probability laws and orthogonal poly-
nomial families. So, for random variablesξ with certain 
distributions, the orthogonal functions jφ can be chosen in 
such a way that its weight functions have the same form as 
the probability function ( )f ξ . Table.1 summarizes the 
correspondence between polynomial families and density 
functions (Askey, 1985; Xiu and Karniadakis, 2003). 

Table 1. Correspondence between probability density functions 
and orthogonal polynomials 

 

2.2. Computing of a PC or GPC expansion 

The computing of a truncated PC or GPC expansion 
given by a (5)-like expression is turned into the problem of 
finding the stochastic modesjx , { }0,...,j P∈ . Non-
intrusive spectral projection (NISP) or regression tech-
niques can be used for this calculation (Babuska et al, 
2004, 2007; Crestaux et al, 2009). The NISP technique 
used in this paper consists of performing Galerkin projec-
tions on { }

0

P

j j
φ

=
. So, the stochastic modes are given by:                                                

                    
( ) ( )

( )2

, j

j

j

X
x

ξ φ ξ

φ ξ
=                               (11) 

where                                                    

                ( ) ( ) ( ) ( ) ( ), j jX X f d
ξ

ξ φ ξ ξ φ ξ ξ ξ= ∫        (12) 

 

Integrals (12) can be approximated by using multidimen-
sional numerical integration methods such as the multidi-
mensional Gauss collocation method that is:  

      ( ) ( ) ( )( ) ( )( ) ( )

1

,
Q

i i i
j j

i

X X wξ φ ξ ξ φ ξ
=

≈∑      (13) 

where ( ) ( ),i iwξ are the integration points and weights, re-
spectively, while Q is the number of integration points. 

Density of ξ  Polynomials jφ   Support 

Gaussian Hermite ( ),−∞ ∞  

Uniform Legendre [ ],a b  

Gamma Laguerre [ )0,∞  

Beta Jacobi [ ],a b  
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3. Model reduction of random parameter-dependent 
LTI systems 

Consider a state-space model of a linear time invariant 
system whose matrices are random:

                                           

 

            

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

, ,

x t A x t B u t

y t C x t D u t

ξ ξ ξ ξ
ξ ξ ξ ξ

 = +


= +

ɺ
              (14) 

where:
( ) ( ) ( ) ( ), , ,n n n m q n q mA B C Dξ ξ ξ ξ× × × ×∈ ∈ ∈ ∈ℝ ℝ ℝ ℝ are 

random parameter-dependent matrices, 
( ) ( ), ,m qu t y t ξ∈ ∈ℝ ℝ and ( ), nx t ξ ∈ℝ are, respectively, 

the inputs, outputs and states of the system, while 
dξ ∈ℝ is a vector of random variables. ( ),x t ξ and 

( ),y t ξ define processes that depend on the time t and the 
random variable ξ . Once a fixed value is given for ξ then 
the state trajectory and the system output become deter-
ministic. Otherwise, it must be noted that initial conditions 
don’t depend onξ that is: ( ) 00,x xξ = . So the set of state 
trajectories ( ){ }

0
,

t
x t ξ

≥
depends on the initial condition0x , 

the random variableξ and also the input( )u t

. 
The aim of model order reduction of (14) is to search 

for a random parameter-dependent model defined by: 

 

         
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

, ,

r r
r r

r
r r r

z t A z t B u t

y t C z t D u t

ξ ξ ξ ξ

ξ ξ ξ ξ

 = +


= +

ɺ
          (15) 

 

where ( ),r rz t ξ ∈ℝ
 

with r n<< , ( ), q
ry t ξ ∈ℝ , 

( ) ( ) ( ), ,r r r m q r
r r rA B Cξ ξ ξ× × ×∈ ∈ ∈ℝ ℝ ℝ and 
( ) q m

rA ξ ×∈ℝ such that : 

                    ( ) ( ), ,h h
rE y t E y tξ ξ   ≈                     (16) 

[ ].hE denoting the hth  order moment . It represents the 
mean value when h = 1 and the variance when h = 2. 

For System (14) with fixed-value parameters ( )( )kξ ξ= , 
the quality of the corresponding reduced model (15) is as-
sessed by verifying that its dynamic behaviour reproduces 
accurately that of the original model i.e. 

( )( ) ( )( ), ,k k
ry t y tξ ξ≈ . The main goal in model reduction 

of System (14) with random parameters is to generate a 
reduced model (15) such that ( )( ) ( )( ), ,k k

ry t y tξ ξ≈  be ful-
filled for all fixed value parameters ( )( ), 1,...,k kξ ξ= = ∞  
belonging to the probabilistic support of variableξ . This 
leads to the definition of the condition (16) which means 
that statistical moments of ( ),ry t ξ must well approximate 
those of the original output( ),y t ξ . The first and second 
order moments and density functions are the most common 
used to characterize statistically random process. So, it will 
be said that model (15) is a good approximation of model 
(14) almost surely if the mean value and the variance of its 
output well approximate those of the original model (14).   

3.1. Truncated balanced realization of LTI systems with 
deterministic parameters 

Consider systems (14) with fixed values for parameters 
in ξ and denote by ( )G s its transfer function.  

                   

                    
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 = +


= +

ɺ
                          (17) 

 

     Definition 2 (Controllability and observability ener-
gy functions): Let ( ) 00x x= be the state at time 0t = . Un-
der asymptotic stability (A is Hurwitz matrix i.e all real 
parts of eigenvalues of matrixA are in the left half-plane ), 
controllability and observability conditions, Scherpen has 
defined Controllability and observability energy functions 
at 0x respectively by:                        

                   ( )
( )

( ) ( )

( )
2

0

0
2

0
,0

0, 0

1
min

2c
u L
x x x

L x u t dt
∈ −∞

−∞−∞ = =

= ∫             (18) 

                         

                   ( ) ( ) ( )2

0 0

0

1
; 0 0

2
L x y t dt u t t

∞

= = ∀ ≥∫      (19) 

as quadratic functions given as:  

                     ( ) 1
0 0 0

1

2
T

c cL x x W x−=                              (20) 

                     ( )0 0 0

1

2
T

o oL x x W x=                                (21) 

where cW , oW  are the so-called controllability and observ-
ability gramians defined respectively by 

                    
0

TAt T A t
cW e BB e dt

∞

= ∫                                (22) 

                     
0

TAt T A t
oW e C Ce dt

∞

= ∫                              (23) 

that are the unique symmetric positive definite solutions of 
the following Lyapunov equations 

                    T T
c cAW W A BB+ = −                              (24) 

                     T T
o oA W W A C C+ = −                             (25) 

and the square roots of the eigenvalues of the product 
c oW W  are the so-called Hankel singular values 
( )1,...,i i nσ = of System (17).   

The controllability function ( )0cL x is the minimum 
amount of input energy required to drive the state from the 
origin at t = −∞  to 0x at 0t = , while the observability 
function ( )0 0L x is the amount of output energy generated 
by the zero-input response from 0x .  

     Definition 3 (Balanced realization) (Moore, 1981): An 
asymptotically stable minimal realization of System (14) is 
said to be in a balanced form if:  

                ( )1diag ,...,c o nW W σ σ= = ∑ =                       (26) 
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where  1 2 nσ σ σ≥ ≥ ≥…  and ∑ is the solution of the pair 
of Lyapunov equations for controllability and observabil-
ity. There exists a linear coordinate transformation 

( ) ( )1
b bx t T x t−=  , named balancing transformation, which 

puts System (14) and thus the corresponding controllability 
and observability energy functions in a balanced form. In 
this configuration, state variables ( ), , 1,...,b ix i n= are or-
dered with respect to their controllability and observability 
degrees measured by Hankel singular values , 1,...,i i nσ = . 
State variables with small Hankel singular values are said 
to be weakly controllable and observable. So, a reduced 
model is obtained by truncating states having small Hankel 
singular values.  This result is given by the following theo-
rem. 

    Theorem 2 (Pernebo and Silverman, 1982): Let ( )bG s  
be the transfer function of the balanced realization of Sys-
tem (14) given by: 

                  
( ) ( ) ( )

( ) ( ) ( )
b b b b

b b

x t A x t B u t

y t C x t Du t

 = +


= +

ɺ

        

               (27) 

 

where ( ) ( )1
b bx t T x t−= , bT being the balancing transfor-

mation, and consequently 1
b b bA T AT−= , 1

b bB T B−= , 
b bC CT= . So if there exists r n< such that 
1 2 1r r nσ σ σ σ σ+≥ ≥ ≥ ≥ ≥… ≫ … then the reduced order 

model       

                       
( ) ( ) ( )
( ) ( ) ( )

r r r r

r r r

x t A x t B u t

y t C x t Du t

 = +


= +

ɺ
,                      (28) 

 

obtained by the truncation of state variables 
( ) ( )1, ,,...,r b n bx t x t+  by setting them to zero, is minimal and 

asymptotically stable and satisfies  

                      ( ) ( )
1

2
n

r i
i r

G s G s σ
∞

= +

− ≤ ∑                       (29) 

where ( )rG s is the transfer function of the reduced model 
(28). 

The main step to derive the balanced truncated model (28) 
is to search for the balancing transformation bT . The latter 
is given by the well-known Laub algorithm (Laub et al, 
1987). 

3.2. Random parameter dependent balanced realization  

We propose in the sequel a generalization of the bal-
anced realization concept described in the above sub-
section to random parameter-dependent LTI systems. So, 
some definitions, related to the proposed generalization, 
are provided. 

Let ( ),sx t ξ be the state trajectory of System (14) corre-
sponding to a given initial condition 0 0x ≠  in the neigh-
borhood of the zero-equilibrium and the zero-input 

( ) 0u t = .  

Definition 4:  The zero equilibrium of System (14) is 
said to be almost surely stochastically stable if (Ficher and 
Bhattacharya, 2009)                                          

                ( )Pr lim , 0 1st
x t ξ

→∞
 → =
 

                           (30) 

Definition 5: The zero equilibrium of System (14) is 
said to be almost surely stable with respect to the hth mo-
ment if 0, 0ε δ∀ > ∃ >  such that:                   

          ( ) 0 0
0

sup , , :h
s

t

E x t x xξ ε δ
≥

  ≤ ∀ ≤ 
               

(31) 

Definition 6: The zero equilibrium of System (14) is 
said to be almost surely asymptotically stable with respect 
to the hth moment if it is stable in the hth moment and 

                         ( )lim , 0h
s

t
E x t ξ

→∞
  =  ,                        (32) 

Definitions 5 and 6 state that stability of System (14) can 
be analyzed via the study of the stability of the moments of 
the random process defined by equations in (14). The al-
most sure stability has been shown to be equivalent to the 
stability in the hth moment for linear autonomous systems 
(Chen and Hsu,1995). Fisher and Bhatacharya have used 
the GPC formalism to study stability of System (14) and 
nonlinear systems (Fisher and Bhatacharya, 2010). The 
proposed method has been used efficiently to analyze the 
stability of a mechanical system with a random friction co-
efficient (Nechak et al, 2011, 2013).  

As the stability, almost sure controllability and observa-
bility notions are defined as follow: 

Definition 7: The couple ( ) ( )( ),A Bξ ξ is said to be 
almost surely controllable if it is controllable for each fixed 
value of the random variableξ , that is the controllability 
matrix ( )oC ξ  is full rank for each fixed value of ξ so,                                           

                    ( )( )( )Pr 1orank C nξ = =                       (33) 

Definition 8: The couple ( ) ( )( ),A Cξ ξ  is said to be 
almost surely observable if it is observable for each fixed 
value of the random variableξ , that is the observability 
matrix ( )bO ξ is full rank for each fixed value of ξ so, 

                     ( )( )( )Pr 1brank O nξ = =                      (34) 

Suppose that System (14) is almost surely asymptotical-
ly stable and almost surely controllable and observable. 
Random parameters-dependent (RPD) controllability and 
observability gramians, denoted by ( )cW ξ and ( )oW ξ re-
spectively, are then defined as follows:                                     

                ( ) ( ) ( ) ( ) ( )

0

TTA t A t
cW e B B e dtξ ξξ ξ ξ

∞

= ∫               (35)                     

                  ( ) ( ) ( ) ( ) ( )

0

TTA t A t
oW e C C e dtξ ξξ ξ ξ

∞

= ∫            (36) 

RPD-Controllability and observability gramians 
( ) ( )( )andc oW Wξ ξ are positive definite matrices almost 

surely and solutions of RPD-linear Lyapunov equations 
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associated to the almost sure controllability and observabil-
ity properties. They are given by:                                    

          
( ) ( ) ( ) ( ) ( ) ( )T T

c cA W W A B Bξ ξ ξ ξ ξ ξ+ = −      (37)                

        ( ) ( ) ( ) ( ) ( ) ( )T T

o oA W W A C Cξ ξ ξ ξ ξ ξ+ = −     (38) 

In the following, the balanced realization notion defined 
for LTI systems with constant parameters is generalized to 
the-dependent LTI systems. 

Let                                                       

       
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
, ,

, ,

b b b b

b b b

x t A x t B u t

y t C x t D u t

ξ ξ ξ ξ
ξ ξ ξ ξ

 = +


= +

ɺ
              (39) 

 

be an RPD-state space representation of (14). 

Definition 9: Realization (39) is said to be an almost 
surely balanced realization of System (14) if it is a bal-
anced realization of System (14) for every fixed value of 
the random parameterξ , that is:                                                

                  ( ) ( ) ( )( )Pr 1c oW Wξ ξ ξ= = ∑ =              (40) 

 

where,               ( )
( )

( )

1 0 0

0 0

0 0 n

σ ξ
ξ

σ ξ

 
 
 ∑ =
 
 
 

⋮

⋱

  
 

is the solution of the pair of RPD-Lyapunov equations giv-
en by (21).                                                                  

           
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

T T

b b b b

T

b b b b

A A B B

A A C C

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

 ∑ +∑ = −


∑ +∑ = −

 (41) 

The RPD-Hankel singular values( )iσ ξ , { }1,...,i n∈ are in 
this case random functions in the random variableξ and 
thus can be expressed by GPC expansions. So:                                                              

                        ( ) ( ),
0

P

i i j j
j

σ ξ σ φ ξ
=

≈∑                          (42) 

Thus: 

 

 

                     

( )

( )

( )

1,0

,0

1,
1

,
1

0 0

0 0

0 0

0 0

0 0

0 0

n

P

j j
j

P

n j j
j

σ
ξ

σ

σ φ ξ

σ φ ξ

=

=

 
 
 ∑ ≈ +
 
 
 

 
 
 
 
 
 
 
 
 

∑

∑

⋮

⋮

⋱

⋱

       (43) 

 

 

 

where ,0iσ denotes mean values of the Hankel singular val-
ues while ,i jσ define the dispersion of the Hankel singular 
values around their mean values. Otherwise, the number P 
of terms in a the GPC expansion (42) depends, as said in 
Section 2, on the number d of random parameters and the 
GPC order p . The number d being known, the number of 
termsP depends only on the chaos orderp . There is no 
method which helps to control, a priori, the error related to 
a fixed value of the chaos orderp . In practice, p is fixed 
by a convergence study i.e. the chaos order is increased 
until no enhance in accuracy of the GPC expansion is ob-
tained. The main problem is then to search for a random 
parameter-dependent balanced transformation ( )bT ξ such 
that:                                                                                          

                   ( ) ( ) ( )1, ,b bx t T x tξ ξ ξ−= ,                            (44) 

which puts System (14) in an almost surely balanced form 
(39).  The GPC is proposed to represent and thus to com-
pute the RPD-balanced transformation. So, entries 

( )ijt ξ of ( )bT ξ are expressed represented by : 

                    ( ) ( ),
0

P

ij ij k k
k

t tξ φ ξ
=

≈∑                               (45) 

with                    
( ) ( )

( ), 2

,ij k

ij k

k

t
t

ξ φ ξ

φ ξ
= , { } { } { }0,..., , , 1,...,k P i j n∈ ⊂      (46) 

 

Stochastic modes ,ij kt given by (46) are computed by using 
the NISP method as described in Section 2. A (13)-like 
formula is used. For this aim, the balancing transformation 
is needed to be computed at Gauss collocation points, us-
ing the Moore-Laub algorithm. 

Once the RPD- balanced transformation computed, the 
random parameter-matrices of System (39) can be obtained 
as: 

                                                  

                    

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1

1

b b b

b b

b b

b

A T A T

B T B

C C T

D D

ξ ξ ξ ξ

ξ ξ ξ

ξ ξ ξ
ξ ξ

−

−

 =


=


=
 =

                     (47) 

 

 

3.3. Random parameter-dependent truncated balanced 
realization (RPD-TBR) 

The random parameter-dependent balanced realization 
(RPD-BR) defined by equations (39) can be exploited to 
derive a RPD-TBR. The essential idea is that in a RPD-
BR, state variables are ordered with respect to their con-
trollability and observability degrees measured by the 
RPD-Hankel singular values. State variables that possess 
small Hankel singular values almost surely within the 
probabilistic support of system parameters are weakly con-
trollable and observable almost surely. Thus, suppressing 
them will not affect the dynamic behaviour of the original 
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model. The main question is then how to measure RPD-
Hankel singular value. This task is accomplished by using 
the GPC representation (42) of RPD-Hankel singular val-
ues. Using (42), it is easier to estimate the whole distribu-
tion of RPD-Hankel singular values comparing to a Monte 
Carlo (MC) method which is known to be too costly. So, 
by exploiting (42), it is possible to know how controllabil-
ity and observability degrees of state variables evolve 
within the probabilistic support of system parameters. The 
main idea is just to sample the probabilistic distribution of 
the random variable ξ  then to compute the corresponding 
sum after replacing each value of the sampling data in the 
polynomial functions used. Based on this calculation, 
RPD-Hankel singular values can be characterized and then 
used to analyze the reducibility of the original model (14). 
We prose for this aim the generalization of the criterion 
defined for deterministic LTI systems in Pernebo-
Silverman theorem. So if there exists a truncation order r 
for which the following almost sure (a.s) inequality,                        

 ( ) ( ) ( ) ( ) ( )
. . . . . .

1 2 1

a s a s a s a s a s a s

r r nσ ξ σ ξ σ ξ σ ξ σ ξ+≥ ≥ ≥ >> ≥ ≥⋯ ⋯ (48) 

is fulfilled almost surely, then a RPD-TBR can be obtained 
by removing the n-r states variables that have small Hankel 
singular values almost surely.  

Consider the balanced realization (19) rewritten and 
given by 

 

 

                                   

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

( )
( )

1 11 12 1

2 21 22 2

1

2

1
1 2

2

1

2

, ,

, ,

,
,

,

( )

b b b b

b b b b

b

b

b
b b

b b

b

b

x t A A x t

x t A A x t

B
u t

B

x t
y t C C

x t

D
u t

D

ξ ξ ξ ξ
ξ ξ ξ ξ

ξ
ξ

ξ
ξ ξ ξ

ξ

ξ
ξ

     
=     

          


  +  
   


 

 =    
  

  
 +  
   

ɺ

ɺ

              

(49) 

 

 

 

where 1 ,1 , 2 , 1 ,,
T Tb b

b b r b r b nx x x x x x+   = =   ⋯ ⋯  

The RPD-TBR (15) can be obtained through setting varia-
bles that are weakly controllable and observable almost 
surely (variables corresponding to small RPD- Hankel sin-
gular values) to zero;                                            

    ( ) ( ) ( ), 1 , 2 ,, , , 0b r b r b nx t x t x tξ ξ ξ+ += = = =⋯         (50) 

which yields  

                         

( ) ( )
( ) ( )
( ) ( )
( ) ( )

11

1

1

1

b
r

b
r

b
r

b
r

A A

B B

C C

D D

ξ ξ

ξ ξ

ξ ξ

ξ ξ

 =


=


=
 =

                              (51) 

 

The RPD-TBR can be obtained also by setting the dynamic 
of state variables whose RPD-Hankel singular values are 

small to zero. This allows forcing the static gain of the 
truncated balanced realization to be the same as the origi-
nal system.                                

        ( ) ( ) ( ), 1 , 2 ,, , , 0b r b r b nx t x t x tξ ξ ξ+ += = = =ɺ ɺ ɺ⋯     (52) 

In this case, matrices of the RPD-TBR are given as fol-
lows: 

                                               

          

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

11 12 22 21

1

1 12 22 2

1

1 2 22 21

1

1 2 22 2

b b b b
r

b b b b
r

b b b b
r

b b b b
r

A A A A A

B B A A B

C C C A A

D D C A B

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

−

−

−

−

  = −  


 = −  


  = −  
  = −  

     (53) 

 

 

3.4. Truncation error 

Ggg An obvious concern with model order reduction is 
the evaluation of a bound on the error reduction. For the 
TBR of LTI systems, Pernebo and Silverman have shown 
that the H∞ error between an LTI model and its TBR is 
bounded with the sum of Hankel singular values corre-
sponding to the truncated state variables. We propose in 
the following the generalization of this result to RPD-TBR. 
As the systems dealt with are random, the truncation error 
will be characterized statistically. 

Proposition 1: Let ( ),G s ξ and ( ),rG s ξ  be the random 
parameter-dependent transfer functions of the original 
model (14) and its reduced model (15). Criterion (48) is 
supposed to be verified then the mean value of the H∞ er-
ror between ( ),G s ξ and ( ),rG s ξ is bounded by the sum 
of mean values of Hankel singular values of the truncated 
state variables, that is:                                

           ( ) ( ) ,0
1

, , 2
n

r i
i r

E G s G sξ ξ σ
∞

= +

 − ≤
  ∑              (54) 

Proof: 

From the LTI theory (Pernebo ans Silverman, 1982), for 
fixed values of ξ , it has been shown that :                                 

      ( )( ) ( )( ) ( )( )
1

, , 2
n

k k k
r i

i r

G s G sξ ξ σ ξ
∞ = +

− ≤ ∑           (55) 

By applying the expectation operator on the above expres-
sion, it can be written: 

 

                          

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

1

1

1

, , 2

2

2

n

r i
i r

n

i
i r

n

i
i r

G s G s f d f d

f d

E

ξ ξ

ξ

ξ ξ ξ ξ σ ξ ξ ξ

σ ξ ξ ξ

σ ξ

∞
= +

= +

= +

 − ≤  
 

≤

 ≤  

∑∫ ∫

∑ ∫

∑

 

 

 

Hankel singular values being approximated by the GPC, 
we have: 
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                     ( ) ,0i iE σ ξ σ  ≈   

Thus                                           

                   ( ) ( ) ,0
1

, , 2
n

r i
i r

E G s G sξ ξ σ
∞

= +

 − ≤
  ∑  

which completes the proof. 

Proposition 2 : Let ( ),G s ξ and ( ),rG s ξ be the random 
parameter-dependent transfer functions of the original 
model (14) and its reduced model (15). Criterion (48) is 
supposed to be verified then the variance of the H∞ error 
between ( ),G s ξ and ( ),rG s ξ is bounded as follows: 

 

 ( ) ( )

( )( ) ( ) ( )( )

2
,0 ,0 ,0

1 1

1 1

var , , 4 2

4 var 2 cov ,

n n

r i i j
i r i r

i j n

n n

i i j
i r i r

i j n

G s G sξ ξ σ σ σ

σ ξ σ ξ σ ξ

∞
= + = +

< ≤

= + = +
< ≤

 
  − ≤ + +    
 

 
 + 
 
 

∑ ∑

∑ ∑

                                                                                         

                                                                                    

(56)

 

Proof: 
( ) ( ) ( ) ( )

( ) ( )

2

2

var , , , ,

, ,

r r

r

G s G s E G s G s

E G s G s

ξ ξ ξ ξ

ξ ξ

∞ ∞

∞

  − ≤ −    

 − −
 

   (57) 

 

Applying the expectation operator to the squared expres-
sion (55) yields the following result: 

 

       

( ) ( ) ( )

( ) ( )

2 2

1

1

, , 4

8

n

r i
i r

n

i j
i r
i j n

E G s G s E

E

ξ ξ σ ξ

σ ξ σ ξ

∞
= +

= +
< ≤

   − ≤ +    

  

∑

∑
      

(58)

  

Consequently: 

 

                   
( ) ( ) ( )

( ) ( )

2 2

1

1

var , , 4

8

n

r i
i r

n

i j
i r
i j n

G s G s E

E

ξ ξ σ ξ

σ ξ σ ξ

∞
= +

= +
< ≤

   − ≤ +    

  

∑

∑
          (59) 

 

By using the GPC expansions of Hankel singular values, it 
can be verified that:                    

 ( ) ( ) ( )( )2 2 2 2
, ,0

0

var
P

i i k k i i
i

E σ ξ σ φ ξ σ σ ξ
=

  ≈ = +
  ∑

   

(60) 

And    

     

 
( ) ( ) ( )

( ) ( )( )

2
, ,

0

,0 ,0 cov ,

P

i j i k j k k
i

i j i j

E σ ξ σ ξ σ σ φ ξ

σ σ σ ξ σ ξ
=

  ≈ 

≈ +

∑
           (61) 

 

where ( )cov . is the covariance operator.  

Replacing ( )2

iE σ ξ 
 

and ( ) ( )i jE σ ξ σ ξ   in (59) by 
(60) and (61) yields (56) which completes the proof. 

Model reduction of parameter dependent models is of 
major importance in practice. Indeed, system parameters in 
several practical cases are uncertain. Parameters often 
characterize geometry, materials, boundary values, initial 
values and control parameters. In most cases, uncertainty is 
inherent to those parameters which are modeled in several 
cases by probabilistic models (density functions). The need 
for RPD-reduced model can results from different re-
quirements. In some applications, many simulations have 
to be performed for different values of parameters such as 
parameter studies for parameters optimization, inverse 
problem and design in general. The MC method is a typical 
example in this context which is the most used method in 
industry to characterize the dynamic behaviour of a given 
system with uncertain parameters. The principle is to simu-
late the differential equations for a given parameter set ob-
tained following random generators and then to execute 
some numerical solver for each combination of parameters 
in the set. This procedure is known to be prohibitive due to 
both convergence properties of the MC method and the 
complexity of physical systems. So, it is, in these cases, 
interesting to have the possibility to generate a reduced 
model with random parameters closed to those of the orig-
inal system in order to have a more efficient and less ex-
pansive MC method. We propose in this perspective, to 
apply the RPD-BTR developed in this paper. 
 

4. Application 

In order to assess the efficiency of the proposed method, 
a model reduction problem of a mechanical system (Fig.1) 
is considered. The latter is a two degrees of freedom sys-
tem which consists of two cells (mass, stiffness, damping). 
The stiffness 1k and damping 1d  coefficients are supposed 
to be random parameters driven by uniform laws within 
[0.9, 1.1] and [0.5, 0.8] respectively. Two standard inde-
pendent random uniform variables1ξ , 2ξ within interval [-
1, 1] are considered to represent 1k and 1d . See Table.2 for 
numerical values of all system parameters. 

 
 

 

 

 

 

Fig. 1. Mechanical system 

Matrices of (14)-like state space representation of the sys-
tem in Fig.1 are given in (62) by considering the following 
state vector Where ( ) [ ]( )1 2 1 2, ,x t x x x x tξ ξ=ɺ ɺ ɺ with  

[ ]1 2

Tξ ξ ξ=  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) [ ]

1 1 1 1 1 2 1

1 1 1 1

1 1 1 1 2 1 2 1 2 2

2 2 2 2

1

0 1 0 0

0 0 0 1

,

0

0

, 1 0 0 01

0

k k d d
A

m m m m

k k k d d d

m m m m

B B C C

m

ξ ξ ξ
ξ

ξ ξ ξ ξ

ξ ξ

 
 
 
 
 − −=
 
 + + − −
  

 
 
 
 = = = =
 
 
  

                                                                                                                                                                           

 

 

 

                                                                                        (62) 

 

Table 2. Parameters for system in Fig.1 

 

4.1. Random parameter dependent balanced realization 

From Askey scheme, Legendre polynomials ( )kL ξ  are 
the most suitable polynomial to represent the balancing 
transformation ( )bT ξ of Model (62) as well as the parame-
ter-dependent Hankel singular values. So: 

                          
( ) ( ),

0

P

ij ij k k
k

t t Lξ ξ
=

≈∑                         (63) 

                       
( ) ( ),

0

P

i i k k
k

Lσ ξ σ ξ
=

≈∑                          (64) 

where stochastic modesijt  and ,i kσ are defined by (13)-like 
formula which can be expressed as follows: 

                     

 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 2 1 2 1 1 2 2 1 2

1 1
, 1 1

2
1 2 1 1 2 2 1 2

1 1

, ,

,

ij k

ij k

k

t L f f d d

t

L f f d d

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

− −

− −

=
∫ ∫

∫ ∫
 (65) 

 

 ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 2 1 2 1 1 2 2 1 2

1 1
, 1 1

2
1 2 1 1 2 2 1 2

1 1

, ,

,

i k

i k

k

L f f d d

L f f d d

σ ξ ξ ξ ξ ξ ξ ξ ξ
σ

ξ ξ ξ ξ ξ ξ

− −

− −

=
∫ ∫

∫ ∫
     

(66) 

 

The multi-dimensional Gauss collocation method is used to 
calculate stochastic modes (65) and (66).  

The Balanced transformation is computed for several val-
ues of the Legendre polynomial chaos (LePC) order 

{ }2,3,4p ∈ in order to observe the effect of the LePC or-

der on the obtained balanced realization.   For each value 
of p a RPD-BR (39) is computed. The first and second or-
der moments of their Step responses are plotted in Fig.2 
and Fig.3. Moreover, the probability density function of 
the final value of the step response of System (62) is plot-
ted in Fig.4. All results are compared to references ob-
tained from the Monte Carlo method with a number 
N=10.000 of samples of parameters 1k and 1d . 

The balanced realization obtained for System (62) must 
model a dynamic behavior having theoretically the same 
statistical properties as System (62). This is verified as 
shown in Fig.2, Fig.3 and Fig.4. The RPD-BR presents the 
same instantaneous mean value and variance of the step 
response. The probability density function of the final val-
ue is suitably modeled. It can be seen also that the accura-
cy is good with p = 2 as well as with p = 3 and  p =4. This 
shows the good convergence property of the LePC expan-
sion used to represent the balancing transformation.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 2. Instantaneous mean value of the step response 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Instantaneous variance of the step response 

 
 
 

 

1 1m =  2 1m =  

( )1 1 11 0.1k ξ ξ= +  2 1k =  

( )1 2 20.65 0.15d ξ ξ= +  2 1d =  
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Fig. 4. The probability density function of the final val-

ue of the step response 
 

4.2. Random parameter dependent truncated balanced 
realization 

One of the main interests of a balanced realization is to 
exploit it to derive a reduced order model by truncating 
states that are hard to control and to observe. Hankel singu-
lar values measure controllability and observability de-
grees. In the case dealt with in this section, these degrees 
are random functions depending on the stiffness k1 and 
damping d1 parameters which are modeled by LePC ex-
pansions (64). Their probabilistic density functions are rep-
resented in Fig.5 for { }2,3,4p ∈ and compared to refer-
ence results obtained by using the MC method with a 
number N = 10.000 of samples.  

LePC expansions used allow good representations of 
random Hankel singular values. This is pointed out by the 
correct probabilistic density functions represented in Fig.5. 
From latter results, two groups of singular values functions 
can be identified. The first one includes ( )1σ ξ and ( )2σ ξ  
while the second includes ( )3σ ξ and ( )4σ ξ . Probability 
density functions of ( )3σ ξ

 
and ( )4σ ξ show that the cor-

responding states are almost surely weakly observable and 
weakly controllable comparing to the first and second 
states variables which, from the corresponding probability 
density functions, are strongly observable and controllable. 
Mean values, standard deviations, minimum and maximum 
of Hakel singular values estimated with LePC expansions 
are given in Tables (3,4,5) while Table.6 presents MC es-
timations.  From all results, it can be said 
that: ( ) ( ) ( ) ( )1 2 3 4σ ξ σ ξ σ ξ σ ξ> >> > almost surely for 

[ ] [ ]1,1 1,1ξ ∈ − × −  or equivalently for [ ]1 0.9, 1.1k ∈ and 
[ ]1 0.5,0.8d ∈ . So, truncating the last two states variables 

in the balanced realization will not affect the dynamic be-
havior of the original system (62). To verify the accuracy 
of the reduced order model, first and second order mo-
ments of its step response and the probability density func-
tion of the corresponding final value are computed and 
compared to those of the original model (62). 
 

Table 3. Statistical properties of Hankel singular values estimated 
by LePC expansion with p = 2 

 

Table 3. Statistical properties of Hankel singular values estimated 
by LePC expansion with p = 3 

 

Table 4. Statistical properties of Hankel singular values estimated 
by LePC expansion with p = 4 

 
 

Table 5. Statistical properties of Hankel singular values estimated 
by Monte Carlo (MC) method with N = 10.000 samples 

 
 
 
 
 

 

LePC (p = 2) ( )1σ ξ    ( )2σ ξ  ( )3σ ξ  ( )4σ ξ  

Mean value 2.3043 1.3010 0.0204 0.0188 

Variance 0.0885 0.0656 0.0037 0.0012 

Minimum 2.1239 1.1698 0.0142 0.0173 

Maximum 2.5441 1.4845 0.0294 0.0228 

LePC (p = 4) ( )1σ ξ    ( )2σ ξ  ( )3σ ξ  ( )4σ ξ  

Mean value 2.3043 1.3010 0.0204 0.0188 

Variance 0.0882 0.0652 0.0036 0.0012 

Minimum 2.1213 1.1674 0.0141 0.0173 

Maximum 2.5471 1.4873 0.0295 0.0228 

LePC (p = 2) ( )1σ ξ    ( )2σ ξ  ( )3σ ξ  ( )4σ ξ  

Mean value 2.3043 1.3010 0.0204 0.0188 

Variance 0.0885 0.0656 0.0037 0.0012 

Minimum 2.1239 1.1698 0.01242 0.0173 

Maximum 2.5441 1.4845 0.0294 0.0228 

MC ( )1σ ξ    ( )2σ ξ  ( )3σ ξ  ( )4σ ξ  

Mean value 2.3043 1.3010 0.0204 0.0188 

Variance 0.0882 0.0652 0.0036 0.0012 

Minimum 2.1213 1.1674 0.0141 0.0173 

Maximum 2.5471 1.4873 0.0295 0.0228 
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Fig. 5. Probability density functions of Hankel singular values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. Instantaneous mean value of the step response 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Instantaneous variance of the step response  

 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. The probability density function of the final val-

ue of the step response 
 

A random parameter dependent truncated balanced real-
ization (RPD-TBR) is derived from the corresponding bal-
anced realization obtained with { }2,3,4p ∈  by suppress-
ing the two states that are hard to control and to observe in 
the RPD-BR. Eigenvalues of reduced models are plotted in 
Fig.9. These correspond to 10.000 samples of the couple of 
random variables 1 2,ξ ξ which model the stiffness and 
damping coefficients 1k and 1d  respectively. The generat-
ed RDP-TBRs are almost surely asymptotically stable 
since their eigenvalues are with negative real parts.  All 
results show a suitable accuracy of the generated RPD-
TBRs. Instantaneous mean values and variances of step 
responses of the RPD-TBR are correctly approximated. 
Moreover, the probability density function of the final val-
ue of the step response is also suitably approximated by the 
RPD-TBRs. Otherwise, the comparison between LePC ex-
pansions used show that the one with p = 2 is sufficient to 
derive a suitable reduced order model for System (62).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Eigen values of original model and reduced order models 
within uncertainty interval 
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5. Conclusion 

A new methodology for model order reduction of ran-
dom parameter-dependent LTI systems has been proposed 
in this paper. The method is based on the random parame-
ter-dependent balanced realization concept obtained from 
the generalization of the well-known balanced realization 
in the linear deterministic case. The main principle is to 
search for a random parameter-dependent balancing trans-
formation which puts the system in a balanced form almost 
surely within the probabilistic support of random parame-
ters. The generalized polynomial chaos formalism has been 
proposed to compute the random parameter dependent bal-
ancing transformation as well as the random Hankel singu-
lar values. Based on statistics of Hankel singular values 
estimated via their GPC expansions, states that have small 
controllability and observability degrees almost surely are 
truncated to derive a random parameter dependent reduced 
model characterized by a bounded truncation error. The 
proposed method has been tested on two degrees of free-
dom mechanical system. Its efficiency was pointed out. 
The main question which remains asked is about the stabil-
ity of the RPD-TBR. We have no guaranty on the stability 
of the RPD-TBR. This problem is common to all methods 
of model reduction in particular in the case of models with 
uncertain parameters.  
In this paper, the RPD-TBR has been used instead of the 
original RPD model and combined efficiently with a MC 
type method to predict accurately the dynamic behavior of 
the uncertain system used.  Other possible exploitations of 
the RPD-TBR are in control and observation schemes. 
These perspectives are dealt with in our research in pro-
gress. 

An important issue is related to the case where the GPC 
expansion used to compute the balancing transformation 
needs a high chaos order. This will lead to high numbers of 
terms in the GPC expansion and thus to more complex bal-
ancing transformations which, consequently, yields ran-
dom parameters-dependent balanced realization difficult to 
be exploited in model order reduction. The use of the mul-
ti-element GPC in this context can be beneficial since this 
method helps to decrease the polynomial chaos order. 
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