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Abstract: The fundamental issue of residual phase variance minimizat
in adaptive optics (AO) loops is addressed here from a cbabhgineering
perspective. This problem, when suitably modeled using ade-stpace
approach, can be broken down into an optimal deterministiotrol
problem and an optimal estimation problem, the solution bfciv are a
linear quadratic (LQ) control and a Kalman filter. This aario provides
a convenient framework for analyzing existing AO contna|ewhich are
shown to contain an implicit phase turbulent model. In patér, standard
integrator-based AO controllers assume a constant turbplease, which
renders them prone to the notorious wind-up effect.
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1. Introduction

Adaptive Optics (AO) systems [1] are used to compensateirf@-varying wavefront distor-
tions using noisy and delayed measurements. In astronbese tdistortions are due to atmo-
spheric turbulence and lead to a loss of resolution and @dtiéity. The correction aims then
at improving the image global quality through minimizingtresidual phase variance. Classic
AO control loops do not address this problem directly, lagdio suboptimal correction, but
still giving satisfactory performance for current AO syateon very large telescopes. How-
ever new AO concepts are under development to answer neanastical objectives: XAO
for exo-planet detection [2], multi-conjugate AO/multiject AO (MCAO/MOAO) for large
field of view correction (see [3, 4] and references in [5]Quieed for instance for the study
of galaxy formation. It is important to revisit the contrgbuies to meet the high performance
specifications imposed by these new applications.

Starting from standard considerations on AO systems (liregime of all components), we
explore some aspects of closed-loop control that bringeddhe fundamental limitations and
priors for control optimization. Minimum variance optimadntrol can then be derived with-
out major difficulty when describing the system by an eqe@méistate model. This approach
provides a general framework which has the merit to desaxmdicitly all the elements of
the system, including turbulent phase dynamics. When clalssorrectors are plunged into
such a framework, hypothesis on turbulent phase dynaméatsatie implicitly present through
correctors’ structure can then be made explicit and andlyze

For the sake of brevity and clarity, this paper presentsttite-space approach for a standard
AO configuration, assuming that all subsystems in the loepiaear. It is also assumed that the
time response of the deformable mirror (DM) is fast compavitd the sampling rate of the AO
loop, and thus can be neglected altogether. These simiggsumptions turn out to be quite
acceptable for many existing AO systems. However, it shbaldtressed that the methods and
results presented here can be extended to cope with mordeoB®ll’'s dynamics, including
saturations and other relevant classes of nonlinearities.

This paper is organized as follows. It addresses the relgithase variance minimization in
adaptive optics loops by examining first, in Sec. 2, whetheam be tackled in discrete time
without loss of optimality. Based on frequency domain cdasitions, Sec. 3 examines the
rejection transfer function and its fundamental limitagpand shows that priors on turbulent
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Fig. 1. Basic bloc-diagram of an AO closed loop

phase and measurement noise are unavoidable. Then, relyjmgprs and separation theorem,
it is shown in Sec. 4 that, under realistic assumptions,ghidlem can be broken down into
an optimal deterministic control problem and an optimaineation problem, the solution of
which are linear quadratic (LQ) control and Kalman filteriSThombination provides what is
called linear quadratic Gaussian (LQG) control, where thasSian term refers to the Gaussian
stochastic processes in presence. An illustration of LQRrobis proposed in Sec. 5 on an
end-to-end AO bench simulator, and performances are cadpeith Optimized Modal Gain
Integrator (OMGI, used in NAOS for example [6]). The apptogcesented here, which is
based on a state-space representation, gives a convaaimetvork for analyzing standard AO
controllers. The particular case of the integrator-basedrol is studied in Sec. 6 which brings
out its implicit and unstable turbulent phase model. Finaktensions and conclusions are
presented in Sec. 7.

2. AO closed-loop: continuous or discrete time?

Consider the classical AO block-diagram in Fig. 1, whet€, ¢S and @' represent respec-
tively the turbulent, residual and correction phaseshe measurement noisgthe measure-
ments andi the control voltages. In this setup, one has to define an afitintriterion, to be
minimized by the controller. In classical AO, one usuallyaiat minimizing the residual phase
variance, that is, a quadratic criterion on the phase. Fosttke of simplicity the formalism
presented in this paper is restricted to this case. Neved$eit can be easily generalized to
MCAO, where the relevant criterion is usually the minimiaatof the residual phase variance
in a given field of view of interest [7]. Other criteria coulé bonsidered for specific applica-
tions. Non-quadratic ones are beyond the scope of this paper

The empirical variance of the residual pha$e® = ¢"" — ¢°°", averaged over a sufficiently
large exposure time, has thus to be minimized by the coetrelhich is realized by minimizing
criterionJ®(u) with respect to the contral,

Cc A H 1 f res, 2
Fw2 tim - [ e), W
where¢™®S(t) actually depends on (omitted for the sake of notation simplicity), atjd||? is

the Euclidean norm, assuming that all phases are expandaguitable basis. This minimiza-
tion is done by adjusting the mirror voltagasaccording to noisy measurementgrovided

by the wave-front sensor (WFS) from integrated and delag&d Integration is assumed to be
performed during a time interval of lenglkT. Moreover, because AO devices are computer-
controlled, the contrali remains constant over time intervals of lendfiY < AT. Time inter-
valsAT andAT' are usually chosen equal, and we shall not depart from tke(Mbte however
that the cas@T = AT’ could be considered as well, provided that there exists sotegers
01,02 > 0 and a time periodT” such thatAT = /1AT” andAT’ = £,AT”, which means that
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AT andAT’ are commensurable.) The fact thais piecewise constant induces a loss of opti-
mality, as the turbulent phase evolves ofdr. What we prove in this section is that there is
no additional loss of optimality by considering a comple® 8ystem in discrete time, with
discrete variables corresponding to their temporal aweoxgr a time interval of lengtiT.

Let us consider first the measurement equation. We assumthéhd/FS provides a linear
relationship between phase and measurements. Usual legimtre that the wave-front sensor
integrates the residual phag&=® during a time intervalAT, and that WFS measurements are
deduced linearly from this with some additional delay, lagdo a total discrete measurement
delaydmn > 1 (in time unitAT). This corresponds for example to a Shack-Hartmann WFS in
linear regime. The overall operation produces noisy messeants, where the measurement
noisew is supposed to be additive. Furthermore, using the follgwiotation for any averaged
value of a continuous variable, e.g. for the residual phase
resé 1 kAT

= restdt 2
N O L (t)dt, @

the measurement equation averaged over one time intenvéleceritten as
Y = D, + Wi ®)

whereD is the WFS matrix angy a discrete zero-mean white noise.
Correction phas@®' is assumed to be a linear function of the control inpwith a delay
d.>1,i.e
@& = Nuc g, (4)

whereN stands for the influence matrix (interaction matrix is tilN), anduy is the control
computed fronyy_q.+1 and applied on time interv@#AT, (k+1)AT] (a chronogram foty, =1
andd; = 1 is given in Fig. 2). We consider here that the mirror’s res@otime is negligible
(which is justified as soon as its response time is small coet®@AT), so there is no mirror's
dynamics.

(k—1)AT KAT (k+1)AT
| | Uk_1 applied | | | Uk applied | |
@ | & generated | @ | @71 generated | @
A} | CCD integration | A | CCD integration | A

read-out read-out

Yk computation @ Yip1 COmputation @
U, computation Uk,1 computation

Fig. 2. Chronogram fody, = 1 andd; = 1. The available numerical values at each sampling
time are indicated by circles.
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Let us now take a look to performance criteri#iy Eq. (1). It can be equivalently written by
replacingt with nAT:

Fu=gm 5 2T gea). ©
n—teon \ & AT Jk-1)aT

Writing that@"S(t) = @' (t) — "+ g — g for t € [(k— 1)AT, kAT], and using Eq. (4) and
the fact thatp™'(t) — ¢f'" has an average value of zero, a simple calculation shows that

LT esoa - [T oo - g g @
AT (k—=1)AT AT (k=1)AT

As the right-hand terms in Eqg. (6) are split in two parts, dmat does not depend anand

the other that only depends on discrete variables, minigi2f(u) leads exactly to the same

control value as minimizing
n

1
N - res|2
I # fim <5 16 ©
which depends only on discrete variables averaged oveathelgg periodAT. In the sequel,
we shall thus describe in discrete-time all the constituglements and processes that make up
the AO closed-loop.

3. Limitations and mandatory prior information

We focus here on control limitations and prior informatidvat appear before any criterion
minimization, when considering the subsystems in Fig. thdfy are all linearz-transforms
can be used to compute the transfer functions (TF) that appleen closing the loop. In the
sequel, we shall denote bythie z-transform of a discrete temporal procas's"herefore;ﬁres(z)
can be written in closed-loop as a functiongf'(z), W(z), and as a function of the controller’s
z-transformC(z):

(Id + NC(z)Dz*d) 75(2) = ¢V (2) — NC(2)z %Vi(2), ®)

wherely denotes the identity matrix ardl% dp, + d. is the total delay in the loop. Leaving
aside the influence of measurement neis¢he closed loop performance of this discrete-time
system can be analyzed through the closed loop matrix gahsfiction fromg" to ¢'®S, i.e.

the rejection TRH(2) £ (I4+L(2)) "}, whereL(z) £ NC(z)Dz @ is the open loop TF between
@ and @', including delays.

Consider the simple case whdrgand henceH, are diagonal, where the diagonaltéfis
formed with scalar TFs (as in modal approaches) denoteHi/byn order to minimize the
residual phase variance, the controller's TF should bectadeso as to render each scalar TF
H, as small as possible at all frequencies, while stabilizirgfeedback loop. At this critical
juncture, Bode’s integral theorem [8] enters the stagéates that foeanychoice of stabilizing
controller, ford = dyn+ d; > 1, the integral of the logarithm of the modulus of evHA(ej‘*’)
over the normalized frequency rangec [0, 1] is zero:

/Onlog| H,(e!®) | dow = 0. 9)

(Note that in discrete time, exploring the frequency domiailone by settingz = el for
normalized frequency € [0, 1], see e.g. [9] for more details.)
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In practice, this means that the controller cannot mgR&smaller thanp™" at all frequen-
cies, and that better attenuation at some frequency wik habe repaid in kind with distur-
bance amplification in another part of the spectrum. Thisated “water bed effect” is inherent
to the feedback loop, whatever the stabilizing controltethe sequel, we shall not select a par-
ticular controller structure, as the goal is to find amongstdbilizing controllers the optimal
one with respect to performance criterion (7) and hence)toliis optimal controller will not
escape from water bed effect, but will provide an optimal posmise between disturbance
rejection and amplification.

Let us put this aside and focus now on criteribm Eq. (7). Parseval’s theorem states that
energy is conserved between time and frequency domainisatbdan be equivalently written
in the frequency domain as

J(u) = %T /0 2ntrace(sq,res(ej“’)) dow, (10)

where for any process S, stands for the power spectral density (PSDx¢hote that in the
case of a vector process of finite dimensi8nis a matrix-valued function).

At this point, one needs to throw in additional informatiam@"" andw. Assume thatp""
andw are mutually independent zero-mean stationary ergodicagsses of finite energy, with
PSDsS,ur andSy. A standard result from stochastic filtering theory (Birkteotheorem, see
for example [10]) is thap™Sis also stationary with variance almost surely equal(to, 1.e.

J(u) = trace(Var(¢"®®)) almost surely (11)

Using the fact thaiv and ™" are not correlated, one can write the PSpif as

Spes=H (Z)Sq,turH (2" +Hw(2)SyHw(2)", (12)
where* denotes the conjugate transpose H(z) £ H(z)NC(z)z ! is the closed-loop TF from
w to @' (which is obtained from Eq. (8)). The frequency-domain iitgr{10), when replacing
Syres by its expression in (12), leads directly to

J(u) = %T/Ozntrace(H(ei“’)Swtur(ej“)H (&) + Hy(e'?)Sy(e1?)Hy(e1®)") dw.  (13)

Therefore, minimizing)(u) requires in one way or another the knowledge of gjly andS,.

We are now faced with the following problem: given a/ the wiemet sensor's and de-
formable mirror's TFs; b/ the turbulent phase’s and measerd noise’s PSDs, minimize
trace(Var( @) over the set of all controllers which stabilize the AO loop.

4. Optimal solution is obtained by separating estimation ad control

Because the order of these controllers (that is, the ordirecdissociated difference equations)
is nota priori bounded, this optimization problem may appear at first sigihdctable. Quite
understandably, suboptimal approaches have been pumssedett the controller's TE(z).

A popular one is to use a static decoupling gain multipliethvei diagonal matrix of scalar
dynamic compensatols, with fixed structure, and to separately tune the resultingesef
hopefully independent feedback loops (this correspondaddal approaches evoked in pre-
vious section, with diagonafl(z)). Thus, theH, may be pure integrators, as in [11, 12], or
higher order filters as in [13, 14]. The extension to realetintmed parameters, as in [15], leads
to a non-linear control loop, which is beyond the scope of firesentation. Yet, the general
multi-variable optimization problem (that is without inging any decoupling nor particular
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structure) does have a solution, which can be explicitly poted using standard results from
modern control theory, and is properly described as an LQ@rab that is a state feedback
combined with a Kalman filter.

To grasp this, consider the simple situation where the defaie deformable mirror can
confidently be reduced to one sampling peridg-€ 1, which means that the computation of
Yk andu, can be performed withifik — 1)AT,kAT], as illustrated in Fig. 2), so that the DM
equation including control delay is

@& =Nu g, (14)

leading to the TR°°(z) = Nz 10i(z). Let us make now the obviously totally unrealistic assump-
tion that future values op™"" can be predicted with perfect accuracy. Under this fantesyd
“full information” hypothesis, a perfect solution would bemakep®®" equal top"" by solving
Nu = (pﬁi’l HoweverN being generally non-invertible, the optimal control cepends to the
solution of the least-squares minimizationgf’, — Nu, i.e.

= (N'N) Ny (15)
where! stands for transposition. This optimal contoglcorresponds to the orthogonal projec-
tion of qﬂl onto the mirror’s space, with orthogonal projecodefined as

P2 (NIN) "N (16)

To obtain an implementable control in the “incomplete infiation” hypothesis, one may
simply replace in (15 “fl by some estimated value. Let us now assume that we are able
to compute@‘fl‘k, the minimum-variance estimator gf"', based ons, the set of all prior
information and measurements available until tikn@his optimal estimate is the conditional
expectation given% [16]: .

Al = Elgd | Ad, 17)

where E:] denotes the mathematical expectation. In this case it issidiately checked that the
control o
U= (N'N) NG (18)

does indeed minimize tra@a’ar(qqif‘l\ﬂk)) conditionally to all information available at time
k. This result is known in control literature as the stocttaséparation theorem [17, 18, 19],
because it demonstrates that the optimal contrcdn be constructed by separately solving a
deterministic optimal control problem (the full informaii case) and a stochastic minimum-
variance estimation problem (the incomplete informatiase). Furthermore, the deterministic
optimal control subproblem turns out to be quite simple eensn Eq. (18).

Consequently, the original residual phase variance madtiun problem is for all practical
purposes reduced to a standard recursive minimum-varestsaation/prediction problem.

4.1. Equivalent state-space modelization

To solve this estimation/prediction problem, however, @neequired to construct a model of

the AO loop incorporating the deterministic dynamics ofvidssious components, the variance
of the measurement noise and the spatial and temporal atorelstructure of the turbulent

phase, a8y andSyur have been shown to be necessarily known when dealing witgriomn

J. This model, called a state-space model, is based on a fedrig¢ion of the system’s state,

and should thus include an explicit description of the tlgbtiphase dynamics that matches
the priors.
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The state vector of a system at tirkedenoted byxy, is generally defined as follows. It
represents all the knowledge needed at thrte compute next state,; and output (WFS
measurement), when inputs are known and if noises are neglected. The\stater dynamics
correspond thus to an input-output description of the systhat is a set of equations which
givesxx, 1 andyy as a function ok, uy, and of the noises. Such a state-space model is usually
described in the linear time-invariant case in the form

Xer1 = Axe+Buc+vic (19)
Yo = CXc+Wg (20)

whereA, B andC are matrices of appropriate dimensiongndw are decorrelated zero-mean
white Gaussian noises with covariance matriEgand>,,. They are also decorrelated from the
initial statexy. These processes are assumed to be independent becauaedieyt for two
different sources of unpredictabilityv is a measurement noise, whitedrives the stochastic
drift of the turbulent phase. We propose here to construtdte-space model in the form (19—
20) using the material introduced in Sections 2 and 3. At titka# this Section, the constructed
state model will be completely equivalent to a set of equmstidescribing the AO system.

The choice for the state vector is not unique, and differtatesvectors with different di-
mensions may be used to describe the same input-outputibeN&that variables should then
enter the state vectog? It should fulfill two requirements: firstly, the state mustremarize
the entire knowledge on the system including turbulence sa@condly, the optimal control law
must be a function of the state only. In view of performandidon (7), the residual phase
@'Sshould then be part of the state vector, or equivaleptffandu.

At time k, considering one period latency for read-out and compridime in the WFS
(dm = 1), the measuremepi is obtained following Eq. (3) by

Yk = D", — DNU_» + W (21)
or equivalently
tur
Y«=D(la, ~N) < s ) W (22)
Uk—2

It is clear that at Ieaan?fl andug_» enter the state vector, henq#‘r andug_1 for memory
storing. As said before, this choice of state vector is netthly possibility, but is motivated by
the possible and direct extension to MCAQO [7]. A convenidrdice for the state is then

t t t
Xk = (‘HEW vqilirl ) utk—lv uf(—Z) . (23)
When considering Eq. (19), all quantities)g, ; shall be described from, anduy throughA
andB (the values of which will be given below).

Itis time now to look into turbulent phase modelization. lin@ar context, any model which
gives a good description of spatial and temporal corretatmuld be considered. This means
that any given turbulent phase spatial correlation malgixdefined as

o 2 Elg (@), (24)

can be obtained through a white noise filtered by a ratiortatfirhe dynamics of the turbulent
phase (which usually follow a Taylor's hypothesis) can bpragimated in such a way that
temporal correlations match correctly the chosen filtemredgss. A one-order auto-regressive
model has been shown to be a good approximation of the turbpiese dynamics [7, 20, 21],

A = /G v 25)
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wherevy is a zero-mean white Gaussian noise with covariance magriand.«/ is the matrix
defining the dynamical characteristics of the turbulensphgemporal correlations that depend
on turbulence speed, see Sect. 5). For any ghignthe model described in Eq. (25) leads
toZy= JZ/th;Q{"‘ >y (using definition (24)). So, based on energy conservatiociple, the
turbulent phase covariance matrix will indeed be equal fdf we takes, = 3, — &/'5 /.
While simple, this model can thus simultaneously match tlagiaicorrelation structure of the
turbulent phase through, and its short-term temporal correlation through

Knowing %, andy, the stochastic state-space model is now completely defirsialy (22—
25), in the form (19-20) with

o 0 0 0 0
| 1g 00 0 lo B
A=l ¢ 00 o] B=| | C=(0D0-DN). (26)
0 0 Ig O 0

The optimal control (see Eq. (18)) has then the general state feedback form
Uk = KXy 1)k (27)

whereK £ (P, 0,0, 0) andP is defined in (16).
Note also that the model under consideration is statiotartynon-stationary models (with
A, B, C depending on time) could be considered as well, leadinggséime conclusions.

4.2. Kalman’s optimal filter

The minimum variance estimate ®f,1 using all the measurements until tirkés obtained
in the Gaussian case as the output of a Kalman filter [22, 23h€i Gaussian assumption is
released, the Kalman filter gives the best linear unbiaseth&®r). This filter is an observer,
that is, has the general structure

i1k = ARgi—1 4 Bl + Lic(Yk — Vigk-1) (28)

whereyy k1 is the best estimate of the model output givép ;, obtained as
Yik—1 = CRqk-1- (29)
The Kalman optimal observer corresponds to a particularevaf the gairiLy given by
Lk = A% 1C (CE1C 4+ Zw) ™t (30)

whereZ,y._1 is the covariance matrix of the state vector and is obtaiyesblving the following
Riccati matrix equation:

Tk = A% 1A + 2y — A 1CH (Cig1C + Zw)  TCyg 1AL (31)

At first sight, this equation may plunge us into despair, aséms to be incompatible with real-
time constraints. But the careful reader would have nottbedl Eq. (31) does not depend on
measurements. It can thus be computed off-line, and evéacepby its constant asymptotic
solutionL (by letting Z 1 in (31) converge to its asymptotical value) with non-sigraifit
loss of optimality, as in [24]. Furthermore, as all contralues are known until timé, the
coordinates of the state corresponding to delayed values wheed not be estimated; the
optimal gainL has thus corresponding coordinates equal to zero, so tkatdmputed using a
reduced order Riccati equation.
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5. lllustration of LQG control based on an end-to-end simuldor

The asymptotic LQG control has been implemented to contidhssical AO system on an
end-to-end simulator. This experiment is intended maislyg &easibility study, especially with
respect to constraints and limitations of real-time imptatation. For such a simple experi-
mental setup, LQG control provides better overall clogegplstability but only limited per-
formance improvement over well tuned integrator contrawéver, extensive simulations and
ongoing experimentations show that dramatic performantamcement is attained in more
complex cases such as off-axis AO, MCAO or vibration filtgrjid, 26, 27].

The results presented here correspond@o-a8 m telescope observing in the near-infrared
(2.2 um), equipped with a 88 subaperture Shack-Hartmann WFS and® @ctuator Stacked
Actuator Mirror. The turbulenc% is set to 8 (061 arcsec seeing at3um). The wind-speed

isV =9ms1. A 250 Hz correction (which correspondsAd = 4.103s) with a total delay
d =2 (dAT = 8.10"3s, withd, = dy = 1), is then simulated.

The turbulence is simulated thanks to the translation ofrgel&olmogorov phase screen
(Taylor hypothesis). The Shack-Hartmann measurementdsileted by averaging the phase
derivative on each sub-aperture (geometric approximptomwhite Gaussian noise is added to
the slope measurements. The DM influence functions are modelough Gaussian functions,
with a coupling factor of 25%.

For LQG control, the phase is estimated on a Zernike badisatesl to the first 160 modes.
The turbulence model is a one-order auto-regressive. WinltpLe Rouxet al. [7], &/ is as-
sumed to be a diagonal matrix. The diagonal elemanése related to the correlation time of
each individual Zernike coefficient. We choose here thevalhg law:

a = exp(—0.3(n+1)\%), (32)

wheren is the radial order of the Zernike numkef his law allows to account for the decrease
of the correlation time with radial order [25].

The WFS matrix is obtained by applying the same geometricaqapiation to the Zernike
modes. The correction by the DM is computed by projectingestanated phase on the mirror
sub-space using the DM influence functions. Finally, a @a®31Gl is also implemented for
comparison. Gains are optimized according to the procqolagosed by Dessenne [13].

Figure 3 shows the Point Spread Functions obtained withdmitrol laws. The Strehl Ratios
are respectively 69% and 71% for the OMGI and the LQG confitois result proves the good
behavior and the potential gain brought by the LQG control.

=3. -2.52 -2.02 -1.58 -1.09 -0.82 -0.15

Fig. 3. Point Spread Functions obtained with an OMGI (left) and a LQG abfright) in
logarithmic scales.
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6. Integrators: observer form and hidden turbulent phase malel

Model errors exist in the definition of the state-space regmeation model: one-order auto-
regressive model instead of Taylor turbulence, estimatioia finite number of modes. How-
ever, such approximations are unavoidable in a realistie.c3till, a noticeable gain is observed.
Further studies have shown that in the present case, thisggatainly due to a better handling
of aliasing effects. This is permitted by the expansion efithase on a finite but extended ba-
sis, beyond the DM sub-space. This allows both a good adequatturbulence statistics and
a good representation of the WFS measurement.

We now turn towards linear controllers in general, and shioat tn fact, essentially any
existing linear AO controller is equivalent to an observaséd control. If a controller of given
structure is used, the equivalent state model will depenthisrstructure, and the controller’'s
output turns out to be a sub-optimal solution with respedh®implicit stochastic model of
the turbulent phase. To illustrate this, we consider fongxe a simple integrator control with
recurrence equation

U = Uk—1 + GYk. (33)

The purpose of this section is to show that there exists a stadel for which the optimal
solution in the minimum variance sense is the control law {8Ba particular value o6G. We
begin therefore by building the adequate state model, aod slext that the optimal solution
leads to a simple integrator. As a state model describesmponents of a system, it becomes
then possible to analyze the implicit physical hypothdsé are hidden behind (33).

To start with, consider the turbulent phase’s dynamics ddftyy

qulirl = (qur + Vks (34)

wherevy is a zero-mean white noise, and consider a state model obthre(fL9-20)

([ la O (O B
A_<O 0),8_(|d>,c_(D,—DN), (35)
with state vector
— (HEUF 36
%= ) (36)

The optimal control (18) computed on the basis of (35—-36jjisvalent to the integrator control
(33) for a particular value d&. This new state model is different than (26) in an importaximp
measurement delay is not taken into accouet,d, = O.

For this equivalent state model (35), the asymptotic odtiohaerver of the form (28) for
turbulent phase estimation turns out to be simply

A= Bk 1+ Lk (37)

with a value ofL that is computed using the new state model defined througéB@5Simply
becausedy = 0, the measurement equationyis= D(@"" — ¢£°") + w, leading toyjy_1 =
D(@T‘Ll —@®) = 0. This explains why,_1 does not appear in (37) when comparing with
(28). A

Multiplying now both sides of (37) by = (N!N)~IN! (remember thati, = Pyl leads
exactly to (33) withG satisfying

G = (N'N)~IN'L. (38)

Let us now unfold this backward: for any choice of gain inggr G, there always exists

an observer of the form (37), with corresponding turbulemge stochastic model (34). The
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observer (and consequently the integral controller) vatllve optimal in the minimum variance
sense unless is defined from (38) with optimdl given by (30).

The implicit stochastic model (34) that appears when wgitiown the equivalent state model
that leads to integrator recurrence (33) produces a turtbplease with unbounded energy, as
trace(Var(g"")) — o with k. A nefarious consequence is that an observer built frormtioigel
is not stable and may well lead to unbounded trajectorieg'tfand therefore of the contral
— the notorious wind-up effect for controllers with intebaation.

In a similar way, it can be shown that any linear AO control bartraced back to an observer,
and thus to an implicit turbulent phase model — which ordgredels on the controller's one
(more precisely on the order of the denominator) — and to aivalgnt state-space model. This
allows one to compute the optimal gain thanks to (30-31)ngysinything else than Kalman
gain leads therefore implacably to a sub-optimal contréhwespect to the minimum variance
criterion.

7. Discussion and conclusions

The approach proposed here is based on a linear descrifitiba constitutive elements of an
AO loop. Provided that the mirror’s voltages are computantwolled, the control optimization
can be performed using a discrete time model of the AO systémhave pointed out some fun-
damental limitations of the AO closed-loop, and the unaabld priors that must be defined for
control optimization: PSDs of turbulent phase and noise dtimal solution is then derived
thanks to the separation theorem, based on a state-spa@t. Aamulation example com-
paring OMGI and LQG control on an end-to-end simulator shtivas even with some model
errors on turbulent phase, performances are better tharawibptimized integrator.

Finally, the approach is used to analyze some aspects ofrgaggator-type controllers, and
particularly the fact that their structure assumes impfidor hypothesis that are made explicit
when using an equivalent state model. It is shown that, asahe unstable, they contain an
unstable turbulent phase model, that renders them prohe tatmous wind-up effect.

The choice of the state vector, as said before, is not unkpreexample p®°" could be part
of the state vector instead of and a state model of smaller dimension could be used. Our
choice is motivated by several considerations. Firstljimits the influence of matrices that
are obtained through calibration process (and thus thaatomodel errors) mainly to the
observation equation (20), so that there is no direct emapamyation through the state equation
(19). Secondly, it keeps a clear visible physical strugtapethat extensions of the model to
various situations (presence of vibrations, off-axis AGCAD) is easy.

Some comments about turbulence phase modelization: manpler temporal correlation
structures could easily be embedded in the model. Indegdstationary process with rational
PSD can be constructed as the output of a linear “shaping' filleose input is a white noise
and which can be represented in a state-space form [9]. How&wne-order model has been
shown to be a good approximation as only short-term cofoglgtare important in control
performance [7].

We have presented here a classical on-axis AO setup, buigagxtensions may be con-
ducted with state models. For instance, the filtering of giicavibrations can be considered
[26]. The tool is also well adapted to optimal control in MCARD 27], where anisoplanetism
is taken into account.

Linear mirror's dynamics could also be considered, with aimum variance criterion. In
this case, the state equation must also describe these maundys. More generally, the tools
presented here apply readily to any AO system provided th&dinear or well approximated
by linear behaviors, and that the control criterion of ietris minimum variance. Of course,
state vector and matricés B andC shall be modified according to the description of each ele-
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ment of the system. Also, several types of DM’s nonlineasitsuch as saturations or nonlinear
influence functions, can be explicitly accounted for in bibia full information optimal control
computation and the turbulent phase estimation.

The Kalman based control has been successfully experichentine BOA bench at ONERA
in various configurations: classic AO with and without vitipa filtering (not yet published) and
simplified MCAO [27].

To conclude, it would seem that a Kalman filter is the perfeot tor optimizing the overall
performance of an AO loop. However, this attractive optityas predicated on the assumption
that one can tune the parameters of the linear stochastielrsodhat it fits the real system with
at least adequate precision. This importeanteat emptoshould be kept in mind at all times in
order to achieve a sensible balance between the model'ssagcand its complexity.
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