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Reflected Brownian Motion in a wedge:
sum-of-exponential absorption probability at the vertex

and differential properties

Jules Flin1 and Sandro Franceschi1

1Télécom SudParis, Institut Polytechnique de Paris

Abstract

We study a Brownian motion with drift in a wedge of angle β which is obliquely reflected on
each edge along angles ε and δ. We assume that the classical parameter α = δ+ε−π

β is greater than 1
and we focus on transient cases where the process can either be absorbed in the vertex or escape to
infinity. We show that α ∈ N∗ is a necessary and sufficient condition for the absorption probability,
seen as a function of the starting point, to be written as a finite sum of terms of exponential product
form. In such cases, we give expressions for the absorption probability and its Laplace transform.
When α ∈ Z+ π

βZ we find an explicit D-algebraic expression for the Laplace transform. Our results
rely on Tutte’s invariant method and a recursive compensation approach.

1 Introduction
Context In dimension one, it is known that a standard Brownian motion with positive drift
µ > 0 started at u > 0 has probability e−2µu to reach 0. A simple way of achieving this result is
to use Girsanov’s theorem and the reflection principle. In dimension 2, we consider an obliquely
reflected Brownian motion in a cone with drift belonging to the interior of the cone and directions
of reflection strongly oriented towards the apex of the cone. A phenomenon of competition between
the reflections and the drift appears and the process is either absorbed at the vertex or escapes to
infinity. Lakner, Liu, and Reed [16] studied this absorption phenomenon and showed the existence
and uniqueness of a solution to the absorbed process. Ernst et al. [7] were able to obtain a general
formula for the probability of absorption at the vertex using Carleman’s boundary value problems
theory. In particular, they characterised the cases where this probability has an exponential product
form, i.e. when the reflection vectors are opposite. Franceschi and Raschel [10] then generalised
this result to higher dimensions by showing that the coplanarity of the reflection vectors was a
necessary and sufficient condition for the absorption probability to have an exponential product
form. In a sense, this condition can be seen as dual to the classical skew symmetry condition
discovered by Harrison and Williams [12, 14, 22] which characterises cases where the stationary
distribution is exponential. In dimension 2, when the process is recurrent, Dieker and Moriarty [6],
preceded by Foshini [11] in the symmetric case, determined a necessary and sufficient condition for
the stationary distribution to be a sum of exponentials terms of product form. It is therefore very
natural to look for an analogous result to the one of Dieker and Moriarty. This article aims to find,
when the process is transient, a necessary and sufficient condition for the absorption probability
to be a sum-of-exponentials function of the starting point and to compute this probability. We
also identify other remarkable cases where the Laplace transform of the absorption probability is
D-algebraic.

Key parameter and main results To present our results in more detail, we need to intro-
duce a few parameters usually used to define a semimartingale reflecting Brownian motion (SRBM).
We define the cone C := {(r cos(t), r sin(t)) : r ⩾ 0 and 0 ⩽ t ⩽ β} of angle β ∈ (0, π) and consider
Z̃t an obliquely reflected standard Brownian motion with drift µ̃ ∈ R2 of angle θ ∈ (−π, π] and
reflection vectors of angles δ ∈ (0, π) and ε ∈ (0, π), see Figure 1 to visualize these angles. We
define

α :=
δ + ε− π

β
(1)



which is a famous key parameter in the SRBM literature. As a general rule, such a process is most
of the time studied in the literature in the case where α < 1, i.e. in the case where the process
is a semimartingale markov process, see the seminal work of Varadhan and Williams [19, 21]. We
will not give here a precise mathematical definition of the process, which can be found in many
articles, see the survey of Williams [23]. We will simply point out that it behaves like a standard
Brownian motion with drift inside the cone, it is reflected in a given direction when it touches an
edge (being pushed by the local time on the boundary) and it spends zero time at the vertex of the
cone. The famous skew symmetric condition, where the stationary distribution has an exponential
product form, corresponds to α = 0, and Dieker and Moriarty’s condition for a sum-of-exponential
stationary density corresponds to α ∈ −N. The dual skew symmetric case [7, 10], where the escape
probability has an exponential product form, correspond to α = 1. For our purposes, in this article,
we will assume that

α ⩾ 1 (2)

so that the process can be trapped at the vertex and we will consider transient cases where the
drift µ̃ belongs to the interior of the cone C, that is when θ ∈ (0, β). We define the first hitting
time of the vertex

T := inf{t > 0 : Z̃t = 0}.

The article [16] makes a detailed study of the absorbed process, its existence, and its uniqueness in
this case. As explained in the articles [7, 10, 16], by following the results from Taylor and Williams
[18], when α ⩾ 1 the process Zt is well defined until it hits the vertex at time T , which amounts to
considering the process (Z̃t)0⩽t⩽T .

Figure 1: Configuration of the angles used to describe the model.

The main results of the article are as follows. We prove that the absorption probability at the
vertex P(T < ∞) is a sum-of-exponential function of the starting point if and only if

α ∈ N∗ (3)

plus the small technical condition

∀j ∈ {1, . . . , 2α− 2}, θ − 2δ + jβ ̸≡ 0 mod(π) (4)

which excludes cases where there are multiple poles in the Laplace transform. In fact, our results
are much more accurate than that. Assuming that (3) and (4) hold, if (u, v) is the starting point
of the process (mapped onto the quadrant, see (8)) the absorption probability is of the form

P(u,v)(T < ∞) =

2α−1∑
k=1

ck exp (aku+ bkv) , (5)

where the coefficients ak, bk and ck are computed explicitly in Theorem 12. In the cases where
θ − 2δ + jβ ≡ 0 mod(π) for some j ∈ {1, . . . , 2α − 2}, the absorption probability has the form
P(u,v)(T < ∞) =

∑2α−1
k=1 Ak(u, v) exp (aku+ bkv) , where the Ak are affine functions of the variables

u and v, see last paragraph of the article.
In Theorem 11 we state another more general and stronger result which explicitly determines

the Laplace transform of the absorption probability in terms of a conformal gluing function when

α ∈ Z+
π

β
Z.

In this case, we also find the differential nature of the Laplace transform. In other words we find
sufficient conditions on α for the Laplace transform to be rational, algebraic (i.e. satisfying a
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polynomial equation with coefficients in the field of rational functions), D-finite (i.e. satisfying a
linear differential equation with coefficients in the field of rational functions) or D-algebraic (i.e.
satisfying a polynomial differential equation with coefficients in the field of rational functions). The
differential nature of the Laplace transform reflects in various ways on the absorption probability
itself. For example, if it is rational it implies that the absorption probability is a linear combination
of exponentials multiplied by polynomials. If it is D-algebraic it will give a recurrence relation for
the moments. We refer to the introduction of [3] which explains in more detail the interest of such
a classification in this hierarchy of functions:

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic. (6)

The following table gives sufficient conditions for the Laplace transform to belong to this hierarchy.

rational algebraic D-finite D-algebraic
α ∈ N∗ π/β ∈ Q and α ∈ Z+ π

βZ α ∈ N∗ + π
βZ α ∈ Z+ π

βZ

Plan and strategy of proof Section 2 presents the preliminaries needed to prove our results.
For technical reasons, we first transfer the problem initially defined in a wedge into a quadrant
thanks to a simple linear transform. The starting point of the proof is a kernel functional equation
satisfied by the Laplace transform of the absorption probability as a function of the starting point.
This equation is derived from a partial differential equation solved by the probability of absorption.
This functional equation leads to a boundary value problem (BVP) already studied in [7]. In
Section 3, we apply successfully Tutte’s invariant method [20] to this BVP finding some decoupling
functions, in a similar way to what was done in the recurrent case for the stationary distribution [3,
9]. We then compute explicitly the Laplace transform, see Theorems 9 and 11. Inverting the
bivariate Laplace Transform is no easy task because of a complicated factorization of a two variable
polynomial by the kernel. In Section 4, we then offer a geometrical way to construct the solutions
inspired by the compensation approach developed with success in the discrete case for some queueing
problems and random walks by Adan, Wessels, and Zijm [1].

Related literature and perspectives This paper develops an original way of showing these
results, which is an alternative, although closely related, to the Dieker and Moriarty [6] method in
the recurrent case. Another approach to show our results might have been to use an equivalence
based on time reversal and developed very recently by Harrison [13] which shows that the hitting
time of the vertex is inherently connected to the stationary distribution of a certain dual process,
and then apply the results of [6] to a certain trapezoid described in [13].

It is also important to mention the strong links between the results of this article and the
Weil chambers and reflection groups. For example, Biane, Bougerol, and O’Connell [2] express the
persistence probability, that is the probability that a Brownian motion with drift stays forever in
a Weyl chamber, as a sum-of-exponential. We may also mention the article by Defosseux [5] which
expresses similar results for a space-time Brownian motion.

It is also possible to interpret our problem as the study of the probability of triple collisions
for transient competing particle systems with asymmetric collisions. Indeed, a Brownian motion
reflected in a quadrant is nothing more than the gap process of such a system made of three particles,
and reaching the vertex of the quadrant is equivalent to a triple collision. A very interesting
literature is devoted to the study of the absence or presence of such collisions, and as we cannot
claim exhaustiveness in these few lines we will limit ourselves to mentioning the articles by Ichiba,
Karatzas, and Shkolnikov [15] and Bruggeman and Sarantsev [4].

To conclude this introduction, we must emphasise that this article is an important step towards
a more ambitious outcome. Indeed, we believe that the present results can be extended. More
precisely, we believe, as was done in the recurrent case for the stationary distribution in the article
of Bousquet-Mélou et al. [3], that it is possible to characterise the algebraic and differential nature
of the Laplace transforms of the absorption probability. In a sense, this would exhaustively rank
the complexity of the absorption probability in the hierarchy (6) according to the value of α. Such a
result, which would provide sufficient but also necessary conditions, would require difference Galois
theory which is beyond the scope of this article.

2 Preliminaries
From the cone to the quadrant The results stated in the introduction for the standard
Brownian motion Z̃t reflected in a cone C of angle β ∈ (0, π), drift angle θ and reflection angles
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Figure 2: Equivalence between the reflected Brownian motion Z̃t in a β-wedge with drift µ̃ and
reflection angles δ and ε and the reflected Brownian motion Zt in the first quadrant with drift µ
and reflection vectors R1 and R2.

δ and ε will be proved by considering a Brownian motion Zt reflected in the quadrant R2
+ with a

covariance matrix, a drift and a reflection matrix noted respectively

Σ =

(
σ11 σ12

σ12 σ22

)
, µ =

(
µ1

µ2

)
, R =

(
R1, R2

)
=

(
1 −r2

−r1 1

)
,

which satisfy the following relations

cosβ =
−σ12√
σ11σ22

, tan θ =
µ2

√
det(Σ)

σ22µ1 − σ12µ2
, tan δ =

−
√
det(Σ)

r2σ22 + σ12
, tan ε =

−
√

det(Σ)

σ11r1 + σ12
. (7)

The study of these two processes is equivalent by considering ϕ a simple bijective linear transform
defined by

ϕ :=

( √
σ11 0
0

√
σ22

)(
sin(β) − cos(β)

0 1

)
∈ GL(2,R)

which maps the cone C onto the first quadrant R2
+ = ϕ(C), and Z̃t onto Zt = ϕ(Z̃t).

We have of course ϕ(0) = 0 and T = inf{t > 0 : Z̃t = 0} = inf{t > 0 : Zt = 0}. It is then
equivalent to compute the absorption probability for the process Z̃t starting from (ũ, ṽ) ∈ C and
for the process Zt starting from (u, v) = ϕ(ũ, ṽ) ∈ R2

+. We denote the escape probability

f(u, v) := P(u,v)(T < ∞) and f̃(ũ, ṽ) := f(ϕ(ũ, ṽ)). (8)

This linear transform doesn’t affect the form of the absorption probability. More precisely, the
absorption probability f(u, v) is a sum-of-exponential, given by (5), if and only if f̃(ũ, ṽ) is a
sum-of-exponential, given by

f̃(ũ, ṽ) =

2α−1∑
k=1

ck exp

(
ak

√
σ22

det(Σ)
ũ+

1
√
σ22

[
bk − akσ12√

det(Σ)

]
ṽ

)
.

Partial differential equation The escape probability of the process Zt starting from (u, v)
defined by

g(u, v) := 1− f(u, v) = P(u,v)(T = ∞)

satisfies the following partial differential equation, see Proposition 11 in [7]. The function g is both
bounded and continuous in the quarter plane and on its boundary and continuously differentiable
in the quarter plane and on its boundary (except perhaps at the corner), and satisfies the elliptic
partial differential equation

Gg :=

(
1

2
∇ · Σ∇+ µ · ∇

)
g = 0 on R2

+ (9)

with oblique Neumann boundary conditions

∂R1g(0, · ) :=
(
R1 · ∇

)
g(0, · ) = 0, ∂R2g( · , 0) :=

(
R2 · ∇

)
g( · , 0) = 0 on R+ (10)

and the limit conditions
g(0, 0) = 0, lim

∥(u,v)∥→∞
g(u, v) = 1. (11)

The absorption probability f = 1− g satisfies the same partial differential equation replacing (11)
with the appropriate limit conditions.
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Laplace transform and functional equation We define the Laplace transform of the
escape probability g(u, v) by

φ(x, y) :=

∫∫
R2

+

P(u,v)(T = ∞)e−xu−yvdudv

and the Laplace transforms of the escape probabilities g(0, v) and g(u, 0) when the process starts
from the boundaries by

φ1(y) :=

∫
R+

P(0,v)(T = ∞)e−yvdv, φ2(x) :=

∫
R+

P(u,0)(T = ∞)e−xudu. (12)

One can easily use integrations by parts to translate the partial differential equation made of the
three conditions (9), (10), (11) into a functional equation for the Laplace transforms.

Proposition 1 (Prop. 12 in [7]). The Laplace transforms φ, φ1 and φ2 satisfy the following kernel
functional equation, for (x, y) ∈ C2 such that ℜx > 0 and ℜy > 0 we have

K(x, y)φ(x, y) = k1(x, y)φ1(y) + k2(x, y)φ2(x) (13)

where
K(x, y) :=

1

2
(x, y)⊺ · Σ(x, y)⊺ + µ · (x, y)⊺ =

1

2
(σ11x

2 + σ22y
2 + 2σ12xy) + µ1x+ µ2y,

k1(x, y) :=
σ11

2
(x+ r1y) + σ12y + µ1,

k2(x, y) :=
σ22

2
(r2x+ y) + σ12x+ µ2.

(14)

Study of the kernel K and uniformization To solve functional equation (13), we first
need to study K, and more precisely its vanishing set

S := {(x, y) ∈ C2 : K(x, y) = 0}. (15)

The set S is an elliptic curve that passes through the origin. For x ∈ C, the equation K(x, y) = 0
in y is quadratic, and has therefore two solutions Y +(x) and Y −(x) in C:

Y ±(x) :=
−σ12x− µ2 ±

√
(σ12x+ µ2)2 − σ22(σ11x2 + 2µ1x)

σ22
. (16)

Likewise, we define X+(y) and X−(y) to be the two solutions of the equation K(x, y) = 0 in the
variable x. The curve S can be thought of as the image of the multivalued function Y (resp. X)
which has two ramification points x+ and x− (resp. y+ and y−) given by

x± :=
(µ2σ12 − µ1σ22)±

√
(µ2σ12 − µ1σ22)2 + det(Σ)µ2

2

det(Σ)
.

The branches X+ and X− are analytic on C\ ((−∞, y−]∪ [y+,+∞)), and Y + and Y − are analytic
on C \ ((−∞, x−]∪ [x+,+∞)). It will be handy to work with the following rational uniformization
of S, first stated in [8, Proposition 5], defined by

(x,y) (s) :=

(
x+ + x−

2
+

x+ − x−

4

(
s+

1

s

)
,
y+ + y−

2
+

y+ − y−

4

(
s

eiβ
+

eiβ

s

))
, (17)

which is such that
S = {(x(s),y(s)), s ∈ C∗}.

In the following, we adopt the notation
q := e2iβ . (18)

The functions x and y satisfy the following invariance properties: for all s ∈ C∗

x(s) = x(s−1) and y(s) = y(qs−1). (19)

Lemma 2. There exists C1, C2 ∈ C such that for all s ∈ C∗ the polynomials defined in (14) satisfy

k1(x(s),y(s)) = C1
(s− s′0)(s− s1)

s
, k2(x(s),y(s)) = C2

(s− s′′0)(s− s2)

s
,

with
s′0 := ei(2β−θ), s′′0 := e−iθ, s1 := ei(θ+2ε), s2 := ei(θ−2δ). (20)

Proof. For i ∈ {1, 2}, ki(x(s),y(s)) = 0 is a degree-two polynomial equation whose roots can be
computed with some basic trigonometry using (7).
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Figure 3: On the left, the points introduced in Lemmas 2 and 13 on the unit complex circle U; on
the right, their images by (x,y) on the ellipse S ∩ R2. For the sake of readability, points on the
ellipse are labelled with their preimages. Invariances in (19) are represented by the dotted arrows.

Boundary Value Problem We define a hyperbola H deeply linked to the kernel by

H := Y ±([x+,∞)) = {y ∈ C : K(x, y) = 0 and x ∈ [x+,∞)}.

Noticing that x(R+) = [x+,+∞) and by the invariance y(s) = y(qs−1) we can see that

H = y(R+) = y(qR+). (21)

This hyperbola is the boundary of the Boundary Value Problem stated below. We now define
GH the domain of C bounded by H and containing y+, see Figure 4. By (21), remembering that
q = e2iβ and y−1(y+) = eiβ we see that

GH = y
(
{aeib, (a, b) ∈ R+ × [0, 2β]}

)
, (22)

see Figure 5. Finally, we compute

y(s1) = − 2(r1µ1 + µ2)

σ22 + σ11r21 + 2σ12r1
. (23)

The following proposition is a Carleman Boundary Value Problem which characterizes the
Laplace transform φ1 and which can be easily obtained from the functional equation (13), see [7].

Proposition 3 (Proposition 22 and Lemma 32 in [7]). The Laplace transform φ1 satisfies the
boundary value problem:

1. φ1 is meromorphic on the open domain GH and continuous on GH := GH ∪H;

2. φ1 admits one or two poles in GH, 0 is always a simple pole of φ1 and y(s1) is a simple pole
of φ1 if and only if 2ε+ θ ⩾ 2π;

3. for some positive constant C the asymptotics of φ1 when y → ∞ is given by

φ1(y) ∼ Cy−α−1; (24)

4. φ1 satisfies the boundary condition

φ1(y) = G(y)φ1(y), ∀y ∈ H (25)

where
G(y) =

k1
k2

(X+(y), y)
k2
k1

(X+(y), y). (26)

In the next section, our strategy will be to find cases where the function G simplifies in order
to find rational and D-algebraic solutions to this Boundary Value Problem.
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3 Tutte’s invariants and Laplace transform

3.1 Decoupling and Tutte’s invariant
Heuristic of the method The method involves finding all cases where there exists decoupling
in the following sense. Recall that S = {(x, y) ∈ C2 : K(x, y) = 0}.

Definition 4 (Decoupling). A pair of rational functions (P,Q) satisfying

k2(x, y)

k1(x, y)
= λ

P (x)

Q(y)
for all (x, y) ∈ S (27)

for some constant λ is called a decoupling pair.

We shall see that the existence of a decoupling pair leads to the study of what is called an
invariant, which glues together the upper and the lower branches of the hyperbola H in the following
sense.

Definition 5 (Invariant). A function I which is meromorphic in GH, continuous on its boundary
H and satisfying I(y) = I(y) for all y ∈ H is called an invariant.

Under the existence of a decoupling pair (P,Q), the boundary condition (25) can be rewritten
as

Qφ1(y) = Qφ1(y), ∀y ∈ H. (28)

If (P,Q) is a decoupling pair, the function Qφ1 is then called the unknown invariant (since we
are looking for φ1). We now introduce a conformal gluing function w, which we call the canonical
invariant, in terms of a classical Gauss hypergeometric function which is often called generalized
Chebyshev polynomial,

w(y) := 2F1

(
−π

β
,
π

β
;
1

2
;
1

2

(
1− 2y − (y+ + y−)

y+ − y−

))
= cos

(
π

β
arccos

(
2y − (y+ + y−)

y+ − y−

))
.

The fact that w is a conformal invariant (in the sense of Definition 5) is proven in Lemma 5.3 of [3].
In particular, w is analytic and bijective from GH to C \ (−∞,−1] and

w(y) = w(y), ∀y ∈ H. (29)

The same lemma gives, for some constant Ĉ, the asymptotics

w(y) ∼ Ĉyπ/β . (30)

It is also well known that w is a polynomial when π/β ∈ Z, is algebraic when π/β ∈ Q and is
always D-finite. Remark that the set of D-finite functions is stable by multiplication but not by
division and 1/w is D-algebraic but not necessarily D-finite. See Proposition 5.2 of [3].

The key point of Tutte’s invariant method is to express the unknown invariant in terms of the
canonical invariant. The following crucial lemma shows that there are few invariants.

Lemma 6 (Invariant lemma). If I is an invariant in the sense of Definition 5 which doesn’t have
any pole on GH and has a finite limit at +∞, then I is constant.

Proof. Since w is conformal, and maps GH to the cut plane C \ (−∞,−1], I ◦ w−1 is analytic on
this cut plane, and continuous on the cut thanks to (29). By Morera’s theorem, I ◦w−1 (or better
yet, its continuous extension) is meromorphic on C. Since I is bounded, Liouville’s theorem implies
that I ◦ w−1 (and then I) is constant.

Decoupling In the following proposition, we obtain a necessary and sufficient condition for the
existence of a decoupling condition (27) and we give explicit decoupling pairs.

Proposition 7 (Decoupling condition). There exists a rational decoupling pair (P,Q) if and only
if

α ∈ Z+
π

β
Z.

In this case let d, r ∈ Z such that α = d− 1+ rπ/β, i.e. δ+ ε = (d− 1)β+(r+1)π. Then d cannot
be equal to 1 and we distinguish two cases:

7



Figure 4: Domains and codomains for w and its inverse.

• If d ⩾ 2, then one can choose the following polynomial decoupling pair,

P (x) := x

d−2∏
k=0

x− x(s2q
k)

−x(s2qk)
, Q(y) := y

d−2∏
k=0

y − y
(
s1/q

k
)

−y (s1/qk)
. (31)

• If d ⩽ 0, then one can choose the following rational decoupling pair,

P (x) := x

1−d∏
k=1

−x(s2q
k)−1

x− x(s2/qk)
, Q(y) := y

1−d∏
k=1

−y
(
s1/q

k
)−1

y − y (s1qk)
. (32)

We have d = deg(P ) = deg(Q).

Proof. If there exists a rational decoupling (P,Q), see (27), then by the invariances of x and y
established in (19) we have

k2(x(s),y(s))k1(x(s
−1),y(s−1))

k1(x(s),y(s))k2(x(s−1),y(s−1))
=

P (x(s))Q(y(s−1))

Q(y(s))P (x(s−1))
=

Q(y(qs))

Q(y(s))
. (33)

According to Lemma 2 we also have

k2(x(s),y(s))k1(x(s
−1),y(s−1))

k1(x(s),y(s))k2(x(s−1),y(s−1))
=

(s− s′′0)(s− s2)

(s− s′0)(s− s1)
· (s

−1 − s′0)(s
−1 − s1)

(s−1 − s′′0)(s
−1 − s2)

. (34)

Taking the limit as s goes to +∞ of (33) and (34), we get

s′0s1
s′′0s2

= qd, where d := deg(Q) ∈ Z. (35)

Plugging in the values of s′0, s′′0 , s1, s2 obtained in Lemma 2 and remembering that q = e2iβ in (35)
we obtain that e2i(β+δ+ε) = e2idβ and then there exists r ∈ Z such that

α =
δ + ε− π

β
= d− 1 + r

π

β
. (36)

Conversely, we assume that (36) holds. First, let us treat the case d ⩾ 2 and assume that P and Q
are given by (31). Through the uniformization (17), one gets

P (x(s)) =
1

sd
(s− s′′0)

(
s− 1

s′′0

) d−2∏
k=0

s− s2q
k

−x(s2qk)

(
s− 1

s2qk

)
,

Q(y(s)) =
1

sd
(s− s′0)

(
s− q

s′0

) d−2∏
k=0

s− s1/q
k

−y (s1/qk)

(
s− qk+1

s1

)
.

We know that s′0 = qs′′0 . Given that α = d − 1 + rπ/β with d and r in Z, we can also use the
fact that s1 = qd−1s2. When taking the ratio of P (x(s)) and Q(y(s)), these identities produce a
telescoping which gives

P (x(s))

Q(y(s))
=

d−2∏
k=0

y(s1/q
k)

x(s2qk)

(s− s′′0)(s− s2)

(s− s′0)(s− s1)
=

1

λ

k2(x(s),y(s))

k1(x(s),y(s))
,

8



where the last equality comes from Lemma 2 and taking

λ :=
C1

C2

d−2∏
k=0

x(s2q
k)

y(s1/qk)
. (37)

We deduce that (P,Q) is a decoupling pair. The proof is similar for the case d ⩽ 0. The fact that
d cannot be equal to 1 directly derives from the fact that ε, δ ∈ (0, π), β ∈ (0, π) and α ⩾ 1.

Lemma 8 (Simple root condition). Let α ∈ Z + π
βZ and (d, r) ∈ Z2 such that α = d − 1 + rπ/β.

If β/π ∈ Q then (d, r) is not unique, in this case for β/π = p/q for p and q relatively prime and
p < q, we (can) choose d such that |d| < q. If d ⩾ 2 (resp. d ⩽ 0) then P and Q have no multiple
roots (resp. pole) if and only if for all k ∈ {1, . . . , 2d− 4} (resp. k ∈ {2d− 1, . . . ,−2}) we have

θ − 2δ + kβ ̸≡ 0 mod(π). (38)

Proof. Let d ⩾ 2. The polynomial P has a double root (or more) if and only if for some i ̸= j ∈
{0, . . . , d−2} we have x(s2q

i) = x(s2q
j). Using the expression of x given in (17) there are only two

ways for this to happen. The first one is that qi = qj , i.e. iβ = jβ mod(π) which is not possible
even when β/π = p/q ∈ Q since |i − j| < |d| < q. The second one is that s2q

i = (s2q
j)−1, using

the value of s2 in (20) it is equivalent to θ − 2δ + (i+ j)β ≡ 0 mod(π). Similarly, Q has a double
root if and only if θ − 2δ + (2d− i− j − 3)β ≡ 0 mod(π). The case d ⩽ 0 is similar.

One should observe that the decoupling condition α ∈ Z+ π
βZ doesn’t depend on θ (and hence

on the drift) while the multiple root condition does.

3.2 Explicit expression for the Laplace transforms
We now state our first main result when α ∈ N∗.

Theorem 9 (Laplace transforms, α ∈ N∗). If α ∈ N∗ then the rational function defined by

L(x, y) :=
k1(x, y)P (x) + k2(x, y)Q(y)

K(x, y)

is a polynomial and we have

φ1(y) =
1

Q(y)
, φ2(x) =

1

P (x)
, φ(x, y) =

L(x, y)

P (x)Q(y)

where P and Q are given in (31).

Proof. Assuming that α = d − 1 ∈ N∗, the polynomials P and Q given in (31) form a decoupling
pair by Proposition 7. The boundary value problem of Proposition 3 thus implies that Qφ1 is an
invariant, see (28). According to Lemma 6, we only need to prove that Qφ1 doesn’t have any pole
on GH, and has a finite limit as y goes to +∞. By (24) and (31), and since α = d− 1 we have

Q(y)φ1(y) ∼
yd∏d−2

k=0 −y(s1/qk)
· Cy−α−1 =

C∏d−2
k=0 −y(s1/qk)

.

Furthermore the poles of φ1 given in Proposition 3 i.e. 0 and y(s1) when 2ε + θ ⩾ 2π, are
compensated by the zeros of Q. Indeed 0 and y(s1) are always roots of Q. By Lemma 6, there
exists κ ∈ C such that Qφ ≡ κ. On the one hand, using the fact that Q′(0) = 1 gives

lim
y→0

yφ1(y) = κ lim
y→0

y

Q(y)
=

κ

Q′(0)
= κ.

On the other hand, by the final value theorem and (11) we have

lim
y→0

yφ1(y) = lim
v→+∞

P(0,v)(T = +∞) = 1. (39)

Hence κ = 1 and φ1 = 1/Q. The same method also works to show that φ2 = 1/P . Replacing φ1

and φ2 in the functional equation (13), one can obtain

k2(x, y)

k1(x, y)
= −P (x)

Q(y)
, for all (x, y) ∈ S. (40)

9



Figure 5: Enumeration of P and Z for (d, r) = (−9, 2) (on the left) and (d, r) = (11,−1) (on the
right). The shaded area corresponds to y−1(GH).

Comparing with Definition 4 we can see that the constant λ given in (37) is equal to −1. The
polynomial k2Q+ k1P vanishes on S the set of the zeros of K. By Hilbert’s Nullstellensatz,

k2Q+ k1P ∈
√
(K)

where (K) := {LK,L ∈ C[X,Y ]} and
√
(K) := {H ∈ C[X,Y ] : ∃m ∈ N s.t. Hm ∈ (K)} are the

ideal generated by K and its radical. Here, K is irreducible which implies that
√
(K) = (K). This

shows that there exists L ∈ C[X,Y ] such that L(x, y)K(x, y) = k1(x, y)P (x)+k2(x, y)Q(y). We see
that L(x, y) ∈ R for all (x, y) ∈ R2, so the coefficients of L must be real. Substituting the values
for φ1 and φ2 into the functional equation (13) yields φ(x, y) = L(x, y)/(P (x)Q(y)).

We now state a lemma useful to obtain our second main result which deals with the case where
α ∈ Z+ π

βZ. We consider d and r ∈ Z such that α = (d− 1)+ rπ/β. If β/π = p/q ∈ Q, with p and
q relatively prime, we (can) choose |d| < q. For further use, we need to study the number of zeros
and poles of Qφ1 which belong to GH. First of all, we can see that 0 is always a root of Q and a
pole of φ1, which therefore compensate each other considering Qφ1.

When d ⩾ 2 we denote

Z := {y(s1/qk) ∈ GH : k = 1, . . . , d− 2} (41)

which is a set containing (all the) zeros of Qφ1 in GH, see (31). Note that in this definition k cannot
be taken equal to 0 since when y(s1) is both a pole of φ1 in GH and a zero of Q they compensate
each other, by item 2 of Proposition 3.

When d ⩽ 0 we denote

P := {y(s1qk) ∈ GH : k = 0, . . . , 1− d} (42)

which is the set of poles of Qφ1 in GH, see (32). Note that in this definition k can be taken equal
to 0 since y(s1) is a pole of φ1 which can belongs to GH, see item 2 of Proposition 3. See Figure 5
to visualize P and Z.

Lemma 10 (Cardinal of Z and P). Let α ⩾ 1 and assume that α ∈ Z+ π
βZ and (38) holds. Let d

and r ∈ Z such that α = (d− 1) + rπ/β, i.e. (d− 1)β + (r+ 1)π = δ + ε. Then d ̸= 1 and we have

(i) If d ⩾ 2 then r ⩽ 0 and we have
Card(Z) = −r.

(ii) If d ⩽ 0 then r > 0 and we have
Card(P) = r.

Proof. Using the fact that ε, δ ∈ (0, π), β ∈ (0, π) and α ⩾ 1 it is easy to see that d cannot be equal
to 1, that d ⩾ 2 implies r ⩽ 0 and that d < 1 implies r > 0.

10



(i) Assume that d ⩾ 2 and r ⩽ 0. Recalling equation (22) and noticing that for all k ∈ Z,
s1/q

k ∈ U (where U is the complex unit circle) we define

C0 := {eib, b ∈ [0, 2β]} = y−1(GH) ∩ U

and we have
Card(Z) = Card

(
{s1/qk ∈ C0 : k = 1, . . . , d− 2}

)
.

We recall that s1 = qd−1s2, and so we need to count the number of points s1/q
k for k =

1, . . . , d − 2 which have their argument in (0, 2β) modulo 2π. These points can be obtained
by making d−1 successive rotations of angle −2β, starting from s1 to s2 (without taking into
account s1 and s2). By doing this, the number of complete revolutions around the unit circle
in the clockwise direction is −r. This comes from the fact that, denoting arg s1 = θ + 2ε ∈
(θ, θ + 2π) and arg s2 = θ − 2δ + 2π ∈ (θ, θ + 2π), we have

arg s2 − arg s1 = (d− 1)(−2β)− r(2π) > 0.

Since 0 < θ < β, there are exactly −r points s1/q
k for k = 1, . . . , d − 2 which have their

argument in (0, 2β) modulo 2π, see Figure 5. Interested readers may refer to the study of
mechanical or Sturmian sequences [17] where this kind of counting problem is standard.

(ii) The case d ⩽ 0 and r > 0 is similar considering 1− d successive rotations of angle 2β from s1
to s2 making r turn around the unit circle in the counter-clockwise direction.

We now state our second main result about φ1 when α ∈ Z+ π
βZ. A symmetrical result holds

for φ2, and φ can thus be determined by (13).

Theorem 11 (Laplace transforms, α ∈ Z+ π
βZ). Assume that α ∈ Z+ π

βZ and α ⩾ 1 and the simple
root condition (38) holds. Let d and r ∈ Z such that α = (d−1)+rπ/β, i.e. (d−1)β+(r+1)π = δ+ε,
then

φ1(y) =
S(w(y))

Q(y)
,

where S is a rational function of degree −r given by

S(z) :=
∏
q∈Z

z − w(q)

w(0)− w(q)
, if d ⩾ 2 and S(z) :=

∏
p∈P

w(0)− w(p)

z − w(p)
, if d ⩽ 0. (43)

We deduce sufficient conditions for φ1, φ2 and φ to belongs to the hierarchy (6). If α ∈ N∗ these
Laplace transforms are rational, if π/β ∈ Q and α ∈ Z + π

βZ they are algebraic, if α ∈ N∗ + π
βZ

they are D-finite and if α ∈ Z+ π
βZ they are D-algebraic.

Proof. Recall the definitions of Z in (41), P in (42) and Q in (31) and (32). The function (Qφ1)/(S◦
w) is continuous on H and meromorphic on GH. By (28) and (29), we have for all y ∈ H,

Qφ1(y)

S(w(y))
=

Qφ1(y)

S(w(y))
.

The function (Qφ1)/(S◦w) is then an invariant in the sense of Definition 5. Recall that deg(Q) = d,
deg(S) = −r by Lemma 10, φ1(y) ∼ Cy−α−1 by (24), w(y) ∼ Ĉyπ/β by (30). For a constant κ we
obtain when y → ∞,

Qφ1(y)

S(w(y))
∼ κ

ydy−α−1

y−rπ/β
= κ

where the last equality comes from α = (d− 1) + rπ/β. By construction, (Qφ1)/(S ◦ w) does not
have any pole on GH. Indeed if d ⩾ 2 the roots of Q compensate the poles of 1/(S ◦w) and if d ⩽ 0
the zeros of 1/(S ◦ w) compensate the poles of Qφ1. Then, the invariant Lemma 6 assures that

Qφ1(y)

S(w(y))
= κ.

Applying again the final value theorem (39) and using the fact that limy→0 Q(y)/y = Q′(0) = 1

and S(w(0)) = 1 we obtain the value of the constant: κ = Q(y)
y

yφ1(y)
S(w(y)) −→

y→0
1 = κ. The sufficient

conditions given in the theorem therefore follow from the properties of w stated below (30).
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4 Absorption probability via compensation approach
This section deals with the case where α ∈ N∗. The aim is to show that the absorption probability
is a sum of exponentials and to calculate precisely all the coefficients of this sum. To that end
we invert the Laplace transforms and we explain the recursive compensation phenomenon which
appears in this sum.

Inverse Laplace transform When α ∈ N∗ and the simple root condition (38) holds, we invert
the Laplace transforms φ1 and φ2 obtained in Theorem 9 by performing a partial fraction decom-
position. Therefore, remembering that φ1 and φ2 are defined in (12) as the Laplace transforms of
the escape probability on the boundaries, the absorption probabilities starting from the boundaries
can be written as sum-of-exponential and are explicitly given by

P(u,0)(T < ∞) =

α−1∑
i=0

di exp
(
x(s2q

i)u
)
, P(0,v)(T < ∞) =

α−1∑
j=0

ej exp
(
y(s1/q

j)v
)
, (44)

where
di =

−1

P ′(x(s2qi))
, ej =

−1

Q′(y(s1/qj))
.

However, inverting the bivariate Laplace transform φ(x, y) and computing the coefficients involved
is not immediately obvious. We now state the last main result of this article.

Theorem 12 (Sum-of-exponential absorption probability). Let (Zt)0⩽t⩽T a reflected Brownian
motion in the quadrant of drift µ ∈ R2

+, such that α ⩾ 1, starting from (u, v) ∈ R2
+, where T is the

first hitting time of the vertex. We assume that for all j ∈ {1, . . . , 2α−2}, θ−2δ+ jβ ̸≡ 0 mod(π).
The following statements are equivalent:

(i) α = n, for some integer n ⩾ 1 ;
(ii) there exist coefficients a1, . . . , a2n−1, b1, . . . , b2n−1, c1, . . . , c2n−1 such that

P(u,v)(T < ∞) =

2n−1∑
k=1

ck exp(aku+ bkv). (45)

In this case, the constants ak and bk are given by

(a2k, b2k) :=
(
x
(
s1/q

k
)
,y
(
s1/q

k
))

and (a2k+1, b2k+1) :=
(
x
(
s1/q

k+1
)
,y
(
s1/q

k
))

(46)

and can also be computed thanks to the recurrence relationship stated in Proposition 14. The
coefficients ck are determined by the recurrence relationship given in Proposition 15.

Proof. First we assume that α = n and for all j ∈ {1, . . . , 2α−2}, θ−2δ+jβ ̸≡ 0 mod(π). Theorem 9
gives an explicit expression of the Laplace transform φ. Performing a partial fraction decomposition
of φ(x, y) = L(x,y)

P (x)Q(y) it is possible to invert the Laplace transform. Recall the definition of P and
Q given in (31) and remark that {s2qi : i = 0, . . . , α− 1} = {s1/qi : i = 1, . . . , α} since s1 = s2q

α,
we obtain α2 constants c̃i,j such that

f(u, v) = P(u,v)(T < ∞) =

α∑
i=1

α−1∑
j=0

c̃i,j exp
(
x(s1/q

i)u+ y(s1/q
j)v
)
. (47)

Actually, only 2α−1 of those constants c̃i,j are non-zero. More precisely, we are now going to show
that if i /∈ {j, j + 1} then c̃i,j = 0.

Considering (47), the partial differential equation (9) leads to

0 = Gf(u, v) =
α∑

i=1

α−1∑
j=0

c̃i,jK
(
x(s1/q

i),y(s1/q
j)
)
exp

(
x(s1/q

i)u+ y(s1/q
j)v
)
.

By linear independence of the exponential functions (the coefficients inside the exponentials are all
different by (38)), this implies that c̃i,j = 0 when K

(
x(s1/q

i),y(s1/q
j)
)
̸= 0. By (19) this must

hold for all (i, j) such that s1/q
i /∈ {s1/qj , s1/q

j+1} and then for i /∈ {j, j + 1}.
For i ∈ {0, . . . , α} we set the constants c2i = c̃i,i and c2i+1 = c̃i,i−1 and we obtain (45).

Proposition 15 will give recurrence formulas satisfied by these constants.
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Reciprocally, if the absorption probability f(u, v) is a sum of exponentials then f(0, v) is also
a sum of exponentials where we denote m the number of distinct exponentials in this sum. We
deduce that φ1(y), which is the Laplace transform of g(0, v) = 1−f(0, v), is therefore equivalent up
to a multiplicative constant to y−m−1 when y → ∞. We also know by (24) that φ1(y) is equivalent
up to a multiplicative constant to y−α−1, which implies that α = m ∈ N.

In what follows it will be convenient to denote by k∗1 and k∗2 the following functions

k∗1(x, y) := (x, y) ·R1 = x− r1y, k∗2(x, y) := (x, y) ·R2 = −r2x+ y (48)

as they naturally appear when applying ∂R1 and ∂R2 , see (10), to a function of the form eau+bv.

Lemma 13. The functions k1, k2, k∗1 and k∗2 satisfy the following relations

k1 ◦ (x,y)(s) = −σ11

2
k∗1 ◦ (x,y)(qs−1), k2 ◦ (x,y)(s) = −σ22

2
k∗2 ◦ (x,y)(s−1).

As a direct consequence we have, for some constants C∗
1 and C∗

2 , for all s ∈ C∗,

k∗1(x(s),y(s)) = C∗
1

(s− s∗0)(s− s∗1)

s
, k∗2(x(s),y(s)) = C∗

2

(s− s∗0)(s− s∗2)

s

where s∗0 := s′′−1
0 = qs′−1

0 , s∗1 := qs−1
1 and s∗2 := s−1

2 .

Proof. It is equivalent to prove that for all x and y, k1(X
+(y), y) = −σ22

2 k∗1(X
−(y), y) and

k2(x, Y
+(x)) = −σ11

2 k∗2(x, Y
−(x)) which can be easily verified using the definitions (16), (14)

and (48). Then, Lemma 2 allows us to conclude. See Figure 3 for a geometric interpretation.

The following proposition establishes a recurrence relationship which allows to compute (ak, bk).
It gives a very natural geometric interpretation of this sequence of points which belongs to the ellipse
E := S ∩ R2 = {(x, y) ∈ R2 : K(x, y) = 0}, starts at the intersection with the line {k∗1 = 0} and
ends at the intersection with the line {k∗2 = 0}. It can be visualized in Figure 6.

Proposition 14 (Recursive relationship of the sequence (ak, bk)). The sequence (ak, bk) ∈ E defined
in (46) satisfies the following relations

(a2k+1, b2k+1) =

(
b2k
a2k

· σ22b2k + 2µ2

σ11
, b2k

)
, (a2k+2, b2k+2) =

(
a2k+1,

a2k+1

b2k+1
· σ11a2k+1 + 2µ1

σ22

)
where b1 = y (s1) = y (s∗1) was computed in (23), a1 = x (s1/q) = x (s∗1) = r1b1 and k∗1(a1, b1) = 0.
We also have k∗2(a2α−1, b2α−1) = 0 and one can easily compute

a2α−1 = x (s∗2) = − 2(µ1 + r2µ2)

σ11 + σ22r22 + 2σ12r2
and b2α−1 = y (s∗2) = r2a2α−1.

Proof. By definition (46) we have b2k = b2k+1 and a2k ̸= a2k+1. Furthermore K(a2k, b2k) =
K(a2k+1, b2k+1) = 0, then a2k and a2k+1 must be the two distinct roots of the quadratic equation
K(x, b2k) = 0. Vieta’s formula gives the value of the product of those roots in terms of the
coefficients of the equation and we get the relation for (a2k+1, b2k+1). The same method applies for
the second relation about (a2k+2, b2k+2).

The aim is now to compute explicitly the coefficients ck which appear in Theorem 12.

Proposition 15 (Recursive relationship of the sequence ck). We assume α ∈ N∗ and condi-
tion (38). We recall that the constants ak, bk are defined in (46). The constants ck introduced in
Theorem 12 are determined by the recurrence relations

c2k = −c2k−1
k∗2(a2k−1, b2k−1)

k∗2(a2k, b2k)
and c2k+1 = −c2k

k∗1(a2k, b2k)

k∗1(a2k+1, b2k+1)

and the normalization relationship
∑2α−1

k=1 ck = 1.

Proof. For the first relation, let us observe that

∂R2 exp(au+ bv)|v=0 = k∗2(a, b) exp(au).

13



Figure 6: Construction of the finite sequences {(ai, bi) : 1 ⩽ i ⩽ 2α − 1}. On the left α = 2 while
α = 3 on the right.

We denote f(u, v) = P(u,v)(T < ∞). Using Theorem 12, noticing that a2k−1 = a2k, we evaluate
∂R2f at v = 0 and the Neumann condition (10) gives

0 =

α−1∑
k=1

(
c2k−1k

∗
2(a2k−1, b2k−1)+ c2kk

∗
2(a2k, b2k)

)
exp(a2ku)+ k∗2(a2α−1, b2α−1) exp(a2α−1u). (49)

By Lemma 13 we see that k∗2(a2α−1, b2α−1) = k∗2 ◦ (x,y) (s∗2) = 0 so that the last term in (49) is
zero. Under the simple roots condition (38), a2i ̸= a2j for all i ̸= j, the family {u 7→ exp(a2ku)} is
therefore linearly independent and for all k we obtain

c2k−1k
∗
2(a2k−1, b2k−1) + c2kk

∗
2(a2k, b2k) = 0.

The proof of the second relation is similar. The normalization comes from the fact that f(0, 0) = 1.

The following paragraph aims to give a geometric interpretation to all the coefficients ak, bk
and ck and to explain the compensation phenomenon which appears in the sum of exponentials.

Heuristic of the compensation approach Using a recursive compensation method (with
a finite number of iterations), it is possible to find a solution to the partial differential equation
stated in (9) and (10) that is a candidate for being the probability of absorption at the vertex. It
is interesting to remark that the positivity of this solution is by no means obvious and that the
uniqueness of the solution of this kind of PDE usually requires the positivity of the solution.

In this paragraph, we explain the compensation phenomenon. By using an analytic approach,
we showed in Theorem 12 that when α ∈ N∗ and (38) holds the absorption probability is

f(u, v) = P(u,v)(T < ∞) =

2α−1∑
k=1

ck exp(aku+ bkv),

where the (ak, bk) are determined in Proposition 14 and the ck in Proposition 15.
We define the following function vector spaces

E0 := {h ∈ C2(R2
+) : Gh = 0 on R2

+},

E1 := {h ∈ C2(R2
+) : ∂R1h(0, · ) = 0 on R+} and E2 := {h ∈ C2(R2

+) : ∂R2h( · , 0) = 0 on R+}.

One may remark that a function h satisfies the PDE (9) if and only if h ∈ E0 and h satisfy
the Neumann boundary conditions (10) if and only if h ∈ E1 ∩ E2. Furthermore, the function
(u, v) 7→ eau+bv belong to E0 if and only if K(a, b) = 0, belongs to E1 if and only if k∗1(a, b) = 0,
and belongs to E2 if and only if k∗2(a, b) = 0.

By Proposition 14 all the (ak, bk) are on the ellipse E defined by K = 0, it is then easy to
understand why f ∈ E0, i.e. why f satisfies the partial differential equation (9).

We are now seeking to understand why the coefficients ck given in Proposition 15 ensure that
f ∈ E1 ∩E2, i.e. why f satisfies the Neumann boundary conditions (10). In fact, the ck have been
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chosen such that by grouping the terms of the sum by pairs (except the first or the last term) they
compensate each other to ensure the inclusions in E1 and E2:

f(u, v) = c1 exp(a1u+ b1v)︸ ︷︷ ︸
∈ E1

+

α−1∑
k=1

c2k exp(a2ku+ b2kv) + c2k+1 exp(a2k+1u+ b2kv)︸ ︷︷ ︸
∈ E1

=

α−1∑
k=1

c2k−1 exp(a2ku+ b2k−1v) + c2k exp(a2ku+ b2kv)︸ ︷︷ ︸
∈ E2

+ c2α−1 exp(a2α−1u+ b2α−1v)︸ ︷︷ ︸
∈ E2

so that f ∈ E1 ∩ E2. This is due to the fact that (c2kk
∗
1(a2k, b2k) + c2k+1k

∗
1(a2k+1, b2k))e

b2kv = 0
and (c2k−1k

∗
2(a2k, b2k−1) + c2kk

∗
2(a2k, b2k))e

a2ku = 0.
We now understand the phenomenon of compensation which explains why f is a solution of the

partial differential equation (9) with Neumann boundary conditions (10). One may also verify that
the limit conditions (11) are also satisfied. Let us note, on the other hand, that the positivity of
this function is absolutely not obvious to check.

Double roots. This last paragraph deals with the case where P or Q have double roots, i.e.
when for some integer j ∈ {1, . . . , 2α− 2}, θ − 2δ + jβ ≡ 0 mod(π), see Lemma 8. The number of
cases to handle to give a general explicit formula is too big. Nonetheless, we can give the general
shape of the absorption probability: if α ∈ N∗, the absorption probability can be written as

P(u,v)(T < ∞) =

2α−1∑
k=0

Ak(u, v) exp(aku+ bkv)

where ak and bk are given in Equation (46) and the Ak are affine functions of u and v. Indeed,
Theorem 9 holds even when there are multiple roots. Inverting the Laplace transform we show
that the absorption probability can be written

∑2α−1
k=0 Ak(u, v) exp(aku + bkv) where the Ak are

polynomials. A direct calculation shows that P and Q can’t have triple roots. This proves that
the total degree of Ak is less than 1 for all k. We can also give an intuitive explanation for the
fact that there are no triple roots: the geometric interpretation tells us that the sequence (ak, bk)
cannot visit a point thrice, otherwise it would loop indefinitely.

The case where α = 2 is completely solved below as an example.

Example 16 (Double roots, α = 2). For α = 2, we distinguish two cases with double roots

• if θ − 2δ + β = −π then

P(u,v)(T < ∞) =
(
1 + c

)
exp

(
x(s2)u+ y(s1)v

)
−
(
x(s2)u+ c

)
exp

(
x(s2)u+ y(s1/q)v

)
• if θ − 2δ + 2β = −π then

P(u,v)(T < ∞) = −
(
y(s1)v + c

)
exp

(
x(s2)u+ y(s1)v

)
+
(
1 + c

)
exp

(
x(s2q)u+ y(s1)v

)
where c =

1

r1r2 − 1
.

Acknowledgments
This project has received funding from Agence Nationale de la Recherche, ANR JCJC programme
under the Grant Agreement ANR-22-CE40-0002.

15



References
[1] Adan, I. J.-B. F., Wessels, J., and Zijm, W. H. M. (1993). A compensation approach for

two-dimensional Markov processes. Adv. in Appl. Probab., 25(4):783–817.

[2] Biane, P., Bougerol, P., O’Connell N. (2005) Littelmann paths and Brownian paths. Duke
Math. J., 130(1):127–167.

[3] Bousquet-Mélou, M., Price, A. E., Franceschi, S., Hardouin, C., and Raschel, K. (2021). The
stationary distribution of the reflected Brownian motion in a wedge: differential properties.
arXiv, 2101.01562.

[4] Bruggeman, C., Sarantsev, A. (2018). Multiple collisions in systems of competing Brownian
particles Bernoulli, 24(1):156–201.

[5] Defosseux, M. (2016). Affine Lie algebras and conditioned space-time Brownian motions in
affine Weyl chambers. Probab. Theory Relat. Fields, 165:649–665.

[6] A.B. Dieker and J. Moriarty (2009). Reflected Brownian motion in a wedge: sum-of-exponential
stationary densities. Elec. Comm. in Probab, 15:0–16.

[7] P. A. Ernst, S. Franceschi and D. Huang (2021). Escape and absorption probabilities for
obliquely reflected Brownian motion in a quadrant. Stochastic Processes Appl. 142 634–670.

[8] Franceschi, S. and Kurkova, I. (2017). Asymptotic Expansion of Stationary Distribution for
Reflected Brownian Motion in the Quarter Plane via Analytic Approach. Stochastic Systems,
32–94.

[9] Franceschi, S. and Raschel, K. (2017). Tutte’s invariant approach for Brownian motion reflected
in the quadrant. ESAIM Probab. Stat., 21:220–234.

[10] Franceschi, S. and Raschel, K. (2022). A dual skew symmetry for transient reflected Brownian
motion in an orthant. Queueing Syst, 102, 123–141.

[11] Foschini, G. (1982). Equilibria for diffusion models of pairs of communicating computers—
symmetric case. IEEE Trans. Inform. Theory, 28(2):273–284.

[12] Harrison, J. M. (1978). The diffusion approximation for tandem queues in heavy traffic.
Advances in Applied Probability, 10(4):886–905.

[13] Harrison, J. M. (2022). Reflected Brownian motion in the quarter plane: an equivalence based
on time reversal. Stochastic Processes Appl. 150 1189–1203.

[14] Harrison, J. M. and Williams, R. J. (1987). Multidimensional reflected Brownian motions
having exponential stationary distributions. The Annals of Probability, 15(1):115–137.

[15] Ichiba, T., Karatzas, I. and Shkolnikov, M. Strong (2013). Strong solutions of stochastic
equations with rank-based coefficients. Probab. Theory Relat. Fields, 156:229–248.

[16] Lakner. P., Liu, Z., and Reed, J. (2023). Reflected Brownian Motion with Drift in a Wedge.
Queuing Systems: Theory and Applications, Issue 3-4.

[17] M. Lothaire (2002). Algebraic Combinatorics on Words. Cambridge University Press.

[18] Taylor, L. M., and Williams, R. J., (1993). Existence and uniqueness of semimartingale re-
flecting Brownian motions in an orthant. Probab. Theory Relat. Fields 96 283–317.

[19] Varadhan, S. R. et Williams, R. J. (1985). Brownian motion in a wedge with oblique reflection.
Communications on pure and applied mathematics, 38(4):405–443.

[20] Tutte, W. T. (1995). Chromatic sums revisited. Aequationes Math., 50(1-2):95–134.

[21] Williams, R. J., (1985). Reflected Brownian motion in a wedge: semimartingale property. Z.
Wahrsch. Verw. Gebiete 69 161–176.

[22] Williams, R. J. , (1987). Reflected Brownian motion with skew symmetric data in a polyhedral
domain. Probab. Theory Relat. Fields 75 459–485.

[23] Williams, R. J. (1995) Semimartingale reflecting Brownian motions in the orthant. In Stochas-
tic networks, volume 71 of IMA Vol. Math. Appl., pages 125–137. Springer, New York, 1995.

16


	Introduction
	Preliminaries
	Tutte's invariants and Laplace transform
	Decoupling and Tutte's invariant
	Explicit expression for the Laplace transforms

	Absorption probability via compensation approach

