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Abstract

Adaptive Optics (AO) systems enable to compensate the adverse effects of atmospheric turbulence on ground-based telescopes’
images in real time, using a deformable mirror (DM) inserted in the telescope’s optical path, and measurements provided by a
wave-front sensor (WFS). This paper revisits minimum-variance (MV) control design for astronomical AO systems in a state-
space framework. It presents a survey of the modeling and control issues arising in this multi-variable disturbance rejection
problem. In a linear time-invariant (LTI) framework, and under some mild assumptions, the optimal solution to MV control
for AO systems is shown to be a discrete-time LQG controller. This result has been established for a DM with instantaneous
response, and for a a fairly general class of DM’s dynamics. The state-space approach is extended to Wild-field Adaptive Optics
(WfAO) configurations involving several DMs and/or WFSs. Integral-action control used in existing AO systems is compared
with LQG controller. Experimental WfAO results obtained on a laboratory test bench are presented, showing significant
improvement in performance. Finally, open issues and perspectives of applicative and/or theoretical interests are discussed.

Key words: Adaptive optics, State-space models, MIMO control, LQG optimal control, Kalman filtering, Discrete-time
stochastic systems, Sampled data systems

1 Introduction

Nearly sixty years ago, the astronomer Horace W. Bab-
cockmade the seminal contribution to what is now called
adaptive optics (AO) when he suggested that the angu-
lar resolution of ground-based telescopes could be dra-
matically enhanced by adjusting the surface of a de-
formable mirror (DM) in response to real-time measure-
ments of the image distortion caused by atmospheric
turbulence [1]. Roughly speaking, atmospheric turbu-
lence distorts images because light rays travel at dif-
ferent speeds along different paths. These variations in
light rays’ paths produce localized phase lags/leads, so
that their atmospheric journey results in the addition of
a time-varying so-called “turbulent phase” to the image
wavefront entering the telescope. Conversely, inserting a
DM into the telescope’s optical path enables to compen-
sate in real time the turbulent phase with a correction
phase, using measurements of the wavefront given by a
wavefront sensor (WFS), see Fig. 1. This process yields
a (hopefully) smaller residual phase and a corresponding
reduction of image distortion.

This work has been partly supported by DGA,Ministère de la
Défense, under contract REI N. 0534028, and by CHAPER-
SOA ANR-BLAN-0162.

Because the level of DM, sensor and real-time control
hardware performance required to implement AO was
far beyond the technology available in the 1950s’, this
brilliantly innovative concept only became a reality – at
least in the civilian field – in 1989, with the operational
deployment of the COME-ON system on an European
Southern Observatory (ESO) telescope [57]. Nowadays,
AO technology is routinely employed on all large tele-
scopes, increasing their effective resolution by more than
an order of magnitude (for a comprehensive review on
AO in astronomy, see, e.g., [56]).

This success inevitably whetted the appetite of the
astronomers for AO systems with ever-higher perfor-
mance, to be integrated in the next generations of
ever-bigger and more complex telescopes. Enhancing
hardware being an obvious path towards improved per-
formance, significant research efforts have focused on
the design of new generations of sensors and actuators
with higher spatial resolution and/or better temporal
response. New refinements of the original AO concept
have also been proposed: XAO for exo-planet detection
[18], or wide field AO to achieve the correction needed
for the study of stellar populations in nearby galaxies,
or active galactic nuclei and first galaxies (with very
large red-shifts). Wide field AO is based on the coor-
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dinated use of several DMs and WFSs to estimate and
correct turbulence in the volume. In the original Multi-
Conjugate AO (MCAO) concept [14, 3], several DMs are
conjugated in altitude to achieve correction over a wider
Field of View (FoV). Since then, numerous variations of
the MCAO concept have been proposed (see the articles
in [8]); see also [? ] for a recent survey of advances in
AO and their relation to astronomical applications.

Development of control design methods for WfAO is
clearly a major challenge, all the more so in the context
of Extremely Large Telescopes (ELTs). These future in-
struments will feature large WFSs and DMs. For exam-
ple, the European ELT includes an MCAO system with
3 DMs, with diameters up to 2.5m – against 15-20cm in
typical current systems. These future DMs will exhibit
resonant modes at lower frequencies. They will also fea-
ture very large number of actuators and sensors, up to
several thousand.

AO performance is ultimately defined as minimizing
residual phase variance in the field of interest. Optimiz-
ing such performance criterion naturally gives rise to
minimum variance (MV) control problems. This paper
presents a survey of MV optimal control for AO systems,
with special emphasis on several important issues:

• temporal discretization: this includes the delays in-
duced by real-time computers, and also the construc-
tion of a discrete-time MV formulation equivalent to
the original continuous-time MV problem;

• phase representation spaces and performance analysis
on truncated basis;

• analysis of standard AO control used in current on-
sky systems;

• extension of the formulation toWfAO, in which priors
on turbulent phase play a critical role;

These issues are addressed using a Linear Quadratic
Gaussian (LQG) formalism. The time-domain approach
to MV control provides a convenient framework for han-
dling the effect of temporal discretization. In the ab-
sence of DM’s dynamics, it enables the straightforward
determination of the discrete time controller minimizing
the continuous time MV criterion. The potential perfor-
mance improvement using LQG control in MCAO is il-
lustrated with an experiment on a laboratory test bench.

Turning these potential improvements into real on-
sky performance will require sufficiently adequate yet
tractable models of all critical components of the AO
loop. These include the AO system per se (DM, WFS
and real-time controller), but also the disturbance. Con-
structing and validating such models raise challenging
identification for control problems, which are out of the
scope of this paper. However, this issue will be dealt
with appropriate references throughout this survey.

The organization of the paper is as follows. Section 2

presents an historical overview of optimal AO control.
Section 3 introduces the continuous-time AO perfor-
mance criterion, and shows that for a DM with instan-
taneous response, the optimal control is obtained as the
solution of a tractable discrete-time LQ problem – i.e. in
reconstructed state-feedback form. Section 4 discusses
phase representation on a finite basis, and gives the ex-
ample of formal computations using Zernike basis on
the “inter-sampling variance”. Section 5 introduces a
general-purpose state-space representation for AO loops,
whose critical ingredient is a weak stationary stochas-
tic process modeling the turbulent phase. Section 6 ex-
tends the construction of the MV control to DM with
linear time invariant (LTI) dynamics. In Section 7, LQG
control is compared with the standard integral action
AO controller. The state-space approach is extended to
WfAO control in Section 8, and experimental results are
presented in Section 9 with a test-bench validation in
an off-axis AO configuration, a simple case of MCAO.
Finally, some conclusions and perspectives are given in
Section 10.

2 AO control: problem statement and historical
overview

The standard setup of an AO loop is presented in Fig.
1: the correction phase ϕcor generated by the DM is sub-
tracted from the turbulent phase ϕtur; the DM control u
is computed from real-time measurements y of the resid-
ual phase ϕres ≜ ϕtur−ϕcor provided by the Wave-Front
Sensor (WFS). TheWFS operates by analyzing the light
coming from a guide star, as illustrated in the case of a
Shack-Hartmann (SH) WFS in Fig. 2.

Fig. 1. Standard AO setup: the wave-front deformation in-
duced by atmospheric turbulence is compensated by a de-
formable mirror using closed-loop measurements. Image in-
tensity plots at left illustrate AO correction for a three-star
object (simulation).
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Fig. 2. Shack-Hartmann Wave-Front Sensor (SH WFS) prin-
ciple. The light emanating from a guide star located at infin-
ity passes through the atmospheric turbulence, resulting in
a distorted incident wave-front. The spot displacement for
each sub-aperture is equal to f sinα, where f is the focal
length and α = (αx, αy) is the average slope.

The SHWFS (see [56], chapter 5) is composed of a grid of
sub-apertures optically conjugated with the telescope’s
entrance pupil, and of a CCD camera located in the
focal plane of the sub-apertures grid. An image spot of
the guide star is thus formed for each sub-aperture and
recorded by the camera. In the absence of turbulence,
the incoming wave-front is planar so that all spots are
centered. In presence of turbulence, the (x, y) position
of each spot shifts according to the local average slope
(angles αx and αy) of the wave-front. This position is
computed via appropriate methods (center of gravity or
correlation, see, e.g. [? ]). The SHWFS hence delivers an
array of local slope measurements of the wave-front over
the whole telescope’s pupil. While the SH is common in
operational AO systems, some use instead other sensors
such as the pyramidal WFS [? ]. It performs curvature
instead of slope analysis, and has therefore a smaller
linear variation range.

As atmospheric turbulence evolves rapidly with time,
this induces time-varying deformations of the incoming
wavefront. From a control point of view, AO control
therefore basically boils down to a regulation problem,
with the ϕtur and ϕres respectively playing the parts of
an additive external disturbance and of the error signal
(Fig. 3). Control inputs u are for example voltage values
in the case of piezo-electric actuators, or squared voltage
values in the case of magnetic coils actuators.

This is also a strongly multi-variable control problem
with a large number of degrees of freedom: in existing
AO systems, u and y are vectors with dozens to hun-
dreds of coordinates for recently upgraded AO systems,

e.g. NACO-NAOS 1 at the VLT with 185 actuators and
368 measurements, ALTAIR GEMINI 2 with 179 actua-
tors and 240 measurements or XXXinstru? at Keck Ob-
servatory 3 with 349 actuators and 480 measurements.
As noted above, this is soon to increase to several thou-
sands for future systems currently designed.

ϕtur ϕres

WFS

controllerDM
ϕcor

u

w

y

++

−

Fig. 3. AO as a disturbance rejection feedback loop, with
measurement noise w.

Yet, most AO systems deployed so far rely on a simple
control strategy. In essence, starting from the assump-
tion that all blocks in Fig. 3 are linear, the control action
combines a static decoupling matrix with a pure ‘I’ con-
trol. In a suitable basis, this corresponds to an integrator
with diagonal gain matrix. This type of control, referred
to throughout this paper as ‘standard AO control’, is
detailed in Section 7. Quite understandably, efforts to
improve control performance have initially focused on
improvements of this standard AO control. These in-
clude Optimized Modal Gain Integrator (OMGI) where
the diagonal gain matrix is tuned according to more re-
fined statistical priors on turbulent phase and measure-
ment noise [21, 22]; alternatively, the pure integrator
scalar diagonal controllers can be replaced by higher-
order correctors [13, 59], or even by adaptive controllers
[23]. However, this does not address a fundamental limi-
tation of the standard approach: because it attempts to
diagonalize the closed-loop disturbance rejection trans-
fer function, i.e. from ϕtur to ϕres in Fig. 3, it rests on
the implicit assumption that the DM control, WFS out-
put and residual phase can be made to coincide (at least
approximately) through suitable linear transformations.

While this paradigm is tenable in standard AO, it col-
lapses utterly in more complex WfAO configurations.
As explained later in Section 8, several WFSs analyze
the residual phase in the directions given by some bright
guide stars, while DMs conjugated at different altitudes
correct the turbulence in the directions given by the ob-
jects of interest. Therefore, WFSs no longer measure the
residual phase to be minimized. This requires a control
approach capable to discriminating between measure-
ment output and variables to be controlled. Much per-
formance is thus to be gained by using state-space con-
trol design methods, likeH2 or LQG control. State-space
methods also enable to deal with so-called open-loop AO

1 http://www.eso.org/sci/facilities/paranal/instruments/naco/
2 http://www.gemini.edu/?q=node/10115
3 KECK???
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systems, where WFS measurements are not affected by
control actions. In addition, they enable to incorporate
priors on all subsystems of the AO loop (DMs, WFSs,
turbulence), and to account easily for additional physi-
cal phenomena such as vibrations/windshaking affecting
the instrument or DMs’ dynamics.

In pioneering works, [45, 44] used a first order DMmodel
together with a continuous time turbulence model of or-
der one for the design of an LQG controller. A very sim-
ilar formulation was proposed later in [42] using a block-
circulant representation diagonalized via Fourier trans-
form. However, the problems arising from temporal dis-
cretization and pure delays were not properly addressed.
In 2002, a discrete time formulation suitable for both
classical andMCAOwas proposed in [34], with an AR(1)
(Auto-Regressive of order 1) turbulence model and a re-
alistic description of control and measurement delays in
the loop. This approach was successfully implemented
on a real-time laboratory AO bench validating its ability
to handle also off-axis AO [49]. An hybrid between LQG
and modal control strategies was used in [40, 41], com-
bining a static decoupling matrix with a series of scalar
LQG controllers. Recent developments in LQG AO con-
trol include optimal control in presence of DM’s dynam-
ics [38] or actuator saturation [29], and Fourier domain
identification and control [52]. An H2 AO control with
a turbulence model identified using a subspace method
is proposed in [25, 26].

A number of authors have also addressed DM related
control problems: non-linear control of a piezo-electric
actuator, e.g. [61], or control of the DM’s surface using
PDE models, e.g. [33]. In a different applicative context,
high-resolution AO, PDE wavefront models were used
to compensate for the non-linearities of a phase-contrast
WFS [27].

3 Optimal discrete-time control – fast DM case

In astronomical applications, where image formation in-
volves integrating the optical flow over a large exposure
time, a sensible performance criterion is the variance of
the residual phase ϕres, defined as

Jc (u) ≜ lim
τ→+∞

1

τ

∫ τ

0

∥ϕres (t)∥2 dt (1)

where u ≜ (uk)k∈N denotes the sequence of control de-

cisions uk ≜ u (kT ), which are applied via a zero-order
hold (ZOH) with a sampling period T . However, it is
worth noting that many practitioners in the field of tele-
scope design prefer to use the so-called Strehl ratio (SR).
It is defined as the ratio between the central peak of the
point spread function (PSF) achieved by the telescope
and the central peak of the ideal PSF in the absence of
turbulence (the ‘Airy spot’). The SR thus varies between

0 and 1 as a percentage, and higher SR means better
images (hence better correction). It is shown [? ] that
maximizing the SR amounts to minimizing the residual
variance Jc. Furthermore, for small enough values of ϕres

(and appropriate scaling of the phase vectors), the SR
is approximately equal to exp(−Jc) [16]. The SR can be
computed from actual telescope images, provided that
the FoV contains a sufficiently bright point-like light
source (in other words, a star).

Assume for the moment that the DM’s response is fast
(compared with T ) and can thus be modeled as a sim-
ple gain, so that ϕcor(t) = Nuk for all t ∈ [kT, (k +
1)T ), where N is the so-called mirror’s influence ma-
trix (the columns of N correspond to the influence func-
tions, which describe the deformed surface associated
with each actuator 4 ). The average value of ϕcor(t) over
[kT, (k + 1)T ) is thus

ϕcork+1 ≜
1

T

∫ (k+1)T

kT

ϕcor (t) dt = Nuk . (2)

This relation makes apparent a structural control delay
of one frame T . Then, for all t in [kT, (k + 1)T ), the
integrand in (1) can be written as

∥ϕres (t)∥2 =
∥∥ϕtur (t)−Nuk

∥∥2
= ϕtur (t)

t
ϕtur (t) + utkN

tNuk − 2utkNϕ
tur (t) .

(3)

Averaging this expression over [kT, (k + 1)T ) and sum-
ming up the results over successive sampling intervals,
one gets

Jc (u) = lim
τ→+∞

1

τ

∫ τ

0

∥∥ϕtur (t)∥∥2 dt
+ lim
K→+∞

1

K

K−1∑
k=0

(
utkN

tNuk − 2utkNϕ
tur
k+1

)
(4)

where ϕturk+1 is defined as in (2) as the average of

the disturbance over [kT, (k + 1)T ), i.e. ϕturk+1 ≜
1
T

∫ (k+1)T

kT
ϕtur (t) dt. In the sequel, this notation will

be applied to other variables, e.g., xk will stand for the
average of x over [(k − 1)T, kT ).

4 AO systems actually often use two physically distinct con-
trol devices: a mirror whose surface can be deformed using
a grid of piezo-electric or electro-magnetic actuators, and
a flat ‘tip-tilt’ mirror with two degrees of freedom which,
as a rule, exhibit markedly different dynamics. This means
that the control input is the concatenation of the two con-
trol voltage vectors. However, for the sake of simplicity, the
combination of the deformable and tip-tilt mirrors shall be
referred to throughout this paper, as the DM.
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Obviously, the first term in the right-hand side of (4)
does not depend on u, so that minimizing Jc (u) is
strictly equivalent to minimizing the remaining part of
this expression. The part which does depend on u can
be transformed into an equivalent bona fide discrete
LQ criterion by the simple expedient of adding another
term independent of u. More precisely, taking

Jd (u) ≜ lim
K→+∞

1

K

K−1∑
k=0

∥∥ϕturk+1 −Nuk
∥∥2

= lim
K→+∞

1

K

K−1∑
k=0

((
ϕturk+1

)t
ϕturk+1

+utkN
tNuk − 2utkNϕ

tur
k+1

)
, (5)

it is apparent that argminu J
c (u) = argminu J

d (u).
Also, for any choice of u, one gets Jc(u) ≥ Jd(u) and

ε2sampl ≜ Jc (u)− Jd (u)

= lim
K→+∞

1

K

K−1∑
k=0

(
1

T

∫ (k+1)T

kT

∥∥ϕtur (t)− ϕturk+1

∥∥2 dt) .

(6)

This “inter-sampling variance” is exactly the value of Jc

that would be achieved if one could somehow manage to
make Jd equal to zero. Therefore, it should be regarded
as an incompressible performance penalty resulting from
the use of a discrete-time control with sampling period
T . It depends neither on the control law nor on the DM’s
influence functions. It can be explicitly computed under
the assumption that the continuous phase ϕtur(t) is a
stationary ergodic process with known power spectral
density [46], see Section 4.

Minimizing Jd eventually turns out to be a degenerate
LQ problem, since its solution does not require solving a
control Riccati equation, but is obtained by simply pro-
jecting successive values of ϕturk+1 onto the mirror space
Im (N). Assume, with no loss of generality (since this
property can always been recovered by pruning redun-
dant coordinates of u), that N has full column rank, i.e.
that Im (N) = dim (u), or equivalently that N tN is in-
vertible. Then, the optimal full information disturbance
feedforward control is

ulqk ≜
(
N tN

)−1
N tϕturk+1 . (7)

In practice, the DM is not able to reproduce any turbu-
lence phase: due to the finite number of actuators, its
spatial frequencies are limited, whereas turbulent phases
have unlimited spatial bandwidth. This produces a so-
called “fitting error”: would the turbulent phase be per-
fectly known, this error corresponds to the turbulent de-
formations that the DM cannot reproduce. This trans-

lates into the following lower bound for Jd

ε2fit = Jd(ulq) ≤ Jd(u). (8)

The control uk shall in practice be computed from past
controls and WFS measurements y0, . . . , yk available up
to time t = kT . In this case, the stochastic separation
theorem applies: assuming that {ϕturk } is a weakly sta-
tionary stochastic process, the optimal control then be-
comes

uoptk ≜ argmin
uk

E
(
∥ϕturk+1 −Nuk∥2|Ik

)
=
(
N tN

)−1
N tϕ̂turk+1|k (9)

where ϕ̂turk+1|k is the MV estimate of ϕturk+1 conditioned to

the set Ik of past measurements (and controls), in other
words the conditional expectation E

(
ϕturk+1|Ik

)
. As a re-

sult, the original optimal control problem is, for all prac-
tical purposes, transformed into an optimal MV predic-
tion problem – the solution of which, in a standard linear
Gaussian framework, can be computed using a Kalman
filter. So far, it has been implicitly assumed that DM
and WFS operate synchronously, in other words that
controls are applied and measurements obtained at sam-
pling times t = kT . The asynchronous case, resulting in
an arbitrary delay between DM and WFS, can be mod-
eled by assuming that measurements are obtained at
sampling times kT −τ , while controls are still applied at
kT . The optimal solution in both complete and incom-
plete information cases are given by the same equations
(7) and (9). The difference is that the conditional ex-
pectation in (9) must be computed with respect to mea-
surements up to time kT − τ . This would be optimally
obtained with a different Kalman filter, based on a dy-
namical model that describes the average phase evolu-
tion on intervals of length the greatest common divisor
of τ and T if they are commensurate [55], or with a con-
tinuous model as in Section 6 otherwise [39? ]. Asyn-
chronous DM/WFS operation has been accounted for in
several papers, e.g. [26, 53]. These approaches, however,
are optimal under different and possibly restrictive as-
sumptions on the inter-sampling behavior of the turbu-
lent phase.

4 Phase representation

In order to compute the MV predictor ϕ̂turk+1|k, a state-

space representation of the AO loop shall be needed. This
model is required to encapsulate the discrete-time dy-
namics and mutual interactions of the DM control u, the
WFS measurement y, together with a stochastic model
of ϕtur. A first important issue to be addressed is the
representation of the phase variables: while u and y are
by construction vectors of finite size, ϕtur is a continu-
ous surface with unlimited spatial bandwidth. Formally
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speaking, its domain is a separable Hilbert space, which
can therefore be equipped with an infinite countable ba-
sis of orthonormal functions.

Throughout this paper, we use a Zernike basis to repre-
sent both turbulent and correction phases. The polyno-
mial Zernike basis [43] is widely used in AO because it
enables an orthonormal decomposition defined on a sup-
port with circular symmetry (e.g. a telescope’s pupil),
and because the polynomials Zi have an analytical ex-
pression. Transformation to and from a Zernike basis is
therefore computationally easy. The decomposition co-
efficients depend on two subscripts corresponding to ra-
dial order n and azimuthal order m, and on polar coor-
dinates r = (r, θ):

Zi =
√
n+ 1 Rmn (r)

√
2 cos(mθ) for m ̸= 0 and i even,

(10)

Zi =
√
n+ 1 Rmn (r)

√
2 sin(mθ) for m ̸= 0 and i odd,

Zi =
√
n+ 1 R0

n(r) for m = 0,

with

Rmn (r) =

(n−m)/2∑
s=0

(−1)s(n− s)!

s!
(
n+m

2 − s
)
!
(
n−m

2 − s
)
!
rn−2s.

(11)

The values of n and m are always integral and satisfy
m ≤ n, n− |m| = even. The index i is a mode ordering
number and is a function of n and m. This gives, for
the first modes, the following indexing: for radial order
n = 0, azimuthal order is m = 0 (i = 1). For n = 1,
m = −1, 1 (i = 2, 3), for n = 2,m = −2, 0, 2 (i = 4, 5, 6)
and so on.

Then, for any variable ϕ defined on a disk S,

ϕ(r) =

∞∑
i=1

aiZi(r) with ai =
1

S

∫
S

ϕ(r)Zi(r)dr

(12)
as the basis is orthonormal. High radial orders corre-
spond roughly to high spatial frequencies. Moreover,
low radial orders are related to usual optical aberration
modes. For example, piston corresponds to first coeffi-
cient (radial and azimuthal orders 0), tip and tilt to sec-
ond and third ones (radial order 1 and azimuthal orders
0 and 1), defocalization and astigmatisms to fourth, fifth
and sixth ones (radial order 2 and azimuthal orders 0 to
3). Truncation level of the basis is chosen so as to cut
high spatial frequencies that are supposedly negligible.
In addition, the piston mode, which corresponds to the
average value of the turbulent phase over the telescope’s
pupil, does not influence performance and does not reg-
ister on theWFS. It can therefore be removed altogether
from the representation.

Note that Zernike modes are a variant of frequency do-
main representations, allowing to concentrate energy on
the low order modes. Similarly to Fourier representa-
tions, they are not spatially localized. This is in general
a drawback in model-based AO, precisely because both
DM controls and WFS measurements involve spatially
localized operations. The statistical properties of tur-
bulent Zernike modes have been extensively studied. In
particular, their temporal power spectral density (PSD)
and spatial cross-correlation are easily computable using
physical models [43, 9]. This is convenient to construct
control-oriented turbulent models (see Section 5). The
availability of Zernike modes’ PSD Sai(f) and the use
of an orthogonal basis are also convenient to derive ana-
lytical expressions, e.g., for the inter-sampling variance
ε2sampl in (6). Indeed, using Parseval’s theorem, ε2sampl

can be expressed as (see the Annex for detailed calcula-
tions)

ε2sampl = trace

(∫ +∞

−∞
Sϕtur (f)df −

∫ +∞

−∞
Sψtur(f)df

)
(13)

where Sϕtur (f) is the continuous-time turbulent phase’s
PSD and Sψtur (f) is the PSD of the averaged discrete-
time turbulent phase ϕturk :

Sψtur (f) = |sinc(πfT )|2Sϕtur (f). (14)

This gives

ε2sampl =

∞∑
i=1

∫ +∞

−∞
(1− |sinc(πfT )|2)Sai(f))df, (15)

where Sai(f) is the PSD of the Zernike coefficient ai.
Analytical expressions for Sai(f) are given in [9], thus
enabling to evaluate ε2sampl for different turbulence and

sampling conditions, see [46].

XXXBlabla bases zonales avec gdes dimensions+ refer-
ences (Ellerbroek, Gilles, Vogel,+?).

While any control law is ultimately bound to be imple-
mented on a finite basis, one might nevertheless per-
form controller design in a non finite (i.e. PDE-based)
framework. Throughout this paper, we choose instead a
finite representation. This clearly has the merit of sim-
plicity. The obvious question is whether it may lead to
significant performance degradation. In a reconstructed
feedforward approach, explicit bounds for performance
degradation resulting from truncation can be established
on the condition that the basis concentrates the energy
of disturbance (turbulent phase) and of control input to-
wards low order coefficients, which is the case for modal
basis.

Robustness considerations should also be taken into ac-
count, as all effects present in a real system are not
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completely modeled. These include for example calibra-
tion errors, slight misalignments between DM andWFS,
which result in high spatial frequencies. The truncated
basis should then be large enough to avoid aliasing of
these high order modes on modes associated with lower
spatial frequencies. Indeed, the turbulent phase, as a
continuous surface with non limited spatial frequency
bandwidth, shall be assumed to evolve in a (possibly
infinite-dimensional) turbulent space P, which may be
different from both the spaces of achievable correction
phase (the so-called DM space) and from the space of
WFS-observable phase (WFS space). Let us assume,
with no loss of generality, that the DM and WFS spaces
correspond to closed subspaces of P. Assume further
that P is a separable Hilbert space, and that the turbu-
lence has been approximated on a finite basis, generat-
ing a subspace P∥ ∈ P. Denote as P⊥ the orthogonal
complement of P∥ in P, so that P = P∥ ⊕ P⊥. Thus,
any turbulent phase can be uniquely decomposed as

ϕtur = ϕtur∥ + ϕtur⊥, (16)

with ϕtur∥ ∈ P∥ and ϕtur⊥ ∈ P⊥. The part of the tur-
bulent phase’s power that lies in P⊥ is denoted by ε2tur.

These modeling errors have an influence on performance
in two different manners: through the DM, which shall
not reproduce a perfect turbulent phase (this of course
includes the fitting error 8), and through theWFS which
induces aliasing due to spatial sampling that cannot
respect Shannon-Nyquist sampling theorem (remember
that the phase has unlimited spatial bandwidth).

The performance degradation due DM’s influence func-
tions truncation and DM fitting error can be easily quan-
tified. Whatever the control law, the correction phase
ϕcor = Nu lies in a subspace of P which may have a
non-empty intersection with P⊥, leading to

ϕcork = ϕ
cor∥
k + ϕcor⊥k

=N∥uk−1 +N⊥uk−1, (17)

where N∥ (resp. N⊥) corresponds to the projection of
influence functions onto P∥ (resp. P⊥). Let ε2cor be the
power of N⊥u, and assume that u has been computed
so as to achieve an expected performance

Jd
exp(u) ≜ lim

K→+∞

1

K

K−1∑
k=0

∥ϕtur∥k+1 −N∥uk∥2 (18)

whereas the actual value of the discrete-time perfor-
mance criterion is Jd. Using (16), (2) and (5), an upper
bound of the power of the uncorrected part is obtained

as

Jd (u)− Jdexp(u) = lim
K→+∞

1

K

K−1∑
k=0

∥∥ϕtur⊥k+1 −N⊥uk
∥∥2

≤ ε2tur + ε2cor

for zero-mean turbulent phase and control (or ≤ (εtur +
εcor)

2 otherwise). Putting all the budget errors together,
namely ε2sampl the temporal sampling effect (15), the fit-

ting error ε2fit (8), and the truncation errors ε2tur and ε
2
cor,

on obtains upper and lower bounds for the actual per-
formance Jc:

ε2fit+ε
2
sampl ≤ Jc(u) ≤ Jd

exp(u)+ε
2
tur+ε

2
cor+ε

2
sampl. (19)

To reduce the effect of the degradations due to basis
truncation on control performance Jd, the only possible
action is to increase the size of P∥ in order to have a
better representation of ϕtur and ϕcor, and thus to lower
ε2tur and ε2cor. In practice, this guarantees that the de-
terioration of closed-loop performance caused by trun-
cation can be kept within acceptable (and computable)
bounds on the intuitively reasonable condition that the
truncated basis is large enough to capture most of power
of both the turbulent and correction phases.

Alternatively, it has been proposed to represent/reconstruct
the phase in the DM space P∥ = Im(N) as in [40, 58, 37].
This neglects turbulent modes that are not in the DM
space but register on the WFS, leading to a possible
degradation of the phase reconstruction. It has also
been proposed to represent/reconstruct the phase in
the WFS space Ker(D)⊥ as in [25]. In this case, this
may also degrade reconstruction since the correction
phase may be inaccurately represented (this of course
depends on the spatial resolution of the WFS). For both
representations, limiting phase reconstruction to the
DM or the WFS space results in possible performance
degradation due to WFS spatial aliasing (i.e. aliasing of
turbulent spatial frequencies above the WFS’ Shannon-
Nyquist spatial frequency). The impact of aliasing on
closed-loop performance is, as noted above, strongly de-
pendent on the spatial resolution of the WFS, but also
on the control law. Its detailed treatment is beyond the
scope of this paper, see for example [51, 17, 54? ]. Alter-
natively, reconstructing the turbulent phase in a larger
space allows thus to extrapolate the spatial spectrum
of the turbulent phase in accordance with statistical
priors derived from physical considerations. It also ex-
tends naturally to wide-field AO configurations, where
the mismatch between DM/WFS space and turbulent
phases increases.
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5 State-space model and Kalman filter

Let us now examine the observation model in the in-
complete information case, where only noisy and delayed
discrete measurements are available for control compu-
tation. In the case of a Shack-Hartmann WFS, which is
used in our experimental set-up, measurements of the
first order derivatives of the phase are deduced from
CCD camera images of a guide star (GS). This yields lo-
cal average slopes of the wave-front, sampled on a spatial
grid covering the telescope’s aperture. To get sufficiently
informative and not too noisy measurements, the optical
flow is integrated over an exposure time Te. We suppose
here that WFS read-out and slopes computations do not
exceed Te. On the other hand, WFS read-out and slopes
computations are relatively time-consuming procedures,
the completion of which typically eats up a large frac-
tion of a sampling interval. Therefore, the simplest and
commonly used real-time arrangement is to choose the
control sampling period T equal to Te, to assume syn-
chronous operation of DM and WFS, and to perform all
read-out, slopes and control computations within one
frame T = Te.

Such a configuration can be modeled by postulating that
uk, i.e. the control action applied at time t = kT , is com-
puted from measurements y0, . . . , yk, with yk depending
on ϕresk−1 (Figure 4).

yk+1

CCD read-out
+slopes comput.

Control computation

...

...

ϕtur
k

WFS integration

time

...

...

ϕtur
k−1

yk

Control applied to DM uk

(k − 2)T kT(k − 1)T

...

...

...

uk+1...

...

...

Fig. 4. Chronogram of the AO loop. During time interval (or
frame) [(k − 2)T, (k − 1)T ], the wave-front is integrated by
the WFS (ϕtur

k−1 is the integrated phase) which delivers slopes
measurement yk somewhere in [(k−1)T, kT ]. The control uk

is then computed to be available at time kT , and is applied
on next frame [kT, (k + 1)T ], leading to a two-frame pure
delay in the loop.

Taking into account the one-frame control delay in (2)
inherent to the integral nature of the discrete-time AO
phase variables, this leads to a total loop delay of d = 2
frames. Following the common practice in AO design,
the WFS model is assumed to be linear in ϕres and noisy.
As explained above, all computational delays fit into one
frame T : measurements yk shall then be obtained as

yk = Dϕresk−1 + wk, (20)

where w is an additive Gaussian white noise with covari-
ance matrix Σw.

Priors on turbulent phase are usually available under
the form of a spatial covariance matrix Σϕ with so-called

Kolmogorov (or Von Kármán) statistics on Zernike coef-
ficients [28], together with the PSD of each Zernike mode
[43, 9]. The PSD is obtained under the so-called Taylor
hypothesis, which considers turbulence layers as frozen
screens translating at constant wind speed V . Turbulent
phase ϕtur may therefore be assumed to be a Gaussian
stationary zero-mean process with known PSD and co-
variance matrix Σϕ ≜ E(ϕturk (ϕturk )t), where E(·) stands
for mathematical expectation.

Such processes can be approximated by auto-regressive
(AR) models. The simplest choice is a vector valued
AR(1) model,

ϕturk+1 = Aturϕturk + vk, (21)

with v a Gaussian white noise of covariance matrix Σv.
Taking a diagonal matrix Atur = diag(ai,i)enables to
adjust the cut-off frequency for each mode according to
priors [? 47]:

aii = exp

(
− 0.3(n(i) + 1)V T

D

)
where n(i) is the radial order of the ith mode, V the wind
speed norm, T the sampling period andD the telescope’s
diameter. The corresponding autocorrelation function

Ri(m) of the ith mode is then Ri(m) = a
|m|
ii Σϕ(i, i)

where Σϕ(i, i) refers to element (i, j) of Σϕ. Note that,
despite the fact that Atur is diagonal, this construction
results in a non diagonal cross-correlation function Rij
between Zernike’s modes i and j:

Rij(m) = a
|m|
ii Σϕ(i, j).

Once Atur has been determined, the covariance ma-
trix Σϕ is linked to Σv through the discrete Lya-
punov equation deduced from turbulence model (21):

Σϕ = AturΣϕA
turt + Σv, so that the noise covariance

matrix Σv is defined as

Σv = Σϕ −AturΣϕA
turt.

The noise covariance Σv can thus be chosen so that Σϕ is
equal to the spatial covariance of the turbulence phase.

This AR(1) model or its continuous time counterpart has
been used by many authors [45, 42, 20, 35, 49, 37, 50].
A better fit of the temporal correlations would require
higher order models. Several works have shown, using
end-to-end simulations or experiments, that AR(2) tur-
bulent models perform better than AR(1), see for exam-
ple the precision control of tip-tilt modes for SPHERE
[19], for Gemini Planet Imager [? ? ] or for GeMS, the
Gemini MCAO system [? ]. For global control, AR(2)
have also shown their superiority, see [52? ? ].
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As regards numerical values for D and N , they may
be obtained by calibrations and/or by using theoretical
models (Gaussian influence functions for DM, geometric
model forWFS). This is routinely used inAO, withmany
references available (among others [? ? ? ? 7? ]).

Let us now turn to the MV estimation problem in this
linear Gaussian framework. The first step is to con-

struct ϕ̂turk+1|Sk
, the MV estimate of ϕturk+1 based on the

sequence of delay- and control-free measurements Sk =

{s0, . . . , sk} with sk ≜ yk+1. The MV estimate ϕ̂turk+1|Sk

is the output of the Kalman filter for the AR(1) model
(21) with measurement sk

ϕ̂turk+1|Sk
= Aturϕ̂turk|Sk−1

+ Lk

(
sk −Dϕ̂turk|Sk−1

)
, (22)

where Lk is the Kalman gain. Since this estimate is to
be used for infinite horizon LQG control with stationary
models, there is no loss of optimality, with respect to
the infinite horizon control criterion Jd, by using the
asymptotic Kalman gain [32, 31] given by

L∞ = AturΣ∞D
t(DΣ∞D

t +Σw)
−1, (23)

where Σ∞ is the solution of the algebraic Riccati equa-
tion

Σ∞ =AturΣ∞A
turt +Σv

−AturΣ∞D
t(DΣ∞D

t +Σw)
−1DΣ∞A

turt.
(24)

This equation has a unique solution since Atur is stable.

The second step is to construct the predictor ϕ̂turk+1|k for

the actual measurement equation (20) with control and
measurement delay, i.e.

yk = Dϕturk−1 −DNuk−2 + wk. (25)

In this case, it is immediately checked that two successive
occurrences of ϕtur have to be estimated through
ϕ̂turk|k = Aturϕ̂turk−1|k−1

+L∞(yk −Dϕ̂turk−1|k−1 +DNuk−2),

ϕ̂turk+1|k = Aturϕ̂turk|k .

(26)
These equations are simply the non-trivial part of the
Kalman filter in predictor form adjusted to the state-
space model

xk+1 = Axk +Buk + ξk (27)

yk = Cxk + wk (28)

where

xk =


ϕturk

ϕturk−1

uk−1

uk−2

 , A =


Atur 0 0 0

I 0 0 0

0 0 0 0

0 0 I 0

 , B =


0

0

I

0

 ,

ξk =
(
vtk 0t 0t 0t

)t
, C = (0 D 0 −DN). (29)

Note that the state vector x includes occurrences of u
and ϕtur. As a consequence, this representation is non-
minimal: one could use instead, for example, the smaller
state vector xk = ((ϕresk )t, (ϕresk−1)

t, utk−1)
t. On the other

hand, the state transition and control matrices A and
B do not depend on the DM/WFS parameters N and
D, which makes the model structurally simple and fa-
cilitates, among other things, robustness analysis. Also,
this choice of state vector allows an easy adaptation to
more complex models and configurations. Thus, ARMA
turbulence phase models of higher orders can be accom-
modated by adding additional occurrences of ϕtur and
v in the state vector (no additional state is required for
an AR(2) model). This choice of state vector enables to
easily incorporate prior information on turbulent phase
and separated directions of analysis and interest – a key
issue in WfAO schemes (see Section 8).

In addition, the state representation can also be regarded
as a design tool. In other words, the resulting real-time
control should obviously be implemented so as to take
advantage of its sparseness and special structure.

6 Optimal control – DM with dynamics

Current AO systems use DMs which are rather small (10
to 30 centimeters), so that their dominant time constants
are mostoften neglected as they remain sufficiently small
with respect to the sampling period. This may not be
true for future telescopes which will include much larger
DMs operating at similar sampling rates as e.g. the Eu-
ropean Extremely Large Telescope, with a 2.5 m DM
and around 1 kHz sampling frequency. Sooner or later,
neglecting DM’s dynamics in AO control will cease to
be an option.

AO loops are sampled-data systems, with controls ap-
plied through a ZOH and performance depending on
continuous-time variables. In such systems, a critical is-
sue is to control the adverse effects of inter-sampling be-
havior on performance, see, e.g., [6]. In the special case of
AO systems without DM’s temporal dynamics, the con-
struction in Section 3 enables to solve the MV problem
by breaking the continuous-time criterion in two parts:
a discrete-time quadratic criterion Jd which yields the
discrete-time MV control, and the control independent
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term (inter-sampling variance) which depends only on
the turbulence’s PSD.

In this case, the identity ϕcor (t) = Nu (t) needs to be
replaced by ϕcor (t) = Np (t), where p (t) denotes the
effective deformation of the DM’s surface at time t, and is
assumed to be the output of a deterministic continuous-
time LTI model with input u.

Using standard results from sampled-date control theory
(see, e.g. [12? , 5, 6]), this construction of an equivalent
discrete-time LQG criterion has been generalized in [38]
to the case were a strochastic continuous-time LTI mod-
els is available for the turbulence and when the (dsicrete-
time) controller is also assumed to be LTI. This approach
was subsequently extended to the case of asynchronous
measurements, i.e. for arbitrary delay between DM and
WFS, enabling in particular to quantify the degradation
in performance resulting from neglecting DM dynam-
ics and/or non-integer delays ( [38], LOOZE IJC 2010,
LOOZE EJC 2011).

A different construction of an equivalent discrete-time
LQ criterion, which seeks to exploit the fact that the
plant to be controlled is the combination of a stochas-
tic disturbance model and of a deterministic actuator
model, has been proposed independently in [10]. This
approach was applied to tip-tilt DM for the E-ELT,
showing the ability of the optimal control to efficiently
compensate for both first- and second-order dynamics
(CITER: CARLOS JOSA, CARLOS EJC). It has been
also extended to the asynchronous measurements case [?
] and to woofer-tweeter DM control (CARLOS JOSA).

Both approaches described above can accommodate es-
sentially any deterministic model of the DM’s surface
deformation. These include in particular matrix-valued
second-order equations in the form

Mη η̈ (t) +Kη η̇ (t) +Dηη (t) = Ψee (t) (30)

p (t) = Ψt
pη (t) (31)

where e denotes the DM’s input signal, η is vector of
modal coefficients andMη is an invertible inertia matrix.
This class of models can be derived from PDE models
of the DM’s surface deformation through either direct
calculations or FEM approximations.

These deformation models can also be used to force the
DM surface p to track the dynamics-free optimal tra-
jectory uopt in section **. This simpler, albeit subopti-
mal, approach to the AO control problem in presence of
DM’s dynamics has been pursued in a number of recent
publications, using various control techniques [2? ? ? ].
An important related issue is the identification of suffi-
ciently accurate DM models [? ? ? ? ].

The minimal set of variables from which the optimal
discrete-time control can be computed is then made up

of the internal states of the DM’s model and of a turbu-
lence model capable of producing ϕtur and ψtur as out-
puts. As an important corollary, any stochastic discrete
state-space model capable of providing an adequate de-
scription of these statistics and of their relationship to
WFS measurements – whether or not they have been de-
rived from underlying continuous-time models – should
be regarded as a sufficient model for the MV control of
the AO system.

The penalty-free optimal LQG controller, if it is not
to result in control actions with intolerable amplitude,
should in practice be limited to cases where the DM’s
dominant time constant remains small compared to the
sampling period T . Clearly, less aggressive controls can
be obtained by adding an additional penalty on the con-
trol energy. In this case, the resulting loss of optimality
can be quantified, see Proposition 1 in [? ].

The case of DM with instantaneous response turns out
to be perfectly reasonable for the combinations of real-
time computers and actuators used in existing AO sys-
tems. This dispenses with the need of solving a control
Riccati equation, thereby simplifying the controller de-
sign process. Thus, for the sake of simplicity, only this
case will be considered from this point down to the end of
the paper. However, the construction of the state-space
representation and the extension to WfAO in Section 8
are easily adapted to DMs with linear dynamics.

7 Comparison with standard AO control

Since it has been assumed that both DM and WFS are
LTI systems, the AO discrete-time optimal control prob-
lem can be approached also from an input-output per-
spective. Indeed, under the customary assumptions that
the controller block in Fig. 3 is LTI, that {ϕturk }k∈Z is
a weakly stationary stochastic process with PSD Sϕtur ,
and that {wk}k∈Z is a white noise independent of ϕtur

with known variance Σw, one immediately gets

Jd (u) =
1

2π

∫ 2π

0

trace
(
H(ejθ)Sϕtur(ejθ)H(ejθ)∗

+ Hw(e
jθ)ΣwH

∗
w(e

jθ)
)
dθ , (32)

where H and Hw are respectively the closed-loop trans-
fer functions from ϕtur to ϕres and from w to ϕres, see
Fig.3, and ∗ stands for transpose conjugate. Thus, on
the condition that Sϕtur is known, minimizing Jd could
be recast as a discrete-time H2 optimization problem
[26]. The solution of thisH2 problem is shown (assuming
one is able to construct a stochastically minimal state-
space realization of ϕtur, which can be achieved when
its PSD is rational) to be identical to the LQG con-
trol law [60]. However, theses two approaches give differ-
ent frequency/time domain insights in the optimization

10



problem. Thus, a time-domain framework is consider-
ably more convenient to construct a discrete-time con-
troller minimizing the continuous-time MV criterion. It
also enables to solve for example the MV AO problem
with actuator saturations in the absence of DM’s dy-
namics [29]. Conversely, an H2 approach enables to in-
corporate easily frequency domain priors, and provides
a natural connection to H2/H∞ or H∞ formulations [?
? ? ].

The standard approach to AO control uses a cruder
strategy: reduce this multi-variable loop into a series of
(quasi) independent scalar ones, and tune them sepa-
rately using well-honed frequency-domain SISO proce-
dures. The first step is therefore to compute a singular-
value decomposition of the so-called interaction matrix
DN . This yields two unitary matrices V , W such that
DN = V UW t, where U is a diagonal matrix whose gen-
eral terms Ui are the singular values of DN sorted in
descending order. A structural feature of AO systems is
the existence of unseen DM modes such as piston and
waffle, i.e. special DM’s shapes which do not register on
the WFS. As a result, the interaction matrix necessar-
ily has zero as a multiple singular value, so that U is
non-invertible. One can nevertheless define its pseudo-
inverse as the diagonal matrix U+ whose general term is
1/Ui if Ui ̸= 0 and zero otherwise. Using this notation,
the standard integral AO controller shall be defined by
a temporal domain equation in the form

uk = uk−1 +WGU+V tyk , (33)

where G is a diagonal matrix with general term gi ≥ 0
(with gi = 0 when Ui = 0), so that the corresponding

controller transfer function is
(
1− z−1

)−1
WGU+V t.

Hence, the closed-loop transfer function between the
transformed phase variables ψtur ≜ V tDϕtur and ψres ≜
V tDϕres is diagonal, with i-th term equal to

Hi (z) =
1− z−1

1− z−1 + giz−2
. (34)

This scalar disturbance rejection function is in the form
Hi = (1 + Li)

−1
, with Li (z) = giz

−2/
(
1− z−1

)
. In

the absence of sensor noise, the performance criterion is
equal to

Jd(u) = E(∥ψres∥2)

=
∑
i

1

2π

∫ 2π

0

∣∣Hi(e
jθ)
∣∣2 Sψtur,i(e

jθ)dθ , (35)

where E(·) stands for mathematical expectation. Each
term of this sum can be evaluated and/or optimized
(by tuning the scalar gains gi’s) independently, using
elementary frequency-domain techniques. The standard
default setting is gi = 0.5 for all modes, which guaran-
tees closed-loop stability with a gain margin of 3 dB. Al-

ternatively, in the so-called Optimized Modal Gain In-
tegrator approach, the gi’s are tuned independently, us-
ing whatever information is available on the PSD of the
turbulent eigenmodes defined by the coordinates of ψtur

[21].

Such a standard control approach is not without merits.
Some stem from the fact that it is only a multi-variable
‘I’ control: ability to nullify the impact of constant ad-
ditive disturbances, such as actuator and/or sensor off-
sets, plus low real-time computational cost. Another is
that it requires only limited a priori knowledge on the
system, especially since the interaction matrix DN can
be experimentally calibrated by the simple (if somewhat
tedious) expedient of sending a finely focused laser beam
on the DM, pushing each DM’s actuator in turn and reg-
istering the corresponding effect on the WFS.

How does standard AO control compare with LQG? Let
us start with real-time computational burden. In the
standard integrator approach, when nu DM controls are
computed from ny WFS measurements, nuny multipli-
cations are required at each time slot. For LQG control
estimating nϕ coordinates of the turbulent phase and us-
ing the AR(1) model (21) with diagonal state transition
matrix, back-of-the-envelope calculations show that the
minimal real-time computational burden is something
in the order of nϕ(nu + 2ny) + nuny multiplications.

To get a deeper insight, onemay reinterpret the standard
approach in a state-space framework. It is immediately
checked that (33) corresponds to a reconstructed feedfor-

ward control in the form (9), where the prediction ϕ̂turk+1|k
is obtained using a suboptimal observer (i.e., not neces-
sarily a Kalman filter) adapted to an implicit stochas-
tic disturbance model ϕturk+1 = ϕturk + νk [30? ]. While
this random walk is unstable, and thus inherently prone
to induce controller wind-up, it is likely to yield one
step-ahead predictions pretty similar to those derived
from the slow-moving AR(1) model in Section 5. Note
that when integrators are replaced by scalar correctors
of higher order [13, 59, 15], this can be reinterpreted as
an observer-based control structure adapted to implicit
stochastic models of higher order. More precisely, correc-
tors of order nc would correspond to ARMA(nc, nc − 1)
models of ψtur.

This state-space reinterpretation of the standard ap-
proach reveals an important drawback. The implicit tur-
bulent phase model turns out to be restricted to the sub-

space Im (N) ∩ ker (D)
⊥

– in plain English, the part of
the turbulence which, should it stay constant over time,
could be simultaneously analyzed by the WFS and com-
pensated by the DM. This makes sense as long as one
only aims at predicting/nullifying future values of y –
which is mostly what matters in standard AO, where
direction of interest coincides with direction of measure-
ment. This is no longer the case in WfAO, where one
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seeks to minimize the variance of the residual phase in di-
rection(s) of interest which happen not to coincide with
the direction(s) of analysis, as explained in next section.
For such configurations, an LQG control based on a tur-
bulent phase model incorporating relevant prior infor-
mation on the spatio-temporal correlation structure (in-
cluding, crucially, the part not seen by the WFS) can be
expected to do significantly better.

8 Optimal MCAO control

Current AO systems suffer from anisoplanatism. Due to
this effect, the quality of the correction deteriorates dra-
matically and inexorably as the angular distance from
guide stars increases. The root cause of this problem is
the thickness of the earth’s atmosphere. More precisely,
the standard AO set-up in Fig. 1 implicitly assumes that
atmospheric turbulence can be reduced to a single flat
resulting turbulent layer at telescope’s pupil level. Yet,
the turbulence actually exhibits a distribution in vol-
ume, and should therefore be regarded rather as made
up of an infinite number of turbulent layers distributed
through the whole depth of the atmosphere, each with a
life of its own [11]. The consequence is anisoplanatism:
light rays emanating from the guide star and from an ob-
ject of interest located some angular distance away are
affected by different phase shifts. Correction in a direc-
tion distinct from the direction of analysis can be then
pretty lousy even if the AO control makes theWFS mea-
surement small.

This is where Multi-Conjugate Adaptive Optics kicks in
[14, 3]. Opticians have long mastered the trick of con-
jugating a DM with some arbitrary altitude h so that,
while physically located in the telescope’s path, it shall
generate an equivalent correction wavefront located at
altitude h. An AO system featuring several conjugated
DMs (associated with several WFSs pointing at differ-
ent guide stars) should therefore be able to significantly
reduce anisoplanatism by compensating the influence of
several turbulent layers in all directions [4]. Better still,
there is no obvious a priori limitation on MCAO per-
formance. Indeed, an ideal telescope fitted with an in-
finite number of DMs and provided with perfectly ac-
curate advance knowledge of the the three-dimensional
distribution of the turbulence could conceivably aim for
AO’s Holy Grail: perfect compensation in every possible
direction.

In practice, the number of DMs, WFSs and turbulent
layers in the system’s model shall be limited. As noted
in the introduction, a number of WfAO concepts have
been proposed in recent years. Detailing how the state-
space approach could be extended to all those configura-
tions would go beyond the scope of this paper. Instead,
for the sake of simplicity, we shall focus here on a pro-
totypical MCAO set-up made up of nM DMs and nGS

WFSs pointing at nGS guide stars. Likewise, it shall be

assumed that the turbulent phase can be decomposed as
nL independent layers. Note that the altitude of turbu-
lent layers and correction screens, nor even their num-
bers, do not necessarily match.

Consider now a set β ≜ {β1, β2, . . . , βnI
} of nI direc-

tions of interest, each of which is characterized by a pair
βi ≜ (βi,1, βi,2) of angular deviations (typically mea-
sured from the center of the field of view). Astronomical
objects, being located far away from the atmosphere, are
considered to be infinitely far. The cone formed by the
light emanating from one object of interest and reaching
the telescope’s aperture becomes a tube, the diameter of
which is equal to the telescope’s one, see Fig. 5. The im-
age distortion along direction βi is encapsulated in the
resulting phase obtained by summing the intersections
of all turbulent layers and correction screens with this
particular tube. This also applies to objects of analysis,
i.e. guide stars. All turbulent and correction phases need
therefore to be defined, for each layer, on a meta-pupil
large enough to encompass all tubes of interest and anal-
ysis.

Fig. 5. Typical MCAO setup with nM = 2 DMs, nL = 3
turbulent layers, nI = 1 direction of interest β and nGS = 2
directions of analysis α1 and α2, with α2 = 0.

The turbulent phase ϕtur is now defined as the collection
of the turbulent phases ϕtur,ℓ, for all turbulent layers
ℓ = 1, . . . , nL. Likewise, the correction phase ϕcor and
the control vector u are respectively the collections of
the correction phases ϕcor,m and of the control tensions
um for m = 1, . . . , nM. Using this notation, the residual
resulting phase in the direction of interest βi can be
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written as

ϕresβi
≜

nL∑
ℓ=1

M tur,ℓ
βi

ϕtur,ℓ −
nM∑
m=1

M cor,m
βi

ϕcor,m (36)

=M tur
βi
ϕtur −M cor

βi
ϕcor (37)

where the matrices M tur
βi

≜
(
M tur,1
βi

, . . . , M tur,nL

βi

)
and

M cor
βi

≜
(
M cor,1
βi

, . . . , M cor,nM

βi

)
are deduced from the

MCAO geometry: M tur,ℓ
βi

and M cor,m
βi

are operators
which cut out pupil-sized slices of the turbulent layer ℓ
and correction screen m in direction βi; the sum of the
contributions of all layers is then performed to obtain
the residual residual phase ϕresβi

in (36).

A natural performance criterion can now be defined as
the sum of the residual phases’ variances in all the di-
rections of interest, i.e.

Jc
β (u) ≜ lim

τ→+∞

1

τ

∫ τ

0

(
nI∑
i=1

∥∥ϕresβi
(t)
∥∥2)dt . (38)

Assuming as before that each DM has linear and instan-
taneous response, so that for all t in [kT, (k + 1)T ), the

correction phase of the j-th DM is ϕcor,j (t) = Nju
j
k, one

immediately gets that in this sampling interval

nI∑
i=1

∥∥ϕresβi
(t)
∥∥2 =

∥∥M tur
β ϕtur (t)−M cor

β Nuk
∥∥2 (39)

where N is the so-called generalized influence matrix,
defined as a block-diagonal matrix with general termNj .
The linear operatorsM tur

β andM cor
β correspond respec-

tively to the vertical concatenation of M tur
βi

and M cor
βi

for i = 1, . . . , nI. They depend only on direction β and
altitudes of turbulent and correction layers. Using this
notation, and reasoning along the same lines as in Sec-
tion 3, it is immediately checked that minimizing Jc

β is
equivalent to minimizing at each time

Jd
β,k (uk) ≜ E

(∥∥M tur
β ϕturk+1 −M cor

β Nuk
∥∥2 | Ik) . (40)

Assuming for the sake of simplicity thatM cor
β N has full

column rank, this would result in the optimal MCAO
control

uoptk ≜ argmin
uk

Jd
β,k(uk)

=
(
(M cor

β N)tM cor
β N

)−1
(M cor

β N)tM tur
β ϕ̂turk+1|k.

(41)

Consider now the measurement process. Under the as-
sumption that the output yj of the j-th WFS is a linear

function (with matrix Dj) of the residual phase in the
direction αj , it can be modeled as

yjk = Dj

(
1

T

∫ (k−1)T

(k−2)T

ϕresαj
(t) dt

)
+ wjk (42)

where wj is a Gaussian white noise. Denoting as α ≜
{α1, α2, . . . , αnGS} the set of measurement directions,
this can be rewritten in compact form as

yk = D
(
M tur
α ϕturk−1 −M cor

α Nuk−2

)
+ wk (43)

whereD,M tur
α andM cor

α are constructed similarly toN ,
M tur
β and M cor

β .

Finally, let the evolution of each turbulent layer be de-
scribed for example by an AR(1) model similar to (21),
i.e.

ϕtur,ik+1 = Atur
i ϕtur,ik + vik. (44)

Denoting as Atur the block-diagonal matrix with general
term Atur

i , it is obvious that an adequate state represen-
tation can be constructed using the same definition of
state vector x and of matricesA andB given in (29), with
ϕtur being the vertical concatenation of {ϕtur,i}i=1,...,nL

,
and with

C ≜
(
0 DM tur

α 0 −DM cor
α N

)
. (45)

As indicated in Section 5, this straightforward extension
from standard AO to MCAO would not be feasible for a
choice of state vector including for example occurrences
of the residual phase.

The optimal control is obtained, as in the classical AO
case, in reconstructed disturbance feedforward form (a
disturbance feedforward control where the nonmeasured
disturbance is estimated using an observer): the output
of the steady-state Kalman filter derived from this state
representation is plugged into (41). Note that while this
system is structurally neither controllable nor observ-
able, it is nevertheless stable, so that the filtering alge-
braic Riccati equation has a unique solution which can
be computed using standard numerical procedures.

9 Experimental results for an off-axis configu-
ration

Off-axis AO is a particular case of MCAO, where only
one on-axis WFS and one DM are considered, with dis-
tinct directions of analysis and interest. This configura-
tion has the advantage of making it possible to be tested
on any classical AO system, and is also a convenient way
to demonstrate anisoplanatism effects. In this section,
performance is compared between a standard integrator
and LQG control.
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The star of interest is distinct from the GS with an an-
gular separation β, and the GS is on-axis, i.e. the direc-
tion of analysis is α = 0, see Fig. 6. A Shack-Hartmann
WFS measures on-axis residual phase. A single turbu-
lence layer at altitude h is considered and the unique
DM is optically conjugated with the entrance pupil. The
light beams from both on-axis and off-axis sources cor-
respond to the two footprints A and B on the turbulent
layer, which also correspond to the projections of the
telescope’s aperture in each direction. Turbulence at al-
titude h is then predicted in the whole meta-pupil C.

Fig. 6. Off-axis configuration. The GS is on-axis (α = 0),
whereas the direction of interest is off-axis, the two stars
being separated by an angle β. A single layer is considered,
at altitude h.

Using notations defined in Section 8, as the DM is con-
jugated with the telescope’s pupil, projectors M cor

α and
M cor
β are equal to identity. Therefore, criterion (40),

measurement equation (43) and optimal control (41) be-
come respectively

Jd
β,k(uk) = ∥M tur

β ϕturk+1 −Nuk∥2, (46)

yk =D(M tur
α ϕturk−1 −Nuk−2) + wk, (47)

uoptk =
(
N tN

)−1
N tM tur

β ϕ̂turk+1|k. (48)

All experiments have been performed on ONERA’s test
bench BOA (see Fig. 7). This bench includes a turbu-
lence generator (turbulent phase screen), two sources
(fibered LASER diodes) and a telescope simulator, the
AO system (DM andWFS) and an imaging camera. The
turbulence layer is generated thanks to a rotating phase

screen mirror (made at Observatoire de Paris-Meudon)
which reproduces wind effects and Kolmogorov statis-
tics. The turbulence strength has been chosen weak but
in the range values of turbulence in altitude observed at
Mount Paranal, Chili (see [8]).

Fig. 7. ONERA test bench BOA: red line indicates the optical
path. Dimensions are 2 m×1 m.

Depending on the turbulent layer’s altitude h, the inter-
section of footprints A and B may vary, together with
their relative separation defined as δ = βh/D, where D
is here the telescope’s pupil diameter. This is thus a rele-
vant measure of the distance between the sources. A rel-
ative separation of δ =40 % roughly corresponds in this
set-up to an angular separation of β = 4 arcmin for a
D = 8 meter telescope and a turbulent layer at h = 3000
m.

Wave-front correction is performed using two mirrors, a
tip-tilt mirror with two degrees of freedom, and a 9×9
actuator piezo-electrical DM where only 69 actuators
are used. The total number of actuators is thus nu =
71. The Shack-Hartmann WFS has 8×8 sub-apertures,
52 of which are used, leading to ny = 104 coordinates
in measurement vector y (52 x-slopes and 52 y-slopes).
Turbulence phase is estimated using nϕ = 150 Zernike
modes. The real-time computer (a PC under Linux) is
running 5 at T = 60 Hz. Finally, the imaging camera is
a CCD Princeton with 512×512 pixels.

Comparison of different point spread functions (PSFs)
obtained experimentally on the imaging camera are pre-
sented in Fig. 8 for both stars. At the top (Fig. 8.a),

5 A new real-time computer built by Shaktiware Inc. since
allows 90 estimated modes at 500 Hz or 300 estimated modes
at 130 Hz.
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no correction is performed (open-loop), and PSFs are
simply two blurred spots, giving a Strehl ratio (SR) of
7%. In the middle (Fig. 8.b), on-axis correction is per-
formed thanks to an optimized integrator, and the ob-
ject of interest (off-axis) is severely blurred. The inte-
grator achieves an SR of 93 % on-axis and performance
drops to 34 % in the direction of interest. Of course, off-
axis correction is not possible with a standard integrator
as it seeks to nullify the measurements. Off-axis optimal
LQG control achieves 81 % SR on the object of interest
(Fig. 8.c) and 43 % SR on-axis.

Fig. 8. Experimental PSFs for on-axis GS (left column) and
off-axis star of interest (right column) a. in open-loop (top),
in closed-loop b. with an integrator (middle) and c. with an
LQG control (bottom). The relative separation is 20%, and
the SRs are respectively from top to bottom and left–right
7%–7%, 93%–34% and 43%–81%.

As relative separation increases, anisoplanatism de-
grades performance, as illustrated by experimental
results reported in Fig. 9: the farthest the object of in-
terest is away from the GS, the least turbulence in the
corrected direction is similar to the one analyzed by the
WFS. Obviously, the LQG control is a long way ahead
of the integrator because correction is performed in the
desired direction, with an SR of about 60 % for LQG
control at 30 % of relative separation, against only 20
% SR with the integrator.

10 Conclusion and some perspectives

From the vantage point of control theory, the approach
to AO control design presented in this paper can be
viewed as a special case of discrete-time reconstructed
disturbance feedforward control, in a standard, albeit
strongly multi-variable, LTI framework. From an ap-
plicative point of view, its main attraction lies undoubt-
edly in the inherent flexibility of the observer-based con-
trol structure. Indeed, working along the same lines as
in Section 8, the LQG construction can be almost ef-
fortlessly extended to the new AO concepts mentioned
in the introduction by the essentially simple process of
making appropriate modifications to the performance
criterion, the state vector and the measurement equa-
tion. These include open-loop AO systems, where DMs

Fig. 9. Experimental performances of LQG control compared
with integrator, as a function of the relative separation. Error
bars are indicated, corresponding to experiments realized on
different days.

are positioned in the telescope’s path so as not to af-
fect WFS measurements. Such configurations have been
proposed for wide-field of view imaging, where a large
number of small DMs are to perform local corrections
around objects of special interest (multi-object AO, see
e.g. [24]). An alternative control strategy in open-loop
AO is to perform phase reconstruction based on the last
available WFS measurement (an inverse problem), and
to project orthogonally the estimate onto the DM, see
e.g. [? ] and references therein, or [? ]. A variant is to re-
construct the measurements in the direction of interest
and to project them onto the DM, which has been ap-
plied to the CANARY multi-object AO on-sky demon-
strator [? ? ].

Another potentially interesting extension is vibration fil-
tering. By inserting in the model additional states cor-
responding to spring-mass subsystems, observer-based
control can filter out and/or compensate telescope vibra-
tions. This has been validated in simulations and test-
bench experiments [48? ? ? ]. The reconstructed feed-
back structure provides a natural anti-wind-up mecha-
nism, and performance degradation due to actuator sat-
uration can be easily quantified in absence of DM dy-
namics [29].

The state-space approach also authorizes temporal flex-
ibility. More precisely, it is readily checked that all the
constructions presented in this paper can be adapted to
multi-rate configurations where the WFS and DM op-
erate at different sampling rates [55? ], and/or in an
asynchronous manner [53, 26? ? ]. This may turn out
to be especially relevant in astronomical AO systems,
where the WFS’s CCDs operate in conditions of weak
illumination, so that making them run too fast results
in exploding measurement noise. This limitation could
conceivably been circumvented by updating the control
action several times between two consecutive WFS mea-
surements. However, it should be noted that this would
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put more demand on the predictive power of the turbu-
lent phase model, because the Kalman filter would have
to operate in “observer open-loop” pure prediction mode
during several successive control steps.

More generally, the relevance of the LQG approach is
bound to depend heavily on the adequation (or lack
thereof) between the state-space model upon which this
prediction is based and the physical reality.What is truly
remarkable is that controllers based on simple AR(1)
models with diagonal transition matrix perform gener-
ally better than the standard integral action control.
However, as noted in Section 5, more refined disturbance
models are needed for higher performance.

Identification of stochastic disturbance models for AO
control has become a critical issue. A first logical step
is to investigate AR models of higher orders. For exo-
planet detection, AR(2) tip-tilt models have been chosen
for example for the instruments SPHERE (on the VLT)
and GPI (Gemini planet imager), both being on 8-meter
class telescopes [19? ? ]. Prior physical knowledge on
perturbation can be combined with input/output data
from the AO loop itself, as in [? ? ? ]. Models identified
using subspace identification and solely from WFS mea-
surement data have been proposed too [25? ? ]. Subspace
methods have also been used to identify a dynamical
discrete-time model of the DM+WFS subsystem [? ].

One could imagine more complex models combining
temporal priors with data from the loop itself and mea-
surements from external sources, e.g. telescope-mounted
atmospheric radar/lidar devices. Such a combination of
information of different nature will inevitably require
more sophisticated tuning methods. This is a difficult
and largely open problem. On the other hand, an attrac-
tive potential benefit would be to refine the perturba-
tion models while reducing the risk of parameter overfit
[36], and thereby to increase performance robustness.

Another related difficulty is that while it is reasonable to
regard atmospheric turbulence as a stationary process
with respect to the AO loop’s own time scale, its corre-
lation structure nevertheless evolves with atmospheric
conditions. Because astronomical imaging involves very
long exposure times, operational LQG AO controllers
should likely be equipped with some kind of self-tuning
mechanism, based on periodic partial re-identification of
the disturbance model. When based on physical priors,
these models can benefit from methods that estimate
spatial and geometric parameters from WFS measure-
ments, see e.g. [? ].

A closely related issue is of course the robustness in per-
formance of the proposed LQG design with respect to
modeling uncertainty/variations. While this is clearly
a difficult problem in a general reconstructed feedback
framework, an important simplification occurs when

the DM’s dynamics are neglected, since the LQG solu-
tion only involves one Riccati equation (for the Kalman
filter). Some preliminary performance sensitivity tests
have been simulated in good seeing configurations on
a classical AO system with AR(1) models, showing a
good robustness to model errors 6 . In addition, such
crude AR(1) models have been used successfully in ex-
perimental conditions where a Taylor type turbulence
(a rotating phase screen) does not correspond to any
AR(1) model. Preliminary tests in MCAO have shown
good robustness to parameter variation, where matrices
M tur
α , M tur

β , M cor
α and M cor

β may also be slightly dif-
ferent from the real geometric configuration of the AO
system to be controlled. More general results of practi-
cal interest could however possibly be obtained through
theoretical studies of performance robustness.

This also suggests that the assumption of negligi-
ble DM’s response time should not be discarded too
frivolously: while an optimal LQG controller based on
a more refined DM’s model should in theory yield op-
timal performance, it is also bound to result in a more
complex and less robust design, raising possibly tricky
implementation issues – particularly if no real-time mea-
surements of the DM’s internal variables are available.
Neglecting DM’s dynamics may thus remain a sensible
engineering trade-off for a number of AO systems.

This does not mean that the theoretical and practi-
cal issues raised by DM’s dynamics should not be ac-
tively pursued. Indeed, new generation instruments in-
clude DMs with diameters in the order of one meter or
more, which is about ten times the size of current DMs.
These future DMs are generally expected to run at fre-
quencies around 1 kHz. As an illustration, the future
secondary mirror on the VLT will have 1100 actuators
distributed over a 1.12 meter diameter surface, with a
minimum sampling frequency of 500 Hz, to be increased
to about 1 kHz. In the European Extremely Large Tele-
scope project, a DM with a diameter of 2.5 m and be-
tween 5000 and 10000 piezoelectric actuators is envi-
sioned, together with smaller DMs between 40 and 60
cm. The American Thirty Meter Telescope project fea-
tures DMs in the order of 30 to 80 cm, with 61×61 to
121×121 actuators.

XXX Local control, model ident using FEM (ref GEPI),
pb des modes propres.

Thus, one can state fairly confidently that at some point
in the future, DM’s dynamics, including non-linearities,
will matter, if only because the long-term trend towards
ever bigger DMs operating at ever higher sampling rates,
and possibly made mechanically more flexible by the

6 50% variation of Σϕ leads to less than 0.2 % SR loss, 50%
variation of V leads to negligible loss, 50% variation of Σw

leads to less than 0.1 % SR loss
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use of innovative actuator technologies, has set the AO
loops’ disturbance rejection bandwidth and the set of
DM’s resonance frequencies on an implacable collision
course.
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A Inter-sampling variance

The inter-sampling variance ε2sampl is un incompressible
error term due to the application of the control through
a zero-order hold. It depends only on the turbulence
characteristics and sampling frequency of the AO loop.
Take its definition in (6),

ε2sampl = lim
K→+∞

1

K

K−1∑
k=0

(
1

T

∫ (k+1)T

kT

∥∥ϕtur (t)− ϕturk+1

∥∥2 dt) ,
(A.1)

with the following hypothesis: the continuous vari-
able ϕtur(t) is a weak stationary stochastic process,

with known correlation matrix E(ϕtur(t)ϕtur(t+ τ)
t
) =

Σϕtur(τ). Let us define ψtur(t) as the filtered of ϕtur(t)
by the filter with impulse response

h(t) =
1

T
for 0 ≤ t < T. (A.2)

The filtered process ψtur(t) is thus obtained as

ψtur(t) =
1

T

∫ T

0

ϕtur(t− u)du. (A.3)

The discrete process ϕturk = 1
T

∫ kT
(k−1)T

ϕtur(t)dt is ob-

tained directly as the sampling of ψtur(t) at instants kT ,
that is ϕturk = ψtur(kT ).

Develop (A.1) and invoke stationarity for the last line:

ε2sampl =E
(
∥ϕtur(t)∥2

)
− E

(
∥ψtur(kT )∥2

)
,

=E
(
∥ϕtur(t)∥2

)
− E

(
∥ψtur(t)∥2

)
. (A.4)

We thus have ε2sampl = traceΣϕtur(0) − traceΣψtur(0),

where the correlation matrix Σψ(τ) = E(ψtur(t)ψtur(t+
τ)t) is available as Σϕtur is known. By Parseval’s theo-
rem,

ε2sampl = trace

∫ +∞

−∞
Sϕtur(f)df−trace

∫ +∞

−∞
Sψtur(f)df,

(A.5)
with Sϕtur and Sψtur the PSDs of ϕtur(t) and ψtur(t)
respectively. From (A.2) and (A.3), Sψtur is computed as

Sψtur(f) = |H(f)|2Sϕtur(f) = |sinc(πfT )|2Sϕtur(f),
(A.6)

so that ε2sampl = trace
∫ +∞
−∞ (I − |sinc(πfT )|2)Sϕtur(f)df.

For a phase expressed on a Zernike basis, the inter-
sampling variance takes the form

ε2sampl =

∞∑
i=1

∫ +∞

−∞
(1− |sinc(πfT )|2)Sai(f))df, (A.7)

where the Sai ’s are the PSDs of the Zernike coefficients
of the turbulent phase, which can be computed using
standard priors [9]. The evaluation of (A.7) with respect
to different atmospheric conditions can be found in [46].

References

[1] Horace W. Babcock. The possibility of compensat-
ing astronomical seeing. Pub. Astron. Soc. Pacific,
65:229, 1953.

[2] Lucie Baudouin, Christophe Prieur, Fabien Guig-
nard, and Denis Arzelier. Robust control of a bi-
morph mirror for adaptive optics system. J. Applied
Optics, 47(20):3637–3645, 2008.

[3] Jacques M. Beckers. Increasing the size of the iso-
planatic patch with multiconjugate adaptive optics.
In M.-H. Ulrich, editor, Very Large Telescopes and
their Instrumentation, volume 2 of ESO Conference
and Workshop Proceedings, pages 693–703, Garch-
ing Germany, March 1988. ESO.

[4] Jacques M. Beckers. Multi-conjugate adaptive op-
tics: experiments in atmospheric tomography. In
P. Wizinowich, editor, Adaptive Optical Systems
Technology, volume 4007, page 1056, Bellingham,
Washington, 2000. Proc. Soc. Photo-Opt. Instrum.
Eng., SPIE.

[5] Dennis S. Bernstein, LLawrence D. Davis, and
Scott W. Greeley. The optimal projection equa-
tions for fixed-order sampled-data dynamic com-
pensation with computational delay. IEEE Trans.
Autom. Control, AC-31:859–862, 1986.

[6] Tongwen Chen and Bruce A. Francis. Optimal
sampled-data control systems. Springer-Verlag,
London, 1995.

[7] Alessandro Chiuso, RiccardoMuradore, and Enrico
Marchetti. Dynamic calibration of adaptive optics
systems: A system identification approach. pages
750–755, Cancun, 2008. 47th IEEE Conference on
Decision and Control.

[8] Jean-Marc Conan and Gérard Rousset, editors.
Multi-Conjugate Adaptive Optics for very large tele-
scopes, volume 6(10) of Comptes Rendus Physique,
pages 1035–1194. Académie des Sciences / Elsevier
Masson, France, dec 2005.

[9] Jean-Marc Conan, Gérard Rousset, and Pierre-
Yves Madec. Wave-front temporal spectra in high-
resolution imaging through turbulence. J. Opt. Soc.
Am. A, 12(12):1559–1570, 1995.

[10] Carlos Correia, Henri-François Raynaud, Caroline
Kulcsár, and Jean-Marc Conan. Globally opti-
mal minimum-variance control in adaptive optical

17



systems with mirror dynamics. In Claire E. Max
Norbert Hubin and Peter L. Wizinowich, editors,
Adaptive Optics Systems: Real time Control and Al-
gorithms, volume 7015, page 70151F. Proc. Soc.
Photo-Opt. Instrum. Eng., 2008.

[11] Chris E. Coulman, Jean Vernin, and Alain Fuchs.
Optical seeing-mechanism of formation of thin tur-
bulent laminae in the atmosphere. Appl. Opt.,
34:5461–5474, 1995.

[12] Carlos E. De Souza and Graham C. Goodwin. In-
tersample variances in discrete minimum variance
control. IEEE Trans. Autom. Control, AC-29:759–
761, 1984.

[13] Caroline Dessenne, Pierre-Yves Madec, and Gérard
Rousset. Optimization of a predictive controller
for closed-loop adaptive optics. Appl. Opt.,
37(21):4623–4633, jul 1998.

[14] Robert H. Dicke. Phase-contrast detection of tele-
scope seeing and their correction. Astron. J.,
198(4):605–615, 1975.

[15] Brent Ellerbroek and Curtis R. Vogel. Simulations
of closed-loop wavefront reconstruction for multi-
conjugate adaptive optics on giant telescopes. In
R. K. Tyson andM. Lloyd-Hart, editors,Astronom-
ical Adaptive Optics Systems and Applications, vol-
ume 5169, pages 206–217. Proc. Soc. Photo-Opt.
Instrum. Eng., SPIE, 2003.

[16] Thierry Fusco. Correction partielle et aniso-
planétisme en Optique Adaptative : traitements a
posteriori et Optique Adaptative Multiconjuguée.
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