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ABSTRACT. On the one side, the formalism of Global Transformations comes with the claim
of capturing any transformation of space that is local, synchronous and deterministic. The
claim has been proven for different classes of models such as mesh refinements from computer
graphics, Lindenmayer systems from morphogenesis modeling, and cellular automata
from biological, physical and parallel computation modeling. The Global Transformation
formalism achieves this by using category theory for its genericity, and more precisely the
notion of Kan extension to determine the global behaviors based on the local ones. On
the other side, Causal Graph Dynamics describe the transformation of port graphs in a
synchronous and deterministic way. In this paper, we show the precise sense in which the
claim of Global Transformations holds for them as well. This is done by showing different
ways in which they can be expressed as Kan extensions, each of them highlighting different
features of Causal Graph Dynamics. Along the way, this work uncovers the interesting
class of Monotonic Causal Graph Dynamics and their universality among General Causal
Graph Dynamics.

INTRODUCTION

Initial Motivation. This work started as an effort to understand the framework of Causal
Graph Dynamics (CGDs) from the point of view of Global Transformations (GTs), both
frameworks expanding on Cellular Automata (CAs) with the similar goal of handling
dynamical spaces, but with two different answers. Indeed, we have on the one hand CGDs
that have been introduced in 2012 in [AD12] as a way to describe synchronous and local
evolutions of labeled port graphs whose structures also evolve. Since then, the framework
has evolved to incorporate many considerations such as stochasticity, reversibility [AMP20]
and quantumness [AM17]. On the other hand, we have GTs that have been proposed in
2015 in [MS15] as a way to describe synchronous local evolution of any spatial structure
whose structure also evolves. This genericity over arbitrary kind of space is obtained using
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the language of category theory. It should therefore be the case that CGDs are special cases
of GTs in which the spatial structure happens to be labeled port graphs. So the initial
motivation is to make this relationship precise.

Initial Plan. Initially, we expected this to be a very straightforward work. First, because of
the technical features of CGDs (recalled in the next section), it is appropriate to study them
in the same way that CAs had been studied in [FMS23]. By this, we mean that although
GTs use the language of category theory, the categorical considerations all simplify into
considerations from order theory when an absolute position system is used, as is the case
in CAs and in CGDs. Secondly, CGDs come directly with an order from the notion of
sub-graph used implicitly throughout. The initial plan was to unfold the formalism on this
basis to make sure that everything is as straightforward as expected, and then proceed to
the next step: quotienting absolute positions out to only keep relative ones, thus actually
using categorical features and not only order-theoretic ones, as done in [FMS23] for CAs.

Section 1.2 recalls how CGDs are defined and work. Section 1.3 recalls how Kan
extensions and GT's are defined and simplifies in the particular case of order theory. Section 2.1
makes clear the strong relation between the two concepts and how this relation leads to the
initial ambition.

Actual Plan. It turns out that the initial ambition falls short, but the precise way in which
it does reveals something interesting about CGDs. The expected relationship is in fact
partial and only allows to accommodate Kan extensions with CGDs which happen to be
monotonic. This led us to change our initial plan to investigate the role played by monotonic
CGDs within the framework. Doing so, we uncover the universality of monotonic CGDs
among general CGDs, thus implying the initially wanted result: all CGDs are GTs. We
then take into account renaming-invariance in a categorical way: by considering port-graphs
that differ only by their names to be isomorphic, which amounts to a quotienting of the
simple order-like category into a smaller category.

Sections 2.2 and 2.3 make clear the relationship between GT's and monotonic CGDs, while
Section 3 shows the universality of monotonic CGDs by proposing an encoding transforming
any CGD into a monotonic one. Section 4 is devoted to deal with renaming-invariance in a
categorical way. Finally, Section 5 discusses these results.

1. PRELIMINARIES

1.1. Notations. Sections 1, 2 and 3 mostly use common notations from set theory. The
set operations symbols, especially set inclusion C and union U, are heavily overloaded, but
the context always allows to recover the right semantics. Two first overloads concern the
inclusion and the union of partial functions, which are to be understood as the inclusion
and union of the graphs of the functions respectively, i.e., their sets of input-output pairs.
A partial function f from a set A to a set B is indicated as f : A — B, meaning that f is
defined for some elements of A. The restriction of a function f: A — B to a subset A’ C A
is denoted f [ A" : A’ — B.

Section 4 uses elements of category theory. The reader is expected to be familiar with the
notions of category, functor, natural transformation, colimit and comma category [Mac13].
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1.2. Causal Graph Dynamics. Our work strongly relies on the objects defined in [AD13].
We recall here the definitions required to understand the rest of the paper. Particularly,
[AD13] establishes the equivalence of the so-called causal dynamics and localisable functions.
For the present work, we focus on the latter. Our method is to stick to the original notations
in order to make clear our relationship with the previous work. However, some slight
differences exist but are locally justified.

We consider an uncountable infinite set V of symbols for naming vertices.

Definition 1.1 (Labeled Graph with Ports). Let ¥ and A be two sets, and 7 a finite set.
A graph G with states in ¥ and A, and ports in 7 is the data of:

a countable subset V(G) C V whose elements are the vertices of G,

a set E(G) of non-intersecting two-element subsets of V(G) x 7, whose elements are the
edges of G, and are denoted {u :i,v: j},

e a partial function o(G) : V(G) — ¥ labeling vertices of G with states,

e a partial function 0(G) : E(G) — A labeling edges of G with states.

The set of graphs with states in ¥ and A, and ports 7 is written Gx; A .
A pointed graph (G,v) is a graph G € Gy A » with a selected vertex v € V(G) called
pointer.

In this definition, the fact that edges are non-intersecting means that each u : i € V(G)xm
appears in at most one element of E(G). The vertices of the graph are therefore of degree at
most card(r), the size of the finite set 7. Let us note right now that the particular elements
of V used to build V(@) in a graph G should ultimately be irrelevant, and only the structure
and the labels should matter, as made precisely in Definition 1.6. This is the reason of the
definition of the following object.

Definition 1.2 (Renaming). A renaming® is the data of a bijection R : V — V. Its action on
vertices is straightforwardly extended to any edge by R({w : i,v : j}) = {R(u) : i, R(v) : j}),
to any graph G € G by

V(R(G)) :={R(v) [v e V(G)}, E(R(G)) :={R(e) | e € E(G)},

o(R(G)) = o(G) o R, S(R(G)) = 8(G) o R,
and to any pointed graph (G, v) by R(G,v) := (R(G), R(v)).

Operations are defined to manipulate graphs in a set-like fashion.

Definition 1.3 (Consistency, Union, Intersection). Two graphs G and H are consistent
when

e E(G)U E(H) is a set of non-intersecting two-element sets;
e o(G) and o(H) agree where they are both defined;
e §(G) and 0(H) agree where they are both defined.

In this case, the union G U H of G and H is defined by
V(GUH) :=V(G)UV(H), E(GUH) := E(G)UE(H),
oc(GUH) :=0(G)Uo(H), )(GUH) :=6(G)U(H).

1Renamings are originally called isomorphisms. To avoid ambiguity, we reserve the use of the latter for
categorical purpose.
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The intersection G N H of G and H is always defined and given by
V(GNH) =V(G)NV(H), E(GNH):=E(G)NE(H),
o(GNH):=0(G)No(H), )(GNH):=6G)NdH).
The empty graph with no vertex is designated &.

In this definition, the unions of functions seen as relations (that result is a non-functional
relation in general) are here guarantied to be functional by the consistency condition. The
intersection of (partial) functions simply gives a (partial) function which is defined only on
inputs on which both functions agree.

To describe the evolution of such graphs in the CGD framework, we first need to make
precise the notion of locality, which is captured by how a graph is pruned to a local view:
a disk. We consider the usual distance between two vertices in graphs, i.e., the minimal
number of edges of the paths between them, and denote by Bg(c,d) the set of vertices at
distance at most d from c in the graph G.

Definition 1.4 (Disk). Let G be a graph, ¢ € V(G) a vertex, and r a non-negative integer.
The disk of radius r and center c is the pointed graph G, = (H,c) with H given by

V(H) := Bg(c,r + 1), o(H):=0(G) | Bg(e,r),
E(H) :={{u:i,v:j} € E(G) | {u,v} N Bg(e,r) # 0}, 0(H):=0(G) | E(H).

We denote by D5, A , the set { G | G € Gy ax,c € V(G) } of all disks of radius r, and by
Dy A the set of all disks of any radius. When the disk notation is used with a set C' of
vertices as subscript, we mean
G = J G (1.1)
ceC

The CGD dynamics relies on a local evolution describing how local views generates local
outputs consistently.

Definition 1.5 (Local Rule). A local rule of radius r is a function f : DE’A,W — Gs A,x such
that

(1) for any renaming R, there is another renaming R’, called the conjugate of R, with
foR=Rof,

(2) for any family {(Hi,vi)}i C Dy a . (i Hi =@ = (), f((Hi,vi)) = 2,

(3) there exists b such that for all D € D5, 5 ., card(V(f(D))) < b,

(4) for any G € Gs, A x, u,v € V(G), f(G}) and f(G},) are consistent.

In the second condition, note that a set of graphs have the empty graph as intersection
iff their sets of vertices are disjoint. In the original work, functions respecting the two first
conditions, the third condition, and the fourth condition are called respectively dynamics,
bounded functions, and consistent functions. A local rule is therefore a bounded consistent
dynamics.

The main result of [AD13] is the proof that causal graph dynamics are localisable
functions, the concepts coming from the paper. We rely on this result in the following
definition since we use the formal definition of the latter with the name of the former.

Definition 1.6 (Causal Graph Dynamics (CGD)). A function F' : Guaox — Gnax is a
causal graph dynamics (CGD) if there exists a radius r and a local rule f of radius r such
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that

Fa) = |J r@y. (1.2)

veV(G)

An important property of CGDs is their renaming-invariance which is inherited from
the properties of local rules.

Proposition 1.7 (Renaming Invariance). Let F' : Gx A7 — Gnax be a CGD. For any
renaming R, F admits at least a conjugate renaming R, i.e., Fo R = R o F. Moreover, for
any local rule f of I, Conjs(R) C Conjp(R) where Conjp(R) (resp. Conj(R)) is the set
of conjugates of a renaming R for F (resp. f).

1.3. Global Transformations & Kan Extensions. In category theory [Macl3], Kan
extensions are a construction allowing to extend a functor along another one in a universal
way. In the first part of this article, we restrict ourselves to the case of pointwise left Kan
extensions involving only categories which are posets. In this case, their definition simplifies
as follows. (The general case is given in Section 4.)

Definition 1.8 (Pointwise Left Kan Extension for Posets). Given three posets A, B and C,
and two monotonic functions ¢ : A — B, f: A — C, the function ® : B — C given by

O(b) =sup{ f(a) e Claec Ast. i(a) b} (1.3)

is called the pointwise left Kan extension of f along i when it is well defined (some suprema
might not exist), and in which case it is necessarily monotonic.

Global Transformations (GTs) make use of left Kan extensions to tackle the question
of the synchronous deterministic local transformation of arbitrary kinds of spaces. It is a
categorical framework, but in the restricted case of posets, it works as follows. While B
and C capture as posets the local-to-global relationship between the spatial elements to be
handled (inputs and outputs respectively), A specifies a poset of local transformation rules.
The monotonic functions ¢ and f give respectively the left-hand-side and right-hand-side
of the rules in A. Glancing at Eq. (1.3), the transformation mechanism works as follows.
Consider an input spatial object b € B to be transformed. The associated output ®(b) is
obtained by gathering (thanks to the supremum in C) all the right-hand-side f(a) of the
rules a € A with a left-hand-side i(a) occurring in b. The occurrence relationship is captured
by the respective partial orders: i(a) < b in B for the left-hand-side, and f(a) < ®(b) in C
for the right-hand-side.

The monotonicity of ® is the formal expression of a major property of a GT: if an input
b is a subpart of an input b (i.e., b < b in B), the output ®(b) has to occur as a subpart of
the output ®(') (i.e., ®(b) < ®(¥') in C'). This property gives to the orders of B and C a
particular semantics for GTs which will play an important role in the present work.

Remark 1.9. Elements of B are understood as information about the input. So, when
b <V, b provides a richer information than b about the input that ® uses to produce output
®(b'), itself richer than output ®(b). However, ® cannot deduce the falsety of a property
about the input from the fact this property is not included in b; otherwise the output ®(b)
might be incompatible with ® ().



6 L. MAIGNAN AND A. SPICHER

At the categorical level, the whole GT formalism relies on the key ingredient that the
collection A of rules is also a category. Morphisms in A are called rule inclusions. They
guide the construction of the output and allow overlapping rules to be applied all together
avoiding the well-known issue of concurrent rules application [MS15].

In cases where ® captures the evolution function of a (discrete time) dynamical system
(so particularly for the present work where we want to compare ® to a CGD), we consider
the input and output categories/posets B and C to be the same category/poset, making ®
an endo-functor /function.

2. UNIFYING CAUSAL GRAPH DYNAMICS AND KAN EXTENSIONS

The starting point of our study is that Eq. (1.2) in the definition of CGDs has almost the
same form as Eq. (1.3). Indeed, if we take Eq. (1.3) and set A =Dg 1 ., B=C = Gs A,
the function i to be the pointer dropping function from discs to gréphs that drops their
centers (i.e., i((H,c)) = H) and the function f to be the local rule from discs to graphs, we
obtain an equation for ® of the form

®(G) =sup{ f(D) € Gz ax | D € DG a8t (D) 2 G} (2.1)

which is close to Eq. (1.2) rewritten
F(G)=|J{f(D) €Gsax|D=GlveV(G)}

This brings many questions. What is the partial order involved in Eq. (2.1)? Is the union of
Eq. (1.2) given by the suprema of this partial order? Is it the case that i(D) < G implies
D = G}, for some v in this order? Are f and F of Eq. (1.2) monotonic functions for this
order? We tackle these questions in the following sections.

2.1. The Underlying Partial Order. Considering the two first questions, there is a
partial order which is forced on us. Indeed, we need this partial order to imply that suprema
are unions of graphs. But partial orders can be defined from their binary suprema since
A < B <= sup{A, B} = B. Let us give explicitly the partial order, since it is very natural,
and prove afterward that it is the one given by the previous procedure.

Definition 2.1 (Subgraph). Given two graphs G and H, G is a subgraph of H, denoted
G C H, when

V(G) CV(H) A E(G)C E(H) A o(G) Ca(H) A §(G) C 6(H).

This defines a partial order — C — on Gx; A » called the subgraph order. The subgraph order
is extended to pointed graphs by

(G,v) C (H,u) :<—= G CHAv=u.

In this definition, the relational condition o(G) C o(H), where these two functions
are taken as sets of input-output pairs, means that o(G)(v) is either undefined or equal to
o(H)(v), for any vertex v € V(G). The same holds for the condition §(G) C §(H).

Let us now state that the subgraph order has the correct relation with unions of graphs.
It similarly encodes consistency and intersections of pairs of graphs.
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Proposition 2.2. Two graphs G and H are consistent precisely when they admit an upper
bound in (Gs Az, ©). The union of G and H is exactly their supremum (least upper bound)
in (Gs.Ax ©). The intersection of G and H is exactly their infimum (greatest lower bound)

m (gE,Aer g) .

Proof. Admitting an upper bound in Gs; A » means that there is K € Gx, A » such that
G C K and H C K. Since the subgraph order is defined componentwise, we consider the
union of G and H as quadruplets of sets:

(V(G)UV(H),E(G)UE(H),oc(G)Uo(H),0(G)Ud(H)),

which always exists and is the least upper bound in the poset of quadruplets of sets with

the natural order. For this object to be a graph, it is enough to check E(G)U E(H) is a

non-intersecting two-element set, and that ¢(G) and o(H) (resp. §(G) and 6(H)) coincide

on their common domain. This is the case when G and H admit an upper bound as required

in the definition. Conversely, when the condition holds, the union is itself an upper bound.
For intersection, consider

(V(G)NV(H), E(G)NE(H),0(G) No(H),§(G) Nd(H))
which is clearly the greatest lower bound and is always a graph. []

Remark 2.3. Note that this order is respected by the action of any renaming on the
collection of all graphs. In other words, R : Gs; A » — s A is monotonic for any renaming
R. The underlying reason is that it basically acts elementwise on the set V' (G) of each graph
(, a monotonic operation for set inclusion.

The two first questions being answered positively, let us rewrite Eq. (2.1) as

o(G) = J{f(D) | DeDE A, st. i(D) CG}. (2.2)

2.2. Comparing Disks and Subgraphs. Let us embark on the third question: is it the
case that ¢(D) C G implies D = G, for some v? Making the long story short, the answer is no.
But it is crucial to understand precisely why. Fix some vertex v € V(G). Clearly, in Eq. (1.2),
the only considered disk centered on v is G,. Let us determine now what are exactly the
disks centered on v involved in Eq. (2.2), that is, the set I, := {(H,v) € Dg 5 . | H C G}.
Firstly, G7, is one of them of course.

Lemma 2.4. For any vertez v € V(G), G, € I,.

Proof. In Definition 1.4, the graph component H of the pointed graph G, is explicitly defined
by taking a subset for each of the four components of G, as required in Definition 2.1 of
subgraph. []

The concern is that GJ, is generally not the only one disk in I, as expected by Eq. (1.2).
However, (7, is the maximal one in the following sense.

Lemma 2.5. For any vertex v € V(G), consider the disk G}, = (H,v). Then for any disk
(H',v) € I,, we have H' C H.

Proof. By Definition 2.1 of the subgraph order, we need to prove four inclusions. For the
inclusion of vertices, consider an arbitrary vertex w € V(H’). By definition of disks of radius
r, there is a path in H’ from v to w of length at most r + 1. But since H' C G, we have
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w € V(@) and this path itself is also in G. So w € V(G) respects the defining property
of the set V(G}) and therefore belongs to it. The three other inclusions (E(H') C E(H),
o(H") Co(H) and 6(H') C 6(H)) are proved similarly, by using the definition of disks, then
the fact H' C G, and finally the definition of GJ,. []

In some sense, the converse of the previous proposition holds: it is roughly enough to
be smaller than G, to be a disk of I,,, as characterized by the following two facts.

Lemma 2.6. The set of disks is the set of pointed connected finite graphs.

Proof. Indeed, for any disk (H,v) € Dx A x, H is connected since all vertices are connected
to v, and H is finite since all vertices have at most card(m) neighbors, so a rough bound is
card(m)" with r the radius of the disk. Conversely, for any pointed connected finite graphs
(G,v), we have (G,v) = G, for any r > card(V(G)) — 1, the length of the longest possible
path. L]

Proposition 2.7. For any vertex v € V(G), I, is a principal downward closed set in the
poset of graphs restricted to connected finite graphs containing v.

Proof. Indeed, consider any disk (H,v) such that H C G. Now, take H' a connected graph
containing v and such that H' C H. Since H is finite, so is H'. By Lemma 2.6, (H',v) is
also a disk. By transitivity, H' € H C G. This proves that we have a downward closed set.
This is moreover a principal one because of Lemmas 2.4 and 2.5. []

We now know that the union of Eq. (2.2) receives a bigger set of local outputs to merge
than the union of Eq. (1.2). But we cannot conclude anything yet. Indeed, it might be the
case that all additional local outputs do not contribute anything more. This is in particular
the case if disks D € I, are such that f(D) C f(G}). This is related to the fourth and last
question.

2.3. Monotonic and General Causal Graph Dynamics. The last remark invites us to
consider the case where the CGD is monotonic. We deal with the general case afterward.

2.3.1. Monotonic CGDs as Kan Ezxtensions. As just evoked, things seem to go well if the
local rule f happens to be monotonic. All the ingredients have been already given and the
proposition can be made formal straightforwardly.

Proposition 2.8. Let F' : G A x — Gs A x be a CGD with local rule f : DE,AJ — G5 A
of radius r. If f is monotonic, then F is the pointwise left Kan extension of f along
i DG A Os Ax, the pointer dropping function.

Proof. The proposition is equivalent to show that F'(G) = ®(G) for all G. We proceed by
double-inclusion. Summarizing our journey up to here, we now know that Eq. (2.2) and
Eq. (1.2) are similar except that the former iterates over the set of disks I =,y () Iv
while the latter iterates over J = {G}, | v € V(G)}, with J C I by Proposition 2.4. We get
F(G) € ®(G). Moreover, by Proposition 2.5, for any D € I, for any v, D C G}, and by
monotonicity of f, f(D) C f(Gy). So f(D) C F(G) for all D and ®(G) C F(G), leading to
the expected equality. L]

The class of CGDs having such a monotonic local rule is easily characterizable: they
correspond to CGDs that are monotonic themselves as stated by the following proposition.
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Proposition 2.9. A CGD F is monotonic iff F' admits a monotonic local rule.

Proof. If F' has a monotonic local rule f, F'is a left Kan extension by Proposition 2.8 and
is monotonic as recalled in Section 1.3.

Conversely, suppose F' monotonic. By Definition 1.6 of CGDs, there is a local rule f,
not necessarily monotonic, of radius r generating F'. Consider f defined by f((H,c)) = F(H)
for any disk (H,c). f is monotonic by monotonicity of F. f is a local rule, which is checked
easily using that f’ is itself a local rule and that f((H,c)) = U,cy f'(Hy). We now show
that f generates F'. For any graph G:

U r@co=U U s

ceV(Q) ceV(Q) veGy,

But f/(i(G%)1) C F(i(G%)) C F(G), the last inclusion coming from the monotonicity of F. So
Ucev(a) f(Ge) € F(G). Moreover, f'(Gg) = f'(i(Gg)i) for any ¢, so f(GZ) € Uev(a) f(GE)
and F(G) € Uev(a) f(Ge)- N

Corollary 2.10. A CGD is monotonic iff it is a left Kan extension.

2.3.2. The Non-Monotonic Case. The previous result brings us close to our initial goal:
encoding any CGD as a GT. The job would be considered done only if there is no non-
monotonic CGDs, or if those CGDs are degenerate cases. However, it is clearly not the case
and most of the examples in the literature are of this kind, as we can see with the following
example, inspired from [AMP20].

Consider for example the modeling of a particle going left and right on a linear graph by
bouncing at the extremities. The linear structure is coded using two ports on each vertex,
say [ and r for left and right respectively, while the particle is represented with the presence
of a label on some vertex, with two possible values indicating its direction. See Figure 1
for illustrations of such graphs. The dynamics of the particle is captured by F' as follows.
Suppose that the particle is located at some vertex v (in green in Figure 1), and wants to go
to the right. If there is an outgoing edge to the right to an unlabeled vertex u (in red in
Figure 1), the label representing the particle is moved from v to u (second row of Figure 1).
If there is no outgoing edge to the right (the port r of v is free), it bounces by becoming a
left-going particle (third row of Figure 1). F' works symmetrically for a left-going particle.

The behavior of F' is non-monotonic since the latter situation is a sub-graph of the
former, while the particle behaviors in the two cases are clearly incompatible. On Figure 1,
the right hand sides of the second and third rows are comparable by inclusion, but the left
hand sides are not. This non-monotonicity involves a missing edge but missing labels may
induce non-monotonicity as well. Suppose for the sake of the argument that F' generates a
right-going particle at any unlabeled isolated vertex (first row of Figure 1). The unlabeled
one-vertex graph is clearly a subgraph of any other one where the same vertex is labeled by a
right-going particle and has some unlabeled right neighbor. In the former case, the dynamics
puts a label on the vertex, while it removes it on the latter case. The new configurations are
no longer comparable. See the first and second rows of Figure 1 for an illustration.

Proposition 2.11. CGDs are not necessarily monotonic.

Proof. Take card(w) =1, ¥ = A = (). In a graph G, we have isolated vertices and pairwise
connected vertices. For the local rule, consider = 1, so the two possible disks (modulo
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Figure 1: Moving particle CGD - non-monotonic behavior. Each row represents an example
of evolution with a graph G on the left and F(G) on the right. Colors correspond
to vertex names.

renaming) are the isolated vertex and a pair of connected vertices. There is no graph G such
that the two disks appear together (otherwise G would ask the vertex to be connected and
disconnected at the same time). So we can define f such that it acts inconsistently on the
two disks, since property 4 of local rules does not apply here. The isolated vertex is included
in the connected vertices in the sense of C, but the image by f, then by F' are not. []

From Corollary 2.10, we conclude that all non-monotonic CGDs are not left Kan
extensions as we have developed so far, i.e., based on the subgraph relationship of Def 2.1.
Analyzing the particle CGD in the light of Remark 1.9 tells us why. Indeed, the subgraph
ordering is able to compare a place without any right neighbor with a place with some
(left-hand-side of rows 3 and 2 in Figure 1 for instance). Following Remark 1.9, in the GT
setting, the former situation has less information than the latter: in the former, there is no
clue whether the place has a neighbor or not; the dynamics should not be able to specify
any behavior for a particle at that place. But clearly, for the corresponding CGD, both
situations are totally different: the former is an extremity while the latter is not, and the
dynamics specifies two different behaviors accordingly for a particle at that place.

3. UNIVERSALITY OF MONOTONIC CAUSAL GRAPH DYNAMICS

We have proven that the set of all CGDs is strictly bigger than the set of monotonic ones.
However, we prove now that it is not more expressive. By this, we mean that we can simulate
any CGD by a monotonic one, i.e., monotonic CGDs are universal among general CGDs.

More precisely, given a general CGD F', a monotonic simulation of F' consists of an
encoding, call it w(G), of each graph G, and a monotonic CGD F’ such that whenever
F(G) = H on the general side, F'(w(G)) = w(H) on the monotonic side. Substituting
H in the latter equation using the former equation, we get F'(w(G)) = w(F(G)), the
exact property of the expected simulation: for any F', we want some w and F’ such that
Flow=woPF.

3.1. Key Ideas of the Simulation. In this section, we aim at introducing the key elements
of the simulation informally and by the mean of the moving particle example.
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Figure 2: Moving particle CGD - monotonic behavior. Compared to Figure 1, the vertices
have two additional ports (I’ and r’) and unlabeled vertices are now labeled by *.

3.1.1. Encoding the Original Graphs: The Moving Particle Case. Let us design a monotonic
simulation of the particle dynamics. The original dynamics can be made monotonic by
replacing the two missing edges at the extremities by easily identifiable loopback edges,
making incomparable the two originally comparable situations. For such loopback edges to
exist, we need an additional port for each original port, in our case say I’ and 7’ for instance.
For the case of non-monotonicity with labels, vertices where there is no particle (so originally
unlabeled) are marked with a special label, say x. Figure 2 depicts the same evolutions as
Figure 1 after those transformations.

This will be the exact role of the encoding function w: the key idea to design a monotonic
simulation is to make uncomparable the initially comparable situations. Any missing entity
(edge or label) composing an original graph G needs to be replaced by a special entity
(loopback edge or % respectively) in w(G) indicating it was originally missing. At the end of
the day, for any G C H, we get w(G) and w(H ) no longer comparable.

3.1.2. An Extended Universe of Graphs. All that remains is to design F’ such that F' ow =
wo F. It is important to note however that the universe of graphs targeted by w, which is the
domain of F”’| is by design much larger than the original universe. Indeed, each vertex has
now a doubled number of ports and the additional label * is available. So to be completely
done with the task, we need F’ to be able to work not only with graphs generated by the
encoding, but also with all the other graphs.

Let us classify the various cases. Firstly, notice that the monotonic counterpart w(G) of
any graph G is “total” in the following sense: all vertices have labels, all original ports have
edges, and all edges have labels. However, there also exist partial graphs with free ports and
unlabeled vertices in this monotonic universe of graphs. Secondly, w(G) uses the additional
ports strictly for the encoding of missing edges with loopback edges. But, there are also
graphs making arbitrary use of those ports and which are not “coherent” with respect to
the encoding. Figure 3 illustrates the three identified classes: the middle graph is a coherent
subgraph of the total graph on the left, and of an incoherent graph on the right. Notice that
incoherent edges can always be dropped away to get the largest coherent subgraph of any
graph. This is the case on the figure.
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Figure 3: Different classes of graphs: from left to right, a total graph, a coherent partial
graph, an incoherent graph.

3.1.3. Disks in the Extended Universe. In order to design a local rule f’ of the monotonic
CGD F’, we need to handle disks after encoding. The universe of graphs being bigger than
initially, this also holds for disks, and the behavior of f’ will depend on the class of the disk.

Let us first identify the monotonic counterpart of the original disks. They are called
“total” disks and correspond to disks of some w(G). For those disks, the injectivity of w
allows f’ to simply retrieve the corresponding disk of the original graph G and invoke the
original local rule f on it.

An arbitrary disk D may not be “total” and exhibit some partiality (free ports, unlabeled
vertices or edges). Since f’ is required to be monotonic, it needs to output a subgraph of the
original local rule output. More precisely, we need to have f'(D) C f/(D’) for any total disk
D' with D C D’. The easiest way to do that is by outputting the empty graph: f'(D) = @.
(This solution corresponds to the so-called coarse extension proposed for CAs in [FMS23];
finer extensions are also considered there.)

Last, but not least, an arbitrary disk D may make an incoherent use of the additional
ports with respect to w. In that case, all incoherent information may be ignored by considering
the largest coherent subdisk D’ C D. The behavior of f' on D is then aligned with its
behavior on D': f'(D) = f'(D’).

3.1.4. A Larger Radius. The last parameter of f’ to tune is its radius. It will of course
depend on the radius of the local rule of F'. But it is worth noting that we are actually
trying to build more information locally than the original local rule was trying to. Indeed,
given a vertex of the original global output, many local rule applications may contribute
concurrently to its definition. All of these contributions are consistent with each other of
course, but it is possible for some local outputs to indicate some features of that vertex
(label, edges) while others do not. If even one of them puts such a label for instance, then
there is a label in the global output. It is only if none of them put a label that the global
output will not have any label on it. The same holds similarly for ports: a port is free in
the global output if it is so on all local outputs. Because the monotonic counterpart needs
to specify locally if none of the local rule applications puts such a feature to a vertex, the
radius of the monotonic local rule needs to be big enough to include all those local rule
input disks. It turns out that the required radius for f’ is ' = 3r + 2, if r is the radius of
the original local rule f, as explained in Figure 4.

3.2. Formal Definition of the Simulation. Now that we have all the components of the
solution, let us make them precise.
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Figure 4: We need to determine for each missing entity attached to a vertex or edge of f(GY),
whether all other f(G7) agree to consider this entity as missing. The property 2
of local rules (Definition 1.5) tells us that only disks G}, that intersect G7. need
to be checked. The furthest such v are at distance 2r 4+ 2. From there, we need
to ask for radius r (so radius ' = 3r + 2 from ¢) to include the entirety of G,
(including its border at r + 1 from v, and therefore 3r + 3 at most from c).

3.2.1. The Encoding Function w. The encoding function aims at embedding the graphs of
Gs A,x in a universe where ports are doubled and labels are extended with an extra symbol.
Set ¥/ := X W {x}, A" := AW {x}, and 7’ = 7 x {0,1}. Ports (a,0) € 7’ are considered
to be semantically the same as their counterpart a € 7 while ports (a,1) are there for
loopback edges. For simplicity, let us define the short-hands G and G’ for Gs: A » and Gsv Ar o/
respectively for the remainder of this section. Since we need to complete partial functions,
we introduce the following notation: for any partial function f: X — Y and total function
z: X — Z, we define the total function flz: X — Y U Z by

f(x) if f(z) is defined,
z(xz) otherwise.

(J12)() = {

For simplicity, we write flx for f!(z + %) where x runs over X. This allows us to define the
encoding w(G) € G’ of any G € G as follows.

V(w(Q@)) :=V(G)
o(w(G)) :==0o(G)*
Ew(G)) == {{u:(4,0),trgt;(u:i)} |u:i € V(G):7 }

SG) {u: i), 0:(3,0))) = {f(a)!*)({“:o’“‘j Do

ifu:i=wv:j

The definition of F(w(G)) is written to make clear that all original ports are indeed occupied
by an edge. The total function trgf, : V(G) x m — V(G) x 7’ is defined based on the partial
function trg; : V(G) x 7 = V(G) x 7 as follows.

trgg(u:i) :=wv:j iff {u:i,v:j} € E(G)
trgg := (tg o trgg)!ty where t,, (u:4) := w: (i,m)

The definition of §(w(G)) deals with original edges for the first case, and with loopback
edges for the second, which are the only two possibilities with respect to trgg..
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3.2.2. The Disk Encoding Function w,. Let us now define the shorthands D, and D, for
Dy A and Dy ps o for any radius r. We put the radius as a subscript to make readable
the four combinations D,, D;., D,s, and D/,. The function w, : D, — D). aims at encoding
original disks as total disks. It is defined as

wr((H,v)) = w(H)". (3.1)

(2

The reason we apply (=) : G" — D.. on the raw result of w is that the behavior of w (adding
loopback edges on each unused port and labels on unlabeled vertices and edges) is not
desired at distance r 4+ 1 for the result to be a disk of radius r. More conceptually, w, is the
unique function having the following commutation property, which expresses that w, is the
disk counterpart of w.

Proposition 3.1. For any graph G € G, w,(G}) = w(G).

Proof. Take G}, = (H,v). After inlining the definition of w,, we are left to show w(H)), =
w(G)y. For any entity (vertices, labels, edges) at distance at most r of v, w(H) and w(G)
coincide. At distance r + 1, things may differ for the special label x and loopback edges, and
beyond distance r + 1, w(H) has no entities at all. However, all these differences are exactly
what is removed by (—)7. So, we get the expected equality. []

3.2.3. Coherent Subgraph Function coh. As discussed informally, some graphs in G’ may
be ill-formed from the perspective of the encoding by using doubled ports arbitrarily. We
define the function coh : ¢’ — G’ that removes the incoherencies.

V(coh(G")) :== V(G")
o(coh(G")) := o(G")
E(coh(G")) := {{u:(,0),v:(j,b)} € E(G") |
b=1= (vij=wu:i A §(G)({u:(i,0),u:(i,1)}) = %)}
§(coh(G")) := 6(G") | E(coh(G"))
Since coh only removes incoherent edges, and since they are stable by inclusion, we trivially

have that

Lemma 3.2. coh is monotonic.

3.2.4. The Monotonic Local Rule. The monotonic local rule f’ is defined in two stages. The
first stage is to take a disk in D/, and transform it into something that the original local
rule can work with. To do this, we remove any incoherencies with the function coh, and
if the result is total, we restrict it to the correct radius and retrieve its counterpart in the
original universe (which is possible because w, is injective). The original local function can
be called on this counterpart. As discussed before, if the coherent sub-disk is not total, we
simply output an empty graph. The signature of this function is ¢ : D/, — G.

A if coh(H') ¢ Tm(w,)
P((H',c)) := { f(wt(coh(H")T)) otherwise

Turning this result in G into its counterpart in G’ is more complicated than simply invoking
w since one has to check that missing entities are really missing, as discussed in Figure 4.

(3.2)
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This is the purpose of the second stage leading to the definition of the monotonic local rule
f: D!, — G’ which, thanks to its radius ' = 3r + 2, is able to inspect all r-disks at distance

2r + 2 from c. o

7 ) = (Uemern d(H ) (3.3)

In this equation, the union of all local results that can contribute to entities attached to
¢((H',c)) is built. In this way, they are all given a chance to say if what was missing in
#((H',¢)) is actually missing. Finally w is applied and its result restricted to the sole vertices
of ¢((H',c)) and their edges, using the notation (—)% of Eq. (1.1). Those vertices and edges
are the only ones for which all the possibly contributing disks have been inspected.

Proposition 3.3. f’ is a monotonic local rule.

Proof. We first show that f’ is a local rule, that is, it checks the four properties of Defini-
tion 1.5.

We need to show that for any renaming R, there is a conjugate R’ such that f'oR = R'of’.
We show that the conjugate R’ of R for f works. The result is obvious for coh(H') ¢ Im(w,).
In the other case, take E’ := coh(H'):

F(R((H',c))) = f'(R(H'), R(c)))

=w U f(wT_l(R(E/)Z))
veR(HF ! F@r  (RE) )
—w U R (f(w (Bw)))
veR(H") ) R(f(wr  (B)))
=R |w U Flw (E))
veH2 1 R/ (f(wr "(E)))

=R || U rwED)

2r41
veHZ" f(wfl(Eé’“))

= R(f((H',c))).

Consider a family of disks {(H/, ¢;) }ier C D., such that (), H; = @. We need to show that
M f'((H.,¢;)) = @. We suppose that for all i, E/ := coh(H]) € Im(w,/) (otherwise the result
is trivial). First notice that for any family {v; € (H})2' 1}, we have (), w; ' ((E})}.) = @, so
N; f(w ((E));.)) = @. Suppose now some vertex u in (), f'((H/,c;)). So, for each i there
is some v; such that u € f(w, ' ((E}))) which is impossible.

We need a bound b such that for all (H',c) € D), card(V(f'((H',¢c)))) < b. We consider
the bound b given by f and show that it works. Indeed the last step of the computation of
f' is precisely a restriction to the vertices of f(w, *(coh(H")")). So card(V (f'((H',c)))) <
card(V (f(w;* (coh(H");)))) < b.

Consider G’ € " and ¢,d € V(G"). We need f/(G?") and f'(G") to be consistent. Once
again, we suppose that coh(G”") € Im(w,) and coh(G"") € Im(w,s) (otherwise the result
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is trivial). In order to use the consistency property of f, we build G = w; ! (coh(G”")) U
w; 1 (coh(G"")). So for any pair of r-disks (D1, Do) of G, f(D1) and f(Ds) are consistent.
In other words, all the original r-disks involved in f/(G7") and f'(G') are consistent with
each other. It is particularly true for ¢(G”") and ¢(G”"). Edges of f/(G?") and f'(GY') are
consistent because either they come from f(G7) and f(G};) which are consistent, or they are
loopback edges added by w. Labels are also consistent for the same kind of reason, making
F/(G') and f'(G") consistent.

We finally show that f’ is monotonic. Take two disks D} = (H{,¢) and D = (Hj, c)
such that D] C Di. As f’ is ultimately defined by cases, let us consider first the case where
coh(H{) ¢ Im(w,). In this case f'(D}]) = @ so we necessarily have f'(D}) C f'(D}). We
are left with the case coh(H]) € Im(w,), meaning that coh(H7) is a total disk. Since coh is
monotonic by Lemma 3.2, coh(H/) C coh(H}). And as a total disk, nothing but incoherences
can be added to coh(Hj). So coh(H]) = coh(HY) and therefore f'(D}) = f'(D}). So the
order is preserved in all cases, and f’ is monotonic. L]

3.2.5. The Monotonic Simulation. We finally have the wanted CGD F” of local rule f’:
@)= |J @)
veVv(@')

It remains then to show that F’ is indeed a monotonic simulation of F', which is achieved
with the two next propositions.

Proposition 3.4. F’ is monotonic.

Proof. Since f’ is monotonic by Proposition 3.3, F’ is monotonic as well by Proposition 2.9.

[

Proposition 3.5. F' simulates F via the w encoding, i.e., F' ow =wo F.

Proof. Suppose G = w(G) for some G € G. Since all involved disks in F'(w(G)) are total
and thanks to Proposition 3.1, the expression of F’'(w(G)) simplifies drastically to

P@)= U ©(Upeani@), (3.4)

ceV(QG) HEe)

Clearly, F'(w(G)) does not exhibit any incoherencies and w(F(G)) is total, so it is enough
to show that w(F(G)) C F'(w(G)) to have the equality. This can be done entity by entity.
Take a vertex u € w(F(G)). It comes from some f(GYL). So it belongs to the inner union of
Eq. (3.4). It is preserved by w then by (_)?(Gz)’ so it belongs to F'(w(G)). Consider now
its label £ := 6(w(F(G)))(u). If £ # x, there is some v € G with £ = 6(f(G"))(u). So the
inner union of Eq. (3.4) labels u by ¢. The label is preserved by w then by (_)?(GZ) since
u € f(GL). So §(F'(w(@)))(u) = € as well. If £ = x, this means that none of the f(G]) put a
label on w, so u is unlabeled in the inner union of Eq. (3.4). By definition, w completes the
labeling by x at u, and (—)?(GT) preserves this label. So §(F'(w(G)))(u) = x as well. The
proof continues similarly for edcges and their labels, with an additional care for dealing with
loopback edges. L]
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4. RENAMING-INVARIANCE CATEGORICALLY

In Sections 2 and 3, we successfully establish the wanted connection between the fact that
CGDs are particular cases of synchronous local dynamical system with absolute positioning
and the fact that they can be presented as posetal GTs, i.e., posetal left Kan extensions. We
now want to incorporate the renaming-invariance property of CGDs. This property forbids
CGDs to depend on the absolute positioning. While it is treated above as a property on
top of the monotonicity of the dynamics, we now show how it can be integrated in the very
algebraic structure of the graphs. This is done by turning the poset of graphs into a category
of graphs where renamed graphs are considered isomorphic. This new formulation permits,
in particular, to make explicit the finite nature of the local rule by expressing directly that
there are finitely many disks, but that each of them can possibly be found in many places in
a given graph.

Since we consider categories instead of posets, the goal is now to show that CDGs
are categorical left Kan extensions. Let us recall the definition of the later and fix some
notations.

Definition 4.1 (Pointwise Left Kan Extension). Given three categories A, B and C, and
two functors i : A — B, f: A — C, a pointwise left Kan extension of f along i is any
functor F' : B — C such that

F = Colim(f o Proj;,_) (4.1)
when the right hand side is well defined (some colimits might not exist).

Here, Colim D designates the colimit of the functor D and is the counterpart of the
supremum of Eq. (1.3). Secondly, the notation i/b stands for the comma category of the
functor ¢ over an object b € B and i/— : B — Cat is the functor associated with this
construction. It is the counterpart of the (partial ordered) set of {a € A | i(a) C b} of
Eq. (1.3). However, objects (resp. morphisms) of i/b are pairs whose first components are
objects (resp. morphisms) of A, and second components is a witness of relation with b
through 4. The functor Proj;, : i/b — A thus extracts the first component of those pairs.

For the rest of the section, we fix once and for all a monotonic CGD F with monotonic
local rule f of radius r. Our strategy is then as follows.

(1) Extending the poset (Gs A x, €) to a category Gx A where graphs related by renaming
are isomorphic. This gives more morphisms to work with on top of the original poset
morphisms. N

(2) Extending the monotonic function F' : G ax — Gx A x to a functor F' : Gy ar —
Gy A,x, which means specifying how the additional morphisms are dealt with through
renaming-invariance.

(3) Extending the poset of disk Dy, A to a category Dy, 5 . to relate disks via renamings.

4) Extending the monotonic local rule function f : DY — Gy Ax (resp. the pointer
Z,A,ﬂ' 1=
dropping function % : D%A,w — Gy Ax) to a local rule functor ]7: D§7A77r — Gy Ax
(resp. a pointer dropping functor i : SAx Gy A )

(5) Showing that F' = Colim f o Proj;,_.
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4.1. The Category of Graphs with Renamings. Our first task consists in extending the
previously used poset (Gsx A x, C) into a category allowing to compare graphs by renaming.
Adding such renamings to the poset calls for a closure of the collection of graph morphisms
(inclusions and renamings) by composition. This means that a morphism is in fact a (finite)
composition of inclusions and renamings. One can convince oneself that such a composition
encode the same information as a single renaming followed by an inclusion, leading to the
following definition.

Definition 4.2 ((Global) Subgraph Isomorphisms). Let G and H be graphs of Gs A ». A
(global) subgraph isomorphism m : G — H is the data of a renaming denoted |m|:V — V
such that |m|(G) C H.

Definition 4.3. We define the category Gyx A » whose objects are graphs of Gs A » and
morphisms are subgraph isomorphisms. The identity idg : G — G is given by the identity
renaming (i.e., |[idg| := idy) and the composition by composition of the underlying renamings
(i.e., |nom| := |n|o|m]).

Proposition 4.4. Gy A  is indeed a category.

Proof. Let m : G — H and n : H — K be two subgraph isomorphisms. We check that
|n|o|m| defines a subgraph isomorphism from G to K. We have |m|(G) C H and |n|(H) C K,
so (|n| o |m|)(G) = |n|(|m|(G)) C |n|(H) C K as required, where we use Remark 2.3 for
the first inclusion. We easily check that the identity renaming idy defines a subgraph
isomorphism for any graph G (|idg|(G) = idy(G) = G C G), which is neutral for the
composition of renamings. Finally, associativity of the morphism composition is inherited
from the associativity of renaming composition. ]

In the following, we say morphism for subgraph isomorphism.

Remark 4.5. The notation |—| defines in fact a faithful functor from Gy A r to Sym,,
the symmetric group of V seen as a category with a single object. Interestingly, the empty
graph @ is the unique graph accepting all renamings as endomorphisms. This provides us
with a left adjoint @_ to |—| which maps each renaming R € Sym,, to the corresponding
endomorphism @r : @ — &, i.e., |Fr| = R.

Proposition 4.6. Isomorphisms in Gy, A are of the form m : G — |m|(G), and their
inverses are m~! : |m|(G) — G such that |m~!| = |m|~L.

Proof. We have |m~!| = |m|~! by functoriality of |—| (Remark 4.5). Suppose now that
m : G — H an isomorphism and its inverse m~! : H — G. Let us prove that H = |m|(G)
by double-inclusion. For a first direction, by Definition 4.2, the morphism m : G — H
tells us that |m|(G) C H. For the other direction, the morphism m=! : H — G tells us
that [m~!|(H) C G which rewrites into |m|™'(H) C G then the wanted H C |m|(G) by
Remark 2.3. [

In fact, each renaming R induces for each graph G an isomorphism, written G : G —
R(G), such that |Gr| = R. Notice that this notation complies with the definition of functor
@_ of Remark 4.5. However G_ is not a functor when G # @.

We end by formally observing how Gy A » embeds (QZAJ, C) as we expected.

Definition 4.7 (Embedding Functor). We define the embedding functor U : (Gs A x, C
) = Gy A« acting as the identity on objects and where U(G C H) : G — H is such that
|U(G C H)| :=idy.
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Proposition 4.8. U is indeed an embedding functor.

Proof. Tt is trivial to show that U is a functor. It is also trivially injective on objects. Finally,
U is faithful since its domain is posetal. ]

As expected, any morphism m : G — H can be decomposed into a renaming followed
by an inclusion: m = U(|m|(G) C H) o (G|, : G — |m|(G)).

4.2. CGDs as Endofunctors. Now that we have extended the poset Gx. A » to a category
Gg A, our next objective is to promote the monotonic CGD F' on Gs; A » to an endofunctor

F on Gy A r. Particularly, we want F(G) = F(G) for all G, and F to reflect the monotonicity
of F (i.e., to map inclusions to inclusions). Those properties are captured by the following
commutation.

UoF=FoU (4.2)

Let us investigate the behavior of such a F on morphisms m : G — H. We first show that
the underlying renaming of F'(m) does not depend on G and H.

Proposition 4.9. Consider some F obeying to Eq. (4.2). For any m : G — H, the
renamings |F'(m)| and |F (D, )| are equal.

Proof. For any m : G — H, since @ C G and @ C H, we observe the commutation
where &,,,| : & — & is given by Remark 4.5. We get

|[F(m)| = |[F(m)| o idy = |F(m)| o [U(F(2 € @))|

=|F(m)| o |[F(U(z € G))| by Eq. (4.2)
=|F(moU(®@ CG))| = |F(U(& C H) oD, by Eq. (4.3)
= |F(U(@ C H))| o [F (@)
|U F(@ C H))|o |F(@|m|)y by Eq. (4.2)
dy o | F(@)m))| = [F (D))
as required. ]

This proposition tells us that the entire behavior of Fon morphisms is simply determined
by a function over renamings. We denote this function F' : Sym,, — Sym,, which is defined by
F(R) := |F(@Rr)|. Notice the commutation F(|m|) = |F(m)| which holds for any m : G — H
by Proposition 4.9.

Proposition 4.10. Consider some F obeying to Eq. (4.2). F : Symy, — Sym,, is a group
homomorphism.

Proof. By definition, F behaves exactly as F on the endomorphisms of @. Since F is
functorial, F' is an endofunctor on the group Sym,,, so a group homomorphism. L]

The previous results can be summarized in the following commuting diagram.
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U =
Gsax — Gxax —— Symy,

P 7| . |7

U
Gsaqxr — Gy axr —— Symy,

The following proposition states how F is related to the CGDs renaming-invariance we
want to capture.

Proposition 4.11. Consider some F obeying to Eq. (4.2). For any renaming R, F(R) is a
conjugate of R, i.e., for any G, we have

F(R(G)) = F(R)(F(G)).

Proof. Consider the isomorphism Gg : G — R(G) with |Gg| = R. By functoriality of F,
F(Gg) : F(G) = F(R(G)) is an isomorphism as well. By Proposition 4.6, F(R(G)) =
[F(GR)(F(G)) = F(IGr)(F(G)) = F(R)(F(G)) as required. [

As a summary, defining F consists in choosing, for each renaming R, a conjugate
F(R) € Conjp(R) in a functorial way. Proposition 1.7 of CGDs renaming-invariance states
that each Conjp(R) is never empty. However, they might not be singletons, in which case
the challenge is to make a coherent choice to obtain a functor. We put this challenge aside
and place ourselves in the simpler case where all conjugates are unique (i.e., Conjp(R) is a
singleton for any R) which we call unique conjugate assumption. We will discuss later the
general case.

Proposition 4.12. Under the unique conjugate assumption, Eq. (4.2) characterizes uniquely
the functor F': Gy A7 — Gy A x.

Proof. By Proposition 4.9, the functor F is entirely defined by the behavior of F. By
Proposition 4.11, we have F'(R) € Conjg(R) which is a singleton under the unique conjugate
assumption. So, F is all fixed in that case and it remains to show that it is a functor. But this
means that F : Symy, — Sym,, is functorial, which is exactly stated by Proposition 4.10. []

4.3. The Category of Disks. Like it has been done for graphs, disks which are related by
renaming need to be considered as isomorphic. This leads to consider a category from the
poset Dy, A . This category inherits from Dy, p o the fact that disks are compared by aligning

their centers. Consequently, the comma category ;/ G to be considered latter (whatever i
will be) will not be able to identify how two disks of G with different centers can be related
to each other. However, this information is of main importance when computing the colimit.
Indeed, in the original poset setting, images of non aligned disks are well positioned thanks
to the absolute positioning. But this is lost when quotienting by renamings. In a more
general categorical setting, alignment has to be specified through morphisms directly. This
is a usual issue when dealing with GTs: rules have to specify not only the images of the
disks but also how these images must be connected in the output.

We need to complete the quotienting with more information about disks interactions.
Past experiences in GTs show that there exist two main strategies to keep track of disks
relationships: completing the category of disks either with unions of disks or intersections of
disks [FMS19]. We used the former in the case of CA [FMS23] where a category of pairs of
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disks is considered. In the present work, we focus on the latter strategy since the empty
graph provides us with a common “subdisk” able to relate all proper disks.

Definition 4.13 (Category of Disks). Let Dy, A be the category with as objects the set

{(H,{c}) | (H,¢) € Dy »} U{(2,0)},

and, for any two such objects (Hy,C1) and (Ha,Cs), a morphism m : (Hy,Cy) — (Ha, C2)
is the data of a graph morphism (also abusively denoted) m : H; — Hy € Gy Ax such that
|m|(C1) € Cy. Composition is inherited from Gy A, and id(gr,0) = idy, for any object
(H,C).

This category contains as objects all disks of D5, 5 . with an additional “not centered
empty disk”. We use a set (singleton or empty set) to deal with the presence / absence of
center and get an homogeneous representation. Thanks to this encoding, a morphism from
the empty disk does not require any constraint on the center (|m|(0)) = ) C Cy whatever
(3 is), while a morphism between two proper disks requires them to be aligned by centers

(Im|({c1}) C{ca} <= |m|(c1) = c2).
Proposition 4.14. Dy, 5 . is indeed a category.

Proof. For any (H,C) € DY, 5 ., id(y,c) = idy is well defined since we have [idy|(C) =
idy(C) = C C C. The composition is well defined as well. Indeed, given m : (H,C) —
(H',C") and n: (H',C") — (H",C"), we have

Im[(C) € C"An|(C") € C" = [nom|(C) = |n|(jm|(C)) € C"

which implies that n o m is a morphism of D$ A Associativity of the composition and
neutrality of the identities are inherited from Gg A, and already proved in Proposition 4.4.

[

Notice that, under the common condition that the number of labels in ¥ and A is finite,
this category of disks is now essentially finite. Indeed, because of the bounds imposed by
the radius and the number of ports, there is a maximal number n of vertices. If we fix a
subset W C V of size n and restrict to the disks such that V(H) C W, we have only finitely
many disks as soon as there are finite labels, and any other disk is isomorphic to one of
those disks. In other words, the skeleton of the category of disks of radius r has finitely
many objects. Because a category is equivalent to its skeleton, we do not make the latter
explicit and continue the work with the category D5, A ..

4.4. The Pointer Dropping and Local Rule Functors. The next step is straightforward
definitions of the categorical counterpart of functions ¢ and f. On the one hand, the functor
i drops the centers of disks.

Definition 4.15 (Pointer Dropping Functor). Let P D% A = Gxar be the functor
defined by i((H,C)) = H and i(m : (H,C) — (H',C")) =

Proposition 4.16. 7 is indeed a functor.

Proof. The proposition is trivial since i simply drops centers. []
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Let now exhibit the structure induced on the comma category Z/ G. Formally, an object
of /G is a couple ((H,C),m : H — G) composed of a disk (H,C) D%, A, together
with a morphism m : H — G expressing an occurrence of that disk in G. To avoid
redundancies in notations, we simply write (C,m : H — G). Morphisms of /G are couples
(n: (Hy,Cy) = (H2,Co),m : Hy — G) : (C1,mon) — (Cy,m). Notice that once given
the specification of the couple, the signature of the morphism is completely known. In the
following, signatures of morphisms are then omitted.

Proposition 4.17. For any G € Gyx A x, the comma category ;/G is non-empty and
connected.

Proof. For non-emptiness, we consider the empty disk (&, ()) which occurs in any graph G.
So we have (0, U(@ C G)) is 1/G.

To show the connectiveness of i/@, consider two arbitrary disks (Hy, C;) and (Ha, Cy)
occurring in G by (C1,m; : Hi — G) and (Co,my : Hy — G). Both are related to
(0,U(@ C G)) by the morphisms (ny, : (&,0) — (Hy, Cy), mg) with |ng| = |my|~t for
k € {1,2}. Indeed, firstly ny is well defined since |ng|(0) = 0 C Cx and |ni|(9) = & C Hy.
Secondly, U() C G) = my o ny, since |my, o ng| = |my| o |ng| = |mg| o |mg|~! = idy. So we
have a path of length 2 in /G between any two arbitrary objects (C1,m1) and (Co,myp). [

On the other hand, the local rule functor fapplies f on disks and does nothing for the
empty disk.

Definition 4.18 (Local Rule Functor). Let f DY A x = Gx,ax be the functor defined
by F((H,{c})) = f((H,c)) and f((2,0)) = @, and for any m : (H,C) — (H',C"), | f(m)| =
E(|m|).

Proposition 4.19. f 1s indeed a functor.

Proof. We first need to show that f~' is well defined, 7.e., that f(m) is a morphism from
F((H, ©)) to F((H',C")). So we expect |F(m)|(F((H, C))) € F((H',C")), which rewrites into
\F(|m])(f(( ) C f((H, C")) by definition of . Let us look at the three possible cases.
If (H,C) = (H’aC’) = (2,0), [((H,C)) = J((H',C")) = @ and F(Im|)(2) = & C . If
(H, ) (2,0) and (H',C") = (H',{'}), [((H,C)) = @ and f((H',C")) = [((H',¢)); so,
(Im\)(ﬁ) — @ C f((H',). It (C,H) = (H,{c}) and (H',C") = (H', {¢}), [((H,C)) =
f((H,c)) and f((H',C") = f((H,c)); so, we need to check that F(|m|)(f((H,c))) C
S((H',)). Observe that if Conj;(|m|) = {F(Jm|)}, we get the result: since |m|(c) = ¢ and
Im|(H) € H', we have F(|m|)(f((H,¢c))) = f((Im[(H),|m|(c))) € f((H,c)) by monotony
of f. It remains to show the assumed condition. By Definition 1.5 of local rules, f has
a conjugate for |m[. So, by Proposition 1.7, we get ) C Conj;(R) C Conjp(R) for any
renaming R. By unique conjugate assumption, f has the same conjugate as F' for |m|. So
Conj(|ml) = {F(|m))}. -
It remains to show functoriality which is simply obtained by functoriality of F' (Proposi-
tion 4.10). ]
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4.5. CGDs with Unique Conjugate as Kan Extensions. We end our journey with the
main result of the section stating that F' is the pointwise left Kan extension of f along i. To
get the result, we first focus on an input G € Gy A » and a colimit over f o Proj;/G, ie. a

universal cocone from f o Proj; ¢ to F(G).

Definition 4.20. Let 6 : fo Proj;/G = F(G) be the cocone with components

0 mitrsc) : J(C H)) = F(G)

such that |0§

Cometicy| = F(Im]).

Proposition 4.21. 6% is indeed a cocone.

Proof. We need to show that the components are well-defined morphisms, then that they
commute with the diagram morphisms. Consider some (C,m : H — G) of i/G. We want
to show that 9% my 18 well defined, which means that \9<GC m>\(f((0, H))) C F(G), that is,

F(Im|)(f((C,H))) C F(G) by Definition 4.20. Let us proceed by case. For (H,C) = (2, 0),
it rewrites to F'(|m|)(@) = @ C F(G) which holds trivially. For (H,C) = (H,{c}), it rewrites
into F(lm[)(f((H,c))) € F(G). Since F(|m|) € Conjs(|m|), we get F(|m|)(f((H,c))) =
f((Im|(H),|m|(c))). Since m : H — G and (H,c) € D5, p ., (Im|(H),|m[(c)) € G{. By
monotonicity of f then by Eq. (1.2), f((|m|(H),|m|(c))) C f(G}) C F(G) as required.

For commutation, take some morphism (n : (Hy,C1) — (Ha, Co),m : Hy — G) in i/G.
We have to check 9<Gcl,mon> = 9<GC2’m> o f(n) Since the signature is correct, it remains to

check the equality of the associated renaming.

‘9<G01,mon)‘ = F(lmon|) by Def. 4.20
= F(|m]) o F(|n|) by Prop. 4.10 and Def. 4.3
= 00, | ©1f(n)] by Def. 4.20 and Def. 4.18
= 0%, my © F(n)| by Def. 4.3

Proposition 4.22. 6% is a universal cocone.

Proof. Suppose a cocone & : fo Proj;/G = G’. We have to show the existence of a unique
morphism A : F(G) — G’ such that for all (C,;m : H — G), &camy = Ao 9<Gc’m>. If
such morphism exists, it is uniquely defined by its associated renaming |A|. Each (C,m)
for i/G comes with the constraint that [A| = [/ 0 \9%77%)]_1. Let us set A& =
€yl © 0%,y |7"5 and show that A<~Chm1> = MCm2) for any (Cy,my : Hy — G) and
(Co,mo : Hy — G). To do so, since i/G is connected by Proposition 4.17, it is enough
to notice that it holds when (C1,m;) and (Ca,ma) are related by a morphism in i/G.
Suppose a morphism (n : (Hy,C1) — (Ho, Cy),m : Hy — G). We have \{C1mom — \(C2m)

Indeed, notice that since £ and ¢ are cocones, we have §(c1mony = &(Ca,my © f(n) and
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Q?C'l,mom - H?C’Q,m) © f(n) SO,

)\(C’l,mon ’71

1€(c1,mony| © ’9 (C1 ,;mon)
= |&cymy © F(n)] 0 106, my o f(n)| ™!
= [&comyl © 1F ) 0 [F ()| 010G, | "
= |&icamy| © 100, my| ™

— >\<027m>

as expected. Since ;/ G is not empty by Proposition 4.17 and all \{¢™ agree, we are able
to consider A such that [A\| = ME™ It remains to show that A defined with such an
associated renaming is a morphism from F(G) to G'. Equivalently, we have to show that

AI(F(@)) € G
IAI(F(G))

ANC U @)

ceV(Q)
= U @)
ceV(Q)
= U AH UGS (£(GrY)
ceV(Q)

= U Eavaencenl(10Ga veerncapyl ™ (F(GR))
ceV(Q)

= U Egaueencopl(Fldy) ' (£(GD))

ceV(Q)

= U e ueencopl(F(G)

The inclusion comes from the fact that {c} u@i(Grycg)) is @ morphism from f(GY) to G.
This concludes the proof of universality of 6. []

Proposition 4.23. F is the pointwise left Kan extension off along i

Proof. For any graph G, since # is a universal cocone with apex F(G) by Proposition 4.22,
we already have that F (G) = Colim f o Proj+ TG It remains to show the functoriality of the

construction which means that for any h: G — G/, F(h) & Colim f o Proj; . On the right

side, the expressed morphism is the unique mediating A from 6% to GZG/Ih To clarify, ;/ h is the

functor embeddmg ’L/G into z/G mapping any (n:(H,Cp) — (HQ, C3),m : Hy — G) to

(n, hom,). So, 9~/h is the cocone over foProj- 7/G With components 9( R (CameH @) = 0<GC/',hom>'

By universality of §¢ (Proposition 4.22), we get a unique morphism X : F(G) — F(G").
Using the elements of the proof of Proposition 4.22, we use the object (), U(@ C G)) € i/G
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to get
Al = A0 U(2Cq))

= |6§; <@ nouecom| © 10s.u@cay ™

hoU(z CG))|) e F(IU( C @)~

Jo F(lU(@ C G))) o F(IU(z CG)))))~!
)

\
|hl
Al
E(h)|.

(
F(
F(
= F(

We conclude that A = F(h) (both have same signature and underlying renaming) which
proves the required functoriality. O]

5. CONCLUSION

In this article, we planned to compare CGD and GT frameworks. The very particular route
we have chosen for this task led us to identify the class of monotonic CGDs (for a particular
partial order on graphs) which are both CGDs and GTs, and happen to be universal among
all CGDs. We have then transformed the renaming-invariance property of the dynamics
into additional relations between the graphs, so that the resulting notion of monotonicity
(functoriality in fact) now ingrates renaming-invariance. There are at least two benefits for
that. Firstly this is more inline with usual categories for graphs where no notion of absolute
names or positioning exists, but only their (possibly multiple) occurrences in each other.
Secondly, this new formulation permits, in the particular case where there is a finite number
of labels, to make explicit the finite nature of the local rule by expressing directly that there
are finitely many disks, but that each of them can possibly be found at many places in a
given graph.

This is still more work to do to finish this line of reasoning though. Firstly, while
the (skeleton of the) category of disks has finitely many objects, there are still infinitely
many morphisms between them. This is because the chosen notion of morphisms is based on
bijections of the (uncountable) set V), in order to stay as close as possible to the framework
of CGDs. It should be possible to get rid of V completely and have simple injective functions
between arbitrary sets of vertices.

Secondly, we have only treated the case of CGDs with “unique conjugates”. However, this
property does not a priori holds for all CGDs. Indeed, one can show that if R’ € Conjp(R),
we have Conjp(R) = R’ o Conjr(idy). Now any S € Conjg(idy) is, by definition, such that
for all G, S(F(G)) = F(G). This means that they are symmetries, and the number of
conjugates of dynamics depends on whether they admit symmetries that are common to all
the outputs. A first consequence is that if any G has an output without symmetry, then
F respects the unique conjugate assumption. For instance, it is the case for the moving
particle CGD example used in Section 3 (see some asymmetric outputs in Figure 2). A
second possible consequence might be that “unique conjugates” dynamics are somehow
universal. Indeed, start with an arbitrary dynamics, the conjugates of the identity invite to
make the quotient the outputs of F' with respect to those symmetries, hopefully yielding a
“unique conjugates” dynamics.
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Coming back to Section 2. This work was guided by the formal similarities between
the two frameworks leading to a list of four questions. The chosen strategy to cope with
these questions was to tackle the first one “What is the order?” with the goal of answering
positively to the second question “Is the union of CGDs the supremum of this order?”. This
journey led us to identify the subgraph order to structure the set of port graphs instead
of considering them independent (more precisely related by the disks only) as the original
framework does. This pushes forward the idea of using graph inclusion to express gain of
information as proposed by the GT framework, opening a new direction when designing
CGDs by respecting the order with monotonicity.

One interesting thing to note is that a slight adaptation of the original definition of port
graphs allows to represent general CGDs as Kan extensions without any encoding. Indeed,
the encoding considered in this article leads to a universe of graphs where most of them
are ill-formed. By adding explicitly to graphs additional features to represent the positive
information that some port is not occupied or some label is missing, it is possible to get a
universe where all objects make sense.

An alternative route to answer the four-question list is possible by tackling the first
question with the goal of answering the third one (almost) positively, thus falsifying the
second one. An order closely related to this route is the “induced subgraph” order stating
that G is lower than H if G = H‘(}(G). This order is stronger than the usual subgraph order
but is also very interesting. Fewer graphs are “inducedly consistent” and one may ask if the
subclass of CGDs definable with this stronger notion of consistency is universal. This might
give an idea on whether the result of this article is isolated or, on the contrary, if it follows a
common pattern shared with many instances.
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