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Abstract: We present a first experimental validation of vibration filtering
with a Linear Quadratic Gaussian (LQG) control law in Adaptive Optics
(AO). A quasi-pure mechanical vibration is generated on a classic AO bench
and filtered by the control law, leading to an improvement of the Strehl
Ratio and image stability. Vibration filtering may be applied to any AO
system, but these results are of particular interest for eXtrem AO, and for
instance for the SPHERE AO design, where high performance is required.
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1. Introduction

Adaptive Optics (AO) allows to perform a real-time correction of the atmospheric turbulence
effects on image formation. Nevertheless, AO performance is limited, due to different error
terms. One of them is mechanical vibrations which can be of particular concern, as on NAOS
[1, 2], where a loss of Strehl Ratio (SR) between 2.5% and 25% could be attributed to vibra-
tions, or on Altair [3], where a 10 to 20 mas rms jitter due to vibrations was estimated. In both
cases, these vibrations mainly affected the tip and tilt modes. In both cases, cryo-coolers and
electronics were identified as main sources of the vibrations [2]. Telescope and components
vibrations (as tip-tilt mirror mount for instance for Altair) were also incriminated. When very
high performance is expected, such as in eXtreme AO (XAO), vibrations could then become
a burning issue. Vibration filtering could benefit to all AO system but XAO systems require
a particular attention on all error terms, especially on tip tilt mode stability. For instance, in
the context of the XAO project SPHERE (Spectro-Polarimetric High-contrast Exoplanet RE-
search), vibration filtering for tip and tilt modes stabilization is considered.

Passive filtering, performed through smart experimental equipment can reduce vibrations,
but fails to filter them entirely. Then, active filtering should be considered, particularly through
the control loop. Integrators are not able to filter vibrations specifically, and they may even am-
plify them depending on the vibrations frequencies. Predictors, such as proposed by Dessenne
[4], can filter specific vibrations, but optimality and stability are difficult to ensure. A Linear
Quadratic Gaussian (LQG) control law (see [5, 6] and references therein) can provide an op-
timal (in the sense of residual phase minimal variance) correction of the vibrations [7]. We
propose here an experimental validation of this optimal control law. We briefly recall our gen-
eral LQG control solution and describe the priors used to add vibration filtering. We propose
a numerical simulation of the expectable performance on the AO bench with a multiple vibra-
tions pattern. We then focus on experimental validation of vibration filtering in AO. We present
the AO bench used for the tests. Then, a single vibration is generated on the bench and fil-
tered with the control law. Results are compared to numerical simulation. We finally discuss
the application to the SPHERE project.

2. LQG control and vibration filtering

2.1. LQG control brief overview

The implemented optimal control law is fully described in [7]. The basic assumptions are the
following. The DM provides a linear and instantaneous response (no dynamics), constant over
a frame period T (zero-order hold) so that the correction phase φ cor

n−1 during time period [(n−
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2)T,(n−1)T ] is
φ cor

n−1 = Nun−2, (1)

where N is the influence matrix. The WFS is linear and integrates the residual phase signal over
one frame period. We assume that CCD read-out and slope computation use also one frame
period, computation and DM control representing a negligible amount of time. It is thus a two
frame period delay system. Phase signal integrated during time interval [(n− 2)T,(n− 1)T ]
provides a measurement yn, which will be used to compute the control voltages un applied
during time interval [nT,(n+1)T ]. Measurement yn is defined by:

yn = D
(
φn−1 −φ cor

n−1

)
+wn, (2)

where D is a matrix characterizing the WFS, φ n−1 is the average turbulent signal over time
period [(n−2)T,(n−1)T ] and wn is the measurement noise.

We also define an optimality criterion. For AO applications, a relevant criterion consists in
minimizing, over turbulence and WFS noise statistics, the residual phase variance in the pupil
defined by:

ε(un) =
〈∥∥

∥φ n+1 −Nun

∥∥
∥

2
〉

turb,noise
. (3)

In this context, we have proposed an optimal control law that we briefly recall hereafter. We
first exhibit a linear time-invariant state-space model of the system in the form:

xn+1 = A xn +Bun +νn, (4)

yn = C xn +wn, (5)

where xn represents the state vector of the system at instant n and gathers all the knowledge
needed at instant n to compute the deterministic part of next state x n+1 and output (WFS
measurement) yn. νn and wn are assumed to be decorrelated zero-mean white Gaussian noises
with covariance matrix Σν and Σw. νn represents the stochastic part of state vector xn, wn the
measurement noise. A convenient choice of state vector is:

xt
n =

(
φ t

n,φ
t
n−1,u

t
n−1,u

t
n−2

)
, (6)

where t stands for transposition. We assume that the dynamics of the turbulent phase (which
usually follow a Taylor’s hypothesis) can be approximated by a one-order auto-regressive
model:

φn+1 = Aturφn + νn, (7)

where νn is a zero-mean white Gaussian noise with covariance matrix Σν and Atur is the matrix
defining the dynamical characteristics of the turbulence. Details on computation of A tur and Σν
can be found in [5, 6]. Thus taking into account this model and Eq. 2 then Eq. 4 and Eq. 5 can
be written:

xn+1 =

⎛

⎜
⎜
⎝

Atur 0 0 0
Id 0 0 0
0 0 0 0
0 0 Id 0

⎞

⎟
⎟
⎠xn +

⎛

⎜
⎜
⎝

0
0
Id
0

⎞

⎟
⎟
⎠un +

⎛

⎜
⎜
⎝

Id
0
0
0

⎞

⎟
⎟
⎠νn, (8)

yn = D
(

0 Id 0 −N
)

xn +wn. (9)

Based on the separation principle, the control issue is then split into first an optimal esti-
mation of the incoming phase and then phase correction [8]. Estimation is based on a Kalman
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filter and provides a reconstruction of the phase on a truncated Zernike basis of N modes. It
realizes a temporal prediction accounting for time delay. More precisely, optimal estimation
and prediction of the turbulence is provided by:

x̂n+1/n = A x̂n/n−1 +Bun +L n(yn −C x̂n/n−1). (10)

Of course, for a structure such as Eq. (8) and Eq. (9), only the first two coordinates of x are to
be estimated (that means 2×N if N is the number of modes on which the phase is expressed),
the voltages being known. Eq. (10), when detailed for each coordinate of x̂n+1/n simply gathers
estimations of φ n+1 and φ n plus useless equations consisting in buffering voltages. The voltages
can thus be discarded from the state vector for computation efficiency, but their presence re-
mains interesting for comprehension. The Kalman optimal observer corresponds to a particular
value of the gain L n given by

L n = A Σn/n−1C
t(C Σn/n−1C

t + Σw)−1, (11)

where Σn/n−1 is the covariance matrix of the state estimation error and is obtained by solving
the following Riccati matrix equation:

Σn+1/n = A Σn/n−1A
t + Σv −A Σn/n−1C

t(C Σn/n−1C
t + Σw)−1C Σn/n−1A

t . (12)

This equation does not depend on measurement and can be therefore computed off-line, or
replaced by its constant asymptotic solution L ∞ (by letting Σn+1/n in Eq. (12) converge to its
asymptotical value) with no loss of optimality, as in [6].

Correction is then deduced thanks to a classic least-square projection of the predicted turbu-
lent phase onto the DM modes. The state feedback form is then:

un = Kx̂n+1/n, (13)

where K = (P, 0, 0, 0) and P = (NtN)−1 Nt . Note that the classical form un = Kx̂n/n is obtained
for a state vector defined as xt

n =
(
φ t

n+1,φ
t
n,φ t

n−1,u
t
n−1,u

t
n−2

)
and K = (0, P, 0, 0, 0) as in [6],

which gives exactly the same result. This control law, called standard LQG control henceforth,
has been already thoroughly simulated and experimentally validated in classic AO, off-axis AO,
and MCAO [5].

2.2. Vibration filtering

We now assume that a phase perturbation φ vib
n due to vibrations is added to the incoming tur-

bulent phase, so that the global phase can be noted:

φ glob
n = φn + φvib

n . (14)

Additive vibrations are straightforwardly included as perturbations in the state vector and es-
timated just as the turbulence. We only need to modify our models to describe explicitly the
impact of vibrations on the phase. Estimation then takes additive priors on this new perturba-
tive term into account, but the overall structure of the control law is identical. For simplicity,
we first assume the existence of one vibration on a particular mode of the phase, so that we
deal, as a first step, with a scalar problem. We need to define a model of this perturbation, in a
discrete-time domain.

Considering first a continuous-time description, a dampened oscillatory signal φ generated
by a forcing function ξ at the pulsation ω0 = 2π fvib (natural frequency fvib) is commonly
described by the second-order differential equation:

φ̈ +2Kω0φ̇ + ω0
2φ = Cω0

2ξ , (15)
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where C is the static gain and K the damping coefficient (we consider the dampened case where
0 < K < 1). Considering a continuous-time causal signal, a Laplace transform of the previous
equation leads to:

φ̃ (p) = H(p)ξ̃ (p), (16)

where H(p) is the transfer between ξ̃ and φ̃ :

H(p) =
Cω0

2

p2 +2Kω0p+ ω0
2 . (17)

The point is now to provide a discrete-time representation of H(p) so as to propose a linear
discrete-time representation of the evolution of the discrete-time oscillatory signal in an Auto-
Regressive Moving Average (ARMA) form (ratio of polynoms in z). A common approach is to
consider the discrete-time signals, obtained through zero-order hold sampling (with period T ):

φn = φ(nT ), ξn = ξ (nT ). (18)

These signals being causal, their Z transform φ̃(z) et ξ̃ (z) are linked by:

φ̃ (z) = H(z)ξ̃ (z). (19)

H(z) is rigorously obtained from H(p) using the relation:

z = epT . (20)

This relation leads however to a complex form of H(z) (including the logarithm of z), not suited
for an ARMA representation. Various classical methods of signal processing allow nevertheless
to approximate H(z) in an ARMA representation. It appears that an adapted transformation [9]
is convenient, as it maintains the poles of the transfer, and in this particular case it also maintains
its impulsional and indicial responses. This transformation is obtained replacing 1

p−pi
(where

pi are the poles of the transfer function H) by T 1
1−epiT z−1 and leads to:

H(z) = Cω0
2T

1

1−2e−Kω0T cos(ω0T
√

1−K2)z−1 + e−2Kω0T z−2
. (21)

Considering the perturbation φ vib
n , this leads to the following second-order Auto-Regressive

(AR2) model:
φ vib

n = a1φ vib
n−1 +a2φ vib

n−2 + ξn, (22)

where the coefficients a1,a2 are defined by

a1 = 2e−Kω0T cos(ω0T
√

1−K2), a2 = −e−2Kω0T . (23)

The damping coefficient K is related to the vibration bandwidth. The forcing function ξ n is in
general unknown and can be modeled consequently as a Gaussian white noise of variance σ 2

ξ .

For a given (ω0,K), the power of the vibration φ vib
n is proportional to σ 2

ξ . This model defines our
priors on the vibration from which a vibration filtering LQG control is derived. Note that this
process allows to filter any vibration which frequency is lower than half the sampling frequency.

The state vector can then take the following structure:

xt
n =

(
φ vib

n
t
,φ vib

n−1
t
,φ t

n,φ
t
n−1,u

t
n−1,u

t
n−2

)
. (24)
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The measurement equation Eq. (2) now takes into account the global phase so that:

yn = D
(

φ glob
n−1 −φcor

n−1

)
+wn. (25)

The various matrices of the state space model in Eq. (4) and Eq. (5) are easily modified accord-
ingly and the estimation of the vibration and turbulence is still provided by an equation of the
form of Eq. (10). Correction is also performed similarly, by projecting both the turbulence and
the vibration onto the DM. Note that another application of this approach could be to estimate
both vibration and turbulence but to correct only turbulence. This approach would be useful
when vibrations affect the WFS arm and not the imaging arm.

We have considered here the estimation and correction of one vibration on one mode, but we
could account similarly for p vibrations on M different modes of the phase, dealing with each
mode separately. Assuming vibrations are not coupled, this leads to the estimation of 2× p×M
components in addition to the 2×N turbulent components but generally p×M << N. We
assume that calibrations or a proper identification process provide the parameters ω 0,K,σ2

ξ for
each vibration on each phase mode.

3. Numerical simulation

As a first illustration, we have numerically simulated an AO case with an end-to-end simulator.
In the prospect of experimental validation described in Sect 4, the simulator reproduces faith-
fully our AO bench (see Sect. 4.1) and its components: the DM is described by an experimental
influence matrix, the WFS model is based on a geometric model of the Shack-Hartmann WFS,
the one-layer turbulence has Kolmogorov statistics and is translated across the pupil (Taylor hy-
pothesis). These models are fitted to the experiment described in Sect 4 thanks to calibrations.
The sampling frequency is set, as in the experiment, to 60 Hz. Three vibrations have been added
to the incoming Kolmogorov turbulence: two quasi-pure harmonic vibrations (K 1,2 = 10−5) at
6 Hz and 15 Hz with (σ 2

ξ )1,2 = 10−10rad2, and a vibration with wider bandwidth (K3 = 3 10−2)

centered at 8 Hz with (σ 2
ξ )3 = 10−3rad2. Characteristics of these vibrations have been chosen

first to propose both narrow and broad-band vibrations, then to provide distinct vibrations dis-
tributed beyond the AO loop bandwidth. For simplicity, we assume that these vibrations only
affect the tip and tilt modes. Such vibrations significantly decrease the AO loop performance.
When simulating a closed-loop AO with either an integrator or a standard LQG control (turbu-
lence estimated on N = 120 modes), the SR decreases from 91% down to 76%. Indeed these
standard control laws do not filter out the vibrations (which frequencies are above the AO loop
bandwidth) but rather amplify them. Now we consider a vibration filtering LQG control. Priors
for vibration filtering match the three vibrations characteristics and 2p×M = 12 additional
components are estimated. Vibration filtering allows then to increase the SR back up to 89%.
This performance can also be seen on temporal spectra. As the vibrations only affect the tip
and tilt modes, we focus on the spatially averaged x and y slopes of the WFS and compare their
Power Spectral Density (PSD), estimated thanks to periodograms, in open-loop PSD x,y

ol (ν) and
closed-loop PSDx,y

cl (ν), for the LQG control, with or without vibration filtering. We can then
evaluate the gain of the slope transfer function Tx,y(ν) using:

|Tx,y(ν)| =
√

PSDx,y
cl (ν)

√
PSDx,y

ol (ν)
. (26)

This function describes the effect of the AO loop on turbulence plus vibration. Fig. 1 presents
the |Tx(ν)| function for the LQG control, with or without vibration filtering. The overall struc-
ture of this transfer is complex and related to the LQG control properties, but it clearly shows the
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vibrations damping introduced by the adapted control law. The LQG control performs the best
compromise between the correction of the different components (turbulence and vibrations).
This compromise is related to the power and spectrum of each component. Differences appear

Fig. 1. Numerical simulation of three vibrations filtering (pure at 6,15 Hz, large at 8 Hz).
Transfer |Tx(ν)| of the x average slope is plotted for standard and vibration filtering LQG
control law.

between the two PSDs in particular at very low frequencies. This is due first to computation
of PSD over a finite time series. Averaged periodograms could provide more accurate results
but at the expense of spectral resolution. Moreover, Bode’s integral theorem [10] justifies that
vibrations filtering leads to a loss of turbulence correction (the normalized integral of the PSD
is always equal to 1 whatever the stabilizing controller) and thus differences between PSDs.

4. Experimental validation

4.1. Experimental set-up description

Tests of the LQG control for vibration filtering have been performed thanks to the AO test bench
developed by ONERA. It is composed of a turbulence generator, a telescope simulator, the AO
system and an imaging camera. The source is a LASER diode working at λ = 633 nm. The
turbulence generator is based on a phase screen mirror mounted on a rotating stage to reproduce
wind effects (wind speed V is scaled to reproduce an equivalent V/D � 0,28 Hz, D being the
pupil diameter), and placed in a collimated beam. The phase screen reproduces a Kolmogorov
turbulence which strength corresponds to D/r0 � 2.8 at 633 nm. It is weak but does not restrict
the demonstration provided that the power of the vibration is selected accordingly. Wavefront
correction is based on a Tip Tilt Mirror (TTM) and a 9× 9 actuator DM (69 valid actuators).
The Shack-Hartmann WFS is composed of a 8× 8 lenslet array (52 sub-pupils used) and a
CCD camera. The sampling frequency f e = 1/T is set to 60 Hz. The overall loop has a two
frame delay. A specific phase diversity calibration [11] allows to reach an internal Strehl Ratio
(SR) (without turbulence) of 95%@633 nm. A standard integrator and a LQG control law [5]
can both be used for AO correction of the turbulence. The integrator gain is optimized thanks
to Dessenne procedure [12], but as the signal to noise ratio is very high, it can be set to a
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global value of 0.5 without loss of performance. When dealing with the turbulence and without
vibrations, both control laws lead to 91% SR (estimated on long exposure images), in these
rather favorable conditions.

So as to validate vibration filtering on this AO bench, we need a stable vibration. We have
thus used a seismic vibration generator to move the optical bench in an horizontal plane with a
quasi pure sinusoidal mechanical oscillation. Figure 2 shows a picture of the set-up.

Fig. 2. Picture of the experimental set-up for vibration filtering validation. The AO bench
is on the right, under its baffling. The seismic vibration generator is in the middle of the
picture, placed on its stage and against the AO bench (cylindrical black component).

4.2. Vibration characterizations

We now need to evaluate the impact of the seismic vibrator on the bench. Calibrations, based
on recordings and analysis of WFS data, indicate that the bench has a linear response to the
excitation, leading to a global oscillation of the system at the same frequency as the excitation.
The induced vibration has a good stability and purity, as f vib/Δ f > 2500, where Δ f is the Full
Width at Half Max (FWHM) of the vibration. The peak-valley amplitude of the vibration is
A = 0.24 λ/D. This vibration mainly affects the tip and tilt modes, and so the x and y average
slope measurements. Closing the AO loop with standard control laws (either integrator or LQG
without specification of vibration filtering) leads to a drop of the long exposure SR down to
86% (compared to 91% without vibrations), due to image jitter. Meanwhile, x and y average
slopes measured on the WFS show an increased variance and a resonance peak at frequency
fvib. In terms of root-mean-square tilt (x axis) expressed in fraction of λ/D, the vibration leads
to an increase from 0.05 up to 0.10. On Fig. 3, the Cumulated Temporal PSD (CTPSD) of the x
average slope, in closed-loop, shows a steep step due to the vibration. Indeed with the selected
frequency fvib = 15.2 Hz, the vibration is not damped, and even amplified by standard control
laws. Loss of SR and average slope variance increase are consistent, proving that vibration is
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common to both imaging and WFS arms and should be estimated and corrected. Optimization
of the integrator gain is useless as the power of the vibration is too weak compared to the
turbulence power. Such a scenario is rather realistic compared to the vibration effects measured
on systems like NAOS [1] even if the vibration introduced may seem weaker (only a 5% loss
of SR). But we are limited by the seismic vibrator, used at full power to shake the AO bench.

We now consider implementing vibration filtering with LQG control. We have stressed that
the tip and tilt modes mainly suffer from the vibration. Vibration filtering is thus applied only on
these two modes, leading to a negligible computational cost increase (N = 120, p×M = 2). The
parameters of the AR2 model of the vibration are estimated thanks to open-loop measurements
and CTPSDs, leading to fvib = 15.2 Hz (position of step induced by vibration in CTPSD), K =
10−4 (computed from FWHM on PSD) and σ 2

ξ = 5,4 10−6rad2 (deduced from step amplitude
in CTPSD).

4.3. Vibration filtering results

When closing the AO loop with vibration filtering LQG control, the vibration is strongly at-
tenuated. The SR increases up to 90%, close to the vibration free performance of the standard
control laws (91%). In terms of root-mean-square tilt this corresponds to a significant drop
down to 0.06 λ/D. Comparison of the CTPSD of the x average slope with or without vibration
for standard control and for vibration filtering LQG control is given in Fig. 3. It shows that the
steep step due to the vibration is almost completely damped. In fact, a slight residual step is still
visible since a compromise (Bode’s theorem) is made between the filtering of the vibration and
the correction of the turbulence. Small differences can be seen on this figure between the dif-

Fig. 3. Experimental CTPSD of the x average slope for a LQG control law, without vi-
bration (dotted line), with vibration and no specific filtering (dashed), and with vibration
filtering (solid). Experimental error bound is lower than ±2.5 10−4(λ/D)2.

ferent CTPSD in particular at low frequencies. They are mainly due to experimental variability,
all the more as the AO bench is not mechanically stabilized. Note that experimental error bound
is lower than ±2.5 10−4(λ/D)2.

We provide on Fig. 4 the x average slope transfer functions as defined in Eq. (26) for ei-
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Fig. 4. Comparison of the experimental x average slope transfer. Top is obtained with inte-
grator (dotted) and compared to theory (solid). Bottom is obtained with vibration filtering
LQG control (dotted) and compared to numerical simulation (solid).

ther the integrator (compared to theory), or the LQG control (compared to simulation). As for
the integrator, a good agreement is found between experimental transfer and theory. A logical
strong damping is observed on the LQG control transfer at f vib. The peculiar low frequency
behavior on the experimental PSD is consistent with simulation results. It is characteristic of
the LQG control, and so is the high frequency (close to f e/2) loss of gain of the simulated PSD.
This loss of gain is not observed on experimental data due to high frequency defects of the
experimental set-up not accounted for in the simulations. Finally, experimental curves of Fig. 4
show that some small peaks appear between 8 Hz and 12 Hz, due to non stationary vibrations
present on the bench and related to the lab environment (building vibrations etc). Performance
in the various conditions are summarized in table 1.

integrator standard LQG LQG + vibration filtering
no vibration 91 91 91

vibration 86 86 90

Table 1. Performance in terms of Strehl Ratio (SR) for the various control laws, in presence
or not of vibration. SR are given with a ±0.5% error bar. Error on SR evaluation is statisti-
cally estimated on a large number of measurements and error bar corresponds to ± the root
mean square.

Note in table 1 (last column) that applying LQG control with vibration filtering when no
vibration exists on the bench does not degrade the system performance. This result is confirmed
by numerical simulations.

5. Discussion

We have not addressed here the problem of robustness. First, the good results obtained in this
experimental validation, despite unavoidable model errors, indicate a good robustness of the
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overall control law. Moreover, irrespective of the particular choice of controller structure and/or
design method, vibration filtering ultimately boils down to lowering the controller gain for the
frequencies that need to be filtered out. Obviously, lowering this gain over too large a frequency
range is bound to degrade overall performance. Thus, a delicate balance needs to be achieved
between robustness (measured by the width of the frequency band where filtering is effective)
and performance. In the LQG approach presented in this paper, this engineering trade-off is
embodied for instance in the choice of the dampening coefficient K, a low value of which
results in a controller which effectively filters out vibrations only in a narrow frequency band
around the vibration frequency. Nevertheless the impact of model parameters modification and
the resulting engineering trade-off have not been evaluated so far. This issue is currently under
investigation.

Indeed, these promising results have led us to consider a LQG control for the tip and tilt
modes correction for the SPHERE project [17], the higher order modes being corrected thanks
to a classic optimized modal gain integrator. It allows correcting both turbulence and vibra-
tions on tip and tilt modes, which is of particular concern for coronagraphic applications, with
no significant increase of the computational cost. This dual control leads to particular issues
of control loops decoupling to avoid cross-talk between the tip-tilt and higher order modes
correction. Good results have been obtained here for these first numerical and experimental ap-
plication of LQG approach. Still, to deal with robustness issues, the control procedure should
be based on a real-time identification procedure of the vibration parameters for a regular update
of the LQG control.

6. Conclusion

We have proposed in this paper to include vibration filtering in a LQG control dedicated to AO
closed-loop correction. First experimental validation of this scheme has been successfully per-
formed. It demonstrates the significant improvement of performance brought by correction of
such components. Multiple vibrations can also be filtered out as shown numerically. Robustness
issues are still under investigation, but most AO systems and more particularly XAO systems
could benefit from this control solution.

Previous works on optimal control in AO ([5, 6, 14, 15, 16, 18]) have underlined the interest
of LQG control to optimize the correction in tomographic AO, based on complex wave-front
sensing and correction configurations. Recent studies based on experimental and numerical val-
idations have for instance demonstrated the gain brought by LQG control in MultiConjugate AO
and Laser Tomographic AO (LTAO) ([5, 13]). The vibration filtering approach proposed here
has the advantage of being developed in the same LQG framework, hence adding an additional
feature that could also easily benefit to the control of such complex systems.
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