
HAL Id: hal-04511063
https://hal.science/hal-04511063

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User-Centric Slice Allocation Scheme in 5G Networks
and Beyond

Salma Matoussi, Ilhem Fajjari, Nadjib Aitsaadi, Rami Langar

To cite this version:
Salma Matoussi, Ilhem Fajjari, Nadjib Aitsaadi, Rami Langar. User-Centric Slice Allocation Scheme
in 5G Networks and Beyond. IEEE Transactions on Network and Service Management, 2023, 20 (4),
pp.4268-4282. �10.1109/TNSM.2023.3284206�. �hal-04511063�

https://hal.science/hal-04511063
https://hal.archives-ouvertes.fr


1

User-centric Slice Allocation Scheme in 5G
Networks and Beyond

Salma Matoussi, Ilhem Fajjari, Nadjib Aitsaadi and Rami Langar

Abstract—Network slicing is a key enabler in the Next Gener-
ation 5G Radio Access Network (RAN) to build the RAN-as-a-
Service concept. Cloud-RAN, Network Function Virtualization,
Software Defined Network and RAN functional splits are the
main pillars expected to be integrated to provide the required
flexibility. One of the major concerns is to efficiently allocate RAN
resources for slices, while supporting multiple use-cases with
heterogeneous Quality-of-Service (QoS) requirements. Current
related work is adopting radio resource allocation scheme by
considering a cell-centric deployment approach for slice embed-
ding. However, to achieve greater flexibility and fine-grained
tunable resource utilization, we believe that the deployment
scheme should be integrated in the slice design. In this paper,
we go a step further and propose a RAN slicing approach with
customized deployment scheme on user basis. As the correspond-
ing optimization problem is NP-Hard, we propose a low-cost
and efficient heuristic algorithm for RAN Slice allocation based
on the Particle Swarm Optimization approach. Our proposal
jointly harnesses radio, processing and link resources at user level
tailored to the QoS requirements, while customizing efficiently
the underlying physical RAN resource usage.

Keywords: NG-RAN, Slicing, 3GPP RAN Functional Split,
Radio Resource Allocation, Particle Swarm Optimization

I. INTRODUCTION

Next Generation 5G Radio Access Network (NG-RAN)
is expected to integrate major changes in the cellular com-
munications beyond the new radio and wider spectrum. The
objective is to build a flexible and cost efficient mobile
network to convey services for enhanced Mobile BroadBand
(eMBB), massive Machine Type Communications (mMTC)
and ultra-Reliable Low Latency Communications (uRLLC) [1]
use cases. Thereby, the network slicing concept [2] is proposed
with the objective of enabling the network to deliver allocated
resources (so called slice) as per service requirement. Within
this perspective, multiple slices can be created on the same
RAN infrastructure to convey services with heterogeneous
requirements in terms of latency, reliability and throughput.

5G stakeholders make strong effort to redesign the RAN
in aim of building service-oriented architecture [3]. 3GPP
introduces in Release 15 [4], the NG-RAN architecture for a
disaggregated RAN deployment, called RAN functional splits.
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Wherein, the new 5G eNodeB (so called 𝑔𝑁𝐵) is decoupled
into i) Radio Unit (RU), ii) Distributed Unit (DU) and iii)
Central Unit (CU). In doing so, the traditional BaseBand Unit
(BBU) is henceforth disaggregated and deployed between DU
and CU locations connected through a transport network (so
called Midhaul). It is also foreseen that CUs of multiple
𝑔𝑁𝐵s will be centralized in a mobile edge cloud (Cloud-
RAN) to achieve higher radio performance thanks to cell
cooperation, while reducing CAPital EXpenditure (CAPEX)
and OPerational EXpenditure (OPEX) budgets [5]. In addi-
tion, the Network Function Virtualisation (NFV) technique
is adopted to separate the hardware from network software,
while using the Software-Defined RAN (SD-RAN) for better
programmability and customized control capabilities [2].

Cloud-RAN, NFV, Software Defined Network (SDN) and
RAN functional splits are key enablers for slice management.
Unlike slicing in the 5G core network, the RAN slicing still
remains an open issue. Indeed, the latter should consider the
radio resource nature and the RAN real time constraints. 3GPP
has specified in [6] the RAN sharing concept, where multiple
virtual operators can share the RAN infrastructure either with
dedicated frequency band or with full spectrum sharing. These
approaches lead to several works seeking how to efficiently
manage the radio resource allocation with isolation and sharing
capabilities [7]–[11]. However, the original scope of the net-
work slicing is to consider all types of RAN resources. Current
related work adopts a radio slice allocation scheme with a
cell-centric deployment approach for slice embedding [12]–
[18]. Leveraging RAN disaggregation through RAN functional
splits, we believe that these deployment options should be
integrated in the slice design. Within this context, a new
challenge raises addressing the ability to fulfill the vastly use-
case’s Quality-of-Service (QoS) requirements, while consider-
ing heterogeneous resource types and multiple RAN functional
split options in the physical infrastructure.

In this work, we put forward a user-centric RAN slicing
scheme, providing suitable proportions of radio, link and
computational resources for each User Equipment (UE). Our
approach is in compliance with the 3GPP slice vision, allowing
more flexible deployment of NG-RAN slices. Specifically, our
scheme fulfills each UE QoS requirement, while considering
the underlying RAN infrastructure state. By enabling the
selection of RAN functional split for each user, link and
computational requirements become more tunable, which is
a key to build cost effective RAN deployment solutions. The
main contributions of our paper can be summarized as follows:

1) First, we design a RAN-as-a-Service orchestration
framework compliant to the 3GPP standard [3], which
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enables on-demand RAN User-centric Slice Allocation,
so called RAN-USA. Such a flexible RAN slicing system
is tailored to temporal load variation, while managing a
multi-sited RAN infrastructure with link aggregators in
the transport network, as defined by 3GPP NG-RAN
specification [4]. We refer to the latest advances of SD-
RAN to monitor and control the network state and we
consider the ETSI NFVI standard for orchestrating the
RAN functional splits.

2) Second, we make use of an analytical model for quan-
tifying the computational, link and latency resource
requirements for each user split configuration. Then,
we formulate the user-centric slicing allocation prob-
lem as an Integer Linear Problem (ILP) with multi-
objective function. Two objectives are targeted: First, the
maximization of the overall served throughput of users
across the network through radio resource allocation. We
exploit the regression linear method [19] to approximate
the final served user throughput.Second, the minimiza-
tion of the network deployment cost, while tuning the
computational and link resource usage.

3) Considering that the formalized above optimization
problem is NP-Hard, the resolution time becomes in-
tractable in case of high density of user’s traffic. In order
to resolve our optimization problem in a polynomial
time, we propose a low-cost and efficient heuristic
algorithm based on the Particle Swarm Optimization
approach [20]. The latter consists of creating initially
a set of potential allocation solutions. Then, iteratively,
the candidate solutions collaborate and evolve towards
the best global allocation solution. The performance
of RAN-USA is evaluated throughout extensive sim-
ulations on 3GPP eMBB and uRLLC traffic scenar-
ios [1]. Obtained results highlight the effectiveness of
our proposal in terms of scalability, QoS satisfaction
and RAN deployment cost. We highlight the exploration
and exploitation dilemma during the solution generation,
which is ruled by the 𝜀-greedy approach. Additionally,
we evaluate the impact of user mobility on the perfor-
mance and operational aspect of our proposed algorithm.
We expect that the optimization process is triggered
periodically to optimize the user slice allocation in a
pro-active manner.

The rest of this paper is organized as follows. In Section II,
we elaborate the state of the art addressing RAN slicing and
related key enablers. Then, joint radio resource allocation with
functional split problem in a multi-cell NG-RAN deployment
is investigated. Section III sketches our proposed RAN-USA
slice orchestration framework and its building blocks. We
detail, in Section IV, the optimization user-centric slicing
model. In Section V, we describe our proposed heuristic, while
a description of our simulation and major results are presented
in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

A. Towards enabling RAN Slicing
As stated earlier, network slicing [2] is a concept that allows

the network to deliver allocated resources (so called slice) as

per service requirement. Unlike slicing in the 5G core network,
the RAN slicing still remains an open issue. Till this moment,
there are only proprietary solutions in MAC scheduler for
service prioritization. Within this context, the main challenges
that should be addressed in RAN slicing are how to enable
on-demand provisioning and control of RAN resources across
radio, computational and transport domains.

1) Radio resource slicing: The concept of spectrum shar-
ing has been introduced to enable the partitioning of radio
resources among operators as standardized by 3GPP in [6].
Accordingly, many works like in [7]–[11] seek on how to
efficiently manage the radio resource allocation with isola-
tion and sharing capabilities. In [21] and [22], the authors
propose advanced mechanisms enabling tenants to reap the
performance benefits of sharing, while retaining the ability to
customize their own users’ allocation. Other fundamental radio
resources including transmission power and the cache space
are still under discussion for slicing purpose.

From a technical perspective, radio resource slicing can
be enabled through the Software-Defined RAN (SD-RAN)
concept that decouples the Control Plane (CP) from the User
Plane (UP) of radio functions. In doing so, access to the
shared spectrum resources can be dynamically managed thanks
to radio configuration functionalities located in CP. Authors
in [23]–[25] focus on the different abstraction views of these
radio control functions. Authors in [26] and [27] undertake
the UP programmability and modularity aspect. FlexRAN is
proposed in [28] to provide a general API for radio controlling
with a custom RAN south-bound API, wherein RAN config-
uration can be enforced with a partial or full access to the
allocated spectrum. In [29], 5G-EmPOWER is proposed as
an open-source SDN platform with open protocol for radio
resource control.

2) On-demand RAN function placement: 5G stakeholders
strive to redesign the RAN architecture in aim of building
the service-oriented vision [3] for slice enabling. 3GPP intro-
duces in Release 15 [4], the NG-RAN architecture with new
terminologies, interfaces and functional modules. In this spec-
ification, the BBU is re-architected to be decomposed into a
chained Processing Functions (PFs) that can be disaggregated
at several conceivable points (functional splits). Wherein, the
new 5G eNodeB (so called 𝑔𝑁𝐵) is decoupled into i) Radio
Unit (RU), ii) Distributed Unit (DU) and iii) Central Unit
(CU). The primary new F1 interface is defined between DU
and CU, while the F2 interface is interconnecting the RU to
DU. It is foreseen that CUs can be deployed on a cloud site to
take benefits from the cloud service infrastructure. The latter
perspective was initially proposed under the Cloud RAN vi-
sion [5]. Besides, leveraging NFV [30], PFs can be virtualized
to get rid of hardware dependency. Wherein, PFs constitute
the NFV Infrastructure (NFVI) which is controlled by the
Virtualized Infrastructure Manager (VIM) and managed by the
MANagement and Orchestration (MANO) stack. The latter
uses the Network Service Descriptor (NSD) as a template to
instantiate a Network Service (slice instance) with customized
network functions based on the end-user’s requirements.

3) Slicing in the transport network: The disaggregated
RAN deployment approach results in the definition of mul-



3

tiple functional split options. Accordingly, each of them is
characterized by a dedicated interface interconnecting the CU
and DU, with different guaranteed throughput, latency and
reliability requirements. At the end, and by aggregating the
traffic of multiple cells, the transport network will carry flows
of data with heterogeneous requirements.

It is foreseen that a packet-based system with meshed
connectivity between RAN locations would rather replace
the CPRI fronthaul over wavelengths [31]. In addition to
its lower cost compared to a fiber-based transport network,
packet-based links are likely to create more programmable
and flexible network. Authors in [32] implement an SD-RAN
based platform for a hierarchical and programmable control
and orchestration plane in a transport network. Authors in
[33] leverage the SDN concept to support multi-tenancy in
an efficient manner, where virtual networks can be allocated
for distinct logical paths tailored to their service requirements.

It should be emphasized that the aforementioned works are
implementing either a cell-centric strategy or service-oriented
strategy for flow transport. Instead, we are implementing a
fine-grained approach which is user-centric to carry all the 5G
flows on the transport network.

B. RAN slice Allocation Optimization

By enabling on the fly resource provisioning, RAN slices
can be created and managed in a dynamic fashion, insuring
the RAN-as-a-Service (RANaaS). One of the major concerns
is how to meet the multitude use-case’s requirements, while
considering different designs in the physical infrastructure. In
doing so, decisions on how much of radio resources to allocate
and identify which network functions to place in DU or CU
impose many challenges. Eventually, RAN slice allocation
impacts directly the UE QoS performances and the operation
cost, which is essential to design an orchestration solution
able to rise these challenges. The network slicing approach
that jointly optimizes the radio resource allocation and the
functional split selection has motivated many research works.

In view of this, authors in [12] elaborate a joint functional
split and BBU server scheduling problem to minimize the
overall processing delay of downlink frames. The problem
is formulated as a constrained shortest-path problem and
resolved with a heuristic algorithm. However, in this work,
the functional split selection is performed on a cell-basis.
In [13], the authors elaborate a radio resource slicing scheme
to fulfill the user Service Level Agreement (SLA), while
insuring slice isolation. Although the approach is on user basis,
the authors do not consider the RAN split in the slice allocation
decision. In [15], a RAN runtime framework for slice control
and orchestration is proposed. Then, a detailed approach on
radio resource slicing with different levels of isolation and
sharing is described. Although the disaggregated RAN scheme
is integrated in the framework design, there is no problem
modeling for functional split selection. In [16], a multi-tenant
slicing scheme in Cloud-RAN is proposed taking into account
tenant priority, computational resources, transport network
capacity and interference levels. However, this work considers
only a full centralized deployment scheme. In [17], the authors
formulated a problem of the functional split selection, while

considering the inter-cell interference level. A new heuristic is
proposed to minimize jointly the inter-cell interference and the
bandwidth utilization on the transport network. However, the
functional split approach is performed at cell level. Authors
in [18] propose a framework for slice management with
functional split selection. They address the problem of joint
radio allocation and split selection to meet the different use-
case requirements. The approach is user-centric. However, the
authors consider only one disaggregated scheme (i.e., RLC-
MAC split). Therefore, our current study aims to fill the
aforementioned gaps. Authors in [34] propose a joint slicing
and functional split optimization framework for 5G. A Mixed
Integer Programming model is formulated and then linearized.
However, the adopted splits are not conform to the 3GPP
specification. Subsequently, the splits’ requirements are not
realistic. In [35], a Functional Split Option-based Coordinated
Multi-Point (CoMP) transmission for mixed eMBB-uRLLC
services is proposed. The adopted scheme is resolved with the
stochastic geometry approach. However, the model considers
delay only for uRLLC users, which is not accurate, since
eMBB users require an end-to-end delay of 8 ms, which
exclude already a subset of splits.

C. Particle Swarm Optimization

Radio, computational and transport resource allocation im-
pacts directly the end-user QoS and the deployment cost. This
type of problem can be modeled as Multi Objective Combina-
torial Optimization Problem (MOCOP). Then, the problem is
decomposed into a set of single-objective subproblems using
the weighted sum approach or others like the Tchebycheff
approach, etc. When solved, MOCOPs are generally nondeter-
ministic polynomial complete or nondeterministic polynomial
hard [19]. Thus, we need to design an algorithm to solve it in
a polynomial time by generating a near-optimal solution.

In this context, Particle Swarm Optimization (PSO) [20] ap-
proach is proposed as a population-based stochastic optimiza-
tion algorithm inspired from birds foraging behavior. More
specifically, PSO algorithm is characterized by an initial set
of candidate solutions collaborating to find the global optimum
of the optimization problem. In practice, swarm optimization
algorithm for combinatorial optimization problem or what we
call Set-based Particle Swarm Optimization S-PSO has been
successfully applied in solving many problems like scheduling
and vehicle routing problems [37], [38].

In order to solve our problem, we propose a set-based
discrete particle swarm optimization based on MOCOP and
S-PSO. Previously, we elaborated in [36], a model for RAN
resource allocation that jointly optimizes the resource usage
of radio, link and computational resources. In this paper, we
propose to go a step further and optimize the radio resource
allocation by means of the linear regression method [19] to
approximate the final served user throughput. Our objective
is to meet the user requirements in terms of throughput and
latency, while considering multiple deployment approaches
in the underlying physical infrastructure. In order to operate
in a polynomial time, we propose a heuristic algorithm to
handle the problem efficiently and pro-actively. As opposed
to our previous work in [36], we present here a new model



4

Fig. 1: Functional split requirements

formulation for radio allocation based on the regression linear
method to approximate the final served user throughput. We
have also redesigned our heuristic by including a new conver-
gence property that expresses the exploration and exploitation
dilemma during the solution generation, which is ruled by
the 𝜀-greedy approach. In addition, we have extended our
proposed slice allocation framework with the service-oriented
vision of the 3GPP standard [3] by integrating our optimization
scheme in a new flexible RAN orchestration framework, in
compliance with the 3GPP RANaaS vision [3], taking benefits
from the latest advances of SDN-RAN, ETSI NFVI and Cloud-
RAN capabilities. Contrary to our previous work in [36], we
have evaluated the dynamic and scaling aspect of our new
approach in a multi-cell environment by varying the number
of gNBs, UEs, uRLLC UEs and our solution parameters.

III. USER-CENTRIC RAN SLICE ALLOCATION
FRAMEWORK

In this section, we describe our proposed RAN User-centric
Slice Allocation Framework, named RAN-USA implemented
on top of a multi cell RAN infrastructure. The main idea
behind our design is to ensure on-demand RAN resource
provisioning with a fine-grained approach on user basis. Our
goal is to fulfill end user’s QoS requirements, while enabling
customization of RAN resource usage.

A. Disaggregated RAN model

Let us start by providing an overview of the functional split
options in a disaggregated RAN architecture in compliance
with 3GPP Specification [4]. Accordingly, the BBU layers are
instantiated into containerized Processing Functions (𝑃𝐹) to
perform either cell or user processing tasks. Hereafter, we
detail the interface specification and requirement between each
couple of 𝑃𝐹𝑠 in DownLink (DL) as depicted in Fig. 1.
• 𝑆𝑝𝑙𝑖𝑡0 (3GPP Option 1), considered as a user split, which

decentralizes all 𝑃𝐹s of a given UE at the DU. This
interface can transport IP UE packets on non ideal links
with a latency up to 10 𝑚𝑠 [39].

• 𝑆𝑝𝑙𝑖𝑡1 (3GPP Option 2), considered as a user split,
which centralizes 𝑃𝐹1 of a given UE at CU site. 𝑃𝐹1
corresponds to the Packet Data Convergence Protocol

(PDCP) receiving IP packets from higher layer and per-
forming header compression and encryption operations.
Accordingly, 𝑆𝑝𝑙𝑖𝑡1 interface requires a latency up to 10
𝑚𝑠 to transport the IP UE packets.

• 𝑆𝑝𝑙𝑖𝑡2 (3GPP Option 4), considered as a UE split, that
centralizes both 𝑃𝐹1 and 𝑃𝐹2 of a given UE. 𝑃𝐹2
performs Radio Link Control (RLC) that mainly ensures
the unpacking and segmentation of PDCP flows. In this
work, we do not consider the intra-RLC split (Option 3
in 3GPP [4]) as resource requirement model for RLC-
high and RLC-low layers are still an ongoing work.
𝑆𝑝𝑙𝑖𝑡2 interface requires a tight latency of 100 𝑢𝑠 [39]
to transport the processed radio bearer.

• 𝑆𝑝𝑙𝑖𝑡3 (3GPP Option 6), considered as a user split, which
centralizes 𝑃𝐹1, 𝑃𝐹2 an 𝑃𝐹3 of a given UE. 𝑃𝐹3 is the
Medium Access Control (MAC) function which performs
the multiplexing of data from different radio bearers.
It is responsible for building a transport block per UE
based on the UE’s context and its data buffer operating
at user level. However, 𝑃𝐹3 contains a controller and
a random access control entities, operating at a cell
level, to maintain the cell’s state for scheduling the radio
transmission. Eventually, 𝑃𝐹3 is rather considered as a
cell-centric function. In this work, the intra-MAC split
(3GPP-Option 5) is not considered as resource require-
ment models for MAC-high and MAC-low layers are still
an ongoing work. 𝑆𝑝𝑙𝑖𝑡3 is often called the MAC-PHY
split because it disaggregates the physical layer (layer 1)
from MAC+RLC+PDCP (layer 2).

• 𝑆𝑝𝑙𝑖𝑡4 (3GPP Option 7a), considered as a user split,
centralizing additionally 𝑃𝐹4. 𝑃𝐹4 performs encoding,
forward error correction and rate matching at user level.

• 𝑆𝑝𝑙𝑖𝑡5 (3GPP Option 7b), considered as a user split,
centralizes additionally 𝑃𝐹5. 𝑃𝐹5 mainly includes the
Quadrature Amplitude Modulation (QAM) generating
symbols for multi-antenna mapping.

• 𝑆𝑝𝑙𝑖𝑡6 (3GPP Option 7c), considered as a cell split
because it centralizes all UE 𝑃𝐹s from 𝑃𝐹1 to 𝑃𝐹5, 𝑃𝐹3
and 𝑃𝐹6. The latter corresponds to the resource mapping
function, initiating the cell processing by mapping the
symbols on resource elements.
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• 𝑆𝑝𝑙𝑖𝑡7 (3GPP Option 8), considered as a cell split, which
further centralizes 𝑃𝐹7 while keeping only 𝑃𝐹8 in DU.
𝑃𝐹7 adds the cyclic prefix and transforms symbols from
frequency domain to time domain using iFFT Algorithm.

• 𝑆𝑝𝑙𝑖𝑡8 is considered as a cell split, centralizing all PFs
at CU site. Accordingly, 𝑆𝑝𝑙𝑖𝑡8 interface manages in DL
direction the traffic generated by 𝑃𝐹8 containing radio
frequency signals with Parallel-to-Serial (P/S) conversion
among others. 𝑆𝑝𝑙𝑖𝑡8 corresponds to the traditional full
centralized Cloud-RAN architecture necessitating high
bandwidth requirement in the midhaul. In addition, intra
physical layer splits (i.e., 𝑆𝑝𝑙𝑖𝑡3, 𝑆𝑝𝑙𝑖𝑡4, 𝑆𝑝𝑙𝑖𝑡5, 𝑆𝑝𝑙𝑖𝑡6,
𝑆𝑝𝑙𝑖𝑡7, 𝑆𝑝𝑙𝑖𝑡8) require a tight latency of 250 𝑚𝑠 [39].

It is worth noting that once RLC and PDCP layers are
centralized, the latency requirement on the midhaul becomes
stringent which satisfies broadly use cases with tight latency
requirement. The aforementioned split options offer different
design approaches for slice deployment that will be integrated
in our proposed architecture for RAN resource orchestration,
as detailed hereafter.

B. RAN-USA : RAN User-centric Slice Allocation Frame-
work Architecture

Fig. 2 depicts our proposed RAN-USA framework, which
is a cloud-native C-RAN environment, using i) stateless ar-
chitecture, ii) microservices and iii) containers technology.
Such enablers will enhance the RAN processing functions
(𝑃𝐹) development, while automating their service deployment
and upgrade for better operational efficiency. Being packaged
in containers instead of virtual machines, these 𝑃𝐹s can
be dynamically instantiated and destroyed within few micro
seconds. Indeed, according to our experiments in [40], we have
computed the average deployment time of a container-based
𝑃𝐹 to 1.8 us ± 0.2 us. The main objective of our solution is
to ensure on-demand user-centric resources instantiation. To
do so, one instantiated 𝑃𝐹 (i.e., container) is deployed to host
several users’ threads (i.e. light-weight process). Note that if
the load of one container exceeds a given threshold, a new
instance is created dynamically to host the increasing number
(or load) of users.

Our framework makes use of an optimization entity, which
implements our user-centric RAN Slice Allocation solution
that fetches RAN state information previously collected by
the slice Manager via SDN controllers. This includes radio
conditions (i.e., available spectrum, interference levels, 𝑈𝐸
radio channel estimation), link state (i.e., available bandwidth)
and server capacities (i.e., processing power) of all RAN sites.
The aim is to elaborate an optimized slice allocation decision
that satisfies both UE throughput and latency demands, while
keeping a cost effective RAN deployment. In doing so, and
based on the aforementioned parameters, an optimized RAN
slice allocation is formulated for each UE, by assigning the
appropriate proportions of i) radio spectrum, ii) computational
resources in DU site, iii) computational resources in CU
site, and iv) bandwidth in the midhaul connecting the DUs
to the CU. These information are registered in the slice
descriptor resource requirements and then transferred to the

Fig. 2: RAN-USA Framework

Slice Manager entity through the Slice Management Service
(S-MaS) interface.

The Slice Manager interacts with three resource manage-
ment entities in order to deploy each user slice conforming
to the slice descriptor specification. First, proportions of
radio resources are allocated and configured by means of
an SDN controller for radio resource management, namely
FlexRAN [28]. The latter provides an API for radio controlling
over multiple 𝑔𝑁𝐵s through its Radio SouthBound Interface
(R-SBI). Second, the user processing resources are allocated
both in DU and CU sites via the Processing Management
Service interface (P-MaS). At this stage, DU and CU functions
are instantiated into containerized network functions that can
easily interact with each other and scale separately by mean
of the Orchestrator. Third, the Slice Manager entity intercon-
nects the 𝑔𝑁𝐵-CU and 𝑔𝑁𝐵-DU containers by programming
the link bandwidth provisioning and latency control in the
midhaul. This is handled by an SDN controller through a
Transport Management Service interface (T-MaS) leveraging
its centralized and abstract network view.

For instance, and as it can be seen in Fig. 2, our RAN slice
allocation application instantiates dynamically three options of
functional splits on top of the same physical infrastructure.
Our RAN-USA application chooses to centralize 𝑃𝐹1 and
𝑃𝐹2, while keeping the rest of 𝑃𝐹𝑠 in the DU site for 𝑈𝐸1
generating an eMBB traffic. Then, only 𝑃𝐹1 is centralized in
the cloud for 𝑈𝐸2 generating an important eMBB traffic. The
aim is to reduce the data flow in the midhaul. Meanwhile,
only 𝑃𝐹4 is kept in the DU site for 𝑈𝐸3 generating a uRLLC
traffic as 𝑃𝐹3-𝑃𝐹4 interface requires a stringent transport delay
satisfying 𝑈𝐸3 latency requirement.

Our proposed framework offers an Optimization Manage-
ment Service interface (O-MaS), through which the infras-
tructure provider (i.e., the operator) can customize the RAN
resource usage, by providing optimal split decision. In doing
so, the RAN Management System component subscribes to
the RAN state entity through an event driven interface. Thus,
it can be notified if a resource usage amount exceeds a given
threshold (e.g, the amount of network traffic in the midhaul).
In this case, the infrastructure provider chooses to tune the
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optimization entity by penalizing the allocation in the midhaul
in order to reduce the link resource usage.

In the next section, we present our optimization model
for joint Functional Split and Radio Resource Allocation.
Our objective is to maximize the total offered throughput for
the users across the network, while minimizing, at the same
time, the total deployment cost. To achieve this, we propose
to i) perform the cell attachment and radio resource block
allocation, while considering the interference level of radio
resource blocks, and at the same time, ii) choose the optimal
functional split, for each user.

IV. PROBLEM FORMULATION

In this section, we present the functional split model used in
our analysis. Then, we present our joint Functional Split and
Radio Resource Allocation (FSRRA) problem formulation,
which can be divided into two correlated sub-problems: User-
centric RAN slicing one and Radio Resource Allocation one.

A. Functional Split Model

In order to quantitatively study the computational resource
requirement for each split in each RAN site, we refer to the
conducted analysis in [41] and [42] expressing the amount
of computational resources in Giga Operations Per Second
(GOPS) consumed by a 𝑃𝐹. We denote by 𝑔𝑘 the computa-
tional requirement model of each 𝑃𝐹𝑘 in DL direction:

PF1 : g1 (Li) = Gref
1

A
Aref

× 𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸1)

PF2 : g2 (Li) = Gref
2

A
Aref

× 𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸2)

PF3 : g3 = Gref
3

A
Aref

(𝐸3)

PF4 : g4 (Qmi,Li) = Gref
4

W
Wref

A
Aref

𝑄𝑚𝑖𝑄𝑚𝑖𝑄𝑚𝑖

Qmref
× 𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸4)

PF5 : g5 (Li) = Gref
5

W
Wref

( A
Aref
)2 × 𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸5)

PF6 : g6 ({Li}) = Gref
6

W
Wref

A
Aref

×
UEs∑︁

i
𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸6)

PF7 : g7 = Gref
7

W
Wref

A
Aref

(𝐸7)

PF8 : g8 = Gref
8

W
Wref

A
Aref

(𝐸8)

where 𝐺𝑟𝑒 𝑓
𝑘

refers to the 𝑃𝐹𝑘’s GOPS value in the reference
scenario [41]. 𝑊 is the carrier bandwidth, 𝐴 is the number
of antennas; 𝐿 is the proportion of allocated Resource Blocks
(RB) for 𝑈𝐸𝑖 and 𝑄𝑚 is the QAM modulation. It is worth
noting that, 𝑃𝐹7 and 𝑃𝐹8 are cell-centric for time-domain,
while 𝑃𝐹3 corresponds to the platform control processing.
Hence, their computational requirement is load independent.
In contrast, 𝑃𝐹1, 𝑃𝐹2, 𝑃𝐹4 and 𝑃𝐹5 perform in frequency
domain, i.e., take into account only frequency carriers having
data signals which make them load dependent.

With reference to the model in [43], we quantitatively
study the bandwidth requirement for each functional split in
the midhaul. Accordingly, the generated traffic of each split
interface in DL can be estimated as follows:

Split0 : f0 (Li,Qmi) = c0 (𝑄𝑚𝑖𝑄𝑚𝑖𝑄𝑚𝑖) × A × B × 𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸9)
Split1 : f1 (Li,Qmi) = c1 (𝑄𝑚𝑖𝑄𝑚𝑖𝑄𝑚𝑖) × A × B × 𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸10)
Split2 : f2 (Li,Qmi) = c2 (𝑄𝑚𝑖𝑄𝑚𝑖𝑄𝑚𝑖) × A × B × 𝐿𝑖𝐿𝑖𝐿𝑖 (𝐸11)
Split3 : f3 (Li,Qmi) = c3 (𝑄𝑚𝑖𝑄𝑚𝑖𝑄𝑚𝑖) × A × B × 𝐿𝑖𝐿𝑖𝐿𝑖 + c4 (𝐸12)
Split4 : f4 (Li,Qmi) = A × B × (c5 + c6 × A) × 𝐿𝑖𝐿𝑖𝐿𝑖 ×𝑄𝑚𝑖𝑄𝑚𝑖𝑄𝑚𝑖 + c7 (𝐸13)
Split5 : f5 (Li) = A × B × (c8 + c9 × A) × 𝐿𝑖𝐿𝑖𝐿𝑖 + c10 × A (𝐸14)
Split6 : f6 = c11 × A × B (𝐸15)
Split7 : f7 = c12 × A × ns (𝐸16)
Split8 : f8 = c13 × A × ns (𝐸17)

where coefficients 𝑐 𝑗 , ∀ 𝑗 ∈ {1, 2, · · · , 13}, are constants for
the model [43]. 𝐵 corresponds to the number of RBs and 𝑛𝑠
refers to the sampling rate. It is straightforward to note that
when the centralization level of 𝑃𝐹s increases, the compu-
tational requirement in the cloud site increases accordingly,
which rises the amount of the circulating data flow in the
midhaul link.

B. User-centric RAN Slicing Sub-Problem Formulation
Here, we consider a multi-cell RAN system with 𝑀 𝑔𝑁𝐵s.

Each one 𝑔𝑁𝐵 is characterized by a Distributed Unit (DU)
located near the antenna radio unit and a Central Unit (CU)
located at the cloud site. The computational capacity of one
DU, (respectively one CU) is denoted by 𝐶𝐷

𝑀𝐴𝑋
, (respectively

𝐶𝐶
𝑀𝐴𝑋

) Giga Operation Per Second (GOPS). We assume that
a set of 𝐾 functional splits can be deployed for 𝑁 𝑈𝐸s. Then,
we consider the amount of GOPS consumed by𝑈𝐸𝑖 in DU site
(respectively in CU site) of 𝑔𝑁𝐵𝑚 when split 𝑘 is deployed,
is denoted by 𝐶𝐷

𝑖𝑚𝑘
(respectively 𝐶𝐶

𝑖𝑚𝑘
). By aggregating all the

computational requirements, we define 𝐶𝐷𝑚 (respectively 𝐶𝐶𝑚)
as the total amount of GOPS consumed at DU (respectively
CU) of 𝑔𝑁𝐵𝑚. The connection between both DUs and CUs
locations is maintained via an aggregated midhaul link with
a capacity of 𝑅𝑀𝐴𝑋 Mbps. Wherein, 𝑅𝑖𝑚𝑘 corresponds to the
amount of data flow generated for 𝑈𝐸𝑖 attached to 𝑔𝑁𝐵𝑚 with
split 𝑘 . We define also 𝑅 as the aggregated link bandwidth
generated by all 𝑈𝐸s in 𝑀 𝑔𝑁𝐵s. Formally, 𝐶𝐷 , 𝐶𝐶 and 𝑅

are variables expressed as linear functions of 𝑈𝐸 loads 𝐿. We
recall that 𝑈𝐸 load 𝑙𝑑𝑖𝑚 (∀𝑖 ∈ 𝑁 , ∀𝑚 ∈ 𝑀) corresponds to
the fraction of allocated RB for 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚.

Our aim is to find the appropriate split 𝑘 for each 𝑈𝐸𝑖 in
𝑔𝑁𝐵𝑚 that minimizes the total deployment cost. Therefore,
we define 𝑥𝑘

𝑖𝑚
as the binary variable, which is equal to 1

when split 𝑘 is selected for 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚 and 0 otherwise.
Then, we assume that the total available split options 𝐾 can
be divided into 3 subsets : 𝐾𝑐, 𝐾𝑢1 and 𝐾𝑢2 . 𝐾𝑐 is the set of
cell splits, namely splits {8, 7, 6}. 𝐾𝑢1 is the first set of user
splits, namely {0, 1, 2}. Finally 𝐾𝑢2 is the second set of user
splits, namely {3, 4, 5}, according to Section III-A. Let 𝑦𝑘𝑚
be the binary variable, ∀𝑘 ∈ {0, .., 𝐾} and ∀𝑚 ∈ {1, .., 𝑀},
that takes value 1 if the split 𝑘 is activated for any 𝑈𝐸 in
𝑔𝑁𝐵𝑚 and 0 otherwise. We also define the binary variable 𝑢𝑚1
(𝑢𝑚2 respectively) that takes value 1 if a user split in subset
{0, 1, 2}, ({3, 4, 5} respectively) is activated in 𝑔𝑁𝐵𝑚 and 0
otherwise. We model the attachment of 𝑈𝐸𝑖 to 𝑔𝑁𝐵𝑚 with
a binary variable 𝑡𝑖𝑚. The latter is equal to 1 when 𝑈𝐸𝑖 is
attached to 𝑔𝑁𝐵𝑚 and 0 otherwise.
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In what follows, we present our model for RAN deployment
cost minimization by optimizing the user split selection. Note
that we make use of the Big-M modeling [44] to linearize
different constraints, wherein, 𝑀1 is an upper bound limit
equal to 𝑁 .

LP1 : Min 𝛼

𝑀∑︁
𝑚=1

𝐶𝐷𝑚

𝐶𝐷
𝑀𝐴𝑋

+ 𝛽
𝑀∑︁
𝑚=1

𝐶𝐶𝑚

𝐶𝐶
𝑀𝐴𝑋

+ 𝛾 𝑅

𝑅𝑀𝐴𝑋

s.t. : 𝑡𝑖𝑚 =

𝐾∑︁
𝑘=0

𝑥𝑘𝑖𝑚 ,∀𝑖 ∈ 𝑁 ,∀𝑚 ∈ 𝑀 (1)

𝑥𝑘𝑖𝑚𝜈𝑘 ≤ 𝜈𝑖 ,∀𝑖 ∈ 𝑁 ,∀𝑚 ∈ 𝑀 ,∀𝑘 ∈ 𝐾 (2)
𝑁∑︁
𝑖=1

𝑥𝑘𝑖𝑚 ≤ 𝑀1𝑦
𝑘
𝑚 ,∀𝑚 ∈ 𝑀 ,∀𝑘 ∈ 𝐾 (3)

𝑦𝑘𝑚 ≤
𝑁∑︁
𝑖=1

𝑥𝑘𝑖𝑚 ,∀𝑚 ∈ 𝑀 ,∀𝑘 ∈ 𝐾 (4)

𝑁∑︁
𝑖=1

𝑥𝑘
′
𝑖𝑚 ≤

𝑁∑︁
𝑖=1

𝑡𝑖𝑚 + 𝑀1 (1 − 𝑦𝑘
′
𝑚 )

,∀𝑚 ∈ 𝑀 ,∀𝑘′ ∈ 𝐾𝑐 (5)
𝑁∑︁
𝑖=1

𝑥𝑘
′
𝑖𝑚 ≥

𝑁∑︁
𝑖=1

𝑡𝑖𝑚 − 𝑀1 (1 − 𝑦𝑘
′
𝑚 )

,∀𝑚 ∈ 𝑀 ,∀𝑘′ ∈ 𝐾𝑐 (6)
𝐾𝑢1∑︁
𝑘=1

𝑦𝑘𝑚 ≤ |𝐾𝑢1 |𝑢𝑚1 ,∀𝑚 ∈ 𝑀 (7)

𝑢𝑚1 ≤
𝐾𝑢1∑︁
𝑘=1

𝑦𝑘𝑚 ,∀𝑚 ∈ 𝑀 (8)

𝐾𝑢2∑︁
𝑘=1

𝑦𝑘𝑚 ≤ |𝐾𝑢2 |𝑢𝑚2 ,∀𝑚 ∈ 𝑀 (9)

𝑢𝑚2 ≤
𝐾𝑢2∑︁
𝑘=1

𝑦𝑘𝑚 ,∀𝑚 ∈ 𝑀 (10)

𝐾𝑐∑︁
𝑘=1

𝑦𝑘𝑚 + 𝑢𝑚1 + 𝑢
𝑚
2 ≤ 1 ,∀𝑚 ∈ 𝑀 (11)

𝑅 =

𝑀∑︁
𝑚=1

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=0

𝑥𝑘𝑖𝑚𝑅𝑖𝑚𝑘 ≤ 𝑅𝑀𝐴𝑋 (12)

𝐶𝐷𝑚 =

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=0

𝑥𝑘𝑖𝑚𝐶
𝐷
𝑖𝑚𝑘
≤ 𝐶𝐷

𝑀𝐴𝑋
,∀𝑚 ∈ 𝑀 (13)

𝐶𝐶𝑚 =

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=0

𝑥𝑘𝑖𝑚𝐶
𝐶
𝑖𝑚𝑘
≤ 𝐶𝐶

𝑀𝐴𝑋
,∀𝑚 ∈ 𝑀 (14)

𝑥𝑘𝑖𝑚 ∈ {0, 1} ,∀𝑖 ∈ 𝑁 ,∀𝑚 ∈ 𝑀 ,∀𝑘 ∈ 𝐾 (15)
𝑦𝑘𝑚 ∈ {0, 1} ,∀𝑚 ∈ 𝑀 ,∀𝑘 ∈ 𝐾 (16)
𝑢𝑚1 , 𝑢

𝑚
2 ∈ {0, 1} ,∀𝑚 ∈ 𝑀 (17)

The objective function in LP1 expresses the ability to tune
the computational and link resource usage to minimize the
RAN deployment cost, while considering the infrastructure
capacity and 𝑈𝐸 latency constraints. This can be done by
leveraging the user functional split that helps to find a trade-off
between the centralization and decentralization levels of BBU
functions. The first level of LP1 expresses the computational
resource usage across DU sites, weighted by 𝛼. The second

level is expressed as the computational resource usage across
CU sites, weighted by 𝛽. Finally, the third level expresses the
ongoing traffic in the aggregated midhaul links by calibrating
the weighting factor 𝛾. It is worth noting that we assume here
that RUs and DUs are co-located in one site.

Constraint (1) expresses that attached 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚 can
be assigned only one split 𝑘 , ∀𝑘 ∈ 𝐾 . Constraint (2) denotes
that the latency generated by split 𝑘 , 𝜈𝑘 , should satisfy the
latency required by 𝑈𝐸𝑖 , 𝜈𝑖 . Constraint (3) activates the binary
variable 𝑦𝑘𝑚 when at least one user split 𝑘 is activated in 𝑔𝑁𝐵𝑚.
Constraint (4) expresses that when split 𝑘 is deactivated for
𝑔𝑁𝐵𝑚, then no 𝑈𝐸 is assigned split 𝑘 . Constraints (5) and
(6) denote that the activation of one cell split 𝑘 ′ in 𝑔𝑁𝐵𝑚,
results in assigning split 𝑘 ′ for all attached 𝑈𝐸s. Constraints
(7) and (8) activate the variable 𝑢𝑚1 when at least one split 𝑘
in subset 𝐾𝑢1 is activated in 𝑔𝑁𝐵𝑚. Constraints (9) and (10)
activate the variable 𝑢𝑚2 when at least one split 𝑘 in subset
𝐾𝑢2 is activated in 𝑔𝑁𝐵𝑚. Constraint (11) denotes that for a
given 𝑔𝑁𝐵𝑚, we may activate i) either one cell split 𝑘 ′ in 𝐾𝑐
or ii) a combination of user splits in 𝐾𝑢1 or iii) a combination
of user splits in 𝐾𝑢2 . In (12), the total generated rate in the
aggregated midhaul link should not exceed the link capacity
𝑅𝑀𝐴𝑋. Finally, constraints (13) and (14) express that the total
allocated computational resources in DU, respectively CU,
of 𝑔𝑁𝐵𝑚 must not exceed the total computational capacity
𝐶𝐷
𝑀𝐴𝑋

, respectively 𝐶𝐶
𝑀𝐴𝑋

.

C. Radio Resource Allocation Sub-Problem Formulation
Hereafter, we consider 𝑁 𝑈𝐸s statically located in a system

of 𝑀 𝑔𝑁𝐵s with a frequency reuse factor of 1, i.e., the same
set 𝐵 of RBs are reused by each cell, which may induce
interference on RB level. Each 𝑈𝐸𝑖 , ∀𝑖 ∈ 𝑁 , generates a flow
of throughput 𝜆𝑖 and maximum tolerated latency 𝜈𝑖 .

Considering the DL transmission direction, we calculate the
Signal to Interference plus Noise Ratio (SINR) experienced by
𝑈𝐸𝑖 from 𝑔𝑁𝐵𝑚, ∀𝑖 ∈ 𝑁 , ∀𝑚 ∈ 𝑀 , expressed as following :

SINRim =
PgNB × him

Iim + 𝜎2 , Iim =
∑︁

m′≠m
PgNB × him′ (𝐸18)

where ℎ𝑖𝑚 denotes the channel gain between each 𝑔𝑁𝐵𝑚 and
𝑈𝐸𝑖 , 𝐼𝑖𝑚 stands for the interfering power received by the 𝑈𝐸𝑖
from other 𝑔𝑁𝐵s 𝑚′ ≠ 𝑚. 𝜎2 is defined as the noise power,
while we assume that every 𝑔𝑁𝐵 transmits a static amount
of power, denoted by 𝑃𝑔𝑁𝐵. Based on the SINR average
estimation, we calculate the Channel Quality Indicator (CQI),
the Modulation and Coding Scheme (MCS) and the Transport
Block Size Index (𝐼𝑇𝐵𝑆) between 𝑈𝐸𝑖 and 𝑔𝑁𝐵𝑚, ∀𝑖 ∈ 𝑁 ,
∀𝑚 ∈ 𝑀 .

In order to proceed to radio resource allocation, we rely
on following binary variables 𝑡, 𝑤 and 𝐿. We recall that 𝑡𝑖𝑚
is a binary variable, which is equal to 1 if 𝑈𝐸𝑖 is attached
to 𝑔𝑁𝐵𝑚 and 0 otherwise. 𝑤𝑖𝑚𝑏 is equal to 1 if the RB 𝑏

of 𝑔𝑁𝐵𝑚 is allocated to 𝑈𝐸𝑖 and 0 otherwise. 𝐿𝑖𝑚 expresses
the radio load of 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚 corresponding to the resulting
fraction of total allocated RBs assigned to 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚, with
radio power equal to 𝑝𝑅𝐵: 𝐿𝑖𝑚 =

∑𝐵
𝑏=1 𝑤𝑖𝑚𝑏

𝐵
.

for sake of simplicity, radio power allocation is not per-
formed at this stage. Our aim is to find a 𝑔𝑁𝐵 with an



8

optimized radio laod ; i.e., an appropriate amount of allocated
RBs with less interference level. The aim is to fulfill the
throughput requirement 𝜆𝑖 of each 𝑈𝐸𝑖 . By means of the
linear regression method [19], we propose an approximation
of the served Transport Block Size, denoted by 𝑇𝐵𝑆. With
reference to the Table 7.1.7.2.1-1 in [45], we calculate the
linear approximation 𝑇𝐵𝑆 according to each TBSI value as
following:

T̃BS(TBSI) = TBSL (TBSI) × B × 𝐿𝑖𝑚𝐿𝑖𝑚𝐿𝑖𝑚 + TBSo (TBSI) (𝐸19)

where 𝐵 × 𝐿𝑖𝑚𝐿𝑖𝑚𝐿𝑖𝑚 is the supposed number of allocated RBs for
𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚. 𝑇𝑇𝐵𝑆𝐿 (𝑇𝐵𝑆𝐼) ×𝐵×𝐿𝑖𝑚𝐿𝑖𝑚𝐿𝑖𝑚 is called the response
that depends from user load and 𝑇𝐵𝑆𝑜 (𝑇𝐵𝑆𝐼) is called the
predictor which is independent from user load. Consequently,
we express the approximation of the final served throughput
𝑟̃𝑖𝑚 for 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚, ∀𝑖 ∈ 𝑁 , ∀𝑚 ∈ 𝑀 as function of the
linear approximation of the Transport Block Size 𝑇𝐵𝑆𝑖𝑚 with
a multiplication factor 𝑐34 for the conversion from bytes to
bits per second: 𝑟̃𝑖𝑚 = 𝑐14 × 𝑇𝐵𝑆𝑖𝑚 (E20)

Hence, we define a second objective function LP2 that aims
at maximizing the overall served user throughput across the
network. This is achieved by finding for each 𝑈𝐸𝑖 , i) the best
attached 𝑔𝑁𝐵 𝑚, 𝑡★

𝑖𝑚
and ii) the best set of RBs 𝑤★

𝑖𝑚𝑏
, while

keeping a low interference level. We make use of the Big-M
modeling [44] to linear different constraints with upper bound
limits 𝑀2 and 𝑀3, as follows.

LP2 : Max
𝑁∑︁
𝑖=1

𝑀∑
𝑚=1

𝑟̃𝑖𝑚

𝜆𝑖

s.t. :
𝑀∑︁
𝑚=1

𝑡𝑖𝑚 ≤ 1,∀𝑖 ∈ 𝑁 (18)

𝐵∑︁
𝑏=1

𝑤𝑖𝑚𝑏 ≥ 𝑡𝑖𝑚,∀𝑚 ∈ 𝑀,∀𝑖 ∈ 𝑁 (19)

𝑀2𝑡𝑖𝑚 ≥
𝐵∑︁
𝑏=1

𝑤𝑖𝑚𝑏 ,∀𝑖 ∈ 𝑁,∀𝑚 ∈ 𝑀 (20)

𝑀∑︁
𝑚=1

𝑟̃𝑖𝑚 ≤ 𝜆𝑖 ,∀𝑖 ∈ 𝑁 (21)

𝑁∑︁
𝑖=1

𝑤𝑖𝑚𝑏 ≤ 1,∀𝑚 ∈ 𝑀,∀𝑏 ∈ 𝐵 (22)∑︁
𝑚′≠𝑚

∑︁
𝑖′≠𝑖

𝑝𝑅𝐵ℎ𝑖′𝑚′𝑤𝑖′𝑚′𝑏 ≤ 𝐼𝑀𝐴𝑋

+ 𝑀3 (1 − 𝑤𝑖𝑚𝑏),∀𝑖 ∈ 𝑁,∀𝑚 ∈ 𝑀,∀𝑏 ∈ 𝐵 (23)
𝑡𝑖𝑚, 𝑤𝑖𝑚𝑏 ∈ {0, 1},∀𝑖 ∈ 𝑁,∀𝑚 ∈ 𝑀,∀𝑏 ∈ 𝐵 (24)

Constraint (18) expresses that each UE should be attached
at most one 𝑔𝑁𝐵. Constraint (19) specifies that 𝑈𝐸𝑖 can get
more than one RB when it is attached to 𝑔𝑁𝐵𝑚. In (20), the
total amount of allocated RBs to 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚 is constrained
by the upper bound limit 𝑀2 = 𝐵. In (21), the final served
throughput for 𝑈𝐸𝑖 should be less than what is required with
𝜆𝑖 . In (22), each RB is assigned to only one 𝑈𝐸 . Finally, (23)
expresses the interference constraint for each allocated RB,
where 𝐼𝑀𝐴𝑋 refers to the interference threshold and 𝑀3 is a
Big-M constant to tolerate interference on unallocated RBs.

D. FSRRA Problem Formulation
Considering the two aforementioned sub-problems, our

joint Functional Split and Radio Resource Allocation
(FSRRA) problem can be thus formulated as an Integer
Linear Program (ILP), as follows:

LP3 : Max 𝜃LP2 − 𝜇LP1

s.t : (1) − (24)

Our objective is to find the trade-off between the total served
user throughput expressed in LP2 weighted by 𝜃 and the
total RAN deployment cost expressed in LP1 weighted by 𝜇.
Note that, in LP3, all user requirements in terms of latency
and throughput, as well as computational, link and latency
requirements of each split, have been taken into account.

V. PROPOSAL: RAN-USA
In this section, we resolve the above FSRRA problem

formulated in LP3. This problem is classified as a non-
deterministic polynomial hard problem [46], which requires
exhaustive search in the solution space in order to converge to
optimal solutions. Hence, general-purpose linear solver [46]
struggles to converge in case of high-scale of 𝑈𝐸 numbers.
For this reason, there is a need for designing a heuristic to
solve the formulated FSRRA problem in a reasonable time
with a near-optimal solution.

In this context, we propose an adaptive approach of the
Particle Swarm Optimization (PSO) Algorithm [8], called
RAN User-centric Slice Allocation (RAN-USA), to solve our
problem expressed in LP3. Our heuristic proceeds as follows:
during the initialization stage, an initial set of feasible
solutions is generated by affecting for each 𝑈𝐸 : i) attached
𝑔𝑁𝐵, proportions of RBs and ii) split selection. Then, to solve
the problem, our proposal proceeds iteratively on two folds.
First, a better radio allocation ((i.e., 𝑈𝐸−𝑔𝑁𝐵 attach-
ment and radio resource allocation) is explored. Second, a user
functional split selection based on the shortest path algorithm
is performed to find the optimal split selection for
the already generated radio configuration in the first phase
of current iteration. In the following, we detail these steps.

A. Initialization Stage
Each particle 𝑝, 𝑝 ∈ {1, .., 𝑃}, is characterized by a

position S𝑝 , a velocity V 𝑝 and a best local position S𝐿,𝑝 .
The first attribute (i.e., position) corresponds to a candidate
slice allocation solution. The second attribute (i.e., velocity)
expresses the change vector that allows the particle to evolve
to a next position. The third attribute (i.e., best local position)
memorizes the best achieved local solution. Candidate solu-
tions are evaluated through the utility function UF expressed
in LP3. We also denote by S𝐺 , the best achieved solution
among all best local solutions, S𝐿,𝑝 , ∀ 𝑝 ∈ {1, .., 𝑃}.

In what follows, we design position S𝑝 of particle 𝑝 as
a 3-D matrix of [𝑁 × 𝑀 × (𝐵 + 1)]. The entry S𝑝

𝑖𝑚𝑏
is a

binary variable that takes the value 1 if 𝑈𝐸𝑖 is allocated
the 𝑅𝐵𝑏 in 𝑔𝑁𝐵𝑚. Furthermore, we affect split 𝑘 to 𝑈𝐸𝑖
in 𝑔𝑁𝐵𝑚. Formally, S𝑝

𝑖𝑚, (𝐵+1) = 𝑘 . The velocity component
𝑉 𝑝 of particle 𝑝 is expressed as a 2-D matrix of [𝑁 × 𝑀].
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Fig. 3: Graph G for UFSS algorithm

The entry V 𝑝

𝑖𝑚
expresses the number of RBs to be added or

removed in the next iteration for 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚. Formally,V 𝑝

𝑖𝑚

is in [−𝐵𝑀𝐴𝑋
𝑖𝑚

, +𝐵𝑀𝐴𝑋
𝑖𝑚
], where 𝐵𝑀𝐴𝑋

𝑖𝑚
is the upper bound limit

for 𝑈𝐸𝑖 allocation in 𝑔𝑁𝐵𝑚 to satisfy his throughput 𝜆𝑖 .
Initially, each 𝑈𝐸𝑖 , 𝑖 ∈ {1, .., 𝑁} is attached to a random

𝑔𝑁𝐵𝑚, 𝑚 ∈ {1, .., 𝑀}, with a random number 𝑛𝑅𝐵 of RBs.
Meanwhile, we ensure that constraints (18-23) are satisfied.
Constraint (18) leads to S𝑝

𝑖𝑚′𝑏 = 0, ∀ 𝑚′ ≠ 𝑚. Constraint
(19), (20) and (21) express that, S𝑝

𝑖𝑚𝑏
can be positive 𝑛𝑅𝐵

times, where 𝑛𝑅𝐵 is in [−𝐵𝑀𝐴𝑋
𝑖𝑚

, +𝐵𝑀𝐴𝑋
𝑖𝑚
]. We privilege RBs

suffering less interference level. Constraint (22) implies that
S𝑝
𝑖′𝑚𝑏 = 0, ∀ 𝑖′ ≠ 𝑖. Finally 𝑈𝐸𝑖 is assigned a random split 𝑘

and a random velocity V 𝑝

𝑖𝑚
in [−𝐵𝑀𝐴𝑋

𝑖𝑚
, +𝐵𝑀𝐴𝑋

𝑖𝑚
].

B. Slice Allocation based on Particle Swarm Optimization
Iteratively, each particle 𝑝 evolves towards a new position
S𝑝 after updating its velocity V 𝑝 as stated in equation (𝐸21)
below. The velocity update process is formulated in equation
(𝐸22), where the new velocity is constructed based on the
current velocity V 𝑝 , current position S𝑝 , S𝐿,𝑝 and S𝐺 .
Wherein, we integrate the coefficient 𝜀 to improve the random
nature of the evolution process. More specifically, we define
the first action, i.e., following the best local particle S𝐿,𝑝 with
probability 𝜀 and a second action i.e., following the best global
particle S𝐺 with probability 1-𝜀.

S𝑝 = S𝑝 ⊕ V 𝑝 (𝐸21)
V 𝑝 = V 𝑝 ∩ [𝜀 ⊗ (S𝐿,𝑝 ⊖ S𝑝) + (1 − 𝜀) ⊗ (S𝐺 ⊖ S𝑝)] (𝐸22)

More specifically, we adopt the 𝜀-greedy method to alternate
between following i) the best local particle S𝐿,𝑝 with proba-
bility 𝜀 and ii) the best global particle S𝐺 with probability 1-𝜀.
In doing so, the challenge is to find the balance between using
local knowledge (exploitation) and investigating other options
by following the global knowledge (exploration). We believe
that this is essential to ensure the investigation of the entire
search space before converging to the near-optimal solution.
RAN-USA is described in Algorithm 1.

1) Radio Resource Optimization: In this phase, we eval-
uate the utility function UF (S𝑝) of each particle 𝑝 and
update 𝑆𝐿,𝑝 and S𝐺 accordingly. Afterwords, each particle
𝑝 updates its velocity V 𝑝 and its new position S𝑝 . Then, our
algorithm User Functional Split Selection, denoted by UFSS is
performed to calculate the optimal split selection for each 𝑈𝐸
in particle 𝑝 based on the newly generated radio configuration.

Algorithm 1: RAN-USA
1 Inputs: 𝐼𝑀𝐴𝑋, 𝐶𝐷

𝑀𝐴𝑋
, 𝐶𝐶

𝑀𝐴𝑋
, 𝑅𝑀𝐴𝑋, 𝑃, 𝐸𝑀𝐴𝑋, 𝜀

2 𝜆𝑖 , 𝜈𝑖 , ∀ 𝑖 ∈ {1, .., 𝑁}, ∀ 𝑚 ∈ {1, .., 𝑀}
3 𝛼, 𝛽, 𝛾, 𝜃, 𝜇, 𝜈𝑘 , 𝑔𝑘 , 𝑓𝑘 , ∀ 𝑘 ∈ {0, .., 𝐾}
4 Output: S𝐺 with the best utility function from LP3
5 Begin

1: for 𝑝 = 1 to 𝑃 do
2: for 𝑖 = 1 to 𝑁 do
3: 𝑚 ← random (𝑀)
4: 𝑛𝑅𝐵 ← random ([−𝐵𝑀𝐴𝑋

𝑖𝑚
, +𝐵𝑀𝐴𝑋

𝑖𝑚
])

5: S𝑝
𝑖𝑚𝑏
← 1 ; 𝑛𝑅𝐵 times ; { priory to RBs

with less interference level}
6: S𝑝

𝑖𝑚,𝐵+1 ← random (𝐾)
7: V 𝑝

𝑖𝑚
← random([−𝐵𝑀𝐴𝑋

𝑖𝑚
, +𝐵𝑀𝐴𝑋

𝑖𝑚
])

8: end for
9: end for

while 𝑖𝑡𝑒𝑟 <𝐸𝑀𝐴𝑋 do
1: for 𝑝 = 1 to 𝑃 do
2: if UF (S𝑝) >UF (S𝐿,𝑝) then
3: S𝐿,𝑝 ← S𝑝
4: end if
5: if UF (S𝑝) >UF (S𝐺) then
6: S𝐺 ← UF (S𝑝)
7: end if
8: end for
9: for 𝑝 = 1 to 𝑃 do

10: 𝑟 ← random ([0, 1])
11: for 𝑖 = 1 to 𝑁 do
12: for 𝑚 = 1 to 𝑀 do
13: if 𝑟 < 𝜀 then
14: V̂ 𝑝

𝑖𝑚
←

𝐵∑
𝑏=1
S𝐿,𝑝
𝑖𝑚𝑏

-
𝐵∑
𝑏=1
S𝑝
𝑖𝑚𝑏

15: else
16: V̂ 𝑝

𝑖𝑚
←

𝐵∑
𝑏=1
S𝐺
𝑖𝑚𝑏

-
𝐵∑
𝑏=1
S𝑝
𝑖𝑚𝑏

17: end if
18: if 𝑟̃𝑖𝑚(V̂ 𝑝

𝑖𝑚
) > 𝑟̃𝑖𝑚(V 𝑝

𝑖𝑚
) then

19: V 𝑝

𝑖𝑚
← V̂ 𝑝

𝑖𝑚
20: end if
21: end for
22: end for
23: end for
24: for 𝑝 = 1 to 𝑃 do
25: for 𝑖 = 1 to 𝑁 do
26: for 𝑚 = 1 to 𝑀 do
27: 𝑛𝑅𝐵 ←

𝐵∑
𝑏=1
S𝑝
𝑖𝑚𝑏

+ V 𝑝

𝑖𝑚

28: S𝑝
𝑖𝑚𝑏
← 1 ; 𝑛𝑅𝐵 times ; { priory

to RBs with less interference level}
29: end for
30: end for
31: Run UFSS as described in V-B2
32: end for

2) User Functional Split Selection based on Shortest Path
Algorithm (UFSS): In each iteration, once the 𝑈𝐸 − 𝑔𝑁𝐵
attachment and RB allocation is updated for particle 𝑝, our
UFSS algorithm is executed to define the optimal split con-
figuration. Then, we formulate the functional split selection
optimal strategy as a shortest path problem. More specifically,
we model all split possibilities as a Directed Acyclic Graph



10

(DAG), 𝐺, with almost 𝑁 × 𝐾 nodes. Each node (𝑚, 𝑖, 𝑘)
is either a user split 𝑘 for 𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚, or a cell split 𝑘
for all 𝑈𝐸s attached to 𝑔𝑁𝐵𝑚. Then, we consider only split
node (𝑚, 𝑖, 𝑘) which satisfy 𝑈𝐸 latency requirements, which
receives links from other nodes with weights expressing the
deployment cost from selecting the node (𝑚, 𝑖, 𝑘). The weight
of each ongoing link to node (𝑚, 𝑖, 𝑘) is defined as :

𝛼
CD

imk
CD

MAX
+𝛽

CC
imk

CE
MAX

+ 𝛾 Rimk
RMAX

(𝐸23)

The Graph 𝐺 without link weights is depicted in Fig. 3,
for 𝑀 = 2 𝑔𝑁𝐵𝑠, 𝑁 = 3 𝑈𝐸𝑠 and 𝐾 = 3 splits. Note that
there are two extra nodes: 𝑠 and 𝑓 . 𝑆 is a starting point, that
is connected to the all split possibilities of first 𝑈𝐸𝑖 which
are nodes (m,i,k) ; 𝑘 ∈ {1, .., 3}. And all split possibilities of
last 𝑈𝐸𝑖′′ are connected to node 𝑓 , where 𝑓 is a finish point
for the directed graph 𝐺 with all the ongoing link weighted
by zero. In Fig. 3, both 𝑈𝐸𝑖 and 𝑈𝐸𝑖′ are attached to 𝑔𝑁𝐵𝑚
and 𝑈𝐸𝑖′′ is attached to 𝑔𝑁𝐵𝑚′ . Each 𝑈𝐸 can be assigned to
only two user splits, i.e., 1 and 2, and one cell split, i.e., 3.
Herein, node (𝑚, 𝑖, 𝑘) denotes the selection of user split 𝑘 for
𝑈𝐸𝑖 in 𝑔𝑁𝐵𝑚, while node (𝑚, 𝑋, 𝑘) expresses the selection
of cell split 𝑘 to all 𝑈𝐸𝑠 in 𝑔𝑁𝐵𝑚.

In doing so, path 𝑃 from 𝑠 to 𝑓 in graph 𝐺, corresponds to a
selection strategy of functional splits for 𝑈𝐸s that are already
attached to different 𝑔𝑁𝐵s with a given radio load. It is worth
noting that, the sum of links’ costs traversed by path 𝑃 is equal
to the deployment cost expressed in LP1. A Path 𝑃★ of mini-
mum cost corresponds to the optimal functional split decision
that minimizes the overall deployment cost. The problem of
calculating the optimal functional split selection is equivalent
to finding a min-cost path in a DAG. The latter is resolved
through the Dijkstra algorithm in O(|𝐸 | + |𝑉 |𝑙𝑜𝑔 |𝑉 |) time,
where |𝐸 | and |𝑉 | are the number of edges and vertices. In
our graph 𝐺, there exist O(𝑁𝐾) nodes and O(𝑁𝐾2) links. So,
finding the min-cost path takes O(𝑁𝐾2+𝑁𝐾𝑙𝑜𝑔(𝑁𝐾)). At the
end, the entire RAN-USA algorithm with the UFSS approach
runs with a complexity of O(𝐸𝑀𝐴𝑋𝑃𝑀𝐵(𝑁𝐾)2𝑙𝑜𝑔𝑁𝐾)).

VI. PERFORMANCE EVALUATION

In this section, we gauge the performance of our pro-
posed RAN-USA based on extensive simulations using our
JAVA-based simulator. First, we describe the simulation en-
vironment setup and detail the various performance metrics.
Then, we analyze the obtained results and discuss the ef-
fectiveness of our proposal compared with: i) commercial
standard solvers such as IBM’s ILOG CPLEX solver, ii)
full Centralized deployment approach (i.e., C-RAN), iii) full
Decentralized deployment approach (i.e., D-RAN), and iv)
Cell-centric Split Allocation approach denoted by RAN-CSA.
Note that the interference mitigation is inherently implemented
in the C-RAN approach, while we assume that this mechanism
is adopted for the D-RAN case. We set the number of split
options 𝐾 to 9, where 𝑆𝑝𝑙𝑖𝑡6, 𝑆𝑝𝑙𝑖𝑡7 and 𝑆𝑝𝑙𝑖𝑡8 are cell-
centric, while 𝑆𝑝𝑙𝑖𝑡0, 𝑆𝑝𝑙𝑖𝑡1, 𝑆𝑝𝑙𝑖𝑡2, 𝑆𝑝𝑙𝑖𝑡3, 𝑆𝑝𝑙𝑖𝑡4 and 𝑆𝑝𝑙𝑖𝑡5
are user-centric. To the best of our knowledge, there is no
simulator for RAN slice orchestration with user functional split
selection deployment so far.

TABLE I: Simulation parameters

Number of 𝑔𝑁𝐵s 𝑀 7
Number of 𝑈𝐸𝑠 𝑁 100

Inter-cell distance 50 𝑚
Number of RBs 𝐵 100

Spectrum Bandwidth 𝑊 20 𝑀𝐻𝑧
Antenna mode 𝐴 1, SISO

Average RB power 𝑃𝑅𝐵 10 𝑚𝑊
Average cell power 𝑃𝑔𝑁𝐵 1 𝑊𝑎𝑡𝑡

Transmit power gain 𝐺𝑡𝑥 8 𝑑𝐵𝑖
Shadowing coefficient Ω 5 𝑑𝐵

Thermal Noise −174 𝑑𝐵𝑚/𝐻𝑧
SINR threshold 𝑆𝐼𝑁𝑅𝑀𝐴𝑋 10 dB
Path loss model PL 148.1 + 37.6 𝑙𝑜𝑔(𝐷)

𝐷 in 𝐾𝑚
Fading coefficient 𝜌 𝑈 (0, 1)

Channel gain ℎ 10−𝑃𝐿/20 ·
√
𝐺𝑡𝑥 · Ω · 𝜌

conversion coefficient 𝑐14 10−3

Interference threshold 𝐼𝑀𝐴𝑋
ℎ∗𝑃𝑅𝐵

𝑆𝐼𝑁𝑅𝑀𝐴𝑋 − 𝜎2

Midhaul capacity 𝑅𝑀𝐴𝑋 3686, 4 Mbps [43]
Computational capacity 𝐶𝐷

𝑀𝐴𝑋
960 GOPS [41]

𝐶𝐶
𝑀𝐴𝑋

A. Simulation setup
We simulate our Cloud-RAN infrastructure with respect

to our model described in Section IV. We consider 𝑁 𝑈𝐸s
uniformly distributed in an OFDMA based cellular network.
Table I reports the simulation parameters that have been used
for our simulations [47]. Based on the radio parameters in
Table I, and according to the work in [43], each cell has
a downlink maximum throughput of 75 Mbps. Hence, for a
network of 100 𝑈𝐸𝑠, we assume that each 𝑈𝐸 requires a data
rate in the range of [0, 1] Mbps. Note that, for a network
of 7 𝑔𝑁𝐵𝑠, our simulations show that the system straggles
to respond to all 𝑈𝐸𝑠 demands in terms of throughput for
𝑁 in [80, 100]. That is why we have fixed 𝑁 to 100 users.
In addition, according to [1], we assume that eMBB 𝑈𝐸s
require a latency in {1, 2, 3, 4} 𝑚𝑠, while uRLLC 𝑈𝐸s require
a latency in {0.1, 0.2, 0.3, 0.4, 0.5} 𝑚𝑠. Besides,𝑈𝐸𝑠 positions
are randomly generated for each execution. Then, according
to their positions, we calculate 𝐶𝑄𝐼, 𝑀𝐶𝑆 and 𝑇𝐵𝑆𝐼 between
each 𝑈𝐸 and 𝑔𝑁𝐵 in order to approximate the linear function
of generated TBS (𝑇𝐵𝑆) between each 𝑈𝐸 and 𝑔𝑁𝐵. It
is worth noting that our obtained results correspond to the
average of 30 simulations with a confidence interval set to 95%
to approximate the average of calculated metrics according to
their standard deviation.

B. Performance metrics
We rely on the following metrics to gauge the performance

of our proposal RAN-USA compared with baseline strategies.
• UF is the Utility Function in 𝐿𝑃3 expressing the trade-off

between the served throughput and the deployment cost.
• CT is the average Convergence Time for user-centric

Allocation in 𝑚𝑠.
• TS is the Throughput Satisfaction rate expressing the ratio

between the overall served and requested throughputs.
• CD is the Cost of Deployment expressing the computa-

tional and link resource usage as defined in 𝐿𝑃1, which
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Fig. 4: Convergence evaluation

is expressed as the weighted sum of the resource usage in
i) the DU sites weighted by 𝛼, ii) the CU sites weighted
by 𝛽, and iii) the midhaul link weighted by 𝛾.

• LT is the Latency penalty of Total 𝑈𝐸s expressed as∑
𝑖
𝜈𝑘−𝜈𝑖
𝜈𝑖

, ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑁 where, 𝜈𝑘 is the latency of
split 𝑘 in the midhaul and 𝜈𝑖 is the required latency from
𝑈𝐸𝑖 .

• S corresponds to the percentage of Splits.

C. Simulation results

1) Convergence Analysis: First, we evaluate the impact
of the number of particles 𝑃 and the number of epochs
𝐸𝑀𝐴𝑋 on the solution quality (i.e., utility function UF and
the convergence time CT). Fig. 4.(a) assesses the performance
of RAN-USA with different swarm population size 𝑃, while
varying the number of epochs 𝐸𝑀𝐴𝑋. Indeed, for a fixed
number of UEs (i.e., 𝑁 = 50), we can observe that the utility
function UF of each swarm population is increasing when
𝐸𝑀𝐴𝑋 grows up. Besides, it is straightforward to see that the
size of 𝑃 impacts the quality of solution. In particular, the
curves corresponding to 𝑃 = 10 and 𝑃 = 20 have close values
that outperform both 𝑃 = 5 and 𝑃 = 2. Then, it is interesting
to see that UF keeps stable starting from 𝐸𝑀𝐴𝑋 = 8.

In Fig. 4.(b), we study the impact of the swarm population
size 𝑃 on the convergence time CT. It is clear to see that
when the number of particles 𝑃 increases, the convergence
time CT increases as well. Such a behavior is predictable, as
the solution quality is enhanced as soon as 𝑃 is increased,
which in turn, requires more computation time to solve the
problem. In particular, the curve corresponding to 𝑃 = 20 costs

much more computational time than the curves corresponding
to 𝑃 = 10, 𝑃 = 5 and 𝑃 = 2. We fix 𝑃 to 10 and 𝐸𝑀𝐴𝑋 to 8.

Fig. 4.(c) assesses the convergence behavior of RAN-USA
with different values of 𝜀, while varying 𝐼𝑇𝐸𝑅𝑀𝐴𝑋. Indeed,
for a fixed number of UEs (i.e., 𝑁 = 50) and a fixed number
of particles (i.e., 𝑃 = 10), we can observe that UF increases
when 𝐼𝑇𝐸𝑅𝑀𝐴𝑋 increases. We recall that 𝜀 is the probability
of a particle to follow the local best position according to the
equation (E22). As depicted in Fig. 4.(c), when 𝜀 = 1, i.e.,
particles only follow their best local positions, the algorithm
struggles to find an optimal solution. Meanwhile, the solution
quality is enhanced when 𝜀 is less than 0.8. This proves
that particles need to collaborate with each other to fasten
the convergence process. It is interesting to see that, when
𝐼𝑇𝐸𝑅𝑀𝐴𝑋 is lower than 8 epochs, the curves corresponding
to 𝜀 = 0.2 outperforms the one corresponding to 𝜀 = 0. This can
be explained that RAN-USA rather favors a trade-off between
exploitation (𝜀) and exploration (1-𝜀) to achieve better results.
Hence, in our subsequent experiments, we fix the balance point
of exploitation-exploration, 𝜀 to 0.2.

In the following, we also vary the number of users 𝑁 in
[20, 100] with a rate of uRLLC UEs equal to 40% in each
iteration. We set 𝑃 and 𝐸𝑀𝐴𝑋 to 10 and 8, respectively. We
aim to evaluate the performance of RAN-USA in case of high
density of UEs. In Fig. 4.(d), we compare RAN-USA approach
with the optimized solution generated by the solver CPLEX. It
is straightforward to see that our solution approach generates
near optimal solutions when the number of UEs 𝑁 is equal to
20. Whereas, when 𝑁 is higher than 20, our proposed approach
achieves a lower utility function with a gap of 28%.
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Fig. 5: Performance evaluation

With regards to scalability, Fig. 4.(e) illustrates the average
resolution time AT of the different strategies versus the
number of UEs 𝑁 . Note that the Transmission Time Interval
(TTI) in C-RAN is equal to 1 millisecond according to [48]. It
is straightforward to see that the non-scalable optimal solution
takes a significantly longer time than RAN-USA to solve one
instance of the optimization problem. Indeed, the optimal
solution struggles to scale, as it takes several minutes to
solve instances of 𝑁 . In contrast, RAN-USA can easily solve
any size of instance (i.e., 𝑁 in [20, 100]) in the range of
[66; 100] milliseconds. Eventually, RAN-USA is able to take
an up-to-date decision and execute it after 100 TTI period.
Unfortunately, Optimal-Split is not able to do so since its
decision, once taken, will be already obsolete and hence not
applicable.

Fig. 4.(f) illustrates T𝑆 , with respect to the radio allocation
weight (𝜃). Wherein, the radio configuration is scaled up to 𝑀
= 7 gNBs with 8𝑥8 MIMO mode. Then, we fixed the number
of UEs 𝑁 to 15, while they requesting a service throughput in
the range of [0; 100] Mbps. Additionally, we assume that the
radio allocation weight 𝜃 is increasing in the range of [0; 1]
while the split allocation weight 𝜇 is decreasing in the range
of [0; 1]. As depicted, the throughput satisfaction is almost
enhanced while 𝜃 is increasing. Furthermore, T𝑆 reaches its
maximum value at 0.72. This is explained by the fact that,
when the throughput demand is high, radio resources become
scarce which makes the selection of the appropriate set of
resource blocks extremely challenging. Note that RAN-USA
outperforms the other baseline scenarios with 3.8%. This
is explained by the fact that RAN-USA aims to optimize
the computational and the link resource consumption, while

lightly enhancing users throughput satisfaction rate.

2) Performance Analysis: Hereafter, we fix 𝜃 and 𝜇 to
0.5 each to fairly weight both radio and virtual infrastructure
allocation schemes, and we propose here to study the trade-off
between the DU computational and the link resource allocation
costs. We also fix the RCC computational consumption weight
𝛽 to 0.1 as cloud data centers are natively efficient in power
consumption. We assume that 𝛼 and 𝛾 are both equal to
0.45 to emphasize the trade-off issue between minimizing DU
computational cost weighted by 𝛼 and optimizing the link
resource usage weighted by 𝛾.

In Fig. 5.(a), we illustrate C𝐷 with respect to the number of
𝑈𝐸s. It is straightforward to see that, our approach RAN-USA
further optimizes the computational and link resource usage
cost comparing to baseline approaches. Indeed, our proposal
is user-centric, hence, it adopts a fine grained approach to
optimize the resource allocation. It is worth pointing out that
C-RAN and D-RAN achieve higher cost of deployment. As
a matter of fact, the C-RAN approach allocates constantly
the full transport link bandwidth, while, the D-RAN approach
utilizes all the computational resources in DU sites.

Fig. 5.(b) illustrates the penalty L𝑇 as a function of the
𝑈𝐸s’ number. As we can see, both RAN-USA and RAN-CSA
approaches keep a zero penalty, which means that all 𝑈𝐸s
are constantly served with splits satisfying their latency re-
quirement. However, the D-RAN approach causes high penalty
because all 𝑈𝐸s are served with 𝑆𝑝𝑙𝑖𝑡0 that implies a latency
in the order of 10 𝑚𝑠, which obviously violates the latency
requirements of both eMBB and uRLLC 𝑈𝐸s. C-RAN also
implies a latency penalty in the range of [1; 5] for some
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uRLLC 𝑈𝐸𝑠 requiring a latency less than 0.2 ms.
Fig. 5.(c) depicts the splits distribution for RAN-USA, while

increasing the 𝑈𝐸s’ velocity in the range of [0; 35 𝑚/𝑠]
for a fixed number of 𝑈𝐸s (i.e., 𝑁 = 50). Note that the
velocity increases to simulate a pedestrian user (0.4 m/s),
up to a high mobility use case (35 m/s). We can observe
that the number of handovers increases obviously with the
increase of the 𝑈𝐸s’ velocity. At the same time, the number
of stable splits decreases since new split configuration options
become possible to re-establish the balance point between
radio allocation and energy consumption according to new
users’ position and resource availability. However, triggering
such a solution at each user event (arrival/departure/mobility)
is clearly not practical since the allocation will impact all
existing users, along with the required service performance.
Therefore, we propose to perform our optimization process
in proactive manner and to trigger it periodically after a
predefined time period 𝑇 = 100 ms according to Fig. 4.(e).

Fig. 5.(d) assesses the split selection strategy of RAN-USA
with different percentage of uRLLC 𝑈𝐸𝑠. Indeed, for a fixed
number of UEs (i.e., 𝑁 = 50) and a fixed number of 𝑔𝑁𝐵𝑠 (i.e.,
𝑀 = 7), it is straightforward to see that, our approach favors
𝑆𝑝𝑙𝑖𝑡2, 𝑆𝑝𝑙𝑖𝑡3 and 𝑆𝑝𝑙𝑖𝑡4. 𝑆𝑝𝑙𝑖𝑡0 and 𝑆𝑝𝑙𝑖𝑡1 are excluded
since they induce a latency of 10 𝑚𝑠, which does not satisfy
neither eMBB nor uRLLC flows. Furthermore, 𝑆𝑝𝑙𝑖𝑡5, 𝑆𝑝𝑙𝑖𝑡6,
𝑆𝑝𝑙𝑖𝑡7 and 𝑆𝑝𝑙𝑖𝑡8 are not selected because they generate a
high traffic in the midhaul, which impacts the deployment
cost. Instead, our approach achieves a trade-off between DU
computational usage and link resource usage by adopting a
partial centralization scheme. Specifically, 𝑆𝑝𝑙𝑖𝑡2 increases
proportionally with the uRLLC 𝑈𝐸s density. This emphases
the fact that 𝑈𝐸𝑠 with stringent latency requirement less
that 0.2 ms restraint 𝑔𝑁𝐵𝑠 to deploy only 𝑆𝑝𝑙𝑖𝑡2, excluding
necessary other split options even for other attached𝑈𝐸𝑠. With
reference to section III-A, 𝑆𝑝𝑙𝑖𝑡2 leads to a high computational
deployment cost comparing to other feasible splits. To coun-
teract this side-effect, RAN-USA selects 𝑆𝑝𝑙𝑖𝑡3 and 𝑆𝑝𝑙𝑖𝑡4 in
other 𝑔𝑁𝐵𝑠 to centralize more functions in the cloud.

Fig. 5.(e) illustrates the impact of the 𝑔𝑁𝐵 number (i.e.,
𝑀) on the split selection strategy S. For a fixed number
of UEs (i.e., 𝑁 = 50), uRLLC 𝑈𝐸𝑠 percentage is fixed to
40% and 𝑀 in the range of [3; 7], we can see that the
deployment of 𝑆𝑝𝑙𝑖𝑡2 decreases, while the adoption for 𝑆𝑝𝑙𝑖𝑡3
and 𝑆𝑝𝑙𝑖𝑡4 increases. The reason behind this is that, RAN-USA
is not anymore constrained to deploy 𝑆𝑝𝑙𝑖𝑡2 in some 𝑔𝑁𝐵𝑠.
Instead, RAN-USA finds a greater flexibility to deploy other
splits to achieve the trade-off between DU computational
usage and link resource usage.

Finally, in Fig. 5.(f), we study the trade-off between the
DU computational cost, which is weighted by 𝛼 and the
link resource usage, which is weighted by 𝛾. Therefore, we
assume that 𝛾 is increasing in the range of [0; 1], while 𝛼 is
decreasing in the range of [0; 1]. As depicted in Fig. 5.(f),
our solution adopts 𝑠𝑝𝑙𝑖𝑡2 and 𝑠𝑝𝑙𝑖𝑡8 when 𝛾 is lower than
0.4 (i.e., 𝛼 is higher than 0.6). Then, when 𝛾 is equal to 0.4,
the algorithm adopts mainly 𝑠𝑝𝑙𝑖𝑡2, 𝑠𝑝𝑙𝑖𝑡3 and 𝑠𝑝𝑙𝑖𝑡4 until 𝛾
reaches 0.6. Afterwords, 𝑠𝑝𝑙𝑖𝑡2 is constantly deployed. The
reason behind this behavior is that RAN-USA adopts splits

with minimum DU computational cost when 𝛼 is high (namely
𝑠𝑝𝑙𝑖𝑡8), while 𝑠𝑝𝑙𝑖𝑡2 is served for some uRLLC 𝑈𝐸𝑠. When 𝛾
is high, RAN-USA favors splits with minimum traffic flow in
the midhaul (namely 𝑠𝑝𝑙𝑖𝑡2). It is interesting to see that when
𝛾 is equal to 0.4 and 𝛼 is fixed to 0.6, the trade-off is achieved
by deploying simultaneously 𝑠𝑝𝑙𝑖𝑡2, 𝑠𝑝𝑙𝑖𝑡3 and 𝑠𝑝𝑙𝑖𝑡4.

VII. CONCLUSION

5G-RAN stakeholders aim to build a RANaaS concept
with innovative RAN infrastructure to address the new 5G
applications requirements. In this context, the slice concept is
introduced in order to handle the heterogeneity of new use-
cases. Despite the great advances achieved by RAN functional
split standardization, there is still a coarse grained approach
in the deployment process. In this paper, we propose a RAN
User-centric Slice Allocation approach RAN-USA. Wherein,
each user is assigned a proportion of radio and a split option.
At the end, multiple user slices are created and managed on
top of the physical infrastructure tailored to users’ require-
ments. Our contribution is twofold. First, we put forward an
oriented service Framework for user slice allocation. Second,
we propose a heuristic based on Particle Swarm Optimization
that jointly optimizes radio, link and computational resource
allocation. Based on Particle Swarm Optimization, RAN-USA
is scalable and achieves optimized user-centric slice allocation
solution in a satisfactory time. Based on extensive simulations,
we have shown that RAN-USA achieves good performances in
terms of total throughput satisfaction and deployment cost.
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