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Abstract: The fundamental issue of residual phase variance minimization
in adaptive optics (AO) loops is addressed here from a control engineering
perspective. This problem, when suitably modeled using a state-space
approach, can be broken down into an optimal deterministic control
problem and an optimal estimation problem, the solution of which are a
linear quadratic (LQ) control and a Kalman filter. This approach provides
a convenient framework for analyzing existing AO controllers, which are
shown to contain an implicit phase turbulent model. In particular, standard
integrator-based AO controllers assume a constant turbulent phase, which
renders them prone to the notorious wind-up effect.
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1. Introduction

Adaptive Optics (AO) systems [1] are used to compensate for time-varying wavefront distor-
tions using noisy and delayed measurements. In astronomy, these distortions are due to atmo-
spheric turbulence and lead to a loss of resolution and detectability. The correction aims then
at improving the image global quality through minimizing the residual phase variance. Classic
AO control loops do not address this problem directly, leading to suboptimal correction, but
still giving satisfactory performance for current AO systems on very large telescopes. How-
ever new AO concepts are under development to answer new astronomical objectives: XAO
for exo-planet detection [2], multi-conjugate AO/multi-object AO (MCAO/MOAO) for large
field of view correction (see [3, 4] and references in [5]), required for instance for the study
of galaxy formation. It is important to revisit the control issues to meet the high performance
specifications imposed by these new applications.

Starting from standard considerations on AO systems (linear regime of all components), we
explore some aspects of closed-loop control that bring to the fore fundamental limitations and
priors for control optimization. Minimum variance optimalcontrol can then be derived with-
out major difficulty when describing the system by an equivalent state model. This approach
provides a general framework which has the merit to describeexplicitly all the elements of
the system, including turbulent phase dynamics. When classical correctors are plunged into
such a framework, hypothesis on turbulent phase dynamics that are implicitly present through
correctors’ structure can then be made explicit and analyzed.

For the sake of brevity and clarity, this paper presents the state-space approach for a standard
AO configuration, assuming that all subsystems in the loop are linear. It is also assumed that the
time response of the deformable mirror (DM) is fast comparedwith the sampling rate of the AO
loop, and thus can be neglected altogether. These simplifying assumptions turn out to be quite
acceptable for many existing AO systems. However, it shouldbe stressed that the methods and
results presented here can be extended to cope with more complex DM’s dynamics, including
saturations and other relevant classes of nonlinearities.

This paper is organized as follows. It addresses the residual phase variance minimization in
adaptive optics loops by examining first, in Sec. 2, whether it can be tackled in discrete time
without loss of optimality. Based on frequency domain considerations, Sec. 3 examines the
rejection transfer function and its fundamental limitations, and shows that priors on turbulent
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Fig. 1. Basic bloc-diagram of an AO closed loop

phase and measurement noise are unavoidable. Then, relyingon priors and separation theorem,
it is shown in Sec. 4 that, under realistic assumptions, thisproblem can be broken down into
an optimal deterministic control problem and an optimal estimation problem, the solution of
which are linear quadratic (LQ) control and Kalman filter. This combination provides what is
called linear quadratic Gaussian (LQG) control, where the Gaussian term refers to the Gaussian
stochastic processes in presence. An illustration of LQG control is proposed in Sec. 5 on an
end-to-end AO bench simulator, and performances are compared with Optimized Modal Gain
Integrator (OMGI, used in NAOS for example [6]). The approach presented here, which is
based on a state-space representation, gives a convenient framework for analyzing standard AO
controllers. The particular case of the integrator-based control is studied in Sec. 6 which brings
out its implicit and unstable turbulent phase model. Finally, extensions and conclusions are
presented in Sec. 7.

2. AO closed-loop: continuous or discrete time?

Consider the classical AO block-diagram in Fig. 1, whereφ tur, φ res andφ cor represent respec-
tively the turbulent, residual and correction phases,w the measurement noise,y the measure-
ments andu the control voltages. In this setup, one has to define an optimality criterion, to be
minimized by the controller. In classical AO, one usually aims at minimizing the residual phase
variance, that is, a quadratic criterion on the phase. For the sake of simplicity the formalism
presented in this paper is restricted to this case. Nevertheless, it can be easily generalized to
MCAO, where the relevant criterion is usually the minimization of the residual phase variance
in a given field of view of interest [7]. Other criteria could be considered for specific applica-
tions. Non-quadratic ones are beyond the scope of this paper.

The empirical variance of the residual phaseφ res= φ tur−φ cor, averaged over a sufficiently
large exposure time, has thus to be minimized by the controller, which is realized by minimizing
criterionJc(u) with respect to the controlu,

Jc(u) , lim
τ→+∞

1
τ

∫ τ

0
‖φ res(t)‖2dt, (1)

whereφ res(t) actually depends onu (omitted for the sake of notation simplicity), and‖ · ‖2 is
the Euclidean norm, assuming that all phases are expanded ona suitable basis. This minimiza-
tion is done by adjusting the mirror voltagesu according to noisy measurementsy provided
by the wave-front sensor (WFS) from integrated and delayedφ res. Integration is assumed to be
performed during a time interval of length∆T. Moreover, because AO devices are computer-
controlled, the controlu remains constant over time intervals of length∆T ′ ≤ ∆T. Time inter-
vals∆T and∆T ′ are usually chosen equal, and we shall not depart from the rule. (Note however
that the case∆T 6= ∆T ′ could be considered as well, provided that there exists someintegers
ℓ1, ℓ2 > 0 and a time period∆T ′′ such that∆T = ℓ1∆T ′′ and∆T ′ = ℓ2∆T ′′, which means that
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∆T and∆T ′ are commensurable.) The fact thatu is piecewise constant induces a loss of opti-
mality, as the turbulent phase evolves over∆T. What we prove in this section is that there is
no additional loss of optimality by considering a complete AO system in discrete time, with
discrete variables corresponding to their temporal average over a time interval of length∆T.

Let us consider first the measurement equation. We assume that the WFS provides a linear
relationship between phase and measurements. Usual hypothesis are that the wave-front sensor
integrates the residual phaseφ res during a time interval∆T, and that WFS measurements are
deduced linearly from this with some additional delay, leading to a total discrete measurement
delaydm ≥ 1 (in time unit∆T). This corresponds for example to a Shack-Hartmann WFS in
linear regime. The overall operation produces noisy measurements, where the measurement
noisew is supposed to be additive. Furthermore, using the following notation for any averaged
value of a continuous variable, e.g. for the residual phase

φ res
k ,

1
∆T

∫ k∆T

(k−1)∆T
φ res(t)dt, (2)

the measurement equation averaged over one time interval can be written as

yk = Dφ res
k−dm

+wk (3)

whereD is the WFS matrix andwk a discrete zero-mean white noise.
Correction phaseφ cor is assumed to be a linear function of the control inputu with a delay

dc ≥ 1, i.e
φ cor

k = Nuk−dc, (4)

whereN stands for the influence matrix (interaction matrix is thusDN), anduk is the control
computed fromyk−dc+1 and applied on time interval[k∆T, (k+1)∆T] (a chronogram fordm = 1
anddc = 1 is given in Fig. 2). We consider here that the mirror’s response time is negligible
(which is justified as soon as its response time is small compared to∆T), so there is no mirror’s
dynamics.
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Fig. 2. Chronogram fordm = 1 anddc = 1. The available numerical values at each sampling
time are indicated by circles.
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Let us now take a look to performance criterionJc, Eq. (1). It can be equivalently written by
replacingτ with n∆T:

Jc(u) = lim
n→+∞

1
n

(

n

∑
k=1

1
∆T

∫ k∆T

(k−1)∆T
‖φ res(t)‖2dt

)

. (5)

Writing thatφ res(t) = φ tur(t)−φ tur
k +φ tur

k −φ cor
k for t ∈ [(k−1)∆T, k∆T], and using Eq. (4) and

the fact thatφ tur(t)−φ tur
k has an average value of zero, a simple calculation shows that

1
∆T

∫ k∆T

(k−1)∆T
‖φ res(t)‖2dt =

1
∆T

∫ k∆T

(k−1)∆T
‖φ tur(t)−φ tur

k ‖2dt +‖φ res
k ‖2. (6)

As the right-hand terms in Eq. (6) are split in two parts, one that does not depend onu and
the other that only depends on discrete variables, minimizing Jc(u) leads exactly to the same
control value as minimizing

J(u) , lim
n→+∞

1
n

n

∑
k=1

‖φ res
k ‖2, (7)

which depends only on discrete variables averaged over the sampling period∆T. In the sequel,
we shall thus describe in discrete-time all the constitutive elements and processes that make up
the AO closed-loop.

3. Limitations and mandatory prior information

We focus here on control limitations and prior information that appear before any criterion
minimization, when considering the subsystems in Fig. 1. Ifthey are all linear,z-transforms
can be used to compute the transfer functions (TF) that appear when closing the loop. In the
sequel, we shall denote by ˜x thez-transform of a discrete temporal processx. Therefore,φ̃ res(z)
can be written in closed-loop as a function ofφ̃ tur(z), w̃(z), and as a function of the controller’s
z-transformC(z):

(

Id +NC(z)Dz−d
)

φ̃ res(z) = φ̃ tur(z)−NC(z)z−dcw̃(z), (8)

whereId denotes the identity matrix andd , dm + dc is the total delay in the loop. Leaving
aside the influence of measurement noisew, the closed loop performance of this discrete-time
system can be analyzed through the closed loop matrix transfer function fromφ tur to φ res, i.e.
the rejection TFH(z) , (Id +L(z))−1, whereL(z) , NC(z)Dz−d is the open loop TF between
φ res andφ cor, including delays.

Consider the simple case whereL, and henceH, are diagonal, where the diagonal ofH is
formed with scalar TFs (as in modal approaches) denoted byHℓ. In order to minimize the
residual phase variance, the controller’s TF should be selected so as to render each scalar TF
Hℓ as small as possible at all frequencies, while stabilizing the feedback loop. At this critical
juncture, Bode’s integral theorem [8] enters the stage; it states that foranychoice of stabilizing
controller, ford = dm+dc > 1, the integral of the logarithm of the modulus of everyHℓ(ejω)
over the normalized frequency rangeω ∈ [0,π] is zero:

∫ π

0
log | Hℓ(e

jω) | dω = 0. (9)

(Note that in discrete time, exploring the frequency domainis done by settingz = ejω for
normalized frequencyω ∈ [0,π], see e.g. [9] for more details.)
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In practice, this means that the controller cannot makeφ res smaller thanφ tur at all frequen-
cies, and that better attenuation at some frequency will have to be repaid in kind with distur-
bance amplification in another part of the spectrum. This so-called “water bed effect” is inherent
to the feedback loop, whatever the stabilizing controller.In the sequel, we shall not select a par-
ticular controller structure, as the goal is to find among allstabilizing controllers the optimal
one with respect to performance criterion (7) and hence to (1). This optimal controller will not
escape from water bed effect, but will provide an optimal compromise between disturbance
rejection and amplification.

Let us put this aside and focus now on criterionJ in Eq. (7). Parseval’s theorem states that
energy is conserved between time and frequency domains, so thatJ can be equivalently written
in the frequency domain as

J(u) =
1

2π

∫ 2π

0
trace

(

Sφ res(ejω)
)

dω, (10)

where for any processx, Sx stands for the power spectral density (PSD) ofx (note that in the
case of a vector process of finite dimension,Sx is a matrix-valued function).

At this point, one needs to throw in additional information on φ tur andw. Assume thatφ tur

andw are mutually independent zero-mean stationary ergodic processes of finite energy, with
PSDsSφ tur andSw. A standard result from stochastic filtering theory (Birkhoff’s theorem, see
for example [10]) is thatφ res is also stationary with variance almost surely equal toJ(u), ı.e.

J(u) = trace(Var(φ res)) almost surely. (11)

Using the fact thatw andφ tur are not correlated, one can write the PSD ofφ res as

Sφ res = H(z)Sφ turH(z)∗ +Hw(z)SwHw(z)∗, (12)

where∗ denotes the conjugate transpose andHw(z) , H(z)NC(z)z−1 is the closed-loop TF from
w to φ res (which is obtained from Eq. (8)). The frequency-domain identity (10), when replacing
Sφ res by its expression in (12), leads directly to

J(u) =
1

2π

∫ 2π

0
trace

(

H(ejω)Sφ tur(ejω)H(ejω)∗ +Hw(ejω)Sw(ejω)Hw(ejω)∗
)

dω. (13)

Therefore, minimizingJ(u) requires in one way or another the knowledge of bothSφ tur andSw.
We are now faced with the following problem: given a/ the wavefront sensor’s and de-

formable mirror’s TFs; b/ the turbulent phase’s and measurement noise’s PSDs, minimize
trace(Var(φ res)) over the set of all controllers which stabilize the AO loop.

4. Optimal solution is obtained by separating estimation and control

Because the order of these controllers (that is, the order ofthe associated difference equations)
is nota priori bounded, this optimization problem may appear at first sightintractable. Quite
understandably, suboptimal approaches have been pursued to select the controller’s TFC(z).
A popular one is to use a static decoupling gain multiplied with a diagonal matrix of scalar
dynamic compensatorsCℓ with fixed structure, and to separately tune the resulting series of
hopefully independent feedback loops (this corresponds tomodal approaches evoked in pre-
vious section, with diagonalH(z)). Thus, theHℓ may be pure integrators, as in [11, 12], or
higher order filters as in [13, 14]. The extension to real-time tuned parameters, as in [15], leads
to a non-linear control loop, which is beyond the scope of this presentation. Yet, the general
multi-variable optimization problem (that is without imposing any decoupling nor particular
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structure) does have a solution, which can be explicitly computed using standard results from
modern control theory, and is properly described as an LQG control, that is a state feedback
combined with a Kalman filter.

To grasp this, consider the simple situation where the delayof the deformable mirror can
confidently be reduced to one sampling period (dc = 1, which means that the computation of
yk anduk can be performed within[(k−1)∆T,k∆T], as illustrated in Fig. 2), so that the DM
equation including control delay is

φ cor
k = Nuk−1, (14)

leading to the TF̃φ cor(z)= Nz−1ũ(z). Let us make now the obviously totally unrealistic assump-
tion that future values ofφ tur can be predicted with perfect accuracy. Under this fantasy-world
“full information” hypothesis, a perfect solution would beto makeφ cor equal toφ tur by solving
Nuk = φ tur

k+1. However,N being generally non-invertible, the optimal control corresponds to the
solution of the least-squares minimization ofφ tur

k+1−Nuk, i.e.

uk =
(

NtN
)−1

Ntφ tur
k+1 (15)

where·t stands for transposition. This optimal controluk corresponds to the orthogonal projec-
tion of φ tur

k+1 onto the mirror’s space, with orthogonal projectorP defined as

P ,
(

NtN
)−1

Nt. (16)

To obtain an implementable control in the “incomplete information” hypothesis, one may
simply replace in (15)φ tur

k+1 by some estimated value. Let us now assume that we are able
to computeφ̂ tur

k+1|k, the minimum-variance estimator ofφ tur
k+1 based onIk, the set of all prior

information and measurements available until timek. This optimal estimate is the conditional
expectation givenIk [16]:

φ̂ tur
k+1|t , E[φ tur

k+1|Ik], (17)

where E[·] denotes the mathematical expectation. In this case it is immediately checked that the
control

uk =
(

NtN
)−1

Ntφ̂ tur
k+1|k (18)

does indeed minimize trace
(

Var(φ res
k+1|Ik)

)

conditionally to all information available at time
k. This result is known in control literature as the stochastic separation theorem [17, 18, 19],
because it demonstrates that the optimal controlu can be constructed by separately solving a
deterministic optimal control problem (the full information case) and a stochastic minimum-
variance estimation problem (the incomplete information case). Furthermore, the deterministic
optimal control subproblem turns out to be quite simple, as seen in Eq. (18).

Consequently, the original residual phase variance minimization problem is for all practical
purposes reduced to a standard recursive minimum-varianceestimation/prediction problem.

4.1. Equivalent state-space modelization

To solve this estimation/prediction problem, however, oneis required to construct a model of
the AO loop incorporating the deterministic dynamics of itsvarious components, the variance
of the measurement noise and the spatial and temporal correlation structure of the turbulent
phase, asSw andSφ tur have been shown to be necessarily known when dealing with criterion
J. This model, called a state-space model, is based on a full description of the system’s state,
and should thus include an explicit description of the turbulent phase dynamics that matches
the priors.
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The state vector of a system at timek, denoted byxk, is generally defined as follows. It
represents all the knowledge needed at timek to compute next statexk+1 and output (WFS
measurement)yk, when inputs are known and if noises are neglected. The statevector dynamics
correspond thus to an input-output description of the system, that is a set of equations which
givesxk+1 andyk as a function ofxk, uk, and of the noises. Such a state-space model is usually
described in the linear time-invariant case in the form

xk+1 = Axk +Buk +vk (19)

yk = Cxk +wk (20)

whereA, B andC are matrices of appropriate dimensions,v andw are decorrelated zero-mean
white Gaussian noises with covariance matricesΣv andΣw. They are also decorrelated from the
initial statex0. These processes are assumed to be independent because theyaccount for two
different sources of unpredictability:w is a measurement noise, whilev drives the stochastic
drift of the turbulent phase. We propose here to construct a state-space model in the form (19–
20) using the material introduced in Sections 2 and 3. At the end of this Section, the constructed
state model will be completely equivalent to a set of equations describing the AO system.

The choice for the state vector is not unique, and different state vectors with different di-
mensions may be used to describe the same input-output behavior. What variables should then
enter the state vectorxk? It should fulfill two requirements: firstly, the state must summarize
the entire knowledge on the system including turbulence, and secondly, the optimal control law
must be a function of the state only. In view of performance criterion (7), the residual phase
φ res should then be part of the state vector, or equivalentlyφ tur andu.

At time k, considering one period latency for read-out and computation time in the WFS
(dm = 1), the measurementyk is obtained following Eq. (3) by

yk = Dφ tur
k−1−DNuk−2 +wk (21)

or equivalently

yk = D(Id , −N)

(

φ tur
k−1

uk−2

)

+wk. (22)

It is clear that at leastφ tur
k−1 anduk−2 enter the state vector, henceφ tur

k anduk−1 for memory
storing. As said before, this choice of state vector is not the only possibility, but is motivated by
the possible and direct extension to MCAO [7]. A convenient choice for the state is then

xk =
(

φ tur
k

t
,φ tur

k−1
t
, ut

k−1, ut
k−2

)t
. (23)

When considering Eq. (19), all quantities inxk+1 shall be described fromxk anduk throughA
andB (the values of which will be given below).

It is time now to look into turbulent phase modelization. In alinear context, any model which
gives a good description of spatial and temporal correlations could be considered. This means
that any given turbulent phase spatial correlation matrixΣφ , defined as

Σφ , E[φ tur
k

(

φ tur
k

)t
], (24)

can be obtained through a white noise filtered by a rational filter. The dynamics of the turbulent
phase (which usually follow a Taylor’s hypothesis) can be approximated in such a way that
temporal correlations match correctly the chosen filtered process. A one-order auto-regressive
model has been shown to be a good approximation of the turbulent phase dynamics [7, 20, 21],

φ tur
k+1 = A φ tur

k +vk, (25)
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wherevk is a zero-mean white Gaussian noise with covariance matrixΣv, andA is the matrix
defining the dynamical characteristics of the turbulent phase (temporal correlations that depend
on turbulence speed, see Sect. 5). For any givenΣφ , the model described in Eq. (25) leads
to Σφ = A tΣφ A + Σv (using definition (24)). So, based on energy conservation principle, the
turbulent phase covariance matrix will indeed be equal toΣφ if we takeΣv = Σφ −A tΣφ A .
While simple, this model can thus simultaneously match the spatial correlation structure of the
turbulent phase throughΣφ and its short-term temporal correlation throughA .

Knowing Σφ andΣv, the stochastic state-space model is now completely defined, using (22–
25), in the form (19–20) with

A =









A 0 0 0
Id 0 0 0
0 0 0 0
0 0 Id 0









, B =









0
0
Id
0









, C = (0, D, 0, −DN). (26)

The optimal controlu (see Eq. (18)) has then the general state feedback form

uk = Kx̂k+1|k (27)

whereK , (P, 0, 0, 0) andP is defined in (16).
Note also that the model under consideration is stationary,but non-stationary models (with

A, B, C depending on time) could be considered as well, leading to the same conclusions.

4.2. Kalman’s optimal filter

The minimum variance estimate ofxk+1 using all the measurements until timek is obtained
in the Gaussian case as the output of a Kalman filter [22, 23] (if the Gaussian assumption is
released, the Kalman filter gives the best linear unbiased estimator). This filter is an observer,
that is, has the general structure

x̂k+1|k = Ax̂k|k−1 +Buk +Lk
(

yk− ŷk|k−1
)

(28)

whereŷk|k−1 is the best estimate of the model output givenIk−1, obtained as

ŷk|k−1 = Cx̂k|k−1. (29)

The Kalman optimal observer corresponds to a particular value of the gainLk given by

Lk = AΣk|k−1C
t(CΣk|k−1C

t +Σw)−1 (30)

whereΣk|k−1 is the covariance matrix of the state vector and is obtained by solving the following
Riccati matrix equation:

Σk+1|k = AΣk|k−1At +Σv−AΣk|k−1C
t(CΣk|k−1C

t +Σw)−1CΣk|k−1At. (31)

At first sight, this equation may plunge us into despair, as itseems to be incompatible with real-
time constraints. But the careful reader would have noticedthat Eq. (31) does not depend on
measurements. It can thus be computed off-line, and even replaced by its constant asymptotic
solutionL (by letting Σk+1|k in (31) converge to its asymptotical value) with non-significant
loss of optimality, as in [24]. Furthermore, as all control values are known until timek, the
coordinates of the statex corresponding to delayed values ofu need not be estimated; the
optimal gainL has thus corresponding coordinates equal to zero, so that itis computed using a
reduced order Riccati equation.
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5. Illustration of LQG control based on an end-to-end simulator

The asymptotic LQG control has been implemented to control aclassical AO system on an
end-to-end simulator. This experiment is intended mainly as a feasibility study, especially with
respect to constraints and limitations of real-time implementation. For such a simple experi-
mental setup, LQG control provides better overall closed-loop stability but only limited per-
formance improvement over well tuned integrator control. However, extensive simulations and
ongoing experimentations show that dramatic performance enhancement is attained in more
complex cases such as off-axis AO, MCAO or vibration filtering [7, 26, 27].

The results presented here correspond to aD = 8 m telescope observing in the near-infrared
(2.2 µm), equipped with a 8×8 subaperture Shack-Hartmann WFS and a 9×9 actuator Stacked
Actuator Mirror. The turbulenceDr0

is set to 8 (0.61 arcsec seeing at 0.5µm). The wind-speed

is V = 9ms−1. A 250 Hz correction (which corresponds to∆T = 4.10−3s) with a total delay
d = 2 (d∆T = 8.10−3s, withdc = dm = 1), is then simulated.

The turbulence is simulated thanks to the translation of a large Kolmogorov phase screen
(Taylor hypothesis). The Shack-Hartmann measurement is calculated by averaging the phase
derivative on each sub-aperture (geometric approximation). A white Gaussian noise is added to
the slope measurements. The DM influence functions are modeled through Gaussian functions,
with a coupling factor of 25%.

For LQG control, the phase is estimated on a Zernike basis restricted to the first 160 modes.
The turbulence model is a one-order auto-regressive. Following Le Rouxet al. [7], A is as-
sumed to be a diagonal matrix. The diagonal elementsai are related to the correlation time of
each individual Zernike coefficient. We choose here the following law:

ai = exp(−0.3(n+1)
V∆T

D
), (32)

wheren is the radial order of the Zernike numberi. This law allows to account for the decrease
of the correlation time with radial order [25].

The WFS matrix is obtained by applying the same geometric approximation to the Zernike
modes. The correction by the DM is computed by projecting theestimated phase on the mirror
sub-space using the DM influence functions. Finally, a classic OMGI is also implemented for
comparison. Gains are optimized according to the procedureproposed by Dessenne [13].

Figure 3 shows the Point Spread Functions obtained with bothcontrol laws. The Strehl Ratios
are respectively 69% and 71% for the OMGI and the LQG control.This result proves the good
behavior and the potential gain brought by the LQG control.

Fig. 3. Point Spread Functions obtained with an OMGI (left) and a LQG control (right) in
logarithmic scales.
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6. Integrators: observer form and hidden turbulent phase model

Model errors exist in the definition of the state-space representation model: one-order auto-
regressive model instead of Taylor turbulence, estimationon a finite number of modes. How-
ever, such approximations are unavoidable in a realistic case. Still, a noticeable gain is observed.
Further studies have shown that in the present case, this gain is mainly due to a better handling
of aliasing effects. This is permitted by the expansion of the phase on a finite but extended ba-
sis, beyond the DM sub-space. This allows both a good adequation to turbulence statistics and
a good representation of the WFS measurement.

We now turn towards linear controllers in general, and show that in fact, essentially any
existing linear AO controller is equivalent to an observer based control. If a controller of given
structure is used, the equivalent state model will depend onthis structure, and the controller’s
output turns out to be a sub-optimal solution with respect tothe implicit stochastic model of
the turbulent phase. To illustrate this, we consider for example a simple integrator control with
recurrence equation

uk = uk−1 +Gyk. (33)

The purpose of this section is to show that there exists a state model for which the optimal
solution in the minimum variance sense is the control law (33) for a particular value ofG. We
begin therefore by building the adequate state model, and show next that the optimal solution
leads to a simple integrator. As a state model describes all components of a system, it becomes
then possible to analyze the implicit physical hypothesis that are hidden behind (33).

To start with, consider the turbulent phase’s dynamics defined by

φ tur
k+1 = φ tur

k +vk, (34)

wherevk is a zero-mean white noise, and consider a state model of the form (19–20)

A =

(

Id 0
0 0

)

, B =

(

0
Id

)

, C = (D, −DN), (35)

with state vector

xk =

(

φ tur
k
uk

)

. (36)

The optimal control (18) computed on the basis of (35–36) is equivalent to the integrator control
(33) for a particular value ofG. This new state model is different than (26) in an important point:
measurement delay is not taken into account,i.e. dm = 0.

For this equivalent state model (35), the asymptotic optimal observer of the form (28) for
turbulent phase estimation turns out to be simply

φ̂ tur
k+1|k = φ̂ tur

k|k−1 +Lyk, (37)

with a value ofL that is computed using the new state model defined through (35–36). Simply
becausedm = 0, the measurement equation isyk = D(φ tur

k − φ cor
k ) + wk, leading to ˆyk|k−1 =

D(φ̂ tur
k|k−1 −φ cor

k ) = 0. This explains why ˆyk|k−1 does not appear in (37) when comparing with
(28).

Multiplying now both sides of (37) byP = (NtN)−1Nt (remember thatuk = Pφ̂ tur
k+1|k) leads

exactly to (33) withG satisfying
G = (NtN)−1NtL. (38)

Let us now unfold this backward: for any choice of gain integrator G, there always exists
an observer of the form (37), with corresponding turbulent phase stochastic model (34). The
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observer (and consequently the integral controller) will not be optimal in the minimum variance
sense unlessG is defined from (38) with optimalL given by (30).

The implicit stochastic model (34) that appears when writing down the equivalent state model
that leads to integrator recurrence (33) produces a turbulent phase with unbounded energy, as
trace

(

Var(φ tur
k )
)

→ ∞ with k. A nefarious consequence is that an observer built from thismodel
is not stable and may well lead to unbounded trajectories ofφ̂ tur, and therefore of the controlu
– the notorious wind-up effect for controllers with integral action.

In a similar way, it can be shown that any linear AO control canbe traced back to an observer,
and thus to an implicit turbulent phase model – which order depends on the controller’s one
(more precisely on the order of the denominator) – and to an equivalent state-space model. This
allows one to compute the optimal gain thanks to (30–31). Using anything else than Kalman
gain leads therefore implacably to a sub-optimal control with respect to the minimum variance
criterion.

7. Discussion and conclusions

The approach proposed here is based on a linear description of the constitutive elements of an
AO loop. Provided that the mirror’s voltages are computer-controlled, the control optimization
can be performed using a discrete time model of the AO system.We have pointed out some fun-
damental limitations of the AO closed-loop, and the unavoidable priors that must be defined for
control optimization: PSDs of turbulent phase and noise. The optimal solution is then derived
thanks to the separation theorem, based on a state-space model. A simulation example com-
paring OMGI and LQG control on an end-to-end simulator showsthat even with some model
errors on turbulent phase, performances are better than with an optimized integrator.

Finally, the approach is used to analyze some aspects of pureintegrator-type controllers, and
particularly the fact that their structure assumes implicit prior hypothesis that are made explicit
when using an equivalent state model. It is shown that, as they are unstable, they contain an
unstable turbulent phase model, that renders them prone to the famous wind-up effect.

The choice of the state vector, as said before, is not unique.For example,φ cor could be part
of the state vector instead ofu, and a state model of smaller dimension could be used. Our
choice is motivated by several considerations. Firstly, itlimits the influence of matrices that
are obtained through calibration process (and thus that contain model errors) mainly to the
observation equation (20), so that there is no direct error propagation through the state equation
(19). Secondly, it keeps a clear visible physical structure, so that extensions of the model to
various situations (presence of vibrations, off-axis AO, MCAO) is easy.

Some comments about turbulence phase modelization: more complex temporal correlation
structures could easily be embedded in the model. Indeed, any stationary process with rational
PSD can be constructed as the output of a linear “shaping filter” whose input is a white noise
and which can be represented in a state-space form [9]. However, a one-order model has been
shown to be a good approximation as only short-term correlations are important in control
performance [7].

We have presented here a classical on-axis AO setup, but various extensions may be con-
ducted with state models. For instance, the filtering of parasitic vibrations can be considered
[26]. The tool is also well adapted to optimal control in MCAO[7, 27], where anisoplanetism
is taken into account.

Linear mirror’s dynamics could also be considered, with a minimum variance criterion. In
this case, the state equation must also describe these new dynamics. More generally, the tools
presented here apply readily to any AO system provided that it is linear or well approximated
by linear behaviors, and that the control criterion of interest is minimum variance. Of course,
state vector and matricesA, B andC shall be modified according to the description of each ele-
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ment of the system. Also, several types of DM’s nonlinearities, such as saturations or nonlinear
influence functions, can be explicitly accounted for in boththe full information optimal control
computation and the turbulent phase estimation.

The Kalman based control has been successfully experimented on the BOA bench at ONERA
in various configurations: classic AO with and without vibration filtering (not yet published) and
simplified MCAO [27].

To conclude, it would seem that a Kalman filter is the perfect tool for optimizing the overall
performance of an AO loop. However, this attractive optimality is predicated on the assumption
that one can tune the parameters of the linear stochastic model so that it fits the real system with
at least adequate precision. This importantcaveat emptorshould be kept in mind at all times in
order to achieve a sensible balance between the model’s accuracy and its complexity.
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