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Some comments on my study of period-integrals

Daniel Barlet∗.

19 Mars 2024

Abstract. This text is a presentation (without proofs) of some of my recent
results on the singular terms of asymptotic expansions of period-integrals using
(a,b)-modules. I try to explain why this simple algebraic structure is interesting and
useful.
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1 Introduction

The aim of this text is devoted to give some comments on my work since more than
thirty years on the local study of the singularity of a holomorphic function in a
complex manifold.
As my point of view seems not very popular and looks at least strange and often
few interesting for many specialists of this subject, I shall try to explain why it is
pertinent and interesting1.
In particular I shall try to explain how the use of the structure of (a,b)-module may
be seen as a tentative of having a ”local Hodge Theory” even if, at first glance, such
a notion looks meaning less. Note that I do not pretend that this point of view is
an alternative to the use of desingularization and usual (global) Hodge Theory (or
Mixte Hodge modules [29]), but I think that it may be a complementary approach

∗Barlet Daniel, Institut Elie Cartan UMR 7502
Université de Lorraine, CNRS, Institut Universitaire de France,
BP 239 - F - 54506 Vandoeuvre-lès-Nancy Cedex.France.
e-mail : daniel.barlet@univ-lorraine.fr

1But the notion of ”interesting result” is not so easy to define in an objective way. Only long
range vision may give a serious answer to such a question.

1



and can give interesting and more precise informations when we are interested in a
specific period integral.

2 The context

Consider a holomorphic (non constant) germ f : (Cn+1, 0) → (C, 0) with an isolated
singularity for the eigenvalue r := exp(−2iπα) of the monodromy (we assume that
α is in ]0, 1] ∩ Q). Then, for a given homology class γ ∈ Hn(F0,C)r, where F0

is the Milnor fiber of f at 0 and where Hn(F0,C)r is the generalized eigenspace
for the eigenvalue r of the monodromy of f acting on Hn(F0,C), we defined the
period-integral

Φω,γ(s) :=

∫
γ(s)

ω/df (1)

where ω is any germ in Ωn+1
0 , where s is inH the universal cover of a small punctured

disc D∗ with center 0 in C and where (γ(s))s∈H is the horizontal family of compact
n-cycles in the fibers of f taking the value γ at the base point s0 in H.
Such multivalued holomorphic function admits an asymptotic expansion at the origin
(convergent in sectors) for α, γ, ω given, which looks like

Φω,γ(s) ≃
∑

j∈[0,n],m∈N

φm,j(γ)s
α+m−1(Log s)j (2)

To understand for which γ, j,m we have φm,j(γ) ̸= 0 in such an expansion is a
difficult problem (but interesting to my point of view).
The first difficulty is to represent the compact n-cycle γ (and the horizontal family
deduced from it) in order to have a ”concrete” integral to compute. Our approach is
slightly different and I choose to consider a family of cohomology classes in the fibers
f−1(s) induced by a given germ ω′ ∈ Ωn+1

0 , that is to say replace the (holomorphic)
period-integral

∫
γ(s)

ω/df by the hermitian period

Ψω,ω′(s) :=

∫
f−1(s)

ρω/df ∧ ω′/df

where ρ ∈ C ∞
c (Cn+1) is identically 1 near the origin and with a small enough support.

Then, thanks to an old result (see [2]) the function s 7→ Ψω,ω′(s) is smooth on D∗

(small enough) and admits an asymptotic expansion in the space

|Ξ|(n)A :=
∑

α∈A,j∈[0,n]

C[[s, s̄]]|s|2α−2(Log|s|2)j

where A is a finite subset in ]0, 1] ∩Q.
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To consider an auxiliary germ ω′ ∈ Ωn+1
0 is a way to induced an anti-holomorpic

family of cohomology classes ω′/df in Hn(f−1(s),C)r2.
This presents the advantage to have an integral on the fibers of f (so no more ”topo-
logical cycle” to find in f−1(s)) with also the fact that the non vanishing of some
φj,m(γ) implies the existence of some ω′ ∈ Ωn+1

0 such that the asymptotic expansion
of Ψω,ω′ presents a non zero term3 like |s|2α−2sms̄m

′
(Log|s|2)j for somem′ ∈ [0, n+1].

Using complex Mellin transform of this function (see [17] and [18]) this is equivalent
to the existence of a pole of order at least j at the point −α−m for the meromorphic
extension of the function

F ω,ω′

m′ [λ] :=
1

Γ(λ)

∫
Cn+1

|f |2λf̄−m′
ρω ∧ ω̄′ (3)

holomorphic for Re(λ) > 0 and whose meromorphic extension to the complex line
is consequence of the existence of the Bernstein-Sato polynomial of f (see [19] and
[2] or [20]).

So, our results giving necessary or sufficient conditions for the existence of such
a pole in our papers [14] and [15] are in fact results about non zero terms in the
asymptotic expansion (1) of the integral period.

3 (a,b)-modules and asymptotic expansions

Now let me explain the reasons to use (a,b)-modules in this context. The first one
comes from a remark due to Kyoji Saito (in [27], but see also [26] and [28]) that the
Brieskorn module Hn+1

0 of an isloated singularity germ f : (Cn+1, 0) → (C, 0) has a
natural structure of C{{∂−1

s }}-module which is free of rank µ (the Milnor number),
where C{{∂−1

s }} is the C-algebra of Gevrey series4.
This structure, with also the obvious C{s}-module structure gives a way to look at
the Gauss-Manin connexion, that is to say to consider the germ of the differential
system at the origin in C whose multivalued solutions are the period-integrals (1)
for any germ ω ∈ Ωn+1

0 . Recall that in the (totally) isolated singularity case the
Brieskorn module5 is simply given by

Hn+1
0 := Ωn+1

0

/
df ∧ dΩn−1

0 .

2The use of the canonical hermitian form on Hn(F0,C) is needed for α = 1 in the case of
an isolated singularity for the eigenvalue r to replace the compact support condition in the usual
pairing Hn(f−1(s),C)×Hn

c (f
−1(s),C) → C corresponding to the hermitian intersection form for

α ̸= 1 see [6] or [8].
3For α = 1 we consider only terms with j ≥ 1, so singular terms.
4microdifferential operators of order ≤ 0 with constant coefficients.
5For any holomorphic germ we may define for each degree p ∈ [0, n] an (a,b)-module corre-

sponding to the Gauss-Manin system in degree p via the (p + 1)-th cohomology sheaf of the de
Rham complex (Ker(∧df)•, d•) on Y = f−1(0). See [9], [10] or [16]. But we discuss here only the
case p = n.
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In our setting (isolated singularity for the eigenvalue r := exp(−2iπα)) the Brieskorn
module is defined as the quotient by its b := ∂−1

s -torsion of the quotient

Hn+1
0 := Ωn+1

0

/
d(Ker(∧df)n where ∧ df : Ωn

0 → Ωn+1
0 .

A serious reason to introduce the (a,b)-module structure (which is nothing else
that the simultaneous use of a C{s} and a C{{∂−1

s }}-module structures which are
”compatible”) is the fact that the Gauss-Manin-connection (so the action of ∂s) is
meromorphic and then compels to introduce denominators in s while the action of
∂−1
s (the primitive without constant in s) is already well defined on the C{s}-module

Hn+1
0 and do not need any denominator in s.

But what is the benefice not to invert s and ∂−1
s ??

The answer is very simple : if you look at the action of s and of ∂−1
s on polynomials

C[s] or on holomorphic germs C{s} you immediately see that the filtration by the
bp C{s}, p ∈ N, defines a natural filtration by sub-modules for both actions of a and
b. It is an easy consequence of the commutation relation

ab− ba = b2 where a := ×s and b = ∂−1
s :=

∫ s

0

But here it is important to remark that the filtration defined by apHn+1
0 , p ∈ N,

is not stable by the action of b in general6. So the b-module structure has to be
considered as the ”primary one” which is not the usual point of view!
Moreover it has been shown by Varchenkho (see [31]) that in the case of an isolated
singularity this b-filtration corresponds to the Hodge filtration of the mixte Hodge
structure defined by Stennbrink (see [30]) on the cohomology Hn(F0,C) in this con-
text.

Since the Gauss-Manin connection is regular, every formal solution converges, I
decided to explore the role of this bi-structure module in a formal setting and I
choose the following definition7

Definition 3.0.1 An (a,b)-module E is a free finite type C[[b]]-module endowed with
a C-linear endomorphism ”a” satisfying the commutation relation ab− ba = b2 and
which is continuous for the topology defined by b-adic filtration (bpE)p≥0 of E.
In particular we have aS(b)e = S(b)ae+ b2S ′(b)e for any e ∈ E and any S ∈ C[[b]].

Then it is very simple to construct an (a,b)-module: take a rank k free C[[b]]-module
E with basis e1, . . . , ek and define ”a” by prescribing the value of a(ej) ∈ E, j ∈ [1, k]

6Remark that the Nullstellensatz gives an integer N such that fNΩn+1
0 ⊂ df ∧ Ωn

0 and so
aNHn+1

0 ⊂ bNHn+1
0 . So the b-filtration is finer that the a-filtration.

7Let me say that the ”strange choice” to call a := ×s and b := ∂−1
s was motivated by the

following considerations: if you keep the usual notations you risk, at some point, to use an obvious
”usual formula” in a context where it is not ”obvious”. And my interest was to see precisely what
comes only from the commutation relation ab − ba = b2 in the study of period-integrals. This
choice is also useful to understand where the use of the inverse of b is interesting. It also help me
to convince myself that b is the ”primary” variable, which is not so easy to accept !
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as you want. Then this define uniquely an (a,b)-module structure on E.
The rank of E on C[[b]] is called the rank of E.

Since the most easy case for a regular connection is the case of a simple pole (this
happens for the Gauss-Manin connection of a quasi-homogeneous polynomial) this
leads to the following definition.

Definition 3.0.2 An (a,b)-module has a simple pole if and only if aE ⊂ bE.

Remark that under this hypothesis (in fact the existence of an integer N such that
aNE ⊂ bE is enough) the (a,b)-module E is a-complete, so is a module over C[[a]].

Then the following question makes sense and is, of course, fundamental:

• Given a formal simple pole differential system z∂zF (z) = A(z)F (z) where A is
a (k, k)-matrix with entries in C[[z]] and F an ”unknown element” in C[[z]]k,
does there exists an (a,b)-module E representing such a differential system (in
a sense to be precise) ?

The answer to this question is yes, and the relation from the matrix A to the cor-
responding (a,b)-module is conceptually simple : take e := ∂zF and look for X a
(k, k)-matrix with entries in C[[b]] such that ae = bX(b)e. Proposition 1.1 in [7]
gives the existence and uniqueness of a matrix X such that, in the formal comple-
tion ”in a” of E (but remember that E is in fact already a-complete!) the equality
ae = A(a)be holds true in E.
But to compute explicitely the matrix X from the matrix A is very complicated in
general. In some sense, this complexity may explain partly why the (a,b)-module
point of view can really give interesting results and is not a simple game playing
with a change of notations.

Notation. An (a,b)-module is in fact a left module over a non commutative
algebra A which contains both C[[b]] and C[a] which is defined as follows:

A := {
∞∑
q=0

Pq(a)b
q} where Pq ∈ C[a] ∀q ∈ N

where the commutation relation ab − ba = b2 allows to write any element in A (in
a unique way) as

∑∞
q=0 b

qΠq(a) where Πq is also in C[a]. Then it is clear that a left
A-module is both a C[[b]]-module and a C[a]-module.
Now an (a,b)-module is simply a left A-modules which is free and of finite type on
the sub-algebra C[[b]] of A.
The regularity condition defined below implies that the left action of C[a] on a reg-
ular (a,b)-module extends to an action of C[[a]].

Then it is easy to define a ”regular” (a,b)-module to encode regularity of a connection
(recall that Gauss-Manin connection is always regular) as follows:
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Definition 3.0.3 An (a,b)-module E is regular when it is a sub-module of a simple
pole (a,b)-module.

It is easy to see that when E is regular there exists a smallest canonical simple pole
(a,b)-module E♯ containing a given regular (a,b)-module E which is the saturation
by b−1a of E in K ⊗C[[b]] E where K := C[[b]][b−1].
The next step is to define the Bernstein polynomial of a regular (a,b)-module.

Definition 3.0.4 For a simple pole (a,b)-module E the Bernstein polynomial of
E is the minimal polynomial of the action of −b−1a on the finite dimensional vector
space E/bE.
For a regular (a,b)-module, its Bernstein polynomial is, by definition, the Bernstein
polynomial of E♯.

Example. Any regular rank 1 (a,b)-module has always a simple pole and is iso-
morphic to Eλ := C[[b]]eλ for some λ ∈ C where aeλ = λbeλ.

Now to encode the famous result of Kashiwara (see [22]) on the rationality and
negativity of the roots of the (usual) Bernstein polynomial (see [19] or [20]) of a
holomorphic germ we define ”geometric” (a,b)-modules as follows.

Definition 3.0.5 A regular (a,b)-module is geometric if and only if the roots of
its Bernstein polynomial are negative rational numbers.

Now I shall show that with such a definition we are quite near from our initial point
of view which was the study of the asymptotic expansion of a period-integral.

Definition 3.0.6 Let α be in ]0, 1] ∩Q and define for N ∈ N the (a,b)-module :

Ξ(N)
α := ⊕N

j=0C[[b]]ej where

aej = αb(ej + ej−1) with the convention e−1 = 0.

It is easy to see that for α ̸= 1 we may identify Ξ
(N)
α with the usual asymptotic

expansion C[[s]]-module

{
∑

j∈[0,N ],m∈N

φm,js
α+m−1(Log s)j }

with the standard actions a = ×s and b :=
∫ s

0
. Moreover its has a simple pole and

its Bernstein polynomial is equal to (x+ α)N+1. So it is a geometric (a,b)-module.
For any finite subset A ⊂]0, 1] ∩Q and any finite dimensional vector space V , the
space

Ξ
(N)
A ⊗C V :=

(
⊕α∈A Ξ(N)

α

)
⊗C V

where a acts by a ⊗ idV and b by b ⊗ idV is again a geometric (a,b)-module. Then
we have the following ”embedding Theorem”
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Theorem 3.0.7 Any geometric (a,b)-module E admits an embedding as a sub-

module of some Ξ
(N)
A ⊗C V . Moreover we may choose A as the image in Q/Z ≃

]0, 1] ∩ Q of the opposite of the roots of the Bernstein polynomial of E, and V of
dimension equal to the rank of E8.
Of course, the converse holds true : any left A sub-module of some Ξ

(N)
A ⊗C V is a

geometric (a,b)-module.

4 The use of frescos

To go now to the study of asymptotic expansions for the periods integrals associated
to one germ ω ∈ Ωn+1

0 (either for any choice of γ or for one choice of γ respectively)
the following definition will be used.

Definition 4.0.1 Any sub-module of some Ξ
(N)
A ⊗CV generated (as a left A-module)

by a unique element is called a fresco.
When, moreover, the vector space V is one dimensional such a fresco will be called
a theme.

In the setting described at the beginning, the notion of fresco corresponds to the
differential system associated to a given class [ω] ∈ Hn+1

0 . To such a class the asso-
ciated fresco Fω is the sub-(a,b)-module of the Brieskorn module Hn+1

0 generated
by the class [ω] (so Fω := A[ω] ⊂ Hn+1

0 ).
The notion of theme corresponds to the choice of the class [ω] with a choice of a
n-cycle γ in Hn(F0,C).

The frescos have very nice properties :

1. The Bernstein polynomial of a fresco F is the characteristic polynomial of
−b−1a acting on F ♯/bF ♯.

2. Assume that 0 → E1 → E2 → E3 → 0 is an exact sequence of (a,b)-modules9.
Then if E2 is a fresco, E1 and E3 are frescos.

3. In the situation above assuming that E2 is a fresco, the Bernstein polynomials
of E1, E2, E3 satisfy

BE2(x) = BE1(x+ q)BE3(x) where q := rk(E3).

The following structure theorem for frescos is very useful10

8In fact we have a better estimate for the minimal dimension of V which is the rank of S1(E)
the semi-simple part of E (see below for the definition).

9Note that our definition of an (a,b)-module implies that in such an exact sequence this implies
that E1 is normal in E2 which means that bE2 ∩ E1 = bE1 in order to avoid b-torsion in E3.

10It allows to give ”normal form” for a given fresco and allows to construct a versal family (with
finitely many parameters) for themes with given rank and fixed Bernstein polynomial. See [13].
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Theorem 4.0.2 (see [11]) Let F be a fresco with rank k. Then there exists an
element in A

P := (a− λ1b)S1(a− λ2b)S2 . . . Sk−1(a− λkb)

where S1, . . . , Sk−1 are invertible elements in C[[b]], such that F is isomorphic to
the quotient A

/
PA as a left A-module. Moreover, in this situation the numbers

−(λj + j − k) are negative rational numbers and the Bernstein polynomial of F is
equal to

BF(x) =
k∏

j=1

(x+ λj + j − k).

May be it is time to explain to the reader the kind of result which can be proved
using these tools.

Theorem 4.0.3 (see [14] and [15]) Assume that in the situation described at the
beginning the fresco Fω associated to ω ∈ Ωn+1

0 has a root of order q ≥ 1 in −α−N.
Then there exists a form ω′ ∈ Ωn+1

0 such that the hermitian period

Ψω,ω′(s) =

∫
f−1(s)

ρω/df ∧ ω′/df

has a non zero term in of the form |s|2α−2sms̄m
′
(Log|s|2)j with j ≥ q − 1 if α ̸= 1

and with j ≥ q for α = 1.
Conversely, if such a form ω′ exists, then the Bernstein polynomial of Fω has at
least q roots (distinct or not) in −α− N.

Note that in this situation, this implies that the (usual) reduced Bernstein polyno-
mial bf,0 of f at the origin has at least q roots in −α− N thanks to [2].

5 Semi-simple filtration and Higher Bernstein poly-

nomials

The existence of several roots in −α−N for the reduced Bernstein polynomial of the
holomorphic germ f at the origin may imply the existence of some nilpotent order
for the eigenvalue exp(−2iπα) of the monodromy of f at the origin in the case of
an isolated singularity. But this is not always the case. This phenomena is the same
for the Bernstein polynomial of the fresco Fω associated to a germ ω ∈ Ωn+1

0 .
This explains why in the theorem above the hypothesis in the direct part (existence of
a root with multiplicity q...) is stronger than the conclusion of the converse (existence
of q roots distinct or not ...).
The goal is now to understand when two different roots in −α−N for the Bernstein
polynomial of the fresco Fω really produces a non zero Log-term in the expansion
of the period integral of ω. This is, of course, an attempt to understand the same
question for the roots of the (reduced) usual Bernstein polynomial of f itself.
This problem is clearly linked with the study of the nilpotent part of the action of

8



the logarithm of the monodromy, which is ”naturally” defined on the saturation E♯

of a geometric (a,b)-module via the action of b−1a (see section 6 in [15]). So this
leads to study the semi-simple filtration of a geometric (a,b)-module which we define
as follows.

Definition 5.0.1 An (a,b)-module E is semi-simple if it is a sub-module of a finite
direct sum ⊕N

j=1Eλj
where Eλ := C[[b]]eλ for λ ∈ C, the action of a being defined

by aeλ = λbeλ.

Proposition 5.0.2 For any regular (a,b)-module E there exists a canonical strictly
increasing filtration by normal11 sub-modules (Sj)j∈[0,d] with S0(E) := {0} and also
Sd(E) := E, such that the quotients Sj+1(E)

/
Sj(E) are semi-simple for each j in

[0, d− 1]. The integer d is called the nilpotent order of E.

Since the problem we have in mind concerns only the eigenvalue exp(−2iπα) we
shall use the following ”decomposition” result associated to the following definition.

Definition 5.0.3 A regular (a,b)-module is A -primitive if each root of its Bern-
stein polynomial is in −A for any subset A in C /Z.

Proposition 5.0.4 For any regular (a,b)-module E and any A ⊂ C /Z there exists
a unique normal sub-module E[ ̸=A ] in E such that the quotient

E[A ] := E
/
E[̸=A ]

is [A ]-primitive and such that any [A ]-primitive sub-module of E does not intersect
E[ ̸=A ].

It is a key point to remark that the semi-simple filtration of a regular (a,b)-module is
compatible with its [α]-primitive ”decomposition” given by the following proposition
(see [15] Lemma 4.2.5)

Proposition 5.0.5 Let E be a regular (a,b)-module and A be a subset in C /Z.
Then for each integer j we have

Sj(E[A ]) = Sj(E)[A ] and also Sj(E
[A ]) = Sj(E)[A ].

Note that in the case where E is a fresco E[α] is also a fresco and the Bernstein
polynomial of E[α] is exactly the α-part of the Bernstein polynomial of E.

Now we can give a ”nilpotent weight” to the roots of the Bernstein polynomial of a
fresco with the following definition.

11recall that F ⊂ E is normal when F ∩ bE = bF . Then the quotient E/F is an (a,b)-module.
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Definition 5.0.6 Let F be an α-primitive fresco with nilpotent order d and for
j ∈ [1, d] and let δj be the rank F/Sj(F). Define for j ∈ [1, d] the j-th Bernstein
polynomial Bj(F) of F by the formula

Bj(F)[x] := B̃j(x− δj)

where B̃j is the Bernstein polynomial of Sj(F)/Sj−1(F).
Then, for any fresco F defined its j-th Bernstein polynomial by

Bj(x) :=
∏
α

Bj(F [α])(x)

where Bj = 1 when F [α] = {0} or when j > d(F [α]), the nilpotent order of F [α].

The link with the Bernstein polynomial in the case of a fresco is given by the
following result ([15] Th. 7.3.2)

Theorem 5.0.7 Let F be a fresco. The Bernstein polynomial of the fresco F is
given by

BF = B1(F) . . . Bd(F)

where d is the nilpotent order of F .
Moreover, each root of each Bj(F) is simple. The degrees of the polynomials Bj are
non increasing and are equal to the ranks of the quotients Sj(F)/Sj−1(F).

Now the main result of our study is the following theorem.

Theorem 5.0.8 In the situation described at the beginning, assume that for some
ω ∈ Ωn+1

0 the fresco F [α]
ω has nilpotent order d ≥ 1 and that −α − m is a root of

the d-th Bernstein polynomial of F [α]
ω . Then there exists ω′ ∈ Ωn+1

0 and an integer
m′ ∈ [0, n+ 1] such that the asymptotic expansion of the hermitian period

Ψω,ω′(s) :=

∫
f−1(s)

ρω/df ∧ ω′/df

has a non zero term of the type |s|2α−2sms̄m
′
(Log|s|2)d−1 for α ̸= 1 and of the type

|s|2α−2sms̄m
′
(Log|s|2)d for α = 1.

Conversely, if such ω′ and m′ exists for a given ω, then F [α]
ω has nilpotent order at

least equal to d and d-th Bernstein polynomial of F [α]
ω has a root equal to −α −m1

with m1 ∈ [0,m].

The reader which is interested with more consequences, more details and proofs may
consult [14] and [15] where he will also find some examples of computations of the
Bernstein polynomial of frescos in explicite examples.

To conclude this presentation I must confess that I was not able to prove the last
result above using only the ”formal” (a,b)-module point of view presented here. So I
was compelled to develop the convergent theory of (a,b)-modules which does not
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reduce to an easy exercise on inequalities; for instance see the ”division theorem”
(in section 2.5 in [15] ) in the algebra Aconv, the convergent analog of A, where the
geometric condition is useful and this result allows to prove the structure theorem
for convergent frescos, analog of Theorem 4.0.2 above.
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Analyse et topologie sur les espaces singuliers (Luminy, 1981) (B. Teissier et
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