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Abstract

This paper is devoted to model reduction of lingae invariant (LTI) systems whose parameters anelom variables
governed by probabilistic laws. A new and originadthod is proposed to deal with this challengingbfegm. It combines
the truncation balanced realization (TBR) basechoetvell known in model reduction of LTI systemslahe generalized
polynomial chaos (GPC) formalism known as a powedal for uncertainty propagation. The GPC forrsaliis used to
represent and compute a random parameter-depepalancing transformation (RPD-BT) which puts thedam parame-
ters-dependent LTI system in a balanced form almasly within the probabilistic range of randomgraeters. Model re-
duction is then performed by truncating states #énatalmost surely weakly controllable and obsdezabhe truncation er-
ror is characterized by its moments. These are shovbe bounded by the Hankel singular values madsnimat are also
estimated by using the GPC formalism. The propesethod is tested through its application on an Empechanical sys-
tem model.

Key words: Model reduction, uncertain systems, generalizetyrnmomial chaos, random parameters, balanced tansf
mation, controllability and observability gramiaftankel singular values.

methods for model reduction are not numerous. Mdst
1. Introduction existing methods are issued from extensions ofrohités-
tic versions. For example, the balanced truncati@thod,
Model reduction is of major importance in simulatio  which consists in ordering states variables witpeet to

design and control theory. It includes differenttinoelolo- their controllability and observability degrees saa@d by
gies which help to generate, from a given complexie, Hankel singular values, was extended to system& wit
a simpler one while keeping the most important prigs  structured uncertainty modeled by linear fractiomahs-
of the original model. formation (Beck et al, 1996). The proposed methefihds

) ) ~ how to build a state transformation putting theusohs of
~ For system models which do not incorporate unaeitai  |inear matrix inequalities (LMIs) equal and diagboader
ties, there are numerous methods for model redydioch  some constraints on minimal eigenvalues. Truncatibn
as the Truncated Balanced Realization (TBR) (Moore, the states having small singular values is thefopeed to
1981; Scherpen, 1993; Fujimoto and Tsubakino, 2008;optain a reduced order model. This method requitas
Hahn and Edgar, 2002; Wood et al, 1996), Krylov-Sub the system be represented as a linear fractioaabfior-
space Methods (also known as Moment Matching, GBMM mation (LFT). This condition is restrictive sindeet LFT
et al, 1995; Antoulas, 2001; 2005) or Modal Reduwrcti  representation is not easy to establish in particiar high
Methods (Davion, 1968; Varga, 1995), Singular Redt  dimension systems. Sun and Hahn have extendedcbalan
tions based methods (KOkOtOV|C, 1963, Djennoune.a.nding and proper Orthogona| decomposition (POD) tech-
Bettayeb, 2003) or Proper Orthogonal Decomposition piques to systems with uncertain parameters (Suh an
(POD) methods (Berkooz et al, 1993). However, model Hahn, 2006). The developed method offers an importa
reduction when one or several systems parameteiskar advantage which consists in retaining the effeat tmcer-

ly to change is more complicated. Indeed, the maljffir tain parameters have on the original model by ficigy
culty is to preserve the effects that changeseénpdrame-  the parametric uncertainty into the procedure ufEd
ters have on the model behaviour. So, in this freonk, computing the state transformation in the balancnd
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POD techniques. The exploited idea is to lump kbth
inputs and the uncertain parameters in the samirvet
inputs. Empirical gramians for balancing or theretation
matrix for POD are then computed for the systeni e
new input vector.

The moment matching approach has been extendeshto d
with LTI systems with uncertain parameters. Wiefle et
al, 1999), the case where the state matrix is fipede-

pendent on one parameter has been considered. dine m

result in this study was about the calculatinghef projec-
tion matrix which matches some of the first momeuits
the transfer functior®s (s,p) with respect to the parameter
p. This result is in addition with the one estak#idhn the
deterministic case where the project matrix matceae
of the first moments of the transfer function widspect to
s. A generalization of this result to LTI systemghwmul-
tiple uncertain parameters is carried out in (Dlaeteal,
2005). However, these methods require a linear ritbpe
ence of the state matrix on the system parameters.

The LMI approach was exploited by Trofino and Colti
to solve a robust order reduction. Their methdoaised on
the solution of an LMI optimization problem in whi@n
upper bound on thid,orH_ norms of the approximation
error is minimized (Trofino and Coutinho, 2004).dnoth-
er register, the Routh-Pade approximation methadkan
combined with interval arithmetic’s to deal with de re-
duction of interval systems (Bandyopadhyay et 807).
The instability of reduced models obtained is thairm
drawback of this approach. In this context, otheidies
have proposed algorithms to reduce the possihifitios-
ing the stability (Dolgin and Zeheb, 2003; Wangadt
2012).

Recently, Panzer and co-authors have proposede nov

methodology for model reduction of parameter-depand
linear dynamic systems (Panzer et al, 2010). Thie idaa
is, first, to calculate reduced order models at es@iven
values of parameters by using suitable projectiafriges.

for particular classes of systems as polytopic uagelin-
ear systems (Fen, 1996) and discrete linear systlans
scribed by polygons (Dolgin and Zeheb, 2004, 2005).

All the mentioned studies did not use any infororati
about how evolves parameters uncertainty. Howeiver,
numerous practical cases, parameters can be desdrip
probabilistic laws. These are obtained from expental
and/or simulation data. So, it is interesting teleit this
supplementary information in order to develop meffe
cient methods for model reduction of LTI systemghwin-
certain parameters. This is the main goal of thapep
which is devoted to model order reduction of randuan
rameter dependent (RPD)- LTI systems. In fact,tékéng
into account of the probabilistic aspects of theeutainty
related to parameters allows to exploit the polyi@bmwha-
os (PC) formalism. This theory, proposed by Wiener
(Wiener, 1932), pioneered by Ghanem and Spanos
(Ghanem and Spanos, 1991) and extended to thelled-ca
generalized polynomial chaos (GPC) (Xiu and Karaiad
kis, 2002), sets the possibility to develop anyosecorder
stochastic process into series of weighted orthapaly-
nomials with respect to a given probability measUree
only problem with the use of the GPC is relatethi cal-
culation of the weighting coefficients, namely, gtechas-
tic modes. For this objective intrusive or non-usive
schemes have been developed (Babuska et al, 200%; 2
Crestaux et al, 2009). The power of the GPC apirbas
been tested in numerous applications related tteiss
and control theories such as in, the stability ysialand
the prediction of the dynamic behavior of uncertdiimear
and nonlinear systems (Fisher, 2009; Nechak e2Cdl];
2012, 2013a), the sensitivity analysis (Crestaux abt
2009; Sudret, 2007), the parameter estimation tatd eb-
server synthesis (Li and Xiu, 2009; Blanchard gt2@10,
Smith et. al, 2007) and controller design problefRssher
and Bhatacharya, 2009; Hover and Triantafyllou,&00

The reduced parametric model is then generatechtiey-i In this paper, a new method is proposed to d(.%.t.i wit
polating the matrices of the local reduced ordedeim A~ Model reduction of RPD-LTI systems. The main orgjin

similar idea was developed in (Amsallem and Farhat,ty Of this work lies in the combination of the gealezed

bined the balanced truncation method with interjmha
algorithms to generate an LTI parametric reducederor
model (Baur and Benner, 2009). The main principl¢hie
developed procedure is to compute local reducecrord
model at some points in the parameter space thando
polate them. Crucial steps are essentially thecehof the
parameter points where the local models are taahrilat-
ed and reduced and the choice of the weightingtiomns.
The first problem is dealt with the sparse gridhteque
while the weighting functions are chosen so asitomize
the interpolation error. The same method has beem c
bined with the interpolatoryd, optimal model reduction
method (Baur and al, 2009). The main issue abcegeth
methods is related to the definition of an errdinestion
criterion to well assess the quality of reducedeomodels
obtained. Otherwise, other methods have been deselo
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objective is to derive an efficient methodology fondel
reduction of RPD-LTI systems in which parameters ar
modeled by random variables with given density fioms.
Recently, the GPC formalism is proposed to deah wit
model reduction of finite element models of electay-
netic devices exhibiting statistical variability their pa-
rameters (Sumant et al, 2012). The method proptsed
represent the reduced order system matrices usilygpg@
mial chaos expansions whose coefficients are cosdput
using a certain number of deterministic reduceceoffd
nite element models obtained at specific valuesanflom
parameters issued from the multidimensional spgrik
through the Smolyak algorithm. In this paper, thethod
proposed does not use any model reduction procdihire
fore the computation of the final reduced order etoth-
deed, the main idea is to use the GPC formalismoto-
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pute a random parameter dependent balanced transfor - I is the set of polynomialsjﬁpthat are or-

mation which puts the original model in a balanéedn thogonal to those in the spaﬁgtl/
almost surely within the probabilistic range of teys's - [ ,is _the space spanned by, such that
parameters. A random parameter dependent trunbated My=rpn0r,ande=0T,

anced realization (RPD-TBR) is then generated etiahg
states that are weakly controllable and observabitest
surely. Controllability and observability degreef state
variables are determined by RPD-Hankel singulauesl

The latter are also characterized in a probalilistay of the random variables in the {sé(a))}w The polyno-
(mean value, standard deviation and density fungtiy mial chaos theory asks the possibilityizfo exprasg se-

using the GPC approach instead of the well-knovahipr cond order random variableX (@)0L2(Q,3,Pr) b
" P y a
itive Monte Carlo (MC) method. The knowledge of iKHah polynomial chaos representatiors a)s follo(ws: )

singular values is crucial for the truncation of ttelanced
realization since they give information about hdwe sys-

The p-order homogenous chaos is defined by the sub-
spacel of @while I is called the p-order polynomial
chaos (PC). The latter consists of all orthogomédymomi-
als of order p that are built from all possible ¢cnmations

tem states are simultaneously controllable androhbte. X (@) =%, +Zx rl(gi (w))

In this context, the Sum of Square (SOS) formalisas = '

been used in a recent study to quantify robustrotabil- © i

ity and observability degrees in LTI systems wititertain Y%, (fil (w).€, (60)) (1)
parameters belonging to semi-algebraic sets (Sogtual, h=1ip=1

2009). So, the GPC provides in the same frameworifa S

ficient and more general solution. A preliminarydst has +zzz)ﬁiziar3(fh (a)),gﬁz(a)),gﬁg(w))+---

i1 =1i,=1i3=1

been proposed about this idea in (Nechak et al3201

This paper gives a more complete study about th&lig-  \ypere I, (JJdenote polynomials of the p- order polynomi-
ity of the RPD-TBR based method. Moreover, an error 5| chaosr ' that are functions in variables defined within
bound is defined for the RPD-TBR generated. Indé®d, the set{{(w)}m

this paper, the truncation error, which has beewshto =

be bounded in the case of deterministic LTI systeinis For practical use, terms in the previous polynororea-

characterized by statistical moments of Hankel Wigng  os expansion are rearranged which helps to revtritea

values of the deleted state variables. Another napo re- more compact form as:

sult is that effects of changes in the parametkregain the ©

original model are retained in the reduced ordedeho X (5(60)) =>'%X@ (5(60)) 2
i=0

This paper is organized as follows. First, the galieed where there exists a correspondence between fuasctio
polynomial chaos formalism is presented in Secton ¢ (JJand ([, see (Ghanem and Spanos, 1991).
Model reduction of LTI models with random paramstisr

then developed in Section 3. Efficiency of the megd Theorem 1 (Cameron and Martin, 1947)et
method is studied in Section 4 through its applicabn a XoL LQ,ﬁ, Pr) a real random variable square integrable,
physical system. Conclusions and perspectivesigfitbrk {(w)}iflthe infinite set of independent normalized
are given at the end of this paper. aussian random variables afd is the p-order polyno-
mial chaos. Then, the polynomial chaos represemaif
2. Polynomial chaos X is convergent in the least square seznse as:
P
Place LetX (w) be a random variable with a probability lim E[[Zijqaj (E(a))) - X (a))j ] =0 (3)
density function denoted by, . The spaced of functions oo j=0

which associate for each random eventl Q a value in

R is an Hilbert spacé? (Q, 3, Pr) provided with the inner _ . _
scalar product{X,Y) = E[XYL E[+] being the expecta- In theory, each polynomial chaos is a set of patyiad
tion operator, whereQ is the sample spacegis the functions in the infinite set of random varlat{le’ﬁ} .The

o - algebra of the subsets @ and Pris the probability ~ Polynomial chaos is then said to be with infinitenen-

measure. sion. However, as the number of uncertain paramétea

physical system is finite, we instead use the dimiimen-

Definition 1: Let {(w)}f be an infinite countable set sional polynomial chaos. Otherwise, as a serieam@sipn

of normalized independent Gaussian random variablesat infinity can't be used in practice, the sum igjruncat-
The following spaces are then defined. ed to a finite number of terniswhich depends on the di-
R mensiond and the ordep of the polynomial chaos as fol-

- I',is the space of all polynomial functions in lows:
variables {¢(w)}~ of degree less than or

+d)!
equal top. P+1:(p )

p'd!

(4)
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To summarize, the development in the polynomialosha
basis uses two types of approximations. The fars$bicon-
sider only the polynomial chaos to some ordeiThe se-
cond is an approximation of the stochastic dimemsion-
sequence of the finite number of uncertainty sarce
physical systems. So the dimension is truncatedhéo
number d . Thus, the polynomial chaos expansion (2) is
re-written:

% (¢) (5)

X(€)=2%

with  &=(& &)
The set {qq} includes orthogonal polynomial functions
with respect to the Gaussian measure of probabilitey

form a basis inL* (Q, 3, Pr) space provided with the scalar

cases. However, it turned out that convergenceqties
(speed and accuracy) are unsuitable when randowt fun
tions are with non-Gaussian distributions. So, iod
Karniadakis have shown that convergence propedés
pend on the probabilistic coordinates of randomatédes
{E}d in the probability space (Xiu and Karniadakis, 2002
Indeed they have carried out an optimal correseooel
between families of probability laws and orthogopaly-
nomial families. So, for random variablgwith certain
distributions, the orthogonal functiong can be chosen in
such a way that its weight functions have the stoma as
the probability functiorf (§). Table.1 summarizes the
correspondence between polynomial families and ifens
functions (Askey, 1985; Xiu and Karniadakis, 2003).

Table 1. Correspondence between probability defigitgtions
and orthogonal polynomials

product(e) defined as:

(@(e).a () =(a(e)a()s  @©
9, being the Kronecker symbol given by:
_1ifi=
”'{o if i# ] @
and
(@(6).a(6)= Jw (¢)dé ®

Density of & Polynomials¢j Support
Gaussian Hermite (—oo, oo)
Uniform Legendre [a, b]
Gamma Laguerre [O,oo)
Beta Jacobi [a, b]

wheref (E) is the probablhty density function of given

by:
d exp {2 /2)

9
P ©
Ghanem and Spanos have proposed a method to adnstru
the polynomial chaos basis. They have shown th#t wi
Gaussian random variables, the most suitable oothalg
functions are Hermite polynomials (Ghanem and Spano
1991).

The polynomial chaos expansion defines a separation
the stochastic character of the random functiomnfiits
deterministic character. The latter is modeled tg $0-
called stochastic modes, defining coordinates ob((f)
in the orthogonal basis formed by polynomials
¢ (¢)which model the random character %f¢).
Modex, represent the mean value of random func-
tion X (&) whileX, ., . define the dispersion ofX f)
approximated by:
2 = 2
=2 %(4.9)

j=1

(10)

2.1. Generalized polynomial chaos

The representation in the PC basis, hamed alsoa#fien
Hermite expansion, helps to describe accuratelgaan
functions. Its convergence demonstrated by the Game
Martin theorem has been verified in humerous pratti

Preprint submitted to Automatica

2.2. Computing of a PC or GPC expansion

The computing of a truncated PC or GPC expansion
given by a (5)-like expression is turned into thelpem of
finding the stochastic mod&s, j0{0,...P}. Non-
intrusive spectral projection (NISP) or regressimch-
niqgues can be used for this calculation (Babuskalet
2004, 2007; Crestaux et al, 2009). The NISP teclniq
used in this paper consists of performing Galegkiojec-
tions on{qz}_ . S0, the stochastic modes are given by:

_(x(6).4(9))
(g(e))

(x(¢).4(¢))

(11)
where

[X(€)q (&) f(£)ae

'3

(12)

Integrals (12) can be approximated by using muiteh-
sional numerical integration methods such as thé#idiu
mensional Gauss collocation method that is:

<X() (€)= ZX( g (e)w) s

where E W( ) are the |ntegrat|on points and weights, re-
spec'uvely, while Q is the number of integrationns.
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3. Model reduction of random par ameter -dependent
LTI systems

Consider a state-space model of a linear time iamar
system whose matrices are random:

{x(t,g)=A(;)x(t,g)+3(au(t)
 ea=c@xa-ou)

A(§)OR™,B(&)OR™™,C(&)OR™,D(&) DR are
random parameter-dependent matrices,
u(t)OR™ y(t,§)OR%and x(t,&)OR"are, respectively,
the inguts, outputs and states of the system, while
¢0OR%is a vector of random variablesx(t,¢)and
y(t,€) define processes that depend on the tiraed the
random variablef . Once a fixed value is given fafthen
the state trajectory and the system output becoeterd
ministic. Otherwise, it must be noted that inigainditions
don't depend og that is: x(0,&) = x,. So the set of state
trajectories{x(t,{)} _,depends on the initial conditiog,

the random variabléand also the input(t)

(14)

The aim of model order reduction of (14) is to shar
for a random parameter-dependent model defined by:

7 (1.6)=A (6)7 (1.6)+8, (£)u()
(15)
Y (6:6)=C,(€)Z (t:€)+ D, (€)u(t)
where Z' (t,{)DR“ with r<<n, vy (t,&)ORY,
A (§)OR™,B (&)OR™,C, (¢)OR* and
A %{; OR%"such that :
e [y(te)]= [y (14)] 19)

E"[]denoting theh™ order moment . It represents the
mean value wheh = 1 and the variance whérn= 2.

For System (14) with fixed-value parametx{ré=£(k) ,
the quality of the corresponding reduced model {$5s-
sessed by verifying that its dynamic behaviour edpces

accurately that . of the original model i.e.
yrcg,f(k) = y(t,f(k) . The main goal in model reduction
of System (14) with random par geaeaat

ameters is t
reduced model (15) such thy,trgt,f(") ~ [Ct 5(”5 be fu-
filled for all fixed value parametergé = k)’,k =1,..»
belonging to the probabilistic support of variafleThis
leads to the definition of the condition (16) whioteans
that statistical moments of, (t, &) must well approximate
those of the original outpyt(t,£). The first and second
order moments and density functions are the mashumn
used to characterize statistically random procggsit will
be said that model (15) is a good approximatiomotiel
(14) almost surely if the mean value and the vagaof its
output well approximate those of the original mode).

Preprint submitted to Automatica

3.1. Truncated balanced realization of LTI systemswith
deterministic parameters

Consider systems (14) with fixed values for paramset
in & and denote b@(s)its transfer function.

(17)

Cx(t) +Dul(t)

Definition 2 (Controllability and observability ener-
gy functions): Letx O? = %, be the state at time=0. Un-
der asymptotic stability Ais Hurwitz matrix i.e all real
parts of eigenvalues of matriare in the left half-plane ),
controllability and observability conditions, Schen has
defined Controllability and observability energynéitions
atx, respectively by:

L (%)

=  min
ulL?(-e0,0)
X(-e0)=0,x(0)=

17 2
= > j Ju(t)] ot (18)
X
1 00
Lo (%) :EI||y(t)||2 dt;u(t)=00t=0 (19)
0
as quadratic functions given as:
L (%) =5 4w,
Lo (XO) :EXEWOXO

whereW,, W, are the so-called controllability and observ-
ability gramians defined respectively by

(20)
(21)

W, = [e"BB"e" dt (22)

o3 T
W, = j eMcTce (23)
0
that are the uniqgue symmetric positive definitaigohs of
the following Lyapunov equations

AW, +W, A" = -BB" (24)

A'W, +W, A=-C'C (25)
and the square roots of the eigenvalues of theugtod
WW, are the so-called Hankel singular values
o, (i =1,...n) of System (17).

The controllability function L (x,)is the minimum
amount of input energy required to drive the sfaie the
origin at t =—c to x,at t=0, while the observability
function Lo(xo) is the amount of output energy generated
by the zero-input response frogy.

Definition 3 (Balanced realization) (Moore, 1981): An
asymptotically stable minimal realization of Systéid) is
said to be in a balanced form if:

W, =W, =Y =diag(q; ,...0,) (26)

8 May 2013



where 0, >0,>...20, and X is the solution of the pair
of Lyapunov equations for controllability and obsasil-
ity. There exists a linear coordinate transfornatio
%, (t) =T,"x(t) , named balancing transformation, which
puts System (14) and thus the corresponding caabitity
and observability energy functions in a balanceunfon
this configuration, state variables,;,(i =1,...n)are or-
dered with respect to their controllability and ebability
degrees measured by Hankel singular valmes =1,....n .
State variables with small Hankel singular values said
to be weakly controllable and observable. So, aiced
model is obtained by truncating states having siafikel
singular values. This result is given by the faflog theo-
rem.

Theorem 2 (Pernebo and Silverman, 1982): L@} (s)
be the transfer function of the balanced realizatid Sys-

tem (14) given b>(/:) ( ) ( )
*% (1) =AX (t)+Bu(t
{y(t) =G (1)+Du(y) “

where x (t)=T,*x(t),T,being the balancing transfor-

mation, and consequentlyA =T *AT,, B, =T,'B,
C,=CT,. So if there exists r<nsuch that
0,20,2...20,>0,,,2...20,then the reduced order
model
X (1) = A% (1) +Bu(t) o8
Y, (t)=Cx (1) +Du(t)’
obtained by the truncation of state variables

X.o1p (t) 1%, (t) by setting them to zero, is minimal and
asymptotically stable and satisfies

Ie(s)-G, (s)]. < zza

where G, (s) is the transfer function of the reduced model
(28).

(29)

The main step to derive the balanced truncated h{@d¢
is to search for the balancing transformatifn The latter
is given by the well-known Laub algorithm (Laub adt
1987).

3.2. Random parameter dependent balanced realization

We propose in the sequel a generalization of tHe ba
anced realization concept described in the abouw su
section to random parameter-dependent LTI syst&us.
some definitions, related to the proposed genextidia,
are provided.

Let x(t,&) be the state trajectory of System (14) corre-
sponding to a given initial conditiosx, # 0 in the neigh-
bczrr)wod of the zero-equilibrium and the zero-input
u(t)=0.

Preprint submitted to Automatica

Definition 4: The zero equilibrium of System (14) is
said to be almost surely stochastically stablé&i€l{er and
Bhattacharya, 2009)

Pr[lllrg&(t,{) - OJ =1

Definition 5: The zero equilibrium of System (14) is
said to be almost surely stable with respect tohtheno-
ment if O¢ > 0,000 > 0 such that:

stuopEh [x(t£)]<e,Ox |x|<o

Definition 6: The zero equilibrium of System (14) is
said to be almost surely asymptotically stable witbpect
to theh™ moment if it is stable in the" moment and

lim E"[ %, (t,€)] =0,

Definitions 5 and 6 state that stability of Systé) can
be analyzed via the study of the stability of thenments of
the random process defined by equations in (14¢. dlh
most sure stability has been shown to be equivatettie
stability in theh™ moment for linear autonomous systems
(Chen and Hsu,1995). Fisher and Bhatacharya haeé us
the GPC formalism to study stability of System (B
nonlinear systems (Fisher and Bhatacharya, 2018¢ T
proposed method has been used efficiently to aedlya
stability of a mechanical system with a randomtiiic co-
efficient (Nechak et al, 2011, 2013).

(30)
(31)

(32)

As the stability, almost sure controllability andserva-
bility notions are defined as follow:

Definition 7: The Couple(A({),B({)) is said to be
almost surely controllable if it is controllablerfeach fixed
value of the random variabfe that is the controllability
matrix C, (&) is full rank for each fixed value of so,

Pr(rank(CO (f)) = n)

Definition 8: The couple(A(f),C({)) is said to be
almost surely observable if it is observable fochefixed
value of the random variabfe that is the observability
matrix O, (&) is full rank for each fixed value of so,

Pr(rank(()b (f)) = n)

Suppose that System (14) is almost surely asyncpdoti
ly stable and almost surely controllable and oleigle:
Random parameters-dependent (RPD) controllabilitg a
observability gramians, denoted Wyc(g% and W, (&) re-
spectively, are then defined as follows:

=1 (33)

=1 (34)

w(e)=fera(e)B(e) (a9
W, ()= [ec(e) cle)e e (o)
RPD—ControIIabiIity0 and observability gramians

(W, (¢) andw, (£)) are positive definite matrices almost
surely and solutions of RPD-linear Lyapunov equeio
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associated to the almost sure controllability abseovabil-
ity properties. They are given by:

A(E)W, (&) +W, (&) A¢) =-B(£)B(¢)
A(E) W, (€)+W, (&) A(¢) =-C (&) c(¢)

In the following, the balanced realization notioafided
for LTI systems with constant parameters is geigzdlto
the-dependent LTI systems.

T

(37)
(38)

Le
t{Xo(t'f)=Ab(5)>%(t’f)+'3n(‘()“(t) (39)
y(t.€)=C, (€)%, (t.6)+ D, (£)u(t)

be an RPD-state space representation of (14).

Definition 9: Realization (39) is said to be an almost
surely balanced realization of System (14) if itaidal-
anced realization of System (14) for every fixedueaof
the random parametér, that is:

Pr(w, (£) =w, () =2(¢)) =1

(40)
ag(é) o o0
where, >(&)=| o .0
0 0 o,(é)

is the solution of the pair of RPD-Lyapunov equasi@iv-
en by (21).

AOZ(O+Z(E)A) =-B()B ()
A(EZ(8)+2(¢)A(6)=-C, (&) & (¢)
The RPD-Hankel singular values(¢) ,i O{1,...,n} are in

this case random functions in the random varidlaled
thus can be expressed by GPC expansions. So:

o (6)=%2,0(¢) “2)
Thus: J_O
g, 0 O
(&)=l 0 . o0 |+
0 0 &,
Ya,q(6) 0 o (#3)
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where g, ;denotes mean values of the Hankel singular val-
ues while g, ; define the dispersion of the Hankel singular
values around their mean values. Otherwise, thebeum

of terms in a the GPC expansion (42) depends, idsirsa
Section 2, on the numberof random parameters and the
GPC orderp. The numberd being known, the number of
termsP depends only on the chaos orgerThere is no
method which helps to control, a priori, the emelated to

a fixed value of the chaos order In practice, pis fixed

by a convergence study i.e. the chaos order ieased
until no enhance in accuracy of the GPC expansiarb
tained. The main problem is then to search forraloan
parameter-dependent balanced transformalfpf{) such
that:

% (6.6) =T, (&) x(t.¢),

which puts System (14) in an almost surely balarfoeh
(39). The GPC is proposed to represent and thesno

(44)

pute the RPD-balanced transformation. So, entries
t; (&) of T, (&) are expressed represented by :
P
t (€)= kz_(:)fjk(/i () (45)
with
_ (5($).als -
- =M,kﬂ{0,...,P} {i.jyo{s.n @6)

()

Stochastic modes; , given by (46) are computed by using
the NISP method as described in Section 2. A (ik&)-I
formula is used. For this aim, the balancing trarmshtion

is needed to be computed at Gauss collocation gaist
ing the Moore-Laub algorithm.

Once the RPD- balanced transformation computed, the
random parameter-matrices of System (39) can bersut
as:

(47)

3.3. Random parameter-dependent truncated balanced
realization (RPD-TBR)

The random parameter-dependent balanced realization
(RPD-BR) defined by equations (39) can be explotted
derive a RPD-TBR. The essential idea is that inRDR
BR, state variables are ordered with respect to ttan-
trollability and observability degrees measured the
RPD-Hankel singular values. State variables thasess
small Hankel singular values almost surely withhre t
probabilistic support of system parameters are Wezn-
trollable and observable almost surely. Thus, segging
them will not affect the dynamic behaviour of thégmal
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model. The main question is then how to measure-RPD small to zero. This allows forcing the static gaifthe

Hankel singular value. This task is accomplishedubiyng
the GPC representation (42) of RPD-Hankel singudds
ues. Using (42), it is easier to estimate the witlidéribu-
tion of RPD-Hankel singular values comparing to anté
Carlo (MC) method which is known to be too costhp,
by exploiting (42), it is possible to know how cailabil-

ity and observability degrees of state variableshay
within the probabilistic support of system paranmetdhe
main idea is just to sample the probabilistic distiion of
the random variable€ then to compute the corresponding
sum after replacing each value of the sampling thathe
polynomial functions used. Based on this calculgtio
RPD-Hankel singular values can be characterizedlzemnl
used to analyze the reducibility of the originaldab(14).
We prose for this aim the generalization of theecion
defined for deterministic LTI systems in Pernebo-
Silverman theorem. So if there exists a truncatioher r
for which the following almost sure.§) inequality,

0,(£)20,(é)2 2 0. (£)>>0,,,(¢)2 2 0, (£) (48)

is fulfilled almost surely, then a RPD-TBR can tbxained
by removing then-r states variables that have small Hankel
singular values almost surely.

Consider the balanced realization (19) rewritterd an
given by

2128 2]

AL(E) A(€)

(49)

T T
Wherexlb =|:Xb,1 xbr] ,Xg:[bul an:|
The RPD-TBR (15) can be obtained through settingava
bles that are weakly controllable and observabiaoat
surely (variables corresponding to small RPD- Haske

gular values) to zero;

Xb,r+1(ta<t):Xb,r+2(t’f):"'szn(tif):O (50)
whichyields | A (€)= Ai(¢)
B, (¢)=BI(¢)
. (£)=ci(¢) o

The RPD-TBR can be obtained also by setting thedyno
of state variables whose RPD-Hankel singular vahres

Preprint submitted to Automatica

truncated balanced realization to be the sameeasrigi-
nal system.

%1 (6.6) = %, (1.6) = =%, (1,6) = 0

In this case, matrices of the RPD-TBR are giverfoas
lows:

(52)

3.4. Truncation error

Ggg An obvious concern with model order reducti®n i
the evaluation of a bound on the error reducticor. the
TBR of LTI systems, Pernebo and Silverman have show
that the H_ error between an LTI model and its TBR is
bounded with the sum of Hankel singular values eorr
sponding to the truncated state variables. We m®@pn
the following the generalization of this resultR®D-TBR.

As the systems dealt with are random, the truncativor
will be characterized statistically.

Proposition 1: Let G(s,&) and G, (s,€) be the random
parameter-dependent transfer functions of the malgi
model (14) and its reduced model (15). CriterioB) (%
supposed to be verified then the mean value ofHheer-
ror betweenG(s,&) and G, (s,€)is bounded by the sum
of mean values of Hankel singular values of thadated
state variables, that is:

ello(s¢)-c (s¢)l. ]s2 7,

Pr oof:

(54)

From the LTI theory (Pernebo ans Silverman, 19&1),
fixed values ofé, it has been shown that :

lo(s.89) -6, (s&¥)] =23 o ()

i=r+l
By applying the expectation operator on the aboy@es-

sion, it can be written:
flo(s4)-6 (=)L t(€)0e =4[ 30r() 1 (e)ae

<23 [o,(¢)1(¢)d¢

i=r+l¢g

<2) E[0,(¢)]

i=r+1

(55)

Hankel singular values being approximated by theCGP
we have:
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Thus

efle(s.6)-c.(s4)). ]< 22 7,

r+l
which completes the proof.

Proposition 2: Let G(s,¢) and G, (s,¢) be the random
parameter-dependent transfer functions of the maigi
model (14) and its reduced model (15). CriterioB) (%
supposed to be verified then the variance of theerror
betweenG(s,&) and G, (s,&) is bounded as follows:

vaf6(s6)-6,(s<)]. < 4 3, %+ 23 6,0 |+

i=r+l i=r+1
i<jsn

4 iilvar(ai ({))+ 2;;1 CO\(Ui (¢) g, (5)2 6)

Pr oof:

vaflo(s)-6 (s<)|.]s€|o(s)-6. (<)L (57)

-E[[e(s8)-6 (s€). |

Applying the expectation operator to the squarepresc
sion (55) yields the following result:

elle(s¢)-c (s &) |< 43, Elar ()]«

i=r+

n (58)
82 E[a(¢)a,(¢)]
Consequently: _
varl[6(s.€) -G, (s.4)[] |< 43 €[ a1 (¢)' ]+
i=r+l (59)

83 E[0(¢)a; (¢)]

i=r+1
i<j<n

By using the GPC expansions of Hankel singulares|it
can be verified that:

[0, (6)]= 2ot (@ () =t var(e,(¢) (60)

And

E[a,(¢)o;(¢)] =zp(;f_7i,k51,k<¢f(5)>

E (61)
=70, ,+cov(0,(£) 0, ()
where cov( ) is the covariance operator.
Preprint submitted to Automatica 9

Replacing E ai(g‘)zland E| g ()0, (E)lin (59) by
(60) and (61)yields (56) which completesthe proof

Model reduction of parameter dependent models is of
major importance in practice. Indeed, system patarsén
several practical cases are uncertain. Parameties o
characterize geometry, materials, boundary valiresal
values and control parameters. In most cases, tantgris
inherent to those parameters which are modeleévaral
cases by probabilistic models (density functioii$le need
for RPD-reduced model can results from different re
quirements. In some applications, many simulatibage
to be performed for different values of parametarsh as
parameter studies for parameters optimization, rseve
problem and design in general. The MC method jgeal
example in this context which is the most used oektim
industry to characterize the dynamic behaviour giveen
system with uncertain parameters. The principte simu-
late the differential equations for a given paranset ob-
tained following random generators and then to etesc
some numerical solver for each combination of patens
in the set. This procedure is known to be prohibitiue to
both convergence properties of the MC method amd th
complexity of physical systems. So, it is, in thesses,
interesting to have the possibility to generateeduced
model with random parameters closed to those obtle
inal system in order to have a more efficient agsklex-
pansive MC method. We propose in this perspective,
apply the RPD-BTR developed in this paper.

4. Application

In order to assess the efficiency of the proposethad,
a model reduction problem of a mechanical systeig 1}
is considered. The latter is a two degrees of fraedys-
tem which consists of two cells (mass, stiffnessnding).
The stiffnessk1 and dampingdl coefficients are supposed
to be random parameters driven by uniform laws iwith
[0.9, 1.1] and [0.5, 0.8] respectively. Two stamtlarde-
pendent random uniform variablgs &, within interval [-
1, 1] are considered to represdqindd,. See Table.2 for
numerical values of all system parameters.

I—*F

I_. X5 I—— Xy

) k(&)
AN
i iy
| "
s di(&)

Fig. 1. Mechanical system

Matrices of (14)-like state space representatiothefsys-
tem in Fig.1 are given in (62) by considering thloiwing
state _vector Wherex(t,é)=[x X, X xi (t,&) with
£=[g &)
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) 1 0 0
0 0 0 1
A< -KE) k(@) dE) e
m m, m, m,
k(&) k(&)+k, dy(&) d(&)+d,
L m m, m, m, |
o
0
B(§)=B=| 1 |.c(¢)=c=[1 0 0 {
m
_0_
(62)

Table 2. Parameters for system in Fig.1

der on the obtained balanced realization. Foh eatue
of pa RPD-BR (39) is computed. The first and second or-
der moments of their Step responses are plottdeigr2
and Fig.3. Moreover, the probability density fuoatiof
the final value of the step response of System iGp)ot-
ted in Fig.4. All results are compared to refersnob-
tained from the Monte Carlo method with a number

N=10.000 of samples of parametd¢sand d, .

The balanced realization obtained for System (6@3tm
model a dynamic behavior having theoretically thens
statistical properties as System (62). This is fiegti as
shown in Fig.2, Fig.3 and Fig.4. The RPD-BR presdné¢
same instantaneous mean value and variance oftépe s
response. The probability density function of timalf val-
ue is suitably modeled. It can be seen also tlettcura-
cy is good withp = 2 as well as wittp = 3 and p =4. This
shows the good convergence property of the LeP@rexp
sion used to represent the balancing transformation

m =1 m, =1
3
k(&) =1+0.%, k, =1 g ——RPOLBR (pa2)
o\ = R
d, (&) =065+ 019, d,=1 : o\ . (p=4)
£ 2 { P il SRS
H / N’
g 15 ‘4"
4.1. Random parameter dependent balanced realization S | :’r
From Askey scheme, Legendre polynomialg(f) are 8 ,".
the most suitable polynomial to represent the lwiten gﬂ-ﬁ /
transformationT, (£) of Model (62) as well as the parame- = |f
ter-dependent Hankel singular values. So: o : o7 s = o o
P Time (second)
t =31t .L 63
u (E) F‘(Z:;‘,L"k K (E) (63) Fig. 2. Instantaneous mean value of the step regpon
7,(6)=X.a.L(¢) (64)
k=0
where stochastic modE and g, , are defined by (13)-like
formula which can be expressed as follows: 0.01 " original modsl
0.008| e N L RPD-BR{(p=2)
¥ b [\ e
[Tt (& &)L (606) 1:(€) T.(£)déde, §ooe /A P
= e 0.007 f 3
bk = = 11 (65) ‘ﬂlom_ i i
IILZk ({1152) fl({l) fz({z)dfpfz E ) f 1
] & 0-006 f ! o
11 EO.DM- H ""._ A .
[[a(&.&) L (&.6) f.(8) F.(£)dede, fory | -
a-i,k == 11 (66) EG.DDZ- ‘: l“ _"f.
[[2(&.&) 1.(8) T.(¢,)dége, “om| /
% 5 10 15 2 3 )
Time {sscond}

-1-1

The multi-dimensional Gauss collocation methodsisduto

calculate stochastic modes (65) and (66).

Fig. 3. Instantaneous variance of the step response

The Balanced transformation is computed for seveabl
ues of the Legendre polynomial chaos (LePC) order

p{2,34
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in order to observe the effect of the LePC or-
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Table 3. Statistical properties of Hankel singmalues estimated
by LePC expansion witp = 2

¢ o ' ' " —Original model -
I AN TIREDER(ED LePC0=2) 4,(¢) 0,(¢) o;(é) a.(¢)
{ RPD-BR(p=4)
g 1 Mean value 2.3043 1.3010 0.0204 0.0188
ar h hY 1
z { Variance 0.0885 0.0656 0.0037 0.0012
Bl ' \
8 f 1 Minimum 2.1239 1.1698 0.0142 0.0173
4 i
gz- f Maximum 2.5441 1.4845 0.0294 0.0228
1T \
_,.' \ B Table 3. Statistical properties of Hankel singwalues estimated
f& 19 18 2z 208 21 216 22 2% by LePC expansion with = 3
Final value of step rezponse

Fig. 4. The probability density function of thedirval- LePC 0=4) g, (¢) o,(é) a,(é) a,(é)
ue of the step response

Mean value 2.3043 1.3010 0.0204 0.0188

4.2. Random parameter dependent truncated balanced Variance 0.0882 0.0652 0.0036 0.0012
lizati -
reaiization Minimum  2.1213 1.1674 0.0141 0.0173
One of the main interests of a balanced realizado -
exploit it to derive a reduced order model by tatimgy Maximum 25471 1.4873 0.0295 0.0228
states that are hard to control and to observekélaingu-
lar values measure contr(_)lla_blllty_ and (_)bservqblhte- Table 4. Statistical properties of Hankel singwialues estimated
grees. In the case dealt with in this section, dhdmgrees by LePC expansion with = 4
are random functions depending on the stiffniessnd
dampingd;, parameters which are modeled by LePC ex- | gpc g = 2
pansions (64). Their prot%abilisziic density funciare rep- 6=2) Ul(‘() JZ(‘() 03(5) 04(5)
resented in Fig.5 forpJ{2,3,4 and compared to refer-
ence results obtained by using the MC method with aMean value 2.3043 1.3010 0.0204 0.0188
numberN = 10.000 of samples. _ variance  0.0885 0.0656 0.0037 0.0012
LePC expansions used allow good representations of
random Hankel singular values. This is pointed lputhe Minimum 2.1239 1.1698 0.0124D.0173
correct probabilistic density functions represerite#ig.5.
Maximum 2.5441 1.4845 0.0294 0.0228

From latter results, two groups of singular valfiesctions
can be identified. The first one includes(¢) and o, ()
while the second includes, (¢) ando, (¢). Probability
density functions ofay (£) and g, (&) show that the cor-

responding states are almost surely weakly obsknaain Table 5. Statistical properties of Hankel singmalues estimated
weakly controllable comparing to the first and se&to by Monte Carlo (MC) method witN = 10.000 samples

states variables which, from the corresponding glodity
density functions, are strongly observable andrediable. ~ MC g, (¢) 0,(&) o,(é) o,(é)

Mean values, standard deviations, minimum and maxim

of Hakel singular values estimated with LePC exjmars Mean value 2.3043 1.3010 0.0204 0.0188
are given in Tables (3,4,5) while Table.6 pres&m es- )

t|mat|o|€s) Fr)om a_(" ) resu(ns)’ it can be said Variance 0.0882 0.0652 0.0036 0.0012
that.a, (&) > 0,(&) >>0,(&)>0,(&)almost  surely for -

&0 —l,]]X[—l, or equivalently forkID[O.Q, 1.iand Minimum 2.1213 1.1674 0.0141 0.0173
d, J]0.5,0.4. So, truncating the last two states variables pjaximum 25471 1.4873 0.0295 0.0228

in the balanced realization will not affect the dymc be-
havior of the original system (62). To verify thecaracy
of the reduced order model, first and second order
ments of its step response and the probabilityidehsc-
tion of the corresponding final value are compugedi
compared to those of the original model (62).
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Fig. 5. Probability density functions of Hankelgitar values

25 /
] { o
2 I \ - S
E J N, e
i i Tt
g 18§
it {
g { — Original madel
= o5- ¢  rm= RPD-TEBR (p=2) |
ﬁ oo e RPD-TBR (p=8)
= RPD-TER (p=4) |
05 5 10 20 5 e

15
Time {sacond)

Fig. 6. Instantaneous mean value of the step ragpon

e £
E B

g

3

B

Instantanaous vadance of siap rsaponss
o

—Original model

== RPD-TEBR{p=2)

= RPO-TEBR{p=3}
RPO-TBR (p=4)

10 2 a8 aH

15
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Fig. 7. Instantaneous variance of the step response
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Fig. 8. The probability density function of thedinval-
ue of the step response

A random parameter dependent truncated balancéd rea
ization (RPD-TBR) is derived from the correspondbai-
anced realization obtained witp{2,3,4 by suppress-
ing the two states that are hard to control anobigerve in
the RPD-BR. Eigenvalues of reduced models arequlatt
Fig.9. These correspond to 10.000 samples of thplef
random variablesé, &, which model the stiffness and
damping coefficientsk and d, respectively. The generat-
ed RDP-TBRs are almost surely asymptotically stable
since their eigenvalues are with negative realsparll
results show a suitable accuracy of the generated-R
TBRs. Instantaneous mean values and variancesepf st
responses of the RPD-TBR are correctly approximated
Moreover, the probability density function of thadl val-
ue of the step response is also suitably approgidnay the
RPD-TBRs. Otherwise, the comparison between LeRC ex
pansions used show that the one waith 2 is sufficient to
derive a suitable reduced order model for Systeth (6

~ IR (p=2) — EEMTR (p-3) — BO-TR fp = 4)

0.5

Imaginary part
L —1

05

-ﬂ.ﬂl L0175 .17 4165 .16
Real parl

Fig. 2. Eigen values of original model and reduceter models
within uncertainty interval
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5. Conclusion

A new methodology for model order reduction of ran-
dom parameter-dependent LTI systems has been mopos

in this paper. The method is based on the randoanps
ter-dependent balanced realization concept obtafreed
the generalization of the well-known balanced ezdion
in the linear deterministic case. The main prireif@ to
search for a random parameter-dependent balanging-t
formation which puts the system in a balanced fahmost
surely within the probabilistic support of randomrame-
ters. The generalized polynomial chaos formalisslfeen
proposed to compute the random parameter depehdent
ancing transformation as well as the random Hasikeju-
lar values. Based on statistics of Hankel singukues
estimated via their GPC expansions, states that bmall
controllability and observability degrees almostedy are
truncated to derive a random parameter dependéuted
model characterized by a bounded truncation effbe

proposed method has been tested on two degreesenf f

dom mechanical system. Its efficiency was pointedl o
The main question which remains asked is abousttsil-
ity of the RPD-TBR. We have no guaranty on the itab
of the RPD-TBR. This problem is common to all metho
of model reduction in particular in the case of mlsdvith
uncertain parameters.

In this paper, the RPD-TBR has been used insteateof
original RPD model and combined efficiently withv&C
type method to predict accurately the dynamic bieanf
the uncertain system used. Other possible exfitmits of

the RPD-TBR are in control and observation schemes.

These perspectives are dealt with in our researgbra-
gress.
An important issue is related to the case wheré3R€

expansion used to compute the balancing transfaymat

needs a high chaos order. This will lead to highnibers of
terms in the GPC expansion and thus to more contaéx
ancing transformations which, consequently, yields-
dom parameters-dependent balanced realizatiorrwliffio
be exploited in model order reduction. The usehefrul-
ti-element GPC in this context can be beneficiatsithis
method helps to decrease the polynomial chaos.order
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