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GENERIC NON-UNIQUENESS OF MINIMIZING HARMONIC MAPS
FROM A BALL TO A SPHERE

ANTOINE DETAILLE AND KATARZYNA MAZOWIECKA

Abstract. In this note, we study non-uniqueness for minimizing harmonic maps from
B3 to S2. We show that every boundary map can be modified to a boundary map that
admits multiple minimizers of the Dirichlet energy by a small W 1,p-change for p < 2.
This strengthens a remark by the second-named author and Strzelecki. The main novel
ingredient is a homotopy construction, which is the answer to an easier variant of a
challenging question regarding the existence of a norm control for homotopies between
W 1,p maps.
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1. Introduction

Minimizing harmonic maps from B3 to S2 are defined as mappings with the least Dirichlet
energy

(1.1) E(u) :=

∫
B3

|∇u|2 dx

among maps u ∈ W 1,2(B3,S2) with fixed boundary datum u
∣∣
∂B3 = ϕ ∈ W

1
2
,2(∂B3,S2).

Here, we minimize in the class of Sobolev maps with values in a manifold (in our case, a
sphere); for s > 0 and p ≥ 1, this space is defined as

W s,p(M,N ) := {v ∈ W s,p(M,RL) : v(x) ∈ N for a.e. x ∈M},
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2 ANTOINE DETAILLE AND KATARZYNA MAZOWIECKA

where N ⊂ RL is a Riemannian manifold embedded into RL (in our case, N = S2) andM
is a compact Riemannian manifold (in our case, M = B3 or M = S2).

The space W 1,2(B3,S2) is not a linear space, but it is nevertheless a complete metric space
endowed with the metric defined by

dist (u, v) = ‖u− v‖W 1,2(B3) .

We emphasize that, although being a subset of it, the class W 1,2(B3,S2) exhibits some
striking qualitative differences with the linear space W 1,2(B3,R3). For example, not every
mapping u ∈ W 1,2(B3, S2) can be approximated by smooth maps ui ∈ C∞(B3,S2) in the
strong topology of W 1,2; see [14, Section 4]. However, maps ϕ ∈ W 1,2(S2,S2) can be
approximated in W 1,2 by smooth maps ϕi ∈ C∞(S2,S2); see [13, Section 3].

For ϕ ∈ W 1
2
,2(∂B3,S2), we also define the space

W 1,2
ϕ (B3,S2) := {v ∈ W 1,2(B3, S2) : v = ϕ on ∂B3 in the trace sense}

and note that this space is always nonempty. For instance, for a given smooth boundary
datum ϕ ∈ C∞(∂B3,S2), one can easily construct an extension u ∈ W 1,2(B3,S2) of ϕ, sim-

ply by considering u(x) = ϕ
(
x
|x|

)
. More generally, any boundary map ϕ ∈ W 1

2
,2(∂B3, S2)

admits an extension u ∈ W 1,2(B3,S2); see [6, Theorem 6.2]. Once again, we emphasize that
this is not an immediate consequence of the analogue property of linear Sobolev spaces.
For example, there exists a boundary datum ϕ ∈ W 1

2
,2(∂B3,S1) which has no extension

u ∈ W 1,2(B3,S1); see [6, 6.3].

Minimizing harmonic maps satisfy the following system of Euler–Lagrange equations

(1.2)

{
−∆u = |∇u|2u in B3,

u = ϕ on ∂B3.

It is known that for every non-constant boundary datum, the system (1.2) admits infinitely
many solutions; see [12]. Minimizers of (1.1) are not the only solutions to (1.2) (see, e.g.,
[5, Section 3]). However, even in the class of minimizing harmonic maps, we do not have
uniqueness for a given boundary datum ϕ : B3 → S2; there are many known examples. To
list a few:

• in [3, Section 3], there is an example of a planar boundary datum which admits two
different minimizers, one with values on the southern hemisphere and the other one
with values on the northern hemisphere;
• in [4, 2.2. Corollary], there is an example of a boundary datum for which there

exists a 1-parameter family of distinct energy minimizing maps;
• in [7, Section 5], there is an example of a boundary map which serves as a boundary

datum for at least two minimizers, one singular and the other one regular;
• in [1, 5.5 Theorem], there is an example of a boundary datum with mirror symmetry

for which there are at least two different minimizers without the mirror symmetry.
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Nevertheless, in the class of minimizing harmonic maps, we have the following generic
uniqueness result ([1] attributes this theorem to Almgren).

Theorem 1.1 ([1, Theorem 4.1]). Let ϕ ∈ W 1,2(S2,S2). For every ε > 0, there exists
ψ ∈ W 1,2(S2, S2) such that ‖ϕ− ψ‖W 1,2(S2) < ε and for which there exists exactly one

energy minimizer u : B3 → S2 having boundary datum ψ. Moreover, ψ coincides with ϕ
outside of Bε(x) ∩ S2, for some x ∈ S2.

In [11], the second-named author and Strzelecki suspected that generic non-uniqueness
occurs, when taking into account small perturbation of the boundary datum in the topology
of the space W 1,p for p < 2. The main result of this note is the strengthening of [11, Remark
4.1].

Theorem 1.2. Let ϕ ∈ C∞(S2, S2). For every ε > 0, there exists ψ ∈ C∞(S2,S2) such that
‖ϕ− ψ‖W 1,p(S2,S2) < ε which serves as a boundary datum for at least two energy minimizing

maps from B3 to S2 having a different number of singularities.

Otherwise stated, Theorem 1.2 asserts that boundary data for which non-uniqueness occurs
are dense in W 1,p(S2,S2). This strengthens [7, Section 5] and [11, Remark 4.1], which
provide existence of one boundary map for which non-uniqueness occurs. To be precise,
as it is stated, Theorem 1.2 only asserts that boundary data subjected to non-uniqueness
are dense in C∞(S2, S2) with respect to the W 1,p topology. In turn, C∞(S2,S2) is dense
in W 1,p(S2,S2) (see e.g. [2, Theorem 1]), which ensures the density of boundary data for
which non-uniqueness occurs in the whole W 1,p(S2, S2).

Both Theorem 1.1 and Theorem 1.2 are in line with the stability results: On one hand, it is
known that small perturbations of boundary data (for which there is a unique minimizer)
in the W 1,2 norm do not change the number of singularities for corresponding minimizers
(see [7] for perturbations in the W 1,∞ norm, [10] and [8] for perturbations in the W 1,2

norm). On the other hand, small perturbations of the boundary datum in the W 1,p norm
for p < 2 can change the number of singularities for corresponding minimizers [11].

We prove Theorem 1.2 in Section 3. To do so, roughly speaking, we follow an example
by Hardt–Lin [7, Section 5]. We start with any smooth boundary datum and use the
construction of a boundary map (homotopic to the original one) of [11] (see [9] for necessary
modifications) for which a Lavrentiev gap phenomenon occurs. In Section 2, we show that
a homotopy between these two maps can be chosen small in W 1,p-norm for p < 2, which is
the novelty of this note, and prove that within this homotopy, there is a boundary datum
with the required properties.

As we explained, our key contribution in this note, which allows the transition from the
existence to the density of boundary data where non-uniqueness occurs, is the homotopy
construction presented in Section 2. We conclude this introduction with some extra com-
ments concerning this construction.
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Assume that one is given 1 ≤ p < 2 and two maps ϕ and ψ ∈ C∞(S2, S2) that have the
same topological degree. Therefore, there exists a continuous, and even smooth homotopy
connecting ϕ to ψ. A natural question is whether or not, knowing that ϕ and ψ are
close with respect to the W 1,p distance, one can choose the homotopy between ϕ and
ψ to remain close to ϕ and ψ all along the deformation. More precisely, one could for
instance expect that there exists a constant C > 0 depending on p such that a homotopy
H ∈ C∞(S2 × [0, 1],S2) between ϕ and ψ can be chosen so that

(1.3) ‖ϕ−Ht‖W 1,p(S2) ≤ C ‖ϕ− ψ‖W 1,p(S2) for every 0 ≤ t ≤ 1.

Here, Ht stands for the map H(·, t). The question is already interesting if we assume in
addition that ϕ and ψ coincide outside of a small disk. For instance, one could ask whether
or not a homotopy such that (1.3) holds can be found under the additional assumption that
ϕ = ψ outside of a ball of radius r, for some r > 0 sufficiently small, possibly depending
on the map ϕ that would be fixed in advance.

We are not able to solve this question, and a precise statement of the problem in a more
general context is given as Open Problem 2.3. However, we are able to solve a weaker
version of this problem, which is nevertheless sufficient for our purposes. Namely, we prove
that, if the maps ϕ and ψ coincide outside of a small ball, then a smooth homotopy between
them can be found such that ‖ϕ−Ht‖W 1,p(S2) is controlled, not by the distance between ϕ
and ψ, but by the sum of their norms on a neighborhood of the region where they differ.
This is the content of the main result of Section 2, Proposition 2.1. This allows us to
deduce that, for a fixed ϕ and a given ε > 0, one can choose the radius r > 0 sufficiently
small such that, for any map ψ sufficiently close to ϕ such that ϕ = ψ outside of Br(x), a
homotopy H connecting ϕ to ψ can be found such that

‖ϕ−Ht‖W 1,p(S2) ≤ ε for every 0 ≤ t ≤ 1;

see Corollary 2.2. This is sufficient to prove our main result, Theorem 1.2, but does not
solve Open Problem 2.3, as in our proof the radius r > 0 of the ball outside of which the
maps ϕ and ψ are required to coincide has to depend on ε, ruling out the possibility of
controlling ‖ϕ−Ht‖W 1,p(S2) uniformly in t solely by ‖ϕ− ψ‖W 1,p(S2) with our argument.

Notation. We denote by B3 a Euclidean unit ball in R3. We will write Sn for the unit
n-dimensional sphere. For a point x ∈ Sn and r > 0, we will write Br(x) for a geodesic ball
of radius r around x. We will write A - B whenever there is a constant C (independent of
all crucial quantities) such that A ≤ CB. Throughout this paper, the term minimizer will
always refer to an S2-valued mapping minimizing the Dirichlet energy with given boundary
datum.
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2. Homotopy construction

We will assume in this section that N is a (non necessarily compact) Riemannian manifold.
We work on the sphere Sn, but the result may be readily extended to an arbitrary domain,
either an open subset of Rn or a Riemannian manifoldM of dimension n. We also always
assume that p < n.

Proposition 2.1. Let ϕ ∈ C∞(Sn,N ) and p < n. For every r > 0, for every x ∈ Sn, and
every ψ ∈ C∞(Sn,N ) homotopic to ϕ and satisfying ϕ = ψ on Sn \ Br(x), there exists a
homotopy H ∈ C∞(Sn × [0, 1],N ) from ϕ to ψ such that

sup
0≤t≤1

‖ϕ−Ht‖W 1,p(Sn) ≤ C
(
‖ϕ‖W 1,p(B2r(x))

+ ‖ψ‖W 1,p(B2r(x))

)
,

for some constant C > 0 depending only on n and p.

This proposition can be used in combination with Lebesgue’s lemma to obtain a homotopy
which remains close to ϕ in W 1,p. Indeed, choosing r sufficiently small, depending on
ϕ, we may ensure that ‖ϕ‖W 1,p(B2r(x))

is as small as we want, uniformly with respect to

r. Since ‖ψ‖W 1,p(B2r(x))
≤ ‖ϕ‖W 1,p(B2r(x))

+ ‖ϕ− ψ‖W 1,p(Sn), assuming in addition that

‖ϕ− ψ‖W 1,p(Sn) is small, we can make sup0≤t≤1 ‖ϕ−Ht‖W 1,p(Sn) as small as we want. This
yields the following corollary.

Corollary 2.2. Let ϕ ∈ C∞(Sn,N ) and p < n. For every ε > 0, there exists r >
0 sufficiently small, depending on ϕ, and there exists δ > 0 such that, for every x ∈
Sn and every ψ ∈ C∞(Sn,N ) homotopic to ϕ and satisfying ϕ = ψ on Sn \ Br(x) and
‖ϕ− ψ‖W 1,p(Sn) ≤ δ, there exists a homotopy H ∈ C∞(Sn × [0, 1],N ) from ϕ to ψ such
that

sup
0≤t≤1

‖ϕ−Ht‖W 1,p(Sn) ≤ ε.

Proof of Proposition 2.1. Let G ∈ C∞(Sn × [0, 1],N ) be any homotopy connecting ϕ to
ψ with G0 = ϕ and G1 = ψ. Since ϕ = ψ outside of Br(x), we may assume that G is
stationary outside of Br(x), i.e., for each t ∈ [0, 1], we have Gt = ϕ = ψ on Sn \ Br(x).
Consider τ > 0, which will be chosen sufficiently small at a later stage. We are going to
rescale G, ϕ, and ψ from Br(x) to a smaller ball Bτ (x), while keeping them unchanged
outside of B2r(x). More specifically, let (Φt)0≤t≤1 be a family of smooth diffeomorphisms
of Sn such that Φt = id outside of B2r(x) and such that, on B2r(x), in the local chart given
by the exponential map around x, Φt is expressed as{

rx
(1−t)r+tτ if |x| ≤ (1− t) r + tτ ,

x
|x|

(
r

2r−(1−t)r−tτ (|x| − (1− t) r − tτ) + r
)

if (1− t) r + tτ ≤ |x| ≤ 2r.
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We define H ∈ C∞(Sn × [0, 1],N ) by

Ht :=


ϕ ◦ Φ3t if 0 ≤ t ≤ 1

3
,

G3(t−1/3) ◦ Φ1 if 1
3
≤ t ≤ 2

3
,

ψ ◦ Φ1−3(t−2/3) if 2
3
≤ t ≤ 1.

Of course, H is a homotopy from ϕ to ψ. It remains to show that, if τ > 0 is suitably
small, then H satisfies the required estimate.

For 0 ≤ t ≤ 1
3
, we note that ϕ− ϕ ◦Ht = 0 outside B2r(x). We readily obtain bounds on

the Jacobian and the derivatives of Φt, so that the change of variable theorem combined
with n− p > 0 implies that

‖ϕ−Ht‖W 1,p(Sn) ≤ ‖ϕ‖W 1,p(B2r(x))
+ ‖ϕ ◦ Φ3t‖W 1,p(B2r(x))

- ‖ϕ‖W 1,p(B2r(x))
.

Similarly, for 2
3
≤ t ≤ 1, we have

‖ϕ−Ht‖W 1,p(Sn) ≤ ‖ϕ‖W 1,p(B2r(x))
+‖ψ ◦ Φ3t‖W 1,p(B2r(x))

. ‖ϕ‖W 1,p(B2r(x))
+‖ψ‖W 1,p(B2r(x))

.

Concerning 1
3
≤ t ≤ 2

3
, we estimate

‖ϕ−Ht‖W 1,p(Sn) ≤ ‖ϕ‖W 1,p(B2r(x))
+
∥∥G3(t−1/3) ◦ Φ1

∥∥
W 1,p(B2r(x))

. ‖ϕ‖W 1,p(B2r(x))
+
∥∥G3(t−1/3)

∥∥
W 1,p(B2r(x)\Br(x))

+ τ
n−p
p

∥∥G3(t−1/3)
∥∥
W 1,p(B2r(x))

.

Since the homotopy G has been assumed to be stationary outside of Br(x), we know that∥∥G3(t−1/3)
∥∥
W 1,p(B2r(x)\Br(x))

= ‖ϕ‖W 1,p(B2r(x)\Br(x))
. On the other hand, by compactness, we

have
sup
0≤t≤1

‖Gt‖W 1,p(B2r(x))
≤ C1

for some possibly large constant C1 > 0. We may assume that either ‖ϕ‖W 1,p(B2r(x))
6= 0 or

‖ψ‖W 1,p(B2r(x))
6= 0. Indeed, if ‖ϕ‖W 1,p(B2r(x))

= 0 = ‖ψ‖W 1,p(B2r(x))
, this implies that both

ϕ and ψ are identically zero — note that this may only happen if 0 ∈ N — and we may
directly conclude by choosing H to be constantly zero. As p < n, we may therefore choose
τ > 0 sufficiently small, depending on C1, so that

τ
n−p
p

∥∥G3(t−1/3)
∥∥
W 1,p(B2r(x))

≤ ‖ϕ‖W 1,p(B2r(x))
+ ‖ψ‖W 1,p(B2r(x))

for every
1

3
≤ t ≤ 2

3
.

Hence, we deduce that

‖ϕ−Ht‖W 1,p(Sn) . ‖ϕ‖W 1,p(B2r(x))
+ ‖ψ‖W 1,p(B2r(x))

for every
1

3
≤ t ≤ 2

3
.

This concludes the proof. �

In Corollary 2.2, both the δ > 0 controlling ‖ϕ− ψ‖W 1,p(Sn) and the r > 0 depend
on ε. A very natural question is whether or not one may find a homotopy H so that
sup0≤t≤1 ‖ϕ−Ht‖W 1,p(Sn) is controlled only by ‖ϕ− ψ‖W 1,p(Sn). More precisely, we formu-

late the following open question (cf. [11, Problem, p.11]).
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Open Problem 2.3. Let ϕ ∈ C∞(Sn,N ). Does there exist some r > 0, possibly depending
on ϕ, such that for every x ∈ Sn and every ψ ∈ C∞(Sn,N ) homotopic to ϕ and satisfying
ϕ = ψ on Sn \ Br(x), there exists a homotopy H ∈ C∞(Sn × [0, 1],N ) from ϕ to ψ such
that

sup
0≤t≤1

‖ϕ−Ht‖W 1,p(Sn) ≤ ω
(
‖ϕ− ψ‖W 1,p(Sn)

)
,

where ω is a modulus of continuity satisfying ω (t)→ 0 as t→ 0.

One may expect ω to be linear in t, but any modulus of continuity would already be of
interest. The question is already interesting for maps S2 → S2.

3. Proof of the generic non-uniqueness

Proof of Theorem 1.2. Fix ε > 0 and ϕ ∈ C∞(S2,S2). We note first that, by Theorem 1.1
combined with Hölder’s inequality, we may find another mapping ϕ0 ∈ C∞(S2,S2) which
admits exactly one energy minimizer u0 : B3 → S2 among all maps having boundary datum
ϕ0, and such that ϕ0 differs from ϕ only on a set B ε

2
(x0) for some x0 ∈ S2 and is such that

(3.1) ‖ϕ− ϕ0‖W 1,p(S2) <
ε

2
.

We recall that, combining the regularity result [13, Theorem II] with the boundary regular-
ity [14, Theorem 2.7] of Schoen–Uhlenbeck, u0 can have only a finite number of singularities;
let us denote this number by M = # sing u (possibly M = 0).

Next, we apply Corollary 2.2 to ϕ0 ∈ C∞(S2, S2). We obtain the existence of a δ = δ(ε) > 0
and an r = r(ϕ0, ε) > 0 such that for any ψ ∈ C∞(S2,S2) that differs from ϕ0 only on the set
Br(x0) and such that ‖ϕ0 − ψ‖W 1,p(S2) < δ, there exists a homotopy H ∈ C∞(S2× [0, 1], S2)
with

(3.2) sup
0≤t≤1

‖ϕ0 −Ht‖W 1,p(S2) <
ε

2
.

Let ε1 := min{δ, r, ε
2
}. By [9, Theorem 2.3.1], we construct ϕ1 ∈ C∞(S2,S2) with the

properties:

(1) degϕ0 = degϕ1;
(2) ‖ϕ0 − ϕ1‖W 1,p < ε1 and ϕ0 = ϕ1 except on Bε1(x) for some point x ∈ S2;
(3) ϕ1 admits only one energy minimizer u1 : B3 → S2 having at least M + 1 singular-

ities.

To be precise, the statement [9, Theorem 2.3.1] gives only that H2({x ∈ S2 : ϕ0(x) 6=
ϕ1(x)}) < ε1, but following the lines of the proof, we may deduce that ϕ0 = ϕ1 except on
Bε1(x) for some point x ∈ S2.
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Now, let us take the homotopy Ht between ϕ0 and ϕ1 constructed in Corollary 2.2. Let

τ := sup{t ∈ [0, 1] : each energy minimizer with boundary datum Ht

has at most M singular points in B3}.

We argue like in [11, Remark 4.1] (which is a modified argument from [7, Section 5]). For
the convenience of the reader, we state here the main lines of the reasoning. First, we note
that from the Stability Theorem [7], see also [10, Theorem 8.9], we have τ ∈ (0, 1).

Now take si ↗ τ and a sequence of minimizing harmonic maps ui ∈ W 1,2(B3,S2) with
ui
∣∣
∂B3 = Hsi and # sing ui ≤ M . Let us also take ti ↘ τ and a sequence of mini-

mizing harmonic maps vi ∈ W 1,2(B3,S2) with vi
∣∣
∂B3 = Hti and # sing vi > M . Since

supi
(
[Hsi ]W 1,2(S2) + [Hti ]W 1,2(S2)

)
< ∞, we may deduce from the strong convergence of

minimizers, see [1, Theorem 1.2 (4)] (see also [10, Theorem 6.1 (3)]), that up to a subse-
quence we have

ui → u strongly in W 1,2(B3,S2),

vi → v strongly in W 1,2(B3,S2),

and both u and v are energy minimizers with u
∣∣
∂B3 = v

∣∣
∂B3 = Hτ . We claim that # sing u ≤

M . Indeed, assume on the contrary that # sing u > M . Then, by [1, Theorem 1.8 (2)]
(see also [10, Theorem 2.10]), we would obtain that for each y ∈ sing u and for sufficiently
large i, there would exist yi ∈ sing ui with yi → y as i→∞, a contradiction.

Moreover, # sing v > M . To see this, let us again assume by contradiction that # sing v ≤
M . Let now zi,j ∈ sing vi for j ∈ {1, . . . ,M + 1} be distinct singular points of vi. Now
let us observe that for sufficiently large i, we know that that Hti and Hτ are close in
C∞. Hence, by uniform boundary regularity [1, Theorem 1.10 (2)] (see also [10, Theorem
7.4]), there is a uniform neighborhood of the boundary ∂B3 which contains no singularities
of v and vi, say dist (z, ∂B3) ≥ λ > 0 for any z ∈

⋃
i sing vi ∪ sing v. Since singular

points converge to singular points, we deduce from [1, Theorem 1.8 (1)] (see also [10,
Theorem 2.5]) that for each j, we have zi,j → zj as i → ∞ and zj ∈ # sing v. The
only possibility for #{z1, . . . , zM+1} < M + 1 is that two singularities of vi converge to
the same singularity of v. This, however, is impossible, because by the uniform distance
between singularities [1, Theorem 2.1] (see also [10, Theorem 2.12]), there exists a universal
constant C (independent of the minimizer) such that no singularity can occur next to zi,j
at a distance C dist (zi,j, ∂B

3) ≥ Cλ.

Hence, Hτ : S2 → S2 serves as a boundary condition for at least two minimizers u and v
having a different number of singularities. Combining (3.2) with (3.1), we obtain

‖ϕ−Hτ‖W 1,p(S2) ≤ ‖ϕ− ϕ0‖W 1,p(S2) + ‖ϕ0 −Hτ‖W 1,p(S2) <
ε

2
+ ε1 ≤ ε.

This finishes the proof. �
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