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HOMER bench, the new bench developed at ONERA devoted to wide

field adaptive optics (WFAO) laboratory research, has allowed the first

experimental validations of multi-conjugate adaptive optics (MCAO) and

laser tomography adaptive optics (LTAO) concepts with a linear quadratic

Gaussian (LQG) control approach. Results obtained in LTAO in closed loop

show the significant gain in performance brought by LQG control, which

allows tomographic reconstruction . We present a calibration and model

identification strategy. Experimental results are shown to be consistent with

end-to-end simulations. These results are very encouraging and demonstrate

a certain robustness of performance with respect to inevitable experimental

uncertainties. These results represent a first step for the study of very large

telescopes (VLT) and extremely large telescopes (ELT) instruments. c© 2009

Optical Society of America

OCIS codes: 010.1080,010.1285,100.3190,170.6960
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1. Introduction

Classic adaptive optics (AO) [1] is now a proven technique to correct turbulence on earth

based astronomical telescopes. The corrected field of view (FoV) is however limited by the

anisoplanatism effect. Multi-conjugate AO (MCAO) [2–4] aims at providing a wide FoV cor-

rection through the use of several deformable mirrors (DMs) and of multiple guide stars

(GSs) and wavefront sensors (WFS). The light coming from the GSs is analyzed

and is used to perform a tomographic reconstruction of atmospheric turbulence. The correc-

tion is made with several DMs conjugated with different altitudes. Various related concepts,

such as ground layer AO (GLAO) [4, 5], laser tomographic AO (LTAO) [6] or multi-object

AO (MOAO) [7] have been proposed to increase the FoV. These concepts of wide field AO

(WFAO) systems are investigated for the development of the second generation instruments

for very large telescopes (VLT) and the first generation instruments for extremely

large telescopes (ELT).

This paper proposes a study of these various WFAO concepts on a laboratory bench. We

implement and compare these approaches in closed-loop and evaluate their performance.

We also focus on calibration and control issues for WFAO systems. Contrary to AO, these

systems indeed require the specification of a FoV where the correction has to be optimized

and thus involve tomographic reconstruction and correction. Classic control laws with an

integrator control, similar to the ones used in an AO configuration, cannot provide easily

an optimal correction in a given FoV. Thus, new approaches for reconstruction and control

have been developed for WFAO. Optimal tomographic reconstruction is well known in a

static configuration, the solution being provided by a minimum mean square error (MMSE)

estimator [8, 9]. But, this solution is not adapted to closed-loop with turbulence dynamics.

The Linear Quadratic Gaussian (LQG) approach has been proposed for AO systems starting

in the early 90’s [10–13]. In [14,15], it was shown that a discrete-time LQG control based on

temporal averaged variables resulted in optimal performance of AO and WFAO systems (in

the sense of minimum residual phase variance or maximum Strehl Ratio (SR)). This approach
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has been studied in WFAO in [16]. In this paper, we focus on a comparison between integrator

and LQG control in WFAO with strong emphasis on experimental validations. Comparisons

with other sub-optimal solutions (e.g. POLC [17–19], FrIM [20]...) are beyond the scope of

this paper.

The design of instruments for these new WFAO concepts is in progress but until now, few

WFAO systems have been implemented to test calibration, performance and control issues.

The ESO demonstrator MAD has proven the feasibility of GLAO and MCAO and has given

the first on-sky results for these configurations using an integrator control [21, 22] on the

VLT in Chile. Other few on-sky experiments [23] have been performed on the 6.5m MMT

telescope in Arizona to evaluate tomographic reconstruction in static mode; no correction by

a DM is considered and the time evolution of turbulence is not accounted for. Concerning

instruments, the Gemini MCAO project is under study and integration, and will be the first

MCAO on-sky instrument for an 8 meter class telescope [24]. Few laboratory test benches

have been developed in parallel. The pseudo-open loop control (POLC) approach has

been experimentally demonstrated on few closed-loop iterations [25] on the Lick Observatory

Laboratory for adaptive optics multiconjugate testbed. This bench has also been used to

test tomographic reconstruction in LTAO in an open-loop configuration [26]. No temporal

aspects are considered for these results. The ESO demonstrator MAD has also given

results in the laboratory in MCAO. Validation of LQG control in AO has been realized

through laboratory experiments in AO [27, 28] and in a simplified WFAO configuration

[29]. There is thus a need for the development of laboratory benches to test in closed-loop

conditions GLAO, LTAO and MCAO. One also needs to define WFAO control strategies and

to compare experimentally LQG control with other solutions.

In this context, we have developed a WFAO bench at ONERA, called HOMER (Hartmann

oriented multi-conjugated experimental resource) dedicated to laboratory research for the

demonstration and the study of new WFAO concepts, especially GLAO, LTAO and MCAO.

All WFS GSs in HOMER are natural ones so that we refer in the following to the TAO
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concept: it is the same concept as LTAO but implemented with natural GSs. We present

here an experimental demonstration of MCAO and the first experimental results obtained

in TAO configuration in closed-loop. For the first time, a LQG control is used in WFAO. We

study the implementation of MCAO and TAO concepts on the experimental bench HOMER

in terms of control and calibration aspects. We show the gain in performance brought by

using a LQG control, especially in a TAO case, that allows tomographic reconstruction and

correction in real time with a closed-loop system.

Section 2 describes HOMER bench and its main components. We define the framework

of our study, the turbulence conditions and the different configurations available on the

bench. Section 3 is focused on the formalism of WFAO and the description of the control

laws applied on the bench. We recall the main equations of the integrator control for each

configuration (Subsection 3.B) and the LQG optimal control solution (Subsection 3.C). In

particular, we describe our approach of LQG control in the DM space. Note that DM’s

dynamics can be neglected since the mirrors’ time constants are very small compared to

integration time (see e.g. [30, 31] for AO control with DMs’ dynamics). In section 4, we

present experimental results obtained on HOMER bench. We focus on calibration aspects

related to WFAO systems and on the implementation of control laws, with a special attention

to model identification for the LQG control (Subsection 4.A). We present AO performance

results on HOMER with an integrator control, and show the impact of the anisoplanatism

effect (Subsection 4.B). Then we implement an LQG control law in a MCAO configuration

(Subsection 4.C) and compare the performance obtained with an integrator control. We

also compare experimental with numerical results obtained with end-to-end simulations of

HOMER bench and we discuss the sensitivity to parameters tuning. Finally, we describe

in Subsection 4.D the first results obtained in a TAO configuration in closed-loop, and we

compare the performance of LQG control with the performance in AO in the same direction.

We implement GLAO with an integrator control and show the performance of this concept.

These results are also compared to numerical simulations.
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2. HOMER bench

HOMER is a WFAO laboratory bench in visible wavelengths. It is devoted to implementation

and validation of new concepts of WFAO in the perspective of future VLT/ELT AO systems.

We can address with this bench experimental studies of implementation and comparison of

control laws. We can also study calibration issues: impact and correction of field aberrations

and calibration of models for control implementation.

In this paper, we test different concepts of WFAO: MCAO, TAO and GLAO. All concepts

have in common the use of several WFS GSs to analyze the turbulent volume. MCAO

provides a correction optimized in the whole FoV thanks to several DMs. In our configuration,

two DMs are used: one conjugated with the entrance pupil, the other in altitude. We also

implement TAO and GLAO concepts that use a single DM conjugated with the entrance

pupil to correct the turbulence. The main difference between these two configurations is

their purpose: GLAO provides a uniform but low quality correction in a wide FoV (typically

5 arcmin). On the contrary, TAO optimizes the correction in a single direction of the FoV.

Correction quality is high but of course restricted to a few anisoplanatic patch (few arcseconds

as in AO). It allows compensation in a direction where there is no bright GS for wavefront

(WF) sensing. This configuration requires a tomographic reconstruction of the turbulent

volume to estimate and to correct in the direction of interest. We study in Section 4 the

implementation of these concepts on HOMER with different control laws.

In the following, we describe HOMER and its main components, represented on Fig.

1 (more details about HOMER and its components can be find on HOMER web site:

www.onera.fr/dota/homer). The bench has been integrated since October 2007. It uses only

natural GSs. The source module is based on a reconfigurable multi-source system composed

of fiber coupled laser diodes in the visible wavelengths (λ = 635 ± 5 nm) and associated

to a collimator. Then, there is a turbulent space where phase screens could be placed to

generate the turbulence. In our experiment, we use the two DMs both to generate and to

correct the turbulence, as described in Subsection 2.B. This configuration provides a more
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controlled environment and presents interesting features for control laws validations. A

single wide field Shack-Hartmann WFS analyzes the light coming from several GSs. This

single WFS allows flexibility in the number and the configuration of GSs, while reducing

the calibration and synchronization issues. See Subsection 2.C for more details. A wide field

imaging camera is used for performance estimation. The WFAO loops are controlled by a

real time computer (RTC) working at 10 Hz (limited by WFS images time transfer).

The pattern of science targets and GSs is represented on Fig. 2. Thirteen point sources are

distributed over the FoV to evaluate the performance of the WFAO systems. Star number 0

is in the center of the FoV and is used for AO WFS. For WFAO configurations, we analyze

the light coming from stars 3, 6 and 10. We identify a given star in the FoV by its angular

position with respect to the central star 0. The position can also be expressed in relative

separation δ at a given altitude h: δ = αh/D where α is the angular position of the star and

D is the pupil diameter. It corresponds to the relative separation of the beam footprints at

this altitude. In the following, the position of the second DM sets the FoV to δ = [−0.34, 0.34]

for stars number 3, 6, 9 and 12. By analogy, if we consider a telescope with D = 8 m and

two stars separated by 1 arcmin, a footprint relative separation of 0.34 is obtained for a

turbulent layer at 9347 meters. Figure 3 illustrates the relative separation for two stars in

the FoV for a layer at altitude h.

2.A. Corrective optics

The corrective system of HOMER is composed of two DMs, developed by ALPAO and

based on magnetic actuators: a continuous membrane is deformed by miniaturized voice-coil

actuators. There is no contact between the membrane and the coil array. The ground DM,

called DM52, has 52 effective actuators in a 17.5 mm pupil (8x8 actuator grid). The altitude

DM, called DM88, has 88 effective actuators on a 22.5 mm diameter (10x10 actuator grid).

See a picture of the DMs on figure 1. Note that these DMs have an important coupling factor

between their actuators (70% for DM52 and 65% for DM88). In the following, we modeled
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the DMs by their influence functions that relate the DM command voltages to the correction

phase expressed in a given basis. These influence functions, denoted as N52 and N88 for both

DMs, are deduced from experimental calibrations. At the considered sampling frequency,

DM temporal response can be considered instantaneous. We assume that the DMs are linear

so that the correction phase ϕk provided by one DM k, where k stands for 52 or 88, is given

by

ϕk = Nkuk, (1)

where uk is the voltage vector applied on DM k. Thus, the best DM least-square fit to a

given phase ϕk is obtained with the computation of voltages uk through

uk = Pkϕk = ((Nk)tNk)†(Nk)tϕk, (2)

where Pk is the projection matrix on the DM, defined as the generalized inverse of the

influence matrix Nk computed using a truncated singular value decomposition (TSVD).

Symbol † corresponds to generalized inverse and t stands for transposition. We thus note

P52 and P88 the projection matrices of DM52 and DM88.

The DM88 can be placed at an adjustable altitude. Usually, it is placed within a collimated

beam: the meta-pupil increases with the altitude, while the footprint associated to each GS

keeps its size. Our configuration is a “constant envelope collimation” [32]. The DM88 is

placed within a diverging beam so that the size of the meta-pupil is constant and can be set

to the DM diameter, while the size of the GS footprint decreases when the altitude increases.

Therefore the altitude of the second DM is continuously adjustable thanks to a simple trans-

lation stage. Figure 4 presents the optical layout of a constant envelope collimator. In the

following, we conjugate the DM88 with an altitude that ensures a footprint maximum rela-

tive separation with respect to the central star of δ = 0.34 for stars number 3, 6, 9 and 12

on Fig. 2.
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2.B. Turbulence generator

In our experiment, the turbulence is generated by the DMs thanks to DMs voltages also

called in this paper “turbulent voltages” and denoted as v. At each step of the loop, the

turbulent voltages, which are not known by the control loop, are added to the command

voltages calculated by the control law. To have a realistic turbulent phenomenon, we project

on the DMs a two layer Kolmogorov turbulence in translation (Taylor hypothesis) defined as

two large phase screens of typically 4096 × 4096 pixels. The turbulence is then defined as a

circular footprint of 119×119 pixels in the pupil layer and of 234×234 pixels in the altitude

layer. We scale the turbulence so as to obtain an equivalent strength in each layer, a global

D/r0 equals to 7 at 635 nm. The simulated wind speed in each layer V is scaled to reproduce

a ratio V/(DFs) similar to a VLT case (V/D = 1 Hz in each layer at Fs = 500 Hz). At each

time step (one frame period corresponding to the Fs = 10 Hz frequency of the bench), the

turbulent phase in each layer ϕk, where k stands for 52 and 88, is translated and projected

on the DM corresponding to its altitude according to Eq. (2) to compute the DM voltages

vk. We can assume that the turbulent phase is a stationary Gaussian process with known

covariance matrix Σk
ϕ derived from Kolmogorov statistics [33] on the Zernike basis. For each

turbulent voltage vk corresponding to a layer, the voltages covariance matrix denoted by Σk
v

is obtained through

Σk
v

= PkΣk
ϕ(Pk)t. (3)

This configuration allows us to benefit from a well controlled and calibrated turbulent en-

vironment. The turbulent phase being in the DM space, we simply have to be aware of the

fact that there is a limited aliasing effect and virtually no fitting error.

2.C. Wavefront sensors

The WFS is a wide field Shack-Hartmann composed of a 7x7 sub-aperture lenslet array

(1.136 mm pitch, 30 mm focal length) and an ANDOR iXon DU895LC camera, which is a

low noise EMCCD with 1004x1002 pixels of 8 microns. The large number of pixels of the
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camera imposes a low acquisition frequency of 24 Hz at most. Each lens focuses the GS’s

lights on the WFS camera detector over 142x142 pixels (λ/2D per pixel, Shannon sampling).

Note that its FoV is slightly lower than the source FoV. A distinctive feature of HOMER

design is that a single wide field Shack-Hartmann WFS is used instead of having a given

number of WFS for each GS direction: each sub-aperture can see the whole FoV. We can then

perform WF sensing on several regions, of 16 × 16 pixels for instance, around each selected

GS. It allows to test different WFS configurations with minimal hardware alteration, to

simplify the calibration procedure and to ensure the synchronization of the measurements.

See a picture of the WFS on Fig. 1 and its display on Fig. 5.

2.D. Real-time computer

The HOMER RTC has been developed by Shaktiware based on the specifications provided

by ONERA. We use a PC under linux-64 bits operating system, with an AMD K8 Athlon

64 processor. It is based on a C code which allows an easy use of the software. The RTC

integrates various specificities for WFS: multi-zone WFS with slope computation through

either center of gravity, weighted center of gravity or even a correlation algorithm. Several

kinds of control laws can be easily implement on the RTC, such as integrator

or LQG control. The RTC presents many functionalities that allow implementation and

diagnostic tools for WFAO loops.

3. WFAO system and control formalism

3.A. WFAO formalism

This section describes the formalism and the modeling of a WFAO system. Figure 6 shows a

general WFAO configuration using nm DMs for correction and ngs WFS for analysis. There

is a two frame delay in the system: WFS measurements are performed during one frame

of length T , then CCD read-out, slopes calculation and control computation are performed

during the next frame. Control is applied at the beginning of the frame after. It leads to the
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chronogram presented on Fig. 7. More complex chronograms can be considered [28, 30, 34].

It is assumed that the atmosphere can be modeled by nℓ discrete turbulent layers statisti-

cally independent. Each layer ℓ is characterized by its altitude hℓ. ϕtur
ℓ,n is the time-averaged

turbulent phase at time nT in the layer ℓ, corresponding to the discrete instant n:

ϕtur
ℓ,n =

1

T

∫ nT

(n−1)T

ϕtur
ℓ (t)dt. (4)

It is defined over a meta-pupil delimited by the maximal FoV, the diameter of which is

Dℓ = D+hℓθ. The turbulence can be expanded on a convenient modal basis. In the following,

we choose the DM space to represent the turbulent phase, instead of the usual Zernike basis,

as the turbulence is generated by the DMs (see Subsection 3.C for more details).

The turbulent phase in the volume ϕtur
n is defined by the concatenation of the turbulent

phases in each layer ℓ. For a WFAO system with several WFS directions α = {α0, ..., αngs
},

the turbulent phase seen in the telescope pupil is equal to φtur
α,n = Mnℓ

α ϕtur
n , where Mnℓ

α is

a linear operator performing the sum of all contributions of each turbulent layer ℓ in all

directions α. The correction phase in the nobj directions of interest β = {β0, ..., βnobj
} in the

pupil is then given in a similar way by φcor
β,n = Mnm

β ϕcor
n .

We consider a WFAO system composed of ngs WFSs and nm DMs, which applies a cor-

rection in nobj directions of interest β. Let un be the voltage vector at instant n gathering all

DM voltage vectors um,n (m ∈ {1, ..., nm}) then un = ((u1,n)t, ..., (unm,n)t)
t
. We denote by N

the DMs’ global influence matrix. This is a block-diagonal matrix, each block corresponding

to an influence matrix of the WFAO system’s mirrors. The correction phase provided in the

volume ϕcor
n is then defined as a generalization of Eq. (1)

ϕcor
n =

1

T

∫ nT

(n−1)T

ϕcor(t)dt = Nun−1. (5)
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The residual phase at time n − 1 in directions of interest β is given by

φres
β,n−1 = Mnℓ

β ϕtur
n−1 −Mnm

β ϕcor
n−1. (6)

The residual WFS measurements, obtained thanks to ngs WFSs in directions of analysis

α, are

yn = Dngs
φres

α,n−1 + wn, (7)

where Dngs
contains ngs row repetition of matrix D, which describes the linear response of a

WFS and assuming that all WFSs are identical. The measurement noise wn is a generalized

measurement noise vector for all WFSs. In the following, we call the WFAO interaction

matrix M
ngs,nm

int the matrix that relays the slopes measurements to the voltages applied on

the DM

yn = −M
ngs,nm

int un = −Dngs
Mnm

α Nun. (8)

A classic AO configuration is easily retrieved, by setting Mnℓ
α ,Mnm

α ,Mnm

β and Mnℓ

β as iden-

tity matrices and considering single WFS, DM and on-axis analysis and correction direction.

The WFAO performance optimality criterion aims at minimizing the residual phase vari-

ance in a given FoV, hence the minimization of the following criterion

J(u)wfao = lim
N→+∞

1

N

N
∑

n=1

∥

∥Mnℓ

β ϕtur
n − Mnm

β Nun−1

∥

∥

2
. (9)

3.B. Integrator control

what we call in the following the integrator control implemented on HOMER for different

WFAO configurations. This control does not minimize the criterion presented on Eq. (9)

but it corresponds to a least-square reconstructor associated with an integrator temporal

control. The control applied at time nT is described by

un = un−1 + g∆uls
n = un−1 + gMcomyn, (10)
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where g is the integrator scalar gain, Mcom is the control matrix of the loop and yn is the

WFS measurements of the residual phase in ngs directions. Voltage increments ∆uls
n are

computed from the closed-loop WFS data by least-square reconstruction. We describe here

the different control matrices used for:

• AO loop: Mao
com = ((Mao

int)
tMao

int)
†(Mao

int)
t is the generalized inverse of the interaction

matrix Mao
int = DN using a TSVD. Note that in this configuration ngs = 1 and nm =

1 so that Mnm
α in Eq. (8) is equal to identity matrix and N = N52,

• GLAO loop: Mglao
com = ((Mglao

int )tMglao
int )†(Mglao

int )t makes an average of the measurements

in ngs directions and applies the correction on nm = 1 DM with Mglao
int = Dngs

N52.

The effect produced is an optimization and a standardization of the SR in a large FoV

thanks to the analysis on a finite number of GSs,

• MCAO loop : Mmcao
com = ((Mmcao

int )tMmcao
int )†(Mmcao

int )t where Mmcao
int = Dngs

Mnm
α N is the

generalized interaction matrix of the system between the nm DMs and the ngs WFSs.

The control matrix is computed using a TSVD.

The integrator control is based on the tacit hypothesis that the turbulent phase belongs to the

DM space. Table 1 recalls the size of the interaction matrices for each configuration tested on

HOMER. In the following, we refer to the interaction matrices with the appropriated number

of DMs and WFSs so that: Mao
int = M1,1

int, Mglao
int = M

ngs,1
int and Mmcao

int = M
ngs,nm

int . For each

test with an integrator control, we adjust the scalar gain and the number of truncated modes

in the TSVD to optimize the integrator control performance (see Subsection 4.C.3 for more

details). We work in high signal to noise (SNR) conditions. We choose the integrator gain

equal to g = 0.5.

3.C. LQG control formalism

This part just recalls the main equations and important characteristics of the LQG control

that has been fully described, especially in [29]. The control problem in Eq. (9) finds its
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solution in a two step resolution. This classic result is known as the stochastic separation

theorem [35,36] and states that the optimal control un can be constructed by separately solv-

ing a deterministic control problem and a stochastic minimum variance estimation problem.

The stochastic minimum variance estimation problem consists in estimating/predicting the

turbulent phase. Its solution is provided, in the linear Gaussian case, by the Kalman filter.

If the Gaussian assumption is released, the Kalman filter provides the best linear unbiased

estimator. To describe the LQG control, a state-space representation of the system has to

be specified.

As turbulence is generated by the DMs, like described in Subsection 2.B, a natural way is

to represent the turbulence phase in the DM space [13,37,38]. We denote by vn the turbulent

phase on the DM influence function basis at time n, called the turbulent voltages. We assume

that the turbulent phase is ϕtur
n = Nturvn, where Ntur is a block-diagonal matrix, with two

blocks containing respectively N52 and N88, which correspond to the influence matrices of the

DMs that generate the turbulence. Note that un are the correction voltages calculated by the

controller to be applied on one or two DMs so that dim(un) ≤ dim(vn). We use for the sake

of simplicity a first order auto-regressive (AR1) model, already successfully applied in LQG

control for AO and WFAO, to model the turbulent voltages stochastic process associated to

the turbulent phase of the form

vn+1 = Avvn + ξn, (11)

where ξn is a white noise of covariance matrix Σξ. The matrix Av is a time-constant matrix.

Following usual modal turbulence models [14, 29] we consider a diagonal matrix. In the

considered DM basis one can even take a matrix proportional to identity since turbulent

voltages exhibit a similar correlation time for all actuators. We then do not benefit from a

temporal discrimination between modes, but this aspect is not very relevant on low order

systems. This AR1 model of the discrete-time turbulence, as defined in Eq. (11), is simple. It

is representative of the temporal decorrelation of the turbulence and does not pretend to be

representative of a frozen flow turbulence. Consequently Av = aI where I denotes identity
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matrix with appropriate dimensions. It is important to note that even with such a simple

diagonal matrix, the AR1 model given by Eq. (11) can be tuned so as to generate a stationary

signal v with arbitrary spatial covariance matrix. In this case, selecting matrix Σϕ thanks to

Kolmogorov statistics leads to a given spatial covariance matrix Σ
v

of the turbulent voltages

given by Eq. (3), containing contributions for both DM52 and DM88. We then calculate

the spatial covariance AR1 noise matrix Σξ by taking into account the conservation of the

turbulence spatial correlation structure, including its global energy:

Σξ = Σ
v
− AvΣ

v
(Av)t = (1 − a2)







P52Σ52
ϕ (P52)t 0

0 P88Σ88
ϕ (P88)t






. (12)

Equation (12) leads to a non-diagonal Σ
v

which means that temporal interspectra are

not null: it is immediately checked that this choice of Σξ results for k = 52 and k = 88 in

Σk
v

= PkΣk
ϕ(Pk)t in Eq. (3), so that Var(Nkvk) = Var(Pkϕk).

We define a state-space model with state vector

Xn =



















vn

vn−1

un−1

un−2



















, (13)

which allows to describe respectively a turbulence evolution model in the DM space (11),

the measurement equation (7) and the correction phase equation (5) in matrix form:

Xn+1 = AXn + Bun + ηn, (14)

yn = CXn + wn, (15)
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where

A =



















Av 0 0 0

I 0 0 0

0 0 0 0

0 0 I 0



















,B =



















0

0

I

0



















and ηn =



















ξn

0

0

0



















, (16)

C =

(

0 Cnℓ
0 −Cnm

)

. (17)

with Cnℓ
= Dngs

Mnℓ
α Ntur and Cnm

= Dngs
Mnm

α N. Covariance matrix of ηn is deduced from

Σξ and is denoted by Ση.

This state space model provides a complete input-output description of a WFAO system.

The optimal control is then obtained as an orthogonal projection by

un = Pwfaov̂n+1|n, (18)

where v̂n+1|n is the conditional expectation of vn+1 with respect to all measurements available

up to time n. Pwfao is the least-square orthogonal projector from turbulent voltages space

to correction voltages space given by

Pwfao =
(

(

Mnm

β N
)t

Mnm

β N
)†

(Mnm

β N)tMnℓ

β Ntur, (19)

that minimizes the deterministic criterion for ϕtur
n = Nturvn:

J(u)wfao =
∥

∥Mnℓ

β Nturvn − Mnm

β Nun−1

∥

∥

2
. (20)

Minimizing Mnm

β N‖vn − un−1‖
2 for a MCAO configuration leads to minimizing Eq. (20),

since nm = nℓ and N = Ntur, so that Pmcao is equal to identity matrix. In TAO configuration,

we have to calculate the projection matrix Ptao with Eq. (19) and appropriate matrices. The

computation of the projection matrices is presented in Subsection 4.A.3.
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The voltage estimate is the output of the stationary Kalman filter in the form:

v̂n|n = v̂n|n−1 + aH∞

(

yn − ŷn|n−1

)

, (21)

v̂n+1|n = av̂n|n, (22)

un = Pwfaov̂n+1|n, (23)

where ŷn|n−1 = Dngs
Mnℓ

α Nturv̂n−1|n−1 − Dngs
Mnm

α Nun−2 and matrix H∞ is the asymptotic

Kalman gain defined by:

H∞ =



















aHopt

Hopt

0

0



















, (24)

with Hopt = Σ∞Cnℓ

t
(

Cnℓ
Σ∞Ct

nℓ
+ Σw

)†
and Σ∞ is the covariance matrix of the estimation

error and the solution of the Riccati equation

Σ∞ = a2Σ∞ + Σξ − a2Σ∞Cnℓ

t
(

Cnℓ
Σ∞Cnℓ

t + Σw

)†
Cnℓ

Σ∞. (25)

Note that Eq. (25) does not depend on measurements and thus can be pre-computed

off-line.

4. Experimental results on HOMER bench for WFAO configurations

This section focuses on laboratory tests of different WFAO concepts on HOMER. First, Sub-

section 4.A presents calibration aspects necessary to our test: impact of the field aberrations

(Subsection 4.A.1) and model calibration for implementation of integrator and LQG con-

trol laws (Subsection 4.A.3). We also describe the end-to-end simulation tools of HOMER

in Subsection 4.A.2. Then we present the performance obtained in classical AO with an

integrator control (Subsection 4.B). Subsection 4.C provides performance comparison be-
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tween integrator and LQG control in MCAO. This is the first experimental demonstration of

LQG control for a WFAO system. At last, we present the first experimental results obtained

in TAO (Subsection 4.D) in closed-loop conditions. TAO correction is obtained with LQG

control. These validations are systematically compared to numerical simulations.

Turbulent conditions have been fully described in Subsection 2.B. The same conditions

have been used for all experiments. Note that the error bar on SR estimation defined as the

1 σ error bar is of the order of 1% for all SR values presented in the following. So the SR

given in this article are round off the percent due to the error bar of the measurement.

4.A. Calibration, end-to-end simulations and model identification

Calibration is needed, not only to implement end-to-end simulations but also to compute

the control laws for WFAO systems. We first have to evaluate the performance of our system

without turbulence to calibrate the internal SR of HOMER. We then describe the end-

to-end numerical simulation tool of the bench that is used to estimate and to compare

the performance of the bench with experimental results. At last, we present the model

identification issues for both control laws.

4.A.1. Performance of the system without turbulence

To begin with, we need to measure the performance of the system without turbulence: the

internal SR is measured in the imaging camera focal plane for each star in the FoV on long

exposure images (see their positions on Fig. 2). This step gives the best SR that could be

reached experimentally with our system. Measurement of the internal SR is performed in

closed-loop with an integrator control without turbulence, as described in Subsection 3.B:

in AO, the GS and corrected direction is star 0; in MCAO, the GSs are the stars 3, 6 and

10. Figure 8 presents the map of internal SR obtained in AO and MCAO. In both cases,

the mean SR on the imaging field is about 56%. The best performance is obtained on star 0

with 66% and the worst on star 9 with 46% after optimization of the optical alignment. The

standard deviation of the SR in the FoV is 5.8% in AO and 5.6% in MCAO. These results
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allow us to evaluate the optical imaging path quality of HOMER in each configuration. The

SR is not uniform in the FoV, especially in MCAO case: it means that some field aberrations

of the system are not corrected. These low SR can also be due to common path aberrations

with high frequency effects. Figure 8 shows the impact of the aberrations in the imaging

path that are not corrected by the loop. To improve further HOMER performance, it may

be possible to measure NCPA on and off axis with phase diversity method [39, 40], but

accounting for NCPA in WFAO closed-loop configuration is still under study. Measurement

of the internal SR also allows to scale the SR obtained in end-to-end simulations of HOMER

bench, presented in Subsection 4.A.2, before comparison with experimental results. In the

following, the value of the internal SR will therefore be specified for each experiment.

4.A.2. End-to-end numerical simulation of HOMER bench

So as to validate the experimental results, HOMER bench has been numerically simulated

using an end-to-end IDL code, as described in [29]. We have adapted this code to HOMER

configuration to take into account the specificities of our system (AO, GLAO, TAO or MCAO

configurations, turbulence, DM and WFS characteristics, etc). We simulate the turbulence

with the turbulent voltages applied on the bench. Both DMs are fully represented by their

experimental influence matrices. The code simulates ngs Shack-Hartmann WFSs of 7 × 7

lenslet array, where ngs corresponds to the number of WFSs for the studied configuration.

The computation of the slope measurements is then obtained by a discrete approximation

of the phase gradient in a sub-aperture. The WFSs are linear and each one is represented

by matrix D. The code includes a control module with either integrator or LQG control.

The SR obtained in all numerical simulations is scaled to take into account the internal SR

measured in Subsection 4.A.1.

4.A.3. Model identification for WFAO control

We focus now on calibration aspects for implementation of control laws for WFAO systems.

Section 3 has recalled the main equations for both control laws tested on HOMER. An
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integrator control requires to calibrate the interaction matrices presented in Subsection 3.B.

They are obtained experimentally by push-pull of each actuator of the DMs. We realize

an average of the slope measurements in each GS direction to limit noise. They are easily

obtained thanks to an RTC routine. The LQG control requires a little bit more calibration of

matrices and models to reach good performance. The LQG control can be summed up with

Eq. (21), Eq. (22) and Eq. (23). As already explained, the turbulent phase is represented

in the DM space. It is more convenient here: as only interaction matrices are involved, this

simplifies model identification. To implement LQG control (21 - 23), we have to identify the

turbulent model described in Eq. (11) and Eq. (12), and to evaluate the matrices Σw, C,

Pwfao and Σ∞. This leads to identify in the DM space:

• the turbulent model: the value of the parameter a of matrix Av. We calculate the

temporal correlation for each turbulent voltage v and identify the best fit to the short

term correlation at one step, so that a = 0.995. The values of Σ
v

and Σξ are deduced

from Eq. (3) and from Eq. (12).

• The noise covariance matrix Σw: it is chosen diagonal and proportional to identity so

that Σw = σ2
wI. We calibrate on HOMER bench the noise variance σ2

w : it is measured

from the slope data and is equal to 5 × 10−4 pixels2 in the following.

• The matrix C described in Eq. (17): it is obtained from the multiplication of matrices

Dngs
(model of the WFSs), Mnℓ

α (projector of the turbulent phase seen in the WFS

directions), Mnm
α (projector of the correction phase) and the influence matrices of

the DMs, N used for correction and Ntur for generation of the turbulence. Matrices

Dngs
, Mnℓ

α and Mnm
α can be numerically computed through the end-to-end simulation

of HOMER, described in Subsection 4.A.2. Matrices N and Ntur are obtained with

experimental calibration of the DMs. Both matrices Cnℓ
and Cnm

, which correspond

to interaction matrices, can be measured experimentally. Cnℓ
is the interaction matrix

between the WFSs and the two DMs that generate the turbulence, corresponding to
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matrix M
ngs,nm

int with nl = 2 and N = Ntur. Cnm
corresponds to the interaction matrix

between the WFSs and the DMs used for the correction. In MCAO, we thus have Cnm

= Cnℓ
, and in TAO, nm = 1 and N = N52 so that Cnm

corresponds to M
ngs,1
int .

• The projection matrix Pwfao of the estimated turbulent voltages on the DMs: we have

already shown that in MCAO, Pmcao = I (see Subsection 3.C). In TAO, Ptao has to be

calculated with the appropriated matrices thanks to Eq. (19). β corresponds to star 0

and nm = 1 so that Mnm

β is the identity matrix and N corresponds to N52. Therefore,

Ptao =
(

N52t
N52

)†

N52t
Mnℓ

β Ntur. This solution mixes numerical and experimental ma-

trices in the LQG control and makes matrices C and Ptao potentially inconsistent. So

as to limit model errors, it is interesting to modify the criterion in Eq. (20) by mini-

mizing at each step the criterion
∥

∥D(Mnℓ

β Nturvn − Mnm

β N52un−1)
∥

∥

2
. Minimizing this

criterion leads to minimizing the residual slope variance in the direction of interest

β. The projector Ptao is then obtained as Ptao = ((DN52)tDN52)
†
(DN52)tDMnℓ

β Ntur

and can be computed with experimental interaction matrices : DN52 corresponds to

M1,1
int and DMnℓ

β Ntur corresponds to an MCAO like interaction matrix in the direction

β that can be easily calibrated on the bench. When using this criterion, we restrict

optimality to the WFSs space in minimizing residual slopes variance instead of residual

phase but we gain in terms of calibration quality.

• The asymptotic Kalman gain Σ∞ described in Eq. (25): all parameters have been

evaluated before. The value of Σw used in the Riccati equation is tuned to obtain the

best performance. See Subsection 4.C.2 for more details.

As shown in this subsection, both integrator and LQG control laws need the calibration of

given generalized interaction matrices, that can be obtained experimentally. For LQG control,

we also need to identify the turbulent model, that depends on the turbulent voltages applied

on the bench and the measurement noise. These calibrations are quite simple to perform.
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4.B. AO results

First, we present the results obtained in classic AO on HOMER. We correct the on-axis

direction, which corresponds to star 0 on Fig. 2, with the DM52 conjugated with the pupil.

All results presented in AO case are obtained with an integrator control. An LQG control

has also been implemented for this configuration, it presents performance similar to an

integrator control. These results are not presented in this paper, as experimental implemen-

tation and comparison of LQG and integrator control laws have been fully studied in AO

case in [29].

For an integrator control, we compute the control matrix presented in Subsection 3.B:

pseudo-inverse of the interaction matrix with a filtering of modes associated with the 6

lowest eigenvalues. The resulting condition number is around 50. We use a constant 0.5 in-

tegrator gain. The gain value and the number of truncated modes are tuned to obtain the

best performance in direction of star 0. Figure 9 presents long-exposure point spread func-

tions (PSFs) obtained without AO correction in presence of turbulence (Fig. 9 - left) and

long-exposure PSFs in closed-loop (Fig. 9 - right). The open-loop SR without correction is

about 7% for each star in the FoV. The performance obtained in AO are described in Table

2. When performing AO correction, we obtain a SR of 66% on star 0, that corresponds to

both WFS and correction directions. On the border of the FoV, we measure a SR of 12%

due to the anisoplanatism effect. We recall that the on-axis internal SR is also 66% for this

experiment due to the numerical rounding of the SR linked to the uncertainties

of the measurement. Let us now compare experimental and numerical results obtained

with the end-to-end simulation of HOMER bench. Figure 10 presents the SR obtained on

different stars in the FoV within experiments (dashed line) and simulations (solid line). This

comparison takes into account the scaling of numerical SRs by measured internal SRs, as ex-

plained in Subsection 4.A.1. The experimental and numerical curves are in great agreement.

This confirms that we have a good numerical simulation of HOMER bench in AO and also

a good modeling of its components. We can notice on Fig. 10 that the experimental results
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are slightly better for the stars on the border of the FoV. It is probably due to an error of

the experimental position of the border stars or to an evolution of the internal SR of these

stars during measurements.

4.C. Experimental results for MCAO control

We focus now on the implementation of MCAO concept using integrator or LQG control. In

the following, the WFS directions are given by stars 3, 6 and 10 on Fig. 2. We first describe

the results obtained in this configuration and then the tuning of both control laws.

4.C.1. Comparison between integrator and LQG control laws

The results presented here are the first experimental results obtained with LQG control in

MCAO. We compare in the following the performance obtained in the FoV with an integrator

control, described in Subsection 3.B, and a LQG control, described in Subsection 3.C. Tuning

of LQG and integrator controls are described and discussed respectively in Subsections 4.C.2

and 4.C.3. Note that all the matrices used for control computation are those identified in

Subsection 4.A.3. Table 3 presents the SR obtained in 4 directions of the FoV for both

control laws: star 0 in the center of the FoV, which is not seen by the WFSs, and the WFS

directions stars 3, 6 and 10. We also give the SR obtained with the end-to-end simulation

of HOMER, scaled by the internal SR measured for each star. Note that the SR obtained

with a LQG control is the same as the internal SR due to the numerical rounding and the

precision of the SR measurements. As an integrator control naturally reconstructs the phase

in the DM space, the results obtained in MCAO with an integrator control are very good: we

obtained 53% of SR averaged in the FoV (see Subsection 3.B). LQG control gives a better

performance with a higher SR on all measured directions of interest and on average with 56%

of SR in the FoV (Table 3). These results give a successful demonstration of the applicability

of LQG control on a real MCAO system despite inevitable uncertainties on system models

and experimental conditions. The case presented here validates the LQG controlled MCAO

configuration, with the advantage of a structurally stable control law. Figure 11 shows the
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performance of the MCAO correction with LQG control compared to the AO case. We can

see that MCAO correction is very efficient in the whole FoV. As shown on Figure 12 - right,

the principal limitation of the MCAO performance in our test is mainly due to the NCPA

that are not corrected for the moment. The SR map presented here is very similar to the

one presented on Fig. 8. We also present the map of the SR obtained in AO on Figure 12 -

left for comparison.

For this first experimental implementation of LQG control on a MCAO system, we gen-

erate and thus estimate the turbulence in the DM space, which simplifies the calibration

procedure. This configuration is very favorable to integrator control that reconstructs im-

plicitly the turbulence in the DM space. The integrator control has very good performance

because it corrects almost all the turbulence generated by the DMs. In a situation where the

generation of the turbulent phase would be in a different space than the DM’s, the gain in

performance for LQG control should be even higher, due to the prediction and spatial aliasing

capabilities of the Kalman filter. [29] has demonstrated the ability of LQG control to correct

the turbulence generated by a phase screen in off-axis direction despite inevitable model

errors in experiments. The implementation of LQG control to correct turbulence generated

by phase screens in MCAO requires to adapt the calibration procedure for the identification

of LQG control models. In a realistic turbulence case, a LQG control in MCAO will give

better and more homogeneous performance in the FoV compared to an integrator control,

as shown in [29] with numerical simulations.

4.C.2. Best tuning of LQG control in experimental MCAO case

The measurement noise variance σ2
w is a parameter that allows to tune the performance of

the LQG control. Its effect is studied here experimentally and in simulation. Figure 13 shows

the mean performance in the FoV obtained in MCAO configuration as a function of σ2
w used

in the LQG gain computation in Eq. (25). We recall that Σw = σ2
wI. In simulation, the WFS

noise is set to σ2
w = 5 × 10−4 pixels2 which is its estimated value from the slope data. The

LQG control is not highly sensitive to the choice of σ2
w. In experimental tests, the best noise
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variance, leading to highest performance, is systematically higher than the measured one.

Its value has been set to σ2
w = 5 × 10−3 pixels2. One could naively expect that the best

performance would be obtained with a Kalman gain computed with a noise variance close to

the measured WFS noise level. In fact, the issue here is the relative level of modeling error

between measurement and state transition equations of the Kalman filter. A higher value of

σ2
w will result in a lower value of the Kalman gain: errors affect the measurement model in a

way that leads to an increased measurement error variance, so that increasing σ2
w results in

better performance. In our experiment, the best performance is obtained with values of σ2
w

slightly higher than the measured value. This suggests that modeling errors affect more the

measurement model. We have compared experimental results with numerical simulations of

HOMER bench, where much less models errors are present, so that the performance is kept

high for low values of σ2
w. The good matching found between both performance suggests that

models errors can be partly offset by the tuning of σ2
w. The performance is not very sensitive

to this parameter but an over-estimation is to be preferred to account for inevitable errors

in the measurement model.

4.C.3. Tuning of the integrator control in MCAO

We now optimize the performance obtained in the whole FoV with an integrator control

described in Subsection 3.B. For both experimental and numerical results, the integrator

gain is set to 0.5 because it leads to the best performance and it ensures stability. The control

matrix is obtained as a truncated generalized inverse of the generalized interaction matrix.

To ensure a condition number of 500, 20 modes are filtered out in the TSVD. This control

law is dependent on the directions of WFS and no explicit optimization of the correction in

other direction is possible. A way to optimize integrator control performance is to choose

the truncated threshold. Figure 14 presents the mean SR in the FoV obtained with an

integrator control as a function of the number of truncated modes in the TSVD. We notice

that experimental and numerical results are in good agreement. Similar results have been

obtained with lower gains. In simulation, we can see that the performance is the same for 0
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to 20 truncated modes. In experiments, with too few modes truncated, waffle modes appear

and severely limit performance. This is probably due to bad seen modes that are not fully

filtered in the TSVD and to the quality of the interaction matrix.

4.D. Experimental results for TAO

In this section, we present the first experimental results obtained in closed-loop in TAO. The

interest of using a LQG control is great in this case because it performs a reconstruction and

a prediction of the turbulent volume in real time making an optimal use of residual WFS

data. It then allows projection of the turbulence in a specific direction to obtain optimal

DM correction. The performance obtained in TAO in one direction can be compared with

results obtained in the same direction with AO correction. In fact, TAO allows correction

in a direction where there is no bright star for WFS. In LTAO, when several LGS are used

for WFS, this approach also allows to partially solve the cone effect. Moreover, we show the

performance obtained in GLAO with an integrator control. Classic controllers, such as least-

square plus integrator, are dedicated to zeroing the slopes measurements in the directions of

WFSs. Thus a particular field of correction cannot be specified. A classic integral controller,

such as the GLAO control described in Subsection 3.B, provides an average correction in the

FoV.

For this experiment, the turbulence is analyzed in three directions (stars 3, 6 and 10)

and then the correction is applied with one DM conjugated to the entrance pupil. A LQG

control has been implemented with the matrices described in Subsection 4.A.3. We choose

the direction of star 0 as the optimization correction for TAO. As already shown in Subsection

4.C.2, it is possible to modify LQG performance by tuning the noise variance σ2
w. Figure 15

shows the dependence of SR performance in the optimized direction as a function of σ2
w in

the LQG gain in Eq. (25). For experimental results, the best noise variance that leads to the

highest performance is higher than the measured one, that is σ2
w = 5 × 10−2 pixels2 for a

measured value of 5 × 10−4 pixels2. We see a maximum of the performance in experimental
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results whereas the simulation performance is rather constant for low values of σ2
w and

decreases with higher ones. These results are similar to those presented in Subsection 4.C.2

and have the same explanation. We have to increase the value of σ2
w to take into account

model errors. GLAO integrator control has been computed with a generalized control matrix

with 6 modes filtered out and a gain of 0.5. This control has been optimized as in

Subsection 4.C.3.

Table 4 gathers the results obtained in TAO and GLAO. The performance in TAO can

also be compared with the SR value obtained in presence of turbulence with a classical

AO correction in direction of star 0. In GLAO, the SR is uniform but low in the FoV, as

expected, with about 20% of SR on each studied star. In TAO, a SR of 55% is reached on

star 0, which is closed to the performance of 60% of SR obtained in AO in the same direction.

The difference is due to the residual tomographic error. TAO optimizes the correction on

axis, using a single DM. Consequently the correction deteriorates in the FoV in the same

manner as in classic on-axis AO, due to anisoplanatism. On the contrary, MCAO optimizes

the correction in the whole FoV thanks to multiple DMs. Note that these experiments have

not been performed during the same period as the MCAO ones, which explains why the SR

in AO is lower here. LQG TAO control provides an efficient tomographic reconstruction of

the turbulent volume, where there is no bright star to perform the WF sensing.

5. Conclusion

This paper is focused on the validation of LQG control for WFAO systems and the test

of different WFAO concepts on the ONERA WFAO bench “HOMER”, presented in this

paper. Closed-loop experimental results obtained with the bench for different WFAO config-

urations are obtained and analyzed. We first focus on calibration aspects for WFAO systems

and especially component calibration and identification of state-space models, that define

the LQG control law. We demonstrate that LQG control can be implemented on a real sys-

tem, and we evaluate its performance in MCAO and TAO configurations. This first sets
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of experiments show that MCAO performs a good correction in an extended FoV beyond

the isoplanatic path and produces better correction than GLAO. TAO allows to correct the

turbulence in a specific direction, thanks to a tomographic reconstruction and a prediction of

the turbulent volume. With the same technical support but an integral controller, GLAO just

corrects the turbulence on average in the FoV with a rather uniform but low performance.

We also compare the performance of an integrator and a LQG control in these different

configurations, with a better performance for LQG control. We have chosen to generate the

turbulence by the DMs which has several advantages. It provides more controlled condi-

tions and simplifies calibration and LQG model identification. In TAO configuration, the

results obtained are of great interest because they show the significant gain in performance

brought by LQG control, which allows specification of the field of correction and to-

mographic reconstruction in real time in closed-loop conditions. Robustness issues have

not been addressed in this paper and would deserve specific developments. We have shown

however that a LQG control can be applied to a complex AO configuration in experimental

conditions. The performance robustness is at this stage sufficient to be compatible with prac-

tical implementations. All results obtained in this paper are in accordance with numerical

results obtained in end-to-end simulations of HOMER bench. This allows extension of the

simulation to other new configurations as a reliable basis for the preparation of future set

of experiments.

The results obtained here represent a first step in the frame of the study of VLT/ELT

instruments and particularly for tomographic control laws in closed-loop. Also, thanks to the

flexibility of HOMER bench configuration, future work shall include comparison with sub-

optimal control policies in WFAO, e.g. closed-loop MMSE control or POLC, etc. Different

turbulent conditions shall also be explored particularly in presence of high order effects that

are likely to destabilize the optimal modal gain integrator approach in MCAO, as shown

in [41]. To realize such conditions, a turbulence generator is planned to be used. It will be

more representative of spatial and temporal characteristics of the turbulence, leading to more
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realistic and rich perturbations. Their impact on performance for different control laws should

hence lead to interesting results. Concerning the new WFAO concepts, HOMER’s flexibility

allows an easy change of GSs number and configuration, together with the corrected FoV.

However, more complex atmospheric effects such as mis-conjugation between turbulence and

DM layers, or LGS effects need to be addressed, together with a study in low SNR conditions.

Developments of HOMER bench are thus ongoing to simulate even more realistic WFAO

systems, leading to a useful tool for VLT/ELT instrument studies.
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List of Figure Captions

• Fig. 1: HOMER bench and its main components.

• Fig. 2: GSs configurations (solid boxes for WFAO and dashed boxes for AO) and

science star constellation (crosses).

• Fig. 3: Relative separation δ = αh/D between two stars in the FoV for a layer at

altitude h. We see the footprint of the pupil in altitude and their separation.

• Fig. 4: Sketch of a constant envelope collimator. The marginal ray passing the edge of

the pupil in the collimated entry space, corresponding to the extreme half-field, passes

through the primary focal point of the lens. It allows to change the GS footprint size

with the altitude whereas the meta-pupil keeps its original size. We see on the bottom

the footprint for two positions of the DM88: on the left it corresponds to δ = 100%

and on the right to δ = 0%

• Fig. 5: WFS display: on top, full display with all 7 × 7 sub-apertures. Bottom-right,

zoom on one sub-aperture: dashed squares represent the windows cut by the RTC for

WF sensing on each GS.

• Fig. 6: Example of a WFAO system. Turbulence is composed of nℓ layers and analyzed

thanks to ngs WFSs in the ngs GSs’ directions. Correction is performed by nm DMs,

conjugated with nm = 2 altitudes in this picture.

• Fig. 7: Temporal diagram of the system process.

• Fig. 8: Map of internal SR in AO case (left) and MCAO case (right). The standard

deviation is 5.8% in AO and 5.6% in MCAO.

• Fig. 9: Left: map of experimental long-exposure PSFs obtained on HOMER without

any correction of the turbulence. Right: map of experimental long-exposure PSFs ob-

tained in AO with an integrator control. The star surrounded by the dashed square is
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altogether WFS and correction direction. The PSFs have been cut off from the original

image and artificially brought closer.

• Fig. 10: Comparison of experimental (dashed line) and numerical (solid line) SR in AO

with an integrator control, according to the footprint relative separation of the stars

in the FoV. Note that star with δ = 0 is altogether the WFS and correction direction.

• Fig. 11: Left: map of experimental long-exposure PSFs obtained in AO with an in-

tegrator control. Right: map of experimental long-exposure PSFs obtained in MCAO

with LQG control. The GSs for MCAO are surrounded by a red solid square and for

AO by a blue dashed square.

• Fig. 12: Left: map of experimental SR obtained in AO with an integrator control.

Right: map of experimental SR obtained in MCAO with LQG control. Note that both

images are not represented with the same color scale.

• Fig. 13: Comparison of experimental (dashed line) and numerical (solid line) mean

SR measured in the whole FoV in MCAO, as a function of the noise variance σ2
w.

• Fig. 14: Comparison of experimental and numerical mean SR in the FoV obtained

with integrator control as a function of the number of truncated modes in the TSVD

of the interaction matrix.

• Fig. 15: Comparison of experimental (dashed line) and numerical (solid line) SR in

the direction of optimization in TAO configuration, as a function of the noise variance

σ2
w.
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List of Table Captions

• Tab. 1: Size of the interaction matrices for AO, GLAO and MCAO in HOMER case

(in this case ngs = 3 and nm = 2).

• Tab. 2: SR obtained in AO with an integrator control: comparison of experimental

(exp) and numerical (sim) SR. We also give the internal SR measured in AO without

turbulence. We consider the performance on 4 stars in the FoV: the 3 WFS GSs in

MCAO and star 0, the GS in AO in the center of the FoV.

• Tab. 3: Comparison of experimental (exp) and numerical (sim) SR in MCAO with

integrator and LQG control. We consider the performance on 4 stars in the FoV: the

3 WFS GSs and star 0 in the center of the FoV.

• Tab. 4: SR obtained on different stars in classical AO in presence of turbulence, in

TAO with a LQG control and in GLAO with an integrator control.
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Fig. 1. HOMER bench and its main components.

37



−0.4 −0.2 0.0 0.2 0.4
Footprint angular relative separation in the FoV 

−0.4

−0.2

0.0

0.2

0.4

F
oo

tp
rin

t a
ng

ul
ar

 r
el

at
iv

e 
se

pa
ra

tio
n 

in
 th

e 
F

oV
 

2

4

5

7

8

11

12

6

9

1

3

10

0

δ

δ

Fig. 2. GSs configurations (solid boxes for WFAO and dashed boxes for AO)
and science star constellation (crosses).

38
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h = 0 km

αh
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Layer
      h

Fig. 3. Relative separation δ = αh/D between two stars in the FoV for a layer
at altitude h. We see the footprint of the pupil in altitude and their separation.
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Fig. 4. Sketch of a constant envelope collimator. The marginal ray passing the
edge of the pupil in the collimated entry space, corresponding to the extreme
half-field, passes through the primary focal point of the lens. It allows to
change the GS footprint size with the altitude whereas the meta-pupil keeps
its original size. We see on the bottom the footprint for two positions of the
DM88: on the left it corresponds to δ = 100% and on the right to δ = 0%
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7 x 7 microlens

1 subaperture : 142 pixels

Fig. 5. WFS display: on top, full display with all 7×7 sub-apertures. Bottom-
right, zoom on one sub-aperture: dashed squares represent the windows cut by
the RTC for WF sensing on each GS.
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Fig. 6. Example of a WFAO system. Turbulence is composed of nℓ layers
and analyzed thanks to ngs WFSs in the ngs GSs’ directions. Correction is
performed by nm DMs, conjugated with nm = 2 altitudes in this picture.
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Fig. 8. Map of internal SR in AO case (left) and MCAO case (right). The
standard deviation is 5.8% in AO and 5.6% in MCAO.
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Fig. 9. Left: map of experimental long-exposure PSFs obtained on HOMER
without any correction of the turbulence. Right: map of experimental long-
exposure PSFs obtained in AO with an integrator control. The star surrounded
by the dashed square is altogether WFS and correction direction. The PSFs
have been cut off from the original image and artificially brought closer.

45



0.0 0.1 0.2 0.3 0.4 0.5
Footprint relative separation in the FoV

0

10

20

30

40

50

60

70

S
tr

eh
l R

at
io

n 
S

R
 (

%
)

SR − experimental
SR − simulation

Fig. 10. Comparison of experimental (dashed line) and numerical (solid line)
SR in AO with an integrator control, according to the footprint relative sep-
aration of the stars in the FoV. Note that star with δ = 0 is altogether the
WFS and correction direction.
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Fig. 12. Left: map of experimental SR obtained in AO with an integrator con-
trol. Right: map of experimental SR obtained in MCAO with a LQG control.
Note that both images are not represented with the same color scale.
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Tables

Table 1. Size of the interaction matrices for AO, GLAO and MCAO in HOMER
case (in this case ngs = 3 and nm = 2).

M1,1
int M

ngs,1
int M

ngs,nm

int

74 × 52 222 × 52 222 × 140
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Table 2. SR obtained in AO with an integrator control: comparison of experi-
mental (exp) and numerical (sim) SR. We also give the internal SR measured
in AO without turbulence. We consider the performance on 4 stars in the FoV:
the 3 WFS GSs in MCAO and star 0, the GS in AO in the center of the FoV.

Star number 0 3 6 10
Internal SR (%) 66 60 54 58

SR in AO with integrator control (%) (exp) 66 11 13 15
SR in AO with integrator control (%) (sim) 66 8 5 5
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Table 3. Comparison of experimental (exp) and numerical (sim) SR in MCAO
with integrator and LQG control. We consider the performance on 4 stars in
the FoV: the 3 WFS GSs and star 0 in the center of the FoV.

Star number 0 3 6 10
Internal SR (%) 63 57 54 67

SR in MCAO with integrator control (%) (exp) 60 56 52 61
SR in MCAO with integrator control (%) (sim) 61 56 53 66

SR in MCAO with LQG control (%) (exp) 63 57 54 67
SR in MCAO with LQG control (%) (sim) 62 57 54 67
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Table 4. SR obtained on different stars in classical AO in presence of turbu-
lence, in TAO with a LQG control and in GLAO with an integrator control.

Star number 0 3 6 10
Experimental SR in AO (%) 60 13 12 20

Experimental SR in TAO (%) (LQG) 55 12 10 18
Experimental SR in GLAO (%) (integrator) 17 15 18 21
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