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A B S T R A C T   

Tree canopy height is one of the most important indicators of forest biomass, productivity, and ecosystem 
structure, but it is challenging to measure accurately from the ground and from space. Here, we used a U-Net 
model adapted for regression to map the canopy height of all trees in the state of California with very high- 
resolution aerial imagery 0.6 m from the USDA-NAIP program. The U-Net model was trained using canopy 
height models computed from aerial LiDAR data as a reference, along with corresponding RGB-NIR NAIP images 
collected in 2020. We evaluated the performance of the deep-learning model using 42 independent 1 km2 areas 
across various forest types and landscape variations in California. Our predictions of tree heights exhibited a 
mean error of 2.9 m and showed relatively low systematic bias across the entire range of tree heights present in 
California. In 2020, trees taller than 5 m covered ∼ 19.3% of California. Our model successfully estimated 
canopy heights up to 50 m without saturation, outperforming existing canopy height products from global 
models. The approach we used allowed for the reconstruction of the three-dimensional structure of individual 
trees as observed from nadir-looking optical airborne imagery, suggesting a relatively robust estimation and 
mapping capability, even in the presence of image distortion. These findings demonstrate the potential of large- 
scale mapping and monitoring of tree height, as well as potential biomass estimation, using NAIP imagery.   

1. Introduction 

California forests are particularly important among the world’s for-
ests as they are home to some of the tallest and largest tree species on 
Earth, such as coastal redwoods (Sequoia sempervirens) and giant se-
quoias (Sequoiadendron giganteum). They present some of the highest 
biomass in the world, reaching ∼ 2600 Mg of above-ground carbon per 
ha for Sequoia sempervirens forests (Van Pelt et al., 2016). Additionally, 
California forests exhibit high diversity and belong to one of the world’s 
biodiversity hotspots, the California Floristic Province (Myers et al., 
2000). However, these forests are under threat. Studies have revealed a 
decline of 50% in the number of large trees in last decades (McIntyre 

et al., 2015), a recent decrease in carbon sequestration (Domke et al., 
2020), and an increasing vulnerability to disturbances caused by 
drought stress, insect infestation, and wildfires (Wang et al., 2022; 
Williams et al., 2016). Consequently, urgent statewide efforts are being 
implemented to allow efficient forest conservation and management. 
These efforts require accurate high (1–5 m per pixel) to very high (≤1 m 
per pixel) spatial resolution information on the forest biomass and 
structure for the entire California. While both values can be derived from 
canopy height (Asner and Mascaro, 2014; Lim et al., 2003), estimating 
canopy height at the state scale remains a challenging task for remote 
sensing techniques. 

To estimate forest canopy height, airborne LiDAR (Light Detection 
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and Ranging) is the gold standard, but data acquisition is limited to 
sparse, local to regional-scale coverage due to the high cost associated 
with it. To estimate tree height on a larger scale than the LiDAR flight 
lines, a novel approach is to train machine/deep learning models with 
multispectral or radar remote-sensed images to estimate a reference 
height measured from LiDAR. These models can then be applied to re-
gions where LiDAR is not available. For example, estimations of tree 
height have already been made with Landsat images (Potapov et al., 
2021), Sentinel-2 images (Lang et al., 2019; Lang et al., 2023; Astola 
et al., 2021), combinations of Sentinel-1 (radar) and − 2 (multispectral) 
(Ge et al., 2022; Fayad et al., 2024), Planet images (Liu et al., 2023; 
Csillik et al., 2019; Huang et al., 2022), and very high-resolution images 
from airborne (Li et al., 2023; Li et al., 2020; Karatsiolis et al., 2021) and 
Maxar satellite data (Illarionova et al., 2022; Tolan et al., 2024). 

Currently, two global vegetation height maps based on low and 
medium multispectral data are freely available: the 2020 Global Canopy 
Height Map at 10 m spatial resolution based on Sentinel-2 (Lang et al., 
2023) and the 2019 Landsat-based global map at 30 m spatial resolution 
(Potapov et al., 2021). However, these maps, although useful for sci-
entific applications, are not suitable for local forestry applications 
because of their coarser resolution and large uncertainty. Examples of 
tree height vegetation maps made with VHR optical imagery and deep- 
learning are increasing. A U-Net-based architecture was applied on VHR 
Maxar images over a site in boreal forests of Russia to map tree height 
with a mean absolute error (MAE) of 2.4 m for forests with average 
height of 15 m (Illarionova et al., 2022). Similar models have achieved 
better estimates (1.4–1.6 m) for mapping buildings and vegetation 
heights using aerial images (Li et al., 2020). Others have shown height 
estimation of similar or greater accuracy (MAE < 1.5 m) in urban and 
forest landscapes using encoder-decoder architecture on the 2018 Data 
Fusion Contest (Carvalho et al., 2019; Karatsiolis et al., 2021; Xu et al., 
2019). Overall, these studies show that estimation of height can be ob-
tained with great accuracy using encoder-decoder deep learning archi-
tecture (such as U-Net (Ronneberger et al., 2015)) for buildings or for 
vegetation from VHR images. However, these studies are all local proof 
of concepts and use a limited amount of training data, so it is still un-
known how useful these models can be outside their training region. 

Among the most recent similar studies, a deep learning-based 
framework was developed to provide location, crown area, and height 
for individual tree crowns from aerial images at a country scale (Li et al., 
2023). It was trained in Denmark and successfully applied in both 
Denmark and Finland, demonstrating the potential for transferability to 
different countries. However, the approach involves separating the 
height estimation problem into two parts: segmenting individual tree 
crowns and attributing height and tree characteristics to the individual 
tree segments. Unfortunately, for California, some vegetation types, 
such as Chaparral, have continuous canopy cover, making it challenging 
to separate individual crowns in the image. Consequently, the first part 
of their model cannot be achieved for such vegetation types. The same 
issue, decomposing the model to segmentation and attributions, occurs 
with the recent canopy height model with a spatial resolution of 0.5 m 
released by Meta (Tolan et al., 2024). This model used the DINOv2 self- 
supervised model in conjunction with a deep learning model to estimate 
canopy height from Maxar RGB imagery with MAE of about 3-m over 
set-aside validation areas. Only training the DINOv2 model requires 
multiple high-end GPUs, which can also be a challenge for many 
research groups. 

Here, we present a U-Net deep learning model adapted for regression 
which can directly predict vegetation height from the VHR image 
without decomposing the model to segmentation and attributions. It was 
trained using canopy height model (CHM) data from the USGS LiDAR 
campaign (2018–2020), the National Ecological Observatory Network 
(NEON) LiDAR campaign (2018–2020), and their corresponding VHR 
imagery from the NAIP USDA, 2020 campaign. The model exclusively 
estimates vegetation height and differentiates it from other objects with 
height in LiDAR canopy height models, like buildings. The validation 

with 42 independent LiDAR datasets sampled across California is pre-
sented. Our canopy height estimates were compared to the available 
medium and very high-resolution canopy height models from Sentinel-2 
(10 m), Landsat (30 m), and Maxar (0.5 m). Finally, the California tree 
height map at 0.6 m of spatial resolution is provided. 

2. Methods 

2.1. Very high resolution (VHR) optical images of California 

To estimate the height of trees in California forests, a dataset of 
11,076 aerial images covering the entire state of California from the US 
Department of Agriculture (USDA) National Agriculture Imagery Pro-
gram (NAIP) of 2020 was used (USDA, 2020), Fig. 1. Each NAIP image 
had a size of ∼ 6 × 7.5 km and a spatial resolution of 0.6 m. The images 
were acquired during the agricultural growing seasons between April 
and August 2020, using Leica Geosystems SH100 and SH120 sensors 
onboard an airplane. The provided bands included red, green, blue and 
near infrared (RGBN). The NAIP images (∼ 5 terabytes) were obtained 
from the USDA and delivered on a hard drive. The original images did 
not undergo any preprocessing as they were already within the range of 
0 to 255 (8 bits). 

2.2. LiDAR dataset 

The LiDAR data to train the model were obtained from the U.S. 
Geological Survey (USGS) and the National Ecological Observatory 
Network (NEON) campaigns conducted in California forests between 
2018 and 2020. The USGS datasets were collected for the 3D Elevation 
Program (3DEP), which aims to gather high-quality LiDAR data for the 
United States (Stoker and Miller, 2022). These data have all been vali-
dated to meet the base specifications of the 3DEP program, also known 
as Quality Levels QL1 and QL2 (Heidemann, 2018), Table 1. For the 
NEON datasets, the quality requirements are less strict. The sensor’s 
absolute vertical accuracy must be less than 0.15 m in root mean square 
error (RMSE), and the pulse density ≥ 1.0. The model was trained using 
randomly selected tiles from eight sites of the USGS and three sites from 
NEON, Table A.1. 

USGS LiDAR data from 2010 (one redwood site) and between 2018 
and 2020 (10 sites) was employed for the validation of the model. For 
the validation sample, first, 50 random points were generated in Cali-
fornia, and the closest LiDAR point clouds were selected (18 LAZ files). 
Secondly, we generated 50 random points within forested areas as 
classified by the 2019 National Land Cover Database (Dewitz, 2021; 
Yang et al., 2018). Again, the closest LiDAR point clouds to these points 
were selected (12 LAZ files). Additionally, we manually selected LiDAR 
data from forested regions, including areas with large and tall trees such 
as Redwoods and Sequoias (12 LAZ files). Therefore, these validation 
samples consisted of a total of 42 sites, which were used to assess the 
performance and accuracy of our model. The final list of validation data 
comes from 10 different USGS LiDAR campaigns, Table A.1. 

Canopy height models (CHM) were generated for all the point clouds 
(originally in .LAZ file format) using the LidR R package (Roussel et al., 
2020; Roussel and Auty, 2021). First, the LiDAR point clouds were 
denoised to remove outliers using the ivf algorithm with parameters of 1 
m for resolution and 5 for the maximal number of other points in the 
surrounding (Roussel and Auty, 2021). Second, the digital terrain model 
(DTM) and the digital surface model (DSM) were computed at 1 m 
spatial resolution using the TIN algorithm (Roussel and Auty, 2021) and 
the pitfree algorithm (thresholds of [0,2,5,10,15] and maximum edge 
length of [0, 1.5]), respectively. Third, the CHM was computed as the 
difference between DSM and DTM, multiplied by a factor of 2.5 and 
saved in integer 8 bits. The scaling enables us to maximize the resolution 
for height data in integers while staying within the limits of the 8-bit 
integer system, where 255 is the maximum value. Finally, the CHM 
data were resampled at 0.6 m using nearest neighbor algorithm, to 
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match the original spatial resolution of the NAIP data. 
For the 42 independent validation sites, we compared the observed 

CHM and predicted CHM from our model and computed the mean ab-
solute error (MAE), the MAE relative to the mean observed height, and 
the root mean square error (RMSE). 

2.3. Building footprints masking 

The 2020 US Building Footprints dataset made by Microsoft for the 
State of California was used to mask the heights of buildings that often 
appear erroneously in the CHM (https://github. 
com/microsoft/USBuildingFootprints). A buffer of 2 m was 
added to the polygons of buildings and the buffered polygons were 
rasterized to the CHM resolution. The 2 m buffer value was selected as a 
compromise between eliminating all building pixels, even in the pres-
ence of a small geolocation error between the CHM and the building 
footprints dataset, and avoiding the masking of nearby trees. All CHM 
pixels overlapped by the buffered building footprints were set to zero. 

2.4. Global tree height datasets 

The results of the model were compared to three recent global height 
datasets for our 42 validation sites. The first height dataset is taken from 
an unpublished global canopy height map for the year 2020 developed 
by Meta, Tolan’s model (Meta and World Resources Institude (WRI), 
2023; Tolan et al., 2024). Currently, only the data for California (US) 
and the São Paulo State (Brazil) are available. This height map was 
produced at a 0.5 m spatial resolution using the self-supervised DINOv2 
model and a machine learning approach that can estimate CHM from 

Fig. 1. Mosaic of NAIP aerial images containing 11,076 tiles that cover the state of California, USA, from the 2020 campaign (∼ 430,000 km2). Only the red, blue, 
and green bands were used for visualization purposes. The map displays the extent of the NAIP images used for model training (shown in yellow) and the locations 
used for model validation (shown with white numbers). 

Table 1 
Absolute vertical accuracy for light detection and ranging data and digital 
elevation models defined in the 3DEP Lidar Base Specification; NVA, non- 
vegetated vertical accuracy; VVA, vertical vegetated accuracy, aggregate nom-
inal pulse spacing and density defined, adapted from Stoker and Miller (2022).  

Quality 
Level 
(QL) 

RMSEz 
(Non- 
Vegetated) 
(m) 

NVA at the 
95-Percent 
Confidence 
Level (m) 

VVA at the 
95th 
Percentile 
(m) 

Aggregate 
Nominal 
Pulse 
Spacing 
(m) 

Aggregate 
Nominal 
Pulse 
Density 
(pls/m2) 

USGS 
QL1 

≤0.100 ≤0.196 ≤0.30 ≤0.35 ≥8.0 

USGS 
QL2 

≤0.100 ≤0.196 ≤0.30 ≤0.71 ≥2.0  
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Maxar RGB satellite imagery while using aerial LiDAR from the NEON 
program in California as a reference to train the model (Meta and World 
Resources Institude (WRI), 2023). The second height dataset was ob-
tained from a global CHM for the year 2020, Lang’s model (Lang et al., 
2023). This height map was generated at a 10 m spatial resolution using 
CNN and Sentinel-2 reflectance data and also using GEDI LiDAR data as 
the reference for vegetation height. Currently, this dataset represents the 
most accurate freely available global vegetation height dataset. The 
third height dataset is taken from the 2019 Global Forest Canopy Height 
of the University of Maryland, Potapov’s model (Potapov et al., 2021). In 
this dataset, the height is estimated at a 30 m spatial resolution from the 
Landsat normalized surface reflectance with a machine learning model 
(regression tree) using Global Ecosystem Dynamics Investigation (GEDI) 
LiDAR data as the reference for vegetation height (Potapov et al., 2021; 
Dubayah et al., 2020; Potapov et al., 2020). 

2.5. Neural network architecture 

The canopy height estimation from the NAIP images of California 
was performed using a classical U-Net model (Ronneberger et al., 2015) 
with ∼ 35 millions parameters, as depicted in Fig. 2. Specifically, the U- 

Net model predicted the canopy height for each pixel of the input image. 
The model input was a 4-band RGB-NIR image with dimensions of 256 ×
256 pixels and a spatial resolution 0.6 m. The output of the model was a 
single-band image with dimensions of 256 × 256 pixels, containing 
values ranging from 0 to 1 (representing 0 to 100 m when unscaled). The 
model was implemented using the R language (R Core Team, 2016) with 
the RStudio interface to Keras and TensorFlow 2.8 (Chollet et al., 2015; 
Allaire and Chollet, 2016; Allaire and Tang, 2020; Abadi et al., 2015). 

2.6. Training and validation 

To generate samples for the model training and validation, we 
initially selected 7932 CHM rasters, out of the original 11,225 CHM 
rasters, that were completely covered by a NAIP image. Then NAIP 
images (317) were cropped to match the extent of each CHM. Subse-
quently, we resampled the 1 m spatial resolution CHM rasters to the 
resolution of the cropped NAIP image (0.6 m) using the nearest neighbor 
algorithm. In the third step, both the cropped NAIP and corresponding 
CHM rasters were divided into image patches of 256 × 256 pixel cells 
using the gdal_retile tool (GDAL/OGR contributors, 2019). As the 
number of rows or columns in the cropped NAIP and corresponding 

Fig. 2. U-Net model architecture used for canopy height estimation from VHR NAIP images, adapted from Ronneberger et al. (2015). The number of channels is 
indicated above the cuboids, and the vertical numbers indicate the row and column size in pixels. The operations (convolutions, skip connections, max pooling and 
upsampling) performed in each layer and their sizes are indicated by the colored arrows. 
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CHM rasters were not necessarily multiples of 256, any image patch that 
deviated from the size of 256 × 256 pixels was excluded, resulting in a 
total of 145,080 image patches. Additionally, to train the model to 
recognize when there was no vegetation height, we incorporated 15,310 
image patches of 256 × 256 pixels without vegetation, containing one or 
more land cover types (e.g., rock, sand, water surfaces), along with their 
CHM rasters consisting solely of zeros. 

The final sample comprised a total of 160,390 256 × 256 pixels 
image patches of 4 bands and their associated one-band CHM image 
patch. 90% (144,351) of the samples were used for training and 10% 
(16,039) for validation. Before being inputted into the U-Net model, 
image patches underwent random vertical and horizontal flips as data 
augmentation. 

During the network training, we used standard stochastic gradient 
descent (SGD) optimization and the RMSprop optimizer (learning rate of 
0.0001). SGD optimization was used to minimize the loss function by 
using random mini-batches of data, allowing for faster convergence and 
improved generalization (Chollet and Allaire, 2018). Mean squared 
error was used as the loss function, and mean absolute error as the ac-
curacy metric. The network was trained for 5000 epochs with a batch 
size of 32 images. These parameters allowed us to achieve the highest 
accuracy within a reasonable time frame, as observed in a previous 
model run. The model with the best validation loss (i.e., validation loss 
of 0.001954955 and a mean absolute error of 2.30 m) was kept for 
prediction. The training of the models took less than a week using an 
Nvidia RTX3090 Graphics Processing Unit (GPU) with 24 GB of 
memory. 

2.7. Prediction 

For prediction, NAIP tiles were resized by adding columns and rows, 
resulting in images sized at 11,392 × 13,440 pixels with an aspect ratio 
of 1024 and a 128-pixel border. This adjustment was made to meet the 
input size requirements for prediction. The standardized-size NAIP tiles 
were subsequently divided into sub-images of 1152 × 1152 pixels with a 
64-pixel overlap between them. Predictions were made on these 1152 ×
1152-pixel images, and the 64-pixel border on each sub-image predic-
tion was removed to mitigate border artifacts (Ronneberger et al., 
2015). The resulting 1024 × 1024 images were merged and cropped to 
the original NAIP extent, and, finally, a 60-pixel border (36 m) was 
removed to mitigate any remaining border artifacts. This last step did 
not affect the final height map since NAIP images have an overlap of ∼
400 m between them. The computing time for predicting California tree 
height using the RTX3090 GPU was 23 days. 

3. Results 

3.1. Validation of the model using 42 independent sites 

The model accurately predicted the height, as evidenced by the 
alignment of predictions and observations along the 1:1 line, for most of 
the 42 validation areas across the range of canopy heights in California, 
from North to South (Fig. 3 at the top right to Fig. 5 at the bottom 
center). It is important to note that the NAIP and CHM images are not co- 
registered, and the trees in the NAIP images may appear distorted due to 
variations in view angle and slope. 

For most validation areas with tall forests reaching over 60 m 
(Fig. 3b, c, d, e, f, g, and i, and Fig. 4d, e, f, and i), the model can 
accurately predict heights up to 50 m without bias. Between 40 and 50 
m, there may be a slight underestimation, but it does not reach a satu-
ration, as seen in the Redwood forest (Fig. 3e) or the Sequoia forest 
(Fig. 4i). However, underestimation is not always observed (Fig. 3b, f 
and Fig. 4e, f). In the Redwood forest (Fig. 3e), the tall trees are densely 

packed, making it visually challenging to distinguish between 40 m and 
70 m trees from the NAIP image alone (Fig. B.1). 

The model accurately identifies most trees, with only a few ground 
points being misclassified. The misclassification of ground points as 
vegetation height occurs primarily in tall forests and it is concentrated 
near zero on the observed height axis (Fig. 3g, h, j-n, Fig. 4f and i, and 
Fig. 5i). This error can be attributed to a slight discrepancy in the 
location of observed and predicted large and tall crowns, as illustrated in 
Fig. B.2 and Fig. B.3. When this occurs, the overlapping portion of the 
crowns between the predicted and observed values shows a small error, 
whereas the border where the observed and predicted crowns do not 
overlap displays high negative errors on one side and positive errors on 
the other side. 

Outliers that are predicted as zero but observed with a height, Fig. 4a 
and k, and Fig. 5n, mainly result from buildings or electric lines that are 
mistakenly classified as vegetation in the USGS point clouds and 
consequently appeared in the reference CHM. However, the model 
correctly predicts a height of zero for them, which is the accurate value 
(see Fig. B.4 and Fig. B.5). It should be noted that our model may not 
detect vegetation below two meters in height, as observed in the desert 
(Fig. B.6). Furthermore, fire or logging activities may have resulted in 
the removal of some trees between the acquisition of the NAIP image 
and the LiDAR point cloud, as seen in validation area 1 (Fig. B.7) and 
area 10 (Fig. B.8). 

The relative mean absolute error of our model on the validation 
sample was below 100% for tree heights above 1 m, reached around 
50% for heights around 10 m, and showed an overall tendency to 
decrease with tree height, Fig. 6a. The minimum relative mean absolute 
error was 15.5% for a forest with a mean height of 27.7 m and reached 
27.4% for the tallest redwood forest. The mean absolute error (MAE) on 
the validation sample was 2.90 m. MAE range from 0.05 m in a desert 
area with very low vegetation and few trees to 12.02 m in the tallest 
observed redwood forest, Fig. 6b. The MAE increased linearly with the 
mean tree height, Fig. 6b. This suggests that certain features used by the 
model to reconstruct the CHM from the VHR images are less accessible 
for taller and denser forests. Furthermore, if the prediction is good but 
has a small location error, this could also explain the increase in MAE 
with an increase in tree height. The largest discrepancies between the 
reference and the predicted heights are generally observed on the border 
of the highest tree crowns Fig. B.3). This geolocation artifact is likely 
responsible for the peak of predicted height often observed for low 
values of observed height, such as in Fig. 3–5. 

3.2. From a 2D multispectral image to a 3D canopy height model 

Remarkably, our model reconstructed the 3D structure of trees from 
the multispectral NAIP image, Fig. 7. It generated a CHM from a nadir 
view, similar to the LiDAR reference data, despite the NAIP sensor’s 
view angle not being exactly nadir and the presence of different view 
angles in the image mosaic resulting from various image acquisitions, as 
observed in validation area 11 (Fig. 7 and Fig. B.9). Although the trees 
may appear distorted and flattened in the NAIP image (Fig. 7a), and the 
LiDAR reference appears visually different from the NAIP image 
(Fig. 7b), our model successfully reconstructed a realistic CHM, 
including tree positions and crown sizes. This reconstructed information 
can be accessed at the individual tree level (Fig. 7c). However, due to 
slight differences in tree location between the predicted and observed 
data, significant negative and positive errors occur at the borders of 
large crowns (Fig. B.9). When compared to Tolan’s CHM (Fig. 7d), 
which is generated using VHR satellite images, it can be observed that 
Tolan’s model did not recreate the 3D structure of trees at the individual 
tree level. Instead, it estimated heights at a lower resolution than the 
original data, and information on individual trees could not be accessed. 
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Fig. 3. Comparison of predicted versus observed height (m) for the validation areas in the Northern part of California represented as density scatterplots. Each plot 
contains 1,000,000 points. The 1:1 line is depicted in gray, and the mean absolute error is indicated in white. 
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Fig. 4. Comparison of predicted versus observed height (m) for the validation areas in the central part of California represented as density scatterplots. Each plot 
contains 1,000,000 points. The 1:1 line is depicted in gray, and the mean absolute error is indicated in white. 
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Fig. 5. Comparison of predicted versus observed height (m) for the validation areas in the Southern part of California represented as density scatterplots. Each plot 
contains 1,000,000 points. The 1:1 line is depicted in gray, and the mean absolute error is indicated in white. 
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3.3. Comparison with global height products for the 42 validation sites 

Tolan’s model (Tolan et al., 2024), made using VHR satellite images 
at a 0.5 m resolution, tends to consistently underestimate vegetation 
height and saturates before 45 m height in our study area (Fig. 8a). The 
model’s error is not uniform across different heights, with larger errors 
occurring for smaller heights, and the height estimation reaches a 
threshold at 40 m. In contrast, our model is capable of predicting greater 
heights (Fig. 8b). The error remains constant for all heights below 50 m, 
and beyond 50 m, there is an observed underestimation of height. The 
large errors for points observed with an elevation of zero are associated 
with predicted crown location errors. In comparison to Tolan’s model 
results, the mean absolute error (MAE) and root mean square error 
(RMSE) of our model are ∼ 1.7 times and 1.6 times lower, respectively, 
and our model estimates saturate at a much taller height, ∼ 75 m. 

Lang’s model (Lang et al., 2023) roughly follows the 1:1 line 
(Fig. 8c), but the relationship to the airborne LiDAR is not linear. This is 
caused by the custom weighting included in their model in order to 
alleviate the saturation effect in high vegetation heights. The mean 
absolute error (MAE) of the Sentinel 2-based model is twice as large 
(MAE = 6.95 m) as that of our locally trained model (MAE = 3.4 m). 
Additionally, this dataset reached greater heights than Tolan’s model, 
saturating close to 60 m. At the spatial resolution of Sentinel-2 (Fig. 8d), 
our model appears to be closer to the 1:1 line, and the peak of error 
observed at an observed height of zero disappears. This suggests that a 
portion of the errors in our model is not related to height estimation but 
rather to tree location inaccuracies. When aggregated at a larger spatial 
resolution, these errors vanish as most of these significant discrepancies 
are located at the borders of the crowns. 

Potapov’s model exhibits underestimation of vegetation height for 

Fig. 7. Example of a NAIP image from the validation sample displaying flattened tree artifacts due to the viewing angle (a), reference canopy height model obtained 
from LiDAR (b), canopy height model generated by our model (c), and canopy height model produced by Tolan’s model (Tolan et al., 2024) (d). 

Fig. 6. Association between the mean observed canopy height, the mean absolute error relative to the mean observed height (a) and the mean absolute error (b), 
across the 42 validation sites. In (a), the y-axis is in a log scale for visualization purposes and the line y = 1 is depicted in gray. 
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the validation sites, reaching a threshold around 40 m (Fig. 8e), as 
already described in the article describing the model (Potapov et al., 
2021). At the spatial resolution of 30 m, our model’s results appeared to 
be closer to the 1:1 line (Fig. 8f), at least up to 50 m. Beyond that point, 
our model shows an underestimation trend until reaching saturation 
around 75 m. 

3.4. California canopy height 

The following statistics on vegetation height are provided based on 
the median canopy height aggregated at a 30 m spatial resolution 
(Fig. 9). In 2020, we determined that 31.9% of California had vegetation 
heights ≥ 2 m. By using a median height threshold of 5 m to define 
forests, we estimated that forest coverage accounted for ∼ 19.3% of 
California. The median forest height in California was 11 m, with 5% of 
the forests exhibiting a median height above 29 m. Among the forests, 

Fig. 8. Comparison with global canopy height products for the 42 validation areas in California. Predicted versus observed height for (a) Tolan’s 0.5 m spatial 
resolution canopy height model (Tolan et al., 2024) and (b) our model aggregated at the 0.5 m spatial resolution of Tolan’s model. Predicted vs observed height for 
(c) the 10 m spatial resolution canopy height model of Lang (Lang et al., 2023) and (d) our model aggregated at the 10 m spatial resolution of Lang’s model. Predicted 
vs observed height for (e) the 30 m spatial resolution canopy height of Potapov (Potapov et al., 2021) and our model aggregated at the 30 m spatial resolution of 
Potapov’s model. For (a) and (b), there are 183,947,110 points of validation; for (c) and (d), 525,640 points; and for (e) and (f), 65,633 points. The 1:1 line is 
represented in gray. 
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0.7% had a median height of 40 m or higher, and 0.07% had a median 
height of 50 m or higher. The maximum observed median height at the 
30 m resolution was 72 m, likely close to the saturation point of our 
model. The tallest forests were primarily distributed in the Klamath 
Mountains, Cascade Ranges, Moloch Plateau Ranges, Sierra Nevada 
Mountains, northern part of the Coast Ranges, Santa Cruz Mountains, 
and Santa Lucia Range. 

4. Discussion 

4.1. Mapping California tree height 

Here, we demonstrate that very high spatial resolution optical aerial 
images, such as NAIP, allow the modeling of forest canopy height. In 
California, the U-Net network adapted for regression estimated canopy 
height directly from VHR NAIP images with a mean error of 2.9 m on the 
independent validation datasets, demonstrating the high capacity of 
convolutional networks to support vegetation mapping (Kattenborn 
et al., 2021). For California, our locally calibrated model provided, as 
expected, more accurate canopy height estimates with fewer biases than 
the currently available global canopy height models (Fig. 8). It also 
outperformed Tolan’s model (Tolan et al., 2024), trained on the same 
California NEON sites as our study, along with data from other NEON 
sites (Fig. 8). Considering that California is a biodiversity hotspot (Myers 
et al., 2000) and exhibits a wide range of trees and forest structures, 
from sparse vegetation in the desert to the tallest trees on earth, it is 
likely that this type of model will work for most temperate forests 
although further testing is required. 

We found that 19.3% of California had a canopy cover ≥ 5 m in 2020 
(∼ 81.826 km2), highlighting the importance of forests in this region. 
The median canopy height of California was 11 m, indicating that a large 
area of short forests compensates for the area of very tall forests. This 
low median canopy height could reflect the 50% decline in large trees (≥
0.61 m diameter at breast height (dbh)) observed in California forests 

between the 1930s and the 2000s, a period during which large trees 
were replaced by smaller tree species with the goal of achieving higher 
tree density (McIntyre et al., 2015; Herbert et al., 2022). 

Regarding tall trees, 0.7% of the forest shows trees with a median 
height above 40 m, and 0.07% have a median height ≥ 50 m. Alongside 
our model, only the Sentinel-2-based height map (Lang et al., 2023) was 
able to estimate canopy height above 40 m (but not the individual trees). 
Having a map of these tall trees is important as they dominate the carbon 
stocks. For example, in the nearby Cascade Mountains crest in Oregon 
and Washington states, it has been shown that large trees, while ac-
counting for 2 to 4% of the stems, hold 33 to 46% of the total carbon 
stored (Mildrexler et al., 2020). Furthermore, in a sample of 48 forest 
sites worldwide, it has been observed that trees with a diameter at breast 
height (dbh) ≥ 0.6 m comprised 41% of aboveground live tree biomass, 
and the largest 1% of trees with a dbh ≥ 0.01 m comprised 50% of 
aboveground live biomass (Lutz et al., 2018). 

Tall forests of California are renowned for the presence of coastal 
redwoods (Sequoia sempervirens) along the Pacific coastal range and 
giant sequoias (Sequoiadendron giganteum) endemic to the Sierra Nevada 
Mountains. These endangered species are among the tallest and most 
massive tree species in the world, capable of living thousands of years. 
Their preservation is essential for maintaining biodiversity in forest 
ecosystems (Piirto and Rogers, 2002; Francis and Asner, 2019; Enquist 
et al., 2020). While most giant sequoia groves are localized, the same 
cannot be said for coastal redwoods (Piirto and Rogers, 2002; Francis 
and Asner, 2019). Combined with species mapping from spectral char-
acteristics, which has been shown to be possible and accurate for the 
coastal Sequoia sempervirens on a smaller scale (Francis and Asner, 
2019), all the individuals of the species could be mapped. Large trees, as 
part of the megabiota, are more susceptible to extinction, and changes in 
their abundance disproportionately impact ecosystem and Earth system 
processes, including biomass, carbon, nutrients, and fertility (Enquist 
et al., 2020). Since our model can estimate heights above 40 m and in-
dividual trees are visible in the predicted CHM, it could be utilized to 
locate all these trees and forests of primary importance for conservation. 

4.2. Advances in height and canopy structure mapping 

In comparison to existing canopy height maps (Tolan et al., 2024; 
Lang et al., 2023; Potapov et al., 2021), our results represent a signifi-
cant advancement as they accurately reproduce the 3D structure of in-
dividual trees from a nadir view, similar to LiDAR CHMs. This 
unexpected achievement was made possible by the CNN’s ability to 
perform geometric operations and recover 3D information from 2D 
images. With the canopy height map, we can now access more precise 
tree characteristics, such as height and crown size, location, directly 
from VHR images. This is particularly important in California, where tall 
trees are mostly found in mountainous and hilly areas, and often appear 
distorted in VHR images. The latest developments in the co-registration 
of VHR images aim to accurately register the ground (Kristollari and 
Karathanassi, 2022), but there is still no available method to register 
trees. Accessing the 3D dimension of predicted CHMs from a nadir view 
at different time periods may assist in the co-registration of VHR images. 

The results of Tolan’s model seem to indicate that 3D reconstruction 
of individual tree height is not achieved from satellite VHR images (see 
Fig. 7 and (Tolan et al., 2024)). The cause is yet to be determined, 
whether it is due to the model or the characteristics of the satellite im-
ages, such as less accurate geolocations and diverse view angles. 
Furthermore, Tolan’s model utilized two 8-GPU Voltas in the unsuper-
vised pretraining phase (Tolan et al., 2024), making it inaccessible for 
most research groups. In contrast, Our model employs the U-Net archi-
tecture, which runs on a single Nvidia RTX3090 GPU (24GB memory), 
and training/prediction can be made on a local machine. In a future 
experiment, we will assess if our model maintains 3D tree structure 
reconstruction when applied to VHR satellite images. 

Fig. 9. Canopy height of California (m). To ease visualization, pixel values 
represent the median height at 30 m spatial resolution. 
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4.3. Limitations 

Like all deep learning models, our model is subject to sampling bias. 
It relies on LiDAR data that is more prevalent in forested areas, limiting 
validation in regions with lower vegetation, like Chaparral, which is 
common in the southern Californian landscape. The model’s perfor-
mance is optimized for specific vegetation periods (April to August) and 
specific acquisition geometries. The performance of the model is not 
guaranteed with alternative configurations. To address misclassification 
of buildings as vegetation in reference CHMs, additional background 
data from a pre-existing building footprints dataset was incorporated. 
However, data availability for the additional background dataset may 
vary across regions. 

5. Conclusion 

In this work, we present the canopy height map of California at a sub- 
meter resolution (0.6 m) for the year 2020. We trained a deep learning 
regression model with the popular CNN architecture U-Net using aerial 
RGB-NIR NAIP images as input and LiDAR data as reference for canopy 
height. We demonstrate that in California, our model outperforms all 
existing remote-sensing derived canopy height maps. The observed 3D 
reconstruction of the tree structure from a VHR image has never been 
achieved before and could be used to gather individual information 
about the tree, such as height and crown size, or to produce maps of 
individual trees. The next steps are (i) to produce tree height data over 
the continental US with this method, and (ii) to apply this method to 
VHR images from satellites to see if 3D tree structure reconstruction is 
possible and can be used to map tree height on a global scale. 
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